101
|
Abstract
The mitochondrial genome encodes 13 proteins that are components of the oxidative phosphorylation system (OXPHOS), suggesting that precise regulation of these genes is crucial for maintaining OXPHOS functions, including ATP production, calcium buffering, cell signaling, ROS production, and apoptosis. Furthermore, heteroplasmy or mis-regulation of gene expression in mitochondria frequently is associated with human mitochondrial diseases. Thus, various approaches have been developed to investigate the roles of genes encoded by the mitochondrial genome. In this review, we will discuss a wide range of techniques available for investigating the mitochondrial genome, mitochondrial transcription, and mitochondrial translation, which provide a useful guide to understanding mitochondrial gene expression.
Collapse
Affiliation(s)
- Dongkeun Park
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Soyeon Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyung-Tai Min
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
102
|
Cosemans C, Nawrot TS, Janssen BG, Vriens A, Smeets K, Baeyens W, Bruckers L, Den Hond E, Loots I, Nelen V, Van Larebeke N, Schoeters G, Martens D, Plusquin M. Breastfeeding predicts blood mitochondrial DNA content in adolescents. Sci Rep 2020; 10:387. [PMID: 31941967 PMCID: PMC6962168 DOI: 10.1038/s41598-019-57276-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nutrition during early childhood is linked to metabolic programming. We hypothesized that breastfeeding has long-term consequences on the energy metabolism exemplified by mitochondrial DNA (mtDNA). As part of the third cycle of the Flemish Environment and Health Study (FLEHSIII) cohort, 303 adolescents aged 14–15 years were included. We associated breastfeeding and blood mtDNA content 14–15 years later while adjusting for confounding variables. Compared with non-breastfed adolescents, mtDNA content was 23.1% (95%CI: 4.4–45.2; p = 0.013) higher in breastfed adolescents. Being breastfed for 1–10 weeks, 11–20 weeks, and >20 weeks, was associated with a higher mtDNA content of respectively 16.0% (95%CI: −7.1–44.9; p = 0.191), 23.5% (95%CI: 0.8–51.3; p = 0.042), and 31.5% (95%CI: 4.3–65.7; p = 0.021). Our study showed a positive association between breastfeeding and mtDNA content in adolescents which gradually increased with longer periods of breastfeeding. Higher mtDNA content may be an underlying mechanism of the beneficial effects of breastfeeding on children’s metabolism.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.,School of Public Health, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Annette Vriens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | | | - Ilse Loots
- Faculty of Social Sciences and IMDO-Institute, University of Antwerp, Antwerp, Belgium
| | - Vera Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium.,Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Dries Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
103
|
Sun J, Longchamps RJ, Piggott DA, Castellani CA, Sumpter JA, Brown TT, Mehta SH, Arking DE, Kirk GD. Association Between HIV Infection and Mitochondrial DNA Copy Number in Peripheral Blood: A Population-Based, Prospective Cohort Study. J Infect Dis 2020; 219:1285-1293. [PMID: 30476184 DOI: 10.1093/infdis/jiy658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Low mitochondrial DNA (mtDNA) copy number (CN) is a predictor of adverse aging outcomes, and its status may be altered in human immunodeficiency virus (HIV)-infected persons. This study evaluated the cross-sectional and longitudinal change of mtDNA CN by HIV markers. METHODS mtDNA CN was measured in the ALIVE (AIDS Linked to the Intravenous Experience) cohort of persons with a history of injecting drugs. Multivariable linear regression models controlling for demographic characteristics, behavior, and hepatitis C virus (HCV) seropositivity assessed the relationship of mtDNA CN to HIV markers (CD4+ T-cell counts, viral load, antiretroviral therapy [ART] use). Linear mixed models tested the association between HIV markers and age-related mtDNA CN trajectories. RESULTS Among 741 individuals at baseline, 436 (59%) were infected with HIV. HIV-infected individuals who had lower CD4+ T-cell counts (P = .01), had higher viral loads (P < .01), and were not receiving ART (P < .01) had significantly lower mtDNA CNs than uninfected persons; there was no difference between participants who were uninfected and HIV-infected individuals who had well-controlled HIV levels. In longitudinal follow-up of 507 participants, from age 50 years onward, mtDNA CN declined significantly faster among HIV-infected individuals than among HIV-uninfected persons (-0.03 units of change/year vs 0.006 units of change/year; P = .04), even among infected individuals with well-controlled HIV. CONCLUSION Before 50 years of age, mtDNA CN is similar between HIV-infected individuals with well-controlled HIV and uninfected persons, but from age 50 onward, mtDNA CN declines significantly faster among all infected individuals than among HIV-uninfected persons.
Collapse
Affiliation(s)
- Jing Sun
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Ryan J Longchamps
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Damani A Piggott
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Christina A Castellani
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jason A Sumpter
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Todd T Brown
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shruti H Mehta
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
104
|
Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis. Neuromolecular Med 2020; 22:304-313. [PMID: 31902116 DOI: 10.1007/s12017-019-08588-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
The impaired mitochondrial function has been implicated in the pathogenicity of multiple sclerosis (MS), a chronic inflammatory, demyelinating, and neurodegenerative disease of the CNS. Circulating mtDNA copy number in body fluids has been proposed as an indicator for several neurodegenerative diseases, and the altered cerebrospinal fluid mtDNA has been shown as a promising marker for MS. The aim of this study was to determine changes and biomarker potential of circulating mtDNA in peripheral blood in MS. The mtDNA copy number was quantified by real-time PCR in blood samples from 60 patients with relapsing-remitting MS (RRMS) and 64 healthy controls. The RRMS patients had significantly lower circulating mtDNA copy number compared to controls. Subgroup analysis with stratification of RRMS patients based on disease duration under or over 10 years revealed that the mtDNA copy number was significantly lower in the group with longer disease duration. A negative correlation was observed between mtDNA copy number and disease duration. The ROC curve analysis indicated a significant ability of mtDNA copy number to separate RRMS patients from controls with an AUC of 0.859. This is the first study to measure peripheral blood mtDNA copy number in MS patients. Current data suggest that the reduction in peripheral blood mtDNA copy number may be an early event in MS and correlate with the disease progression. The findings of this study indicate that circulating blood-based mtDNA copy number may be a potential non-invasive candidate biomarker for mitochondria-mediated neurodegeneration and MS. This can put forward the clinical applicability over other invasive markers.
Collapse
|
105
|
Peripheral Blood Mitochondrial DNA Copy Number Obtained From Genome-Wide Genotype Data Is Associated With Neurocognitive Impairment in Persons With Chronic HIV Infection. J Acquir Immune Defic Syndr 2019; 80:e95-e102. [PMID: 30531306 DOI: 10.1097/qai.0000000000001930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) copy number varies by cell type and energy demands. Blood mtDNA copy number has been associated with neurocognitive function in persons without HIV. Low mtDNA copy number may indicate disordered mtDNA replication; high copy number may reflect a response to mitochondrial dysfunction. We hypothesized that blood mtDNA copy number estimated from genome-wide genotyping data is related to neurocognitive impairment (NCI) in persons with HIV. METHODS In the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study, peripheral blood mtDNA copy number was obtained from genome-wide genotyping data as a ratio of mtDNA single-nucleotide polymorphism probe intensities relative to nuclear DNA single-nucleotide polymorphisms. In a multivariable regression model, associations between mtDNA copy number and demographics, blood cell counts, and HIV disease and treatment characteristics were tested. Associations of mtDNA copy number with the global deficit score (GDS), GDS-defined NCI (GDS ≥ 0.5), and HIV-associated neurocognitive disorder (HAND) diagnosis were tested by logistic regression, adjusting for potential confounders. RESULTS Among 1010 CHARTER participants, lower mtDNA copy number was associated with longer antiretroviral therapy duration (P < 0.001), but not with d-drug exposure (P = 0.85). mtDNA copy number was also associated with GDS (P = 0.007), GDS-defined NCI (P < 0.001), and HAND (P = 0.002). In all analyses, higher mtDNA copy number was associated with poorer cognitive performance. CONCLUSIONS Higher mtDNA copy number estimated from peripheral blood genotyping was associated with worse neurocognitive performance in adults with HIV. These results suggest a connection between peripheral blood mtDNA and NCI, and may represent increased mtDNA replication in response to mitochondrial dysfunction.
Collapse
|
106
|
Chumarina M, Russ K, Azevedo C, Heuer A, Pihl M, Collin A, Frostner EÅ, Elmer E, Hyttel P, Cappelletti G, Zini M, Goldwurm S, Roybon L. Cellular alterations identified in pluripotent stem cell-derived midbrain spheroids generated from a female patient with progressive external ophthalmoplegia and parkinsonism who carries a novel variation (p.Q811R) in the POLG1 gene. Acta Neuropathol Commun 2019; 7:208. [PMID: 31843010 PMCID: PMC6916051 DOI: 10.1186/s40478-019-0863-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Variations in the POLG1 gene encoding the catalytic subunit of the mitochondrial DNA polymerase gamma, have recently been associated with Parkinson's disease (PD), especially in patients diagnosed with progressive external ophthalmoplegia (PEO). However, the majority of the studies reporting this association mainly focused on the genetic identification of the variation in POLG1 in PD patient primary cells, and determination of mitochondrial DNA copy number, providing little information about the cellular alterations existing in patient brain cells, in particular dopaminergic neurons. Therefore, through the use of induced pluripotent stem cells (iPSCs), we assessed cellular alterations in novel p.Q811R POLG1 (POLG1Q811R) variant midbrain dopaminergic neuron-containing spheroids (MDNS) from a female patient who developed early-onset PD, and compared them to cultures derived from a healthy control of the same gender. Both POLG1 variant and control MDNS contained functional midbrain regionalized TH/FOXA2-positive dopaminergic neurons, capable of releasing dopamine. Western blot analysis identified the presence of high molecular weight oligomeric alpha-synuclein in POLG1Q811R MDNS compared to control cultures. In order to assess POLG1Q811R-related cellular alterations within the MDNS, we applied mass-spectrometry based quantitative proteomic analysis. In total, 6749 proteins were identified, with 61 significantly differentially expressed between POLG1Q811R and control samples. Pro- and anti-inflammatory signaling and pathways involved in energy metabolism were altered. Notably, increased glycolysis in POLG1Q811R MDNS was suggested by the increase in PFKM and LDHA levels and confirmed using functional analysis of glycolytic rate and oxygen consumption levels. Our results validate the use of iPSCs to assess cellular alterations in relation to PD pathogenesis, in a unique PD patient carrying a novel p.Q811R variation in POLG1, and identify several altered pathways that may be relevant to PD pathogenesis.
Collapse
|
107
|
Song L, Liu T, Song Y, Sun Y, Li H, Xiao N, Xu H, Ge J, Bai C, Wen H, Zhang Y, Hui R, Chen J. mtDNA Copy Number Contributes to All-Cause Mortality of Lacunar Infarct in a Chinese Prospective Stroke Population. J Cardiovasc Transl Res 2019; 13:783-789. [PMID: 31828536 DOI: 10.1007/s12265-019-09943-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
The study aimed to investigate the relationship between mtDNA copy number and the risk of all-cause mortality in stroke. One thousand four hundred eighty-four stroke patients were documented including 273 deaths (127 thrombosis, 52 lacunar, 94 hemorrhage). Patients in the third quartile had the lowest mortality rates in overall stroke and the three subtypes. The lowest quartile of mtDNA copy number (Q1 < 85.85) indicated an increased risk of all-cause mortality in stroke patients (adjusted HR, 1.52; 95% CI, 1.08-2.14; p = 0.017). In the subtype analysis, the risk of all-cause mortality appeared only in lacunar infarct, and the patients in the Q1 (< 87.76) and Q4 (> 150.61) mtDNA copy number groups showed significantly higher risks of HRs (Q1, adjusted HR, 3.87, 95% CI, 1.52-9.83; Q4, adjusted HR, 3.08, 95% CI, 1.16-8.18). Stroke patients with lacunar infarct in mtDNA copy number < 87.76 or > 150.61 were at a high risk of poor outcomes in all-cause mortality.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianlong Liu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yan Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
108
|
Ross JM, Coppotelli G, Branca RM, Kim KM, Lehtiö J, Sinclair DA, Olson L. Voluntary exercise normalizes the proteomic landscape in muscle and brain and improves the phenotype of progeroid mice. Aging Cell 2019; 18:e13029. [PMID: 31489782 PMCID: PMC6826127 DOI: 10.1111/acel.13029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022] Open
Abstract
The accumulation of mitochondrial DNA (mtDNA) mutations is a suspected driver of aging and age‐related diseases, but forestalling these changes has been a major challenge. One of the best‐studied models is the prematurely aging mtDNA mutator mouse, which carries a homozygous knock‐in of a proofreading deficient version of the catalytic subunit of mtDNA polymerase‐γ (PolgA). We investigated how voluntary exercise affects the progression of aging phenotypes in this mouse, focusing on mitochondrial and protein homeostasis in both brain and peripheral tissues. Voluntary exercise significantly ameliorated several aspects of the premature aging phenotype, including decreased locomotor activity, alopecia, and kyphosis, but did not have major effects on the decreased lifespan of mtDNA mutator mice. Exercise also decreased the mtDNA mutation load. In‐depth tissue proteomics revealed that exercise normalized the levels of about half the proteins, with the majority involved in mitochondrial function and nuclear–mitochondrial crosstalk. There was also a specific increase in the nuclear‐encoded proteins needed for the tricarboxylic acid cycle and complex II, but not in mitochondrial‐encoded oxidative phosphorylation proteins, as well as normalization of enzymes involved in coenzyme Q biosynthesis. Furthermore, we found tissue‐specific alterations, with brain coping better as compared to muscle and with motor cortex being better protected than striatum, in response to mitochondrial dysfunction. We conclude that voluntary exercise counteracts aging in mtDNA mutator mice by counteracting protein dysregulation in muscle and brain, decreasing the mtDNA mutation burden in muscle, and delaying overt aging phenotypes.
Collapse
Affiliation(s)
- Jaime M. Ross
- Department of Neuroscience, Biomedicum Karolinska Institutet Stockholm Sweden
- Department of Genetics Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School Boston MA USA
| | - Giuseppe Coppotelli
- Department of Neuroscience, Biomedicum Karolinska Institutet Stockholm Sweden
- Department of Genetics Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School Boston MA USA
| | - Rui M. Branca
- Department of Oncology‐Pathology, Science for Life Laboratory Karolinska Institutet Stockholm Sweden
| | - Kyung M. Kim
- Department of Genetics Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School Boston MA USA
| | - Janne Lehtiö
- Department of Oncology‐Pathology, Science for Life Laboratory Karolinska Institutet Stockholm Sweden
| | - David A. Sinclair
- Department of Genetics Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School Boston MA USA
| | - Lars Olson
- Department of Neuroscience, Biomedicum Karolinska Institutet Stockholm Sweden
| |
Collapse
|
109
|
Bijnens EM, Derom C, Weyers S, Janssen BG, Thiery E, Nawrot TS. Placental mitochondrial DNA content is associated with childhood intelligence. J Transl Med 2019; 17:361. [PMID: 31703745 PMCID: PMC6839247 DOI: 10.1186/s12967-019-2105-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Developmental processes in the placenta and the fetal brain are shaped by the similar biological signals. Evidence accumulates that adaptive responses of the placenta may influence central nervous system development. We hypothesize that placental mtDNA content at birth is associated with intelligence in childhood. In addition, we investigate if intra-pair differences in mtDNA content are associated with intra-pair differences in intelligence. METHODS Relative mtDNA content was measured using qPCR in placental tissue of 375 children of the East Flanders Prospective Twin Survey. Intelligence was assessed with the Wechsler Intelligence Scale for Children-Revised (WISC-R) between 8 and 15 years old. We accounted for sex, gestational age, birth weight, birth year, zygosity and chorionicity, cord insertion, age at measurement, indicators of socioeconomic status, smoking during pregnancy, and urban environment. RESULTS In multivariable adjusted mixed modelling analysis, each doubling in placental mtDNA content was associated with 2.0 points (95% CI 0.02 to 3.9; p = 0.05) higher total and 2.3 points (95% CI 0.2 to 4.3; p = 0.03) higher performance IQ in childhood. We observed no association between mtDNA content and verbal intelligence. Intra-pair differences in mtDNA content and IQ were significantly (p = 0.01) correlated in monozygotic-monochorionic twin pairs, showing that the twin with the highest mtDNA content was 1.9 times more likely (p = 0.05) to have the highest IQ. This was not observed in dichorionic twin pairs. CONCLUSIONS We provide the first evidence that placental mtDNA content is associated with childhood intelligence. This emphasizes the importance of placental mitochondrial function during in utero life on fetal brain development with long-lasting consequences.
Collapse
Affiliation(s)
- Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium. .,Department of Obstetrics and Gynaecology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Catherine Derom
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.,Centre of Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steven Weyers
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Evert Thiery
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.,Department of Public Health & Primary Care, Leuven University, Kapucijnenvoer 35, 3000, Leuven, Belgium
| |
Collapse
|
110
|
Ammal Kaidery N, Ahuja M, Thomas B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson's disease. Mol Cell Neurosci 2019; 101:103413. [PMID: 31644952 DOI: 10.1016/j.mcn.2019.103413] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
Search for a definitive cure for neurodegenerative disorders like Parkinson's disease (PD) has met with little success. Mitochondrial dysfunction and elevated oxidative stress precede characteristic loss of dopamine-producing neurons from the midbrain in PD. The majority of PD cases are classified as sporadic (sPD) with an unknown etiology, whereas mutations in a handful of genes cause monogenic form called familial (fPD). Both sPD and fPD is characterized by proteinopathy and mitochondrial dysfunction leading to increased oxidative stress. These pathophysiological mechanisms create a vicious cycle feeding into each other, ultimately tipping the neurons to its demise. Effect of iron accumulation and dopamine oxidation adds an additional dimension to mitochondrial oxidative stress and apoptotic pathways affected. Nrf2 is a redox-sensitive transcription factor which regulates basal as well as inducible expression of antioxidant enzymes and proteins involved in xenobiotic detoxification. Recent advances, however, shows a multifaceted role for Nrf2 in the regulation of genes connected with inflammatory response, metabolic pathways, protein homeostasis, iron management, and mitochondrial bioenergetics. Here we review the role of mitochondria and oxidative stress in the PD etiology and the potential crosstalk between Nrf2 signaling and mitochondrial function in PD. We also make a case for the development of therapeutics that safely activates Nrf2 pathway in halting the progression of neurodegeneration in PD patients.
Collapse
Affiliation(s)
- Navneet Ammal Kaidery
- Darby Research Institute, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Manuj Ahuja
- Darby Research Institute, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Bobby Thomas
- Darby Research Institute, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, United States of America; Department of Drug Discovery, Medical University of South Carolina, Charleston, SC 29425, United States of America.
| |
Collapse
|
111
|
Podlesniy P, Puigròs M, Serra N, Fernández-Santiago R, Ezquerra M, Tolosa E, Trullas R. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson's disease. EBioMedicine 2019; 48:554-567. [PMID: 31631040 PMCID: PMC6838390 DOI: 10.1016/j.ebiom.2019.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Both idiopathic and familial Parkinson's disease are associated with mitochondrial dysfunction. Mitochondria have their own mitochondrial DNA (mtDNA) and previous studies have reported that the release of mtDNA is a biomarker of Parkinson's disease. METHODS We have now investigated the relationship between mtDNA replication, transcription and release in fibroblasts from patients with idiopathic (iPD) and Leucine-rich repeat kinase 2G2019S -associated Parkinson's disease (LRRK2-PD), using Selfie-digital PCR, a method that allows absolute quantification of mtDNA genomes and transcripts. FINDINGS In comparison with healthy controls, we found that fibroblasts from patients with iPD or LRRK2-PD had a high amount of mitochondrial 7S DNA along with a low mtDNA replication rate that was associated with a reduction of cf-mtDNA release. Accumulation of 7S DNA in iPD and LRRK2-PD fibroblasts was related with an increase in H-strand mtDNA transcription. INTERPRETATION These results show that 7S DNA accumulation, low mtDNA replication, high H-strand transcription, and low mtDNA release compose a pattern of mtDNA dysfunction shared by both iPD and LRRK2-PD fibroblasts. Moreover, these results suggest that the deregulation of the genetic switch formed by 7SDNA that alternates between mtDNA replication and transcription is a fundamental pathophysiological mechanism in both idiopathic and monogenic Parkinson's disease.
Collapse
Affiliation(s)
- Petar Podlesniy
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| | - Margalida Puigròs
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Núria Serra
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rubén Fernández-Santiago
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Mario Ezquerra
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Eduardo Tolosa
- Neurology Service, Parkinson's Disease and Movement Disorders Unit, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|
112
|
Müller-Nedebock AC, Brennan RR, Venter M, Pienaar IS, van der Westhuizen FH, Elson JL, Ross OA, Bardien S. The unresolved role of mitochondrial DNA in Parkinson's disease: An overview of published studies, their limitations, and future prospects. Neurochem Int 2019; 129:104495. [PMID: 31233840 PMCID: PMC6702091 DOI: 10.1016/j.neuint.2019.104495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, has long been associated with mitochondrial dysfunction in both sporadic and familial forms of the disease. Mitochondria are crucial for maintaining cellular homeostasis, and their dysfunction is detrimental to dopaminergic neurons. These neurons are highly dependent on mitochondrial adenosine triphosphate (ATP) and degenerate in PD. Mitochondria contain their own genomes (mtDNA). The role of mtDNA has been investigated in PD on the premise that it encodes vital components of the ATP-generating oxidative phosphorylation (OXPHOS) complexes and accumulates somatic variation with age. However, the association between mtDNA variation and PD remains controversial. Herein, we provide an overview of previously published studies on the role of inherited as well as somatic (acquired) mtDNA changes in PD including point mutations, deletions and depletion. We outline limitations of previous investigations and the difficulties associated with studying mtDNA, which have left its role unresolved in the context of PD. Lastly, we highlight the potential for further research in this field and provide suggestions for future studies. Overall, the mitochondrial genome is indispensable for proper cellular function and its contribution to PD requires further, more extensive investigation.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | | | - Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse S Pienaar
- School of Life Sciences, University of Sussex, Falmer, BN1 9PH, United Kingdom; Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, United Kingdom
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA; School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
113
|
O'Hara R, Tedone E, Ludlow A, Huang E, Arosio B, Mari D, Shay JW. Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single-cell resolution. Genome Res 2019; 29:1878-1888. [PMID: 31548359 PMCID: PMC6836731 DOI: 10.1101/gr.250480.119] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Mitochondria are involved in a number of diverse cellular functions, including energy production, metabolic regulation, apoptosis, calcium homeostasis, cell proliferation, and motility, as well as free radical generation. Mitochondrial DNA (mtDNA) is present at hundreds to thousands of copies per cell in a tissue-specific manner. mtDNA copy number also varies during aging and disease progression and therefore might be considered as a biomarker that mirrors alterations within the human body. Here, we present a new quantitative, highly sensitive droplet digital PCR (ddPCR) method, droplet digital mitochondrial DNA measurement (ddMDM), to measure mtDNA copy number not only from cell populations but also from single cells. Our developed assay can generate data in as little as 3 h, is optimized for 96-well plates, and also allows the direct use of cell lysates without the need for DNA purification or nuclear reference genes. We show that ddMDM is able to detect differences between samples whose mtDNA copy number was close enough as to be indistinguishable by other commonly used mtDNA quantitation methods. By utilizing ddMDM, we show quantitative changes in mtDNA content per cell across a wide variety of physiological contexts including cancer progression, cell cycle progression, human T cell activation, and human aging.
Collapse
Affiliation(s)
- Ryan O'Hara
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Enzo Tedone
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew Ludlow
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ejun Huang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, 20122 Milan, Italy.,Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, 20122 Milan, Italy.,Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
114
|
Göke A, Schrott S, Mizrak A, Belyy V, Osman C, Walter P. Mrx6 regulates mitochondrial DNA copy number in Saccharomyces cerevisiae by engaging the evolutionarily conserved Lon protease Pim1. Mol Biol Cell 2019; 31:527-545. [PMID: 31532710 PMCID: PMC7202074 DOI: 10.1091/mbc.e19-08-0470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial function depends crucially on the maintenance of multiple mitochondrial DNA (mtDNA) copies. Surprisingly, the cellular mechanisms regulating mtDNA copy number remain poorly understood. Through a systematic high-throughput approach in Saccharomyces cerevisiae, we determined mtDNA–to–nuclear DNA ratios in 5148 strains lacking nonessential genes. The screen revealed MRX6, a largely uncharacterized gene, whose deletion resulted in a marked increase in mtDNA levels, while maintaining wild type–like mitochondrial structure and cell size. Quantitative superresolution imaging revealed that deletion of MRX6 alters both the size and the spatial distribution of mtDNA nucleoids. We demonstrate that Mrx6 partially colocalizes with mtDNA within mitochondria and interacts with the conserved Lon protease Pim1 in a complex that also includes Mam33 and the Mrx6-related protein Pet20. Acute depletion of Pim1 phenocopied the high mtDNA levels observed in Δmrx6 cells. No further increase in mtDNA copy number was observed upon depletion of Pim1 in Δmrx6 cells, revealing an epistatic relationship between Pim1 and Mrx6. Human and bacterial Lon proteases regulate DNA replication by degrading replication initiation factors, suggesting a model in which Pim1 acts similarly with the Mrx6 complex, providing a scaffold linking it to mtDNA.
Collapse
Affiliation(s)
- Aylin Göke
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics and
| | - Simon Schrott
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Arda Mizrak
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143
| | - Vladislav Belyy
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics and
| | - Christof Osman
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics and.,Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics and
| |
Collapse
|
115
|
Davis RL, Wong SL, Carling PJ, Payne T, Sue CM, Bandmann O. Serum FGF-21, GDF-15, and blood mtDNA copy number are not biomarkers of Parkinson disease. Neurol Clin Pract 2019; 10:40-46. [PMID: 32190419 DOI: 10.1212/cpj.0000000000000702] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/29/2019] [Indexed: 11/15/2022]
Abstract
Background Strong evidence of mitochondrial dysfunction exists for both familial and sporadic Parkinson disease (PD). A simple test, reliably identifying mitochondrial dysfunction, could be important for future stratified medicine trials in PD. We previously undertook a comparison of serum biomarkers in classic mitochondrial diseases and established that serum growth differentiation factor 15 (GDF-15) outperforms fibroblast growth factor 21 (FGF-21) when distinguishing patients with mitochondrial diseases from healthy controls. This study aimed to systematically assess serum FGF-21 and GDF-15, together with mitochondrial DNA (mtDNA) copy number levels in peripheral blood cells from patients with PD and healthy controls, to determine whether these measures could act as a biomarker of PD. Methods One hundred twenty-one patients with PD and 103 age-matched healthy controls were recruited from a single center. Serum FGF-21 and GDF-15, along with blood mtDNA copy number, were quantified using established assays. Results There were no meaningful differences identified for any of the measures when comparing patients with PD with healthy controls. This highlights a lack of diagnostic sensitivity that is incompatible with these measures being used as biomarkers for PD. Conclusion In this study, serum FGF-21, serum GDF-15, and blood mtDNA levels were similar in patients with PD and healthy controls and therefore unlikely to be satisfactory indicators of mitochondrial dysfunction in patients with PD. Classification of evidence This study provides Class III evidence that serum FGF-21, serum GDF-15, and blood mtDNA copy number levels do not distinguish patients with PD from healthy controls. There was no diagnostic uncertainty between patients with PD and healthy controls.
Collapse
Affiliation(s)
- Ryan L Davis
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Siew L Wong
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Phillippa J Carling
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Thomas Payne
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Carolyn M Sue
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| | - Oliver Bandmann
- Department of Neurogenetics (RLD, CMS), University of Sydney, Kolling Institute and Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia; Department of Neuroscience (SLW, PJC, TP, OB), Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; and Department of Neurology (CMS), Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, Sydney, New South Wales, Australia
| |
Collapse
|
116
|
Li J, Duan Y, Zhao D, Shah SZA, Wu W, Zhang X, Lai M, Guan Z, Yang D, Wu X, Gao H, Zhao H, Shi Q, Yang L. Detection of Cell-Free Mitochondrial DNA in Cerebrospinal Fluid of Creutzfeldt-Jakob Patients. Front Neurol 2019; 10:645. [PMID: 31293496 PMCID: PMC6598448 DOI: 10.3389/fneur.2019.00645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023] Open
Abstract
Background: The current diagnosis method for Creutzfeldt-Jakob disease (CJD) is post-mortem examination, so early detection of CJD has been historically problematic. Auxiliary detection of CJD based on changes in levels of components of the cerebrospinal fluid (CSF) has become a focus of research. In other neurodegenerative diseases such as Alzheimer's disease (AD), cell-free mitochondrial DNA (mtDNA) in the CSF of patients may serve as a biomarker that could facilitate early diagnosis and studies of the mechanisms underlying the disease. Methods: In this study, the cell-free mitochondrial DNA in the CSF of patients with sCJD and control patients was compared by digital droplet PCR. Results: The cell-free mitochondrial DNA copy number in the CSF of sCJD patients was significantly increased in comparison with that of the control group, and this difference was pathologically related to CJD. Conclusion: Therefore, we speculate that changes in cerebrospinal fluid mitochondrial DNA copy number play an important role in the study of CJD mechanism and diagnosis.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuhan Duan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Wei Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xixi Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyu Lai
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiling Guan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongming Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoqian Wu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongli Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huafen Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Lifeng Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
117
|
Zhou G, Yang L, Luo C, Liu H, Li P, Cui Y, Liu L, Yu X, Zeng Q, Chen J, Zhao Q, Dong L, Niu Q, Zhang S, Wang A. Low-to-moderate fluoride exposure, relative mitochondrial DNA levels, and dental fluorosis in Chinese children. ENVIRONMENT INTERNATIONAL 2019; 127:70-77. [PMID: 30909095 DOI: 10.1016/j.envint.2019.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/24/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The alteration of mitochondrial DNA (mtDNA) content contributes to many diseases, however, little is known about its effect on the prevalence of dental fluorosis (DF). OBJECTIVES We conducted a cross-sectional study to investigate the association of low-to-moderate fluoride exposure with relative mtDNA levels in relation to DF in children. METHODS We recruited 616 resident children, aged 7-13 years, randomly from low-to-moderate fluoride areas in Tianjin, China. We measured the fluoride concentrations in drinking water and urine using the national standardized ion selective electrode method, and determined the relative levels of mtDNA using a quantitative real-time polymerase chain reaction assay. The association among fluoride exposure, relative mtDNA levels, and the prevalence of DF were examined using multivariable linear and logistic regression models. We also performed stratified and mediation analyses. RESULTS The relative mtDNA levels of participants in the DF group were significantly lower than in the non-DF group (0.95 ± 0.44 vs. 1.12 ± 0.45, P < 0.001). In the adjusted models, we found that a 1 mg/L increment in water fluoride concentration was associated with a 0.10-unit decrease in circulating relative mtDNA levels (95% CI: -0.14, -0.06) and a 2.85-fold increase (95% CI: 2.01, 3.92) in moderate DF prevalence. A 1 mg/L increment in urinary fluoride level was associated with a 0.12-unit decrease in circulating relative mtDNA levels (95% CI: -0.14, -0.09) and a 1.85-fold increase (95% CI: 1.39, 2.39) in moderate DF prevalence. Stratified analysis indicated a weaker positive association of DF prevalence with fluoride exposure, while a stronger inverse relationship with relative mtDNA levels in boys than in girls. Assuming causality, we estimated that circulating mtDNA levels mediated 13.0% (95% CI: 5.2, 28.7%) and 9.6% (95% CI: 4.7, 18.5%) of the estimated effect of a 1 mg/L increment in water fluoride and urinary fluoride on prevalence of moderate DF, respectively. CONCLUSIONS Gender potentially modifies the associations of DF prevalence with relative mtDNA levels and low-to-moderate fluoride exposure. The reduced circulating mtDNA levels may partly mediate the elevated prevalence of moderate DF in children under such exposure.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lu Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chen Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongliang Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Pei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yushan Cui
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Li Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xingchen Yu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Jingwen Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qian Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lixin Dong
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiang Niu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
118
|
Mitochondrial Dysfunction in Parkinson's Disease-Cause or Consequence? BIOLOGY 2019; 8:biology8020038. [PMID: 31083583 PMCID: PMC6627981 DOI: 10.3390/biology8020038] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
James Parkinson first described the motor symptoms of the disease that took his name over 200 years ago. While our knowledge of many of the changes that occur in this condition has increased, it is still unknown what causes this neurodegeneration and why it only affects some individuals with advancing age. Here we review current literature to discuss whether the mitochondrial dysfunction we have detected in Parkinson’s disease is a pathogenic cause of neuronal loss or whether it is itself a consequence of dysfunction in other pathways. We examine research data from cases of idiopathic Parkinson’s with that from model systems and individuals with familial forms of the disease. Furthermore, we include data from healthy aged individuals to highlight that many of the changes described are also present with advancing age, though not normally in the presence of severe neurodegeneration. While a definitive answer to this question may still be just out of reach, it is clear that mitochondrial dysfunction sits prominently at the centre of the disease pathway that leads to catastrophic neuronal loss in those affected by this disease.
Collapse
|
119
|
Mishra A, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S. Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: A role of Wnt signalling. Neurochem Int 2019; 129:104463. [PMID: 31078578 DOI: 10.1016/j.neuint.2019.104463] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
Nigral dopaminergic (DAergic) cell degeneration and depletion of dopamine neurotransmitter in the midbrain are cardinal features of Parkinson's disease (PD). Dopamine system regulates different aspects of behavioural phenotypes such as motor control, reward, anxiety and depression via acting on dopamine receptors (D1-D5). Recent studies have shown the potential effects of dopamine on modulation of neurogenesis, a process of newborn neuron formation from neural stem cells (NSCs). Reduced proliferative capacity of NSCs and net neurogenesis has been reported in subventricular zone, olfactory bulb and hippocampus of patients with PD. However, the molecular and cellular mechanism of dopamine mediated modulation of DAergic neurogenesis is not defined. In this study, we attempted to investigate the molecular mechanism of dopamine receptors mediated control of DAergic neurogenesis and whether it affects mitochondrial biogenesis in 6-hydroxydopamine (6-OHDA) induced rat model of PD-like phenotypes. Unilateral administration of 6-OHDA into medial forebrain bundle potentially reduced tyrosine hydroxylase immunoreactivity, dopamine content in substantia nigra pars compacta (SNpc) and striatum region and impaired motor functions in adult rats. We found decreased D1 receptor expression, mitochondrial biogenesis, mitochondrial functions and DAergic differentiation associated with down-regulation of Wnt/β-catenin signalling in SNpc of 6-OHDA lesioned rats. Pharmacological stimulation of D1 receptor enhanced mitochondrial biogenesis, mitochondrial functions and DAergic neurogenesis that lead to improved motor functions in 6-OHDA lesioned rats. D1 agonist induced effects were attenuated following administration of D1 antagonist, whereas shRNA mediated knockdown of Axin-2, a negative regulator of Wnt signalling significantly abolished D1 antagonist induced impairment in mitochondrial biogenesis and DAergic neurogenesis in 6-OHDA lesioned rats. Our results suggest that dopamine receptor regulates DAergic neurogenesis and mitochondrial functions by activation of Wnt/β-catenin signaling in rat model of PD-like phenotypes.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; National Institute of Child Health and Human Development, Bethesda, MD, 20814, USA
| | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Swati Chaturvedi
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - M Wahajuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
120
|
Lowes H, Pyle A, Duddy M, Hudson G. Cell-free mitochondrial DNA in progressive multiple sclerosis. Mitochondrion 2019; 46:307-312. [PMID: 30098422 PMCID: PMC6509276 DOI: 10.1016/j.mito.2018.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Recent studies have linked cell-free mitochondrial DNA (ccf-mtDNA) to neurodegeneration in both Alzheimer's and Parkinson's disease, raising the possibility that the same phenomenon could be seen in other diseases which manifest a neurodegenerative component. Here, we assessed the role of circulating cell-free mitochondrial DNA (ccf-mtDNA) in end-stage progressive multiple sclerosis (PMS), where neurodegeneration is evident, contrasting both ventricular cerebral spinal fluid ccf-mtDNA abundance and integrity between PMS cases and controls, and correlating ccf-mtDNA levels to known protein markers of neurodegeneration and PMS. Our data indicate that reduced ccf-mtDNA is a component of PMS, concluding that it may indeed be a hallmark of broader neurodegeneration.
Collapse
Affiliation(s)
- Hannah Lowes
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Angela Pyle
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Duddy
- Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Gavin Hudson
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; The Wellcome Centre for Mitochondrial Research, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
121
|
Miller S, Muqit MMK. Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson's disease. Neurosci Lett 2019; 705:7-13. [PMID: 30995519 DOI: 10.1016/j.neulet.2019.04.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022]
Abstract
The discovery of rare familial monogenic forms of early-onset Parkinson's disease has led to the identification of a mitochondrial quality control process as a key player in this disease. Loss-of-function mutations in the genes encoding PINK1 or Parkin result in insufficient removal of dysfunctional mitochondria through autophagy, a process termed mitophagy. Understanding the mechanism of this process and the function of its two key players, PINK1 and Parkin, has led to the discovery of new therapeutic approaches. Small molecule activators of mitophagy, either activating PINK1 or Parkin directly or inhibiting Parkin's counterplayer, the ubiquitin-specific protease USP30, are in preclinical development. To enable clinical success of future small molecule mitophagy enhancers, biomarkers for mitochondrial integrity and mitophagy are being developed. Only a few years after the discovery of mitophagy deficits in Parkinson's disease, research of the underlying mechanisms, drug discovery of modulators for this mechanism and identification of biomarkers provide new avenues towards the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Silke Miller
- Neuroscience Department, Amgen Research, 360 Binney St., Cambridge, MA, 02142, USA.
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow St, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
122
|
Pilot study of DNA methylation, molecular aging markers and measures of health and well-being in aging. Transl Psychiatry 2019; 9:118. [PMID: 30886137 PMCID: PMC6423054 DOI: 10.1038/s41398-019-0446-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
Relations of DNA methylation markers to other biological aging markers and to psychosocial, behavioral, and health measures remain unclear. The sample included 23 participants (n = 11 cases with psychiatric diagnoses and n = 12 controls without current or lifetime psychiatric disorder), balanced by age and sex. Genomic DNA was extracted from blood samples; the following were performed: genome-wide DNA methylation assay using Illumina 850k methylationEPIC; PCR assays for relative telomere length (RTL) and mitochondrial DNA copy number (mtCN). Exposures were: case status; depression and anxiety symptoms; psychosocial support; subjective and objective cognition. Outcomes were: DNA methylation age (DNAm age); RTL; mtCN; extrinsic and intrinsic epigenetic age acceleration (EEAA and IEAA). Stronger correlation with chronological age was observed for DNAm age (ρ = 0.86; p < 0.0001) compared to RTL (ρ = -0.53; p < 0.01); mtCN was not correlated with age. DNAm age was more strongly correlated with behavioral and health variables than RTL or mtCN; e.g., correlations with DNAm age: body mass index (ρ = 0.36; p = 0.10); smoking pack-years (ρ = 0.37; p = 0.08); physical activity (ρ = -0.56; p = 0.01); alcohol intake (ρ = 0.56; p = 0.01). DNAm age was inversely correlated with psychosocial support (ρ = -0.42; p = 0.048) and Modified Mini-Mental State score (ρ = -0.44; p = 0.01). Anxiety, psychosocial support, and objective cognition were significantly related to accelerated aging; depression and subjective cognition were not. In conclusion, DNAm age correlated more strongly with chronological age and key psychosocial, behavioral, and health variables than RTL or mtCN. Signals for associations with epigenetic aging were observed for psychosocial and neurobehavioral variables.
Collapse
|
123
|
Silzer T, Barber R, Sun J, Pathak G, Johnson L, O’Bryant S, Phillips N. Circulating mitochondrial DNA: New indices of type 2 diabetes-related cognitive impairment in Mexican Americans. PLoS One 2019; 14:e0213527. [PMID: 30861027 PMCID: PMC6414026 DOI: 10.1371/journal.pone.0213527] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial function has been implicated and studied in numerous complex age-related diseases. Understanding the potential role of mitochondria in disease pathophysiology is of importance due to the rise in prevalence of complex age-related diseases, such as type 2 diabetes (T2D) and Alzheimer's disease (AD). These two diseases specifically share common pathophysiological characteristics which potentially point to a common root cause or factors for disease exacerbation. Studying the shared phenomena in Mexican Americans is of particular importance due to the disproportionate prevalence of both T2D and AD in this population. Here, we assessed the potential role of mitochondria in T2D and cognitive impairment (CI) in a Mexican American cohort by analyzing blood-based indices of mitochondrial DNA copy number (mtDNACN) and cell-free mitochondrial DNA (CFmtDNA). These mitochondrial metrics were also analyzed for correlation with relevant neuropsychological variables and physiological data collected as indicators of disease and/or disease progression. We found mtDNACN to be significantly decreased in individuals with CI, while CFmtDNA was significantly elevated in T2D; further, CFmtDNA elevation was significantly exacerbated in individuals with both diseases. MtDNACN was found to negatively correlate with age and fatty acid binding protein concentration, while positively correlating with CFmtDNA as well as CERAD total recall score. Candidate gene SNP-set analysis was performed on genes previously implicated in maintenance and control of mitochondrial dynamics to determine if nuclear variants may account for variability in mtDNACN. The results point to a single significant locus, in the LRRK2/MUC19 region, encoding leucine rich repeat kinase 2 and mucin 19. This locus has been previously implicated in Parkinson's disease, among others; rs7302859 was the driver SNP. These combined findings further indicate that mitochondrial dysfunction (as assessed by proxy via mtDNACN) is intimately linked to both T2D and CI phenotypes as well as aging.
Collapse
Affiliation(s)
- Talisa Silzer
- Department of Microbiology, Immunology, Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| | - Robert Barber
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jie Sun
- Department of Microbiology, Immunology, Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Gita Pathak
- Department of Microbiology, Immunology, Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Leigh Johnson
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Sid O’Bryant
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Nicole Phillips
- Department of Microbiology, Immunology, Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
124
|
Guyatt AL, Brennan RR, Burrows K, Guthrie PAI, Ascione R, Ring SM, Gaunt TR, Pyle A, Cordell HJ, Lawlor DA, Chinnery PF, Hudson G, Rodriguez S. A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts. Hum Genomics 2019; 13:6. [PMID: 30704525 PMCID: PMC6357493 DOI: 10.1186/s40246-018-0190-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNA CN) exhibits interindividual and intercellular variation, but few genome-wide association studies (GWAS) of directly assayed mtDNA CN exist. We undertook a GWAS of qPCR-assayed mtDNA CN in the Avon Longitudinal Study of Parents and Children (ALSPAC) and the UK Blood Service (UKBS) cohort. After validating and harmonising data, 5461 ALSPAC mothers (16-43 years at mtDNA CN assay) and 1338 UKBS females (17-69 years) were included in a meta-analysis. Sensitivity analyses restricted to females with white cell-extracted DNA and adjusted for estimated or assayed cell proportions. Associations were also explored in ALSPAC children and UKBS males. RESULTS A neutrophil-associated locus approached genome-wide significance (rs709591 [MED24], β (change in SD units of mtDNA CN per allele) [SE] - 0.084 [0.016], p = 1.54e-07) in the main meta-analysis of adult females. This association was concordant in magnitude and direction in UKBS males and ALSPAC neonates. SNPs in and around ABHD8 were associated with mtDNA CN in ALSPAC neonates (rs10424198, β [SE] 0.262 [0.034], p = 1.40e-14), but not other study groups. In a meta-analysis of unrelated individuals (N = 11,253), we replicated a published association in TFAM (β [SE] 0.046 [0.017], p = 0.006), with an effect size much smaller than that observed in the replication analysis of a previous in silico GWAS. CONCLUSIONS In a hypothesis-generating GWAS, we confirm an association between TFAM and mtDNA CN and present putative loci requiring replication in much larger samples. We discuss the limitations of our work, in terms of measurement error and cellular heterogeneity, and highlight the need for larger studies to better understand nuclear genomic control of mtDNA copy number.
Collapse
Affiliation(s)
- Anna L. Guyatt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R. Brennan
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philip A. I. Guthrie
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Raimondo Ascione
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan M. Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
| | | | - Debbie A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
125
|
Investigating mitonuclear interactions in human admixed populations. Nat Ecol Evol 2019; 3:213-222. [PMID: 30643241 PMCID: PMC6925600 DOI: 10.1038/s41559-018-0766-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
To function properly, mitochondria utilize products of 37 mitochondrial and >1,000 nuclear genes, which should be compatible with each other. Discordance between mitochondrial and nuclear genetic ancestry could contribute to phenotypic variation in admixed populations. Here, we explored potential mitonuclear incompatibility in six admixed human populations from the Americas: African Americans, African Caribbeans, Colombians, Mexicans, Peruvians and Puerto Ricans. By comparing nuclear versus mitochondrial ancestry in these populations, we first show that mitochondrial DNA (mtDNA) copy number decreases with increasing discordance between nuclear and mtDNA ancestry. The direction of this effect is consistent across mtDNA haplogroups of different geographic origins. This observation indicates suboptimal regulation of mtDNA replication when its components are encoded by nuclear and mtDNA genes with different ancestry. Second, while most populations analysed exhibit no such trend, in African Americans and Puerto Ricans, we find a significant enrichment of ancestry at nuclear-encoded mitochondrial genes towards the source populations contributing the most prevalent mtDNA haplogroups (African and Native American, respectively). This possibly reflects compensatory effects of selection in recovering mitonuclear interactions optimized in the source populations. Our results provide evidence of mitonuclear interactions in human admixed populations and we discuss their implications for human health and disease.
Collapse
|
126
|
Soltys DT, Pereira CP, Rowies FT, Farfel JM, Grinberg LT, Suemoto CK, Leite RE, Rodriguez RD, Ericson NG, Bielas JH, Souza-Pinto NC. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol Aging 2019; 73:161-170. [DOI: 10.1016/j.neurobiolaging.2018.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/13/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
127
|
Particulate Air Pollution, Blood Mitochondrial DNA Copy Number, and Telomere Length in Mothers in the First Trimester of Pregnancy: Effects on Fetal Growth. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5162905. [PMID: 30524658 PMCID: PMC6247572 DOI: 10.1155/2018/5162905] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 12/28/2022]
Abstract
Growing evidences have shown that particulate matter (PM) exposures during pregnancy are associated with impaired fetal development and adverse birth outcomes, possibly as a result of an exaggerated systemic oxidative stress and inflammation. Telomere length (TL) is strongly linked to biological age and is impacted by oxidative stress. We hypothesized that PM exposure during different time windows in the first trimester of pregnancy influences both mitochondrial DNA copy number (mtDNAcn), an established biomarker for oxidative stress, and TL. Maternal blood TL and mtDNAcn were analysed in 199 healthy pregnant women recruited at the 11th week of pregnancy by quantitative polymerase chain reaction. We also examined whether maternal mtDNAcn and TL were associated with fetal growth outcomes measured at the end of the first trimester of pregnancy (fetal heart rate, FHR; crown-rump length, CRL; and nuchal translucency, NT) and at delivery (birth weight, length, head circumference). The possible modifying effect of prepregnancy maternal body mass index was evaluated. PM10 exposure during the first pregnancy trimester was associated with an increased maternal mtDNAcn and a reduced TL. As regards ultrasound fetal outcomes, both FHR and CRL were positively associated with PM2.5, whereas the association with FHR was confirmed only when examining PM10 exposure. PM10 was also associated with a reduced birth weight. While no association was found between mtDNAcn and CRL, we found a negative relationship between mtDNAcn and fetal CRL only in overweight women, whereas normal-weight women exhibited a positive, albeit nonsignificant, association. As abnormalities of growth in utero have been associated with postnatal childhood and adulthood onset diseases and as PM is a widespread pollutant relevant to the large majority of the human population and obesity a rising risk factor, our results, if confirmed in a larger population, might represent an important contribution towards the development of more targeted public health strategies.
Collapse
|
128
|
Plasmid-normalized quantification of relative mitochondrial DNA copy number. Sci Rep 2018; 8:15347. [PMID: 30337569 PMCID: PMC6194030 DOI: 10.1038/s41598-018-33684-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Alterations of mitochondrial DNA (mtDNA) copy number have been associated with a wide variety of phenotypes and diseases. Unfortunately, the literature provides scarce methodical information about duplex targeting of nuclear and mtDNA that meets the quality criteria for qPCR. Therefore, we established a method for mtDNA copy number quantification using a quantitative PCR assay that allows for simultaneous targeting of a single copy nuclear gene (beta-2-microglobulin) and the t-RNALeu gene on the mtDNA. We include a plasmid containing both targets in order to normalize against differences in emission intensities of the fluorescent dyes Yakima Yellow and FAM. Applying the plasmid calibrator on an internal control reduced the intra-assay variability from 21% (uncorrected) to 7% (plasmid-corrected). Moreover, we noted that DNA samples isolated with different methods revealed different numbers of mtDNA copies, thus highlighting an important influence of the pre-analytical procedures. In summary, we developed a precise assay for mitochondrial copy number detection relative to nuclear DNA. Our method is applicable to comparative mitochondrial DNA copy number studies since the use of the dual insert plasmid allows correcting for the unequal emission intensities of the different fluorescent labels of the two targets.
Collapse
|
129
|
Monzio Compagnoni G, Kleiner G, Bordoni A, Fortunato F, Ronchi D, Salani S, Guida M, Corti C, Pichler I, Bergamini C, Fato R, Pellecchia MT, Vallelunga A, Del Sorbo F, Elia A, Reale C, Garavaglia B, Mora G, Albanese A, Cogiamanian F, Ardolino G, Bresolin N, Corti S, Comi GP, Quinzii CM, Di Fonzo A. Mitochondrial dysfunction in fibroblasts of Multiple System Atrophy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3588-3597. [PMID: 30254015 DOI: 10.1016/j.bbadis.2018.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 12/23/2022]
Abstract
Multiple System Atrophy is a severe neurodegenerative disorder which is characterized by a variable clinical presentation and a broad neuropathological spectrum. The pathogenic mechanisms are almost completely unknown. In the present study, we established a cellular model of MSA by using fibroblasts' primary cultures and performed several experiments to investigate the causative mechanisms of the disease, with a particular focus on mitochondrial functioning. Fibroblasts' analyses (7 MSA-P, 7 MSA-C and 6 healthy controls) displayed several anomalies in patients: an impairment of respiratory chain activity, in particular for succinate Coenzyme Q reductase (p < 0.05), and a reduction of complex II steady-state level (p < 0.01); a reduction of Coenzyme Q10 level (p < 0.001) and an up-regulation of some CoQ10 biosynthesis enzymes, namely COQ5 and COQ7; an impairment of mitophagy, demonstrated by a decreased reduction of mitochondrial markers after mitochondrial inner membrane depolarization (p < 0.05); a reduced basal autophagic activity, shown by a decreased level of LC3 II (p < 0.05); an increased mitochondrial mass in MSA-C, demonstrated by higher TOMM20 levels (p < 0.05) and suggested by a wide analysis of mitochondrial DNA content in blood of large cohorts of patients. The present study contributes to understand the causative mechanisms of Multiple System Atrophy. In particular, the observed impairment of respiratory chain activity, mitophagy and Coenzyme Q10 biosynthesis suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis of the disease. Furthermore, these findings will hopefully contribute to identify novel therapeutic targets for this still incurable disorder.
Collapse
Affiliation(s)
- Giacomo Monzio Compagnoni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Giulio Kleiner
- Department of Neurology, Columbia University, New York 10032, NY, USA.
| | - Andreina Bordoni
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Francesco Fortunato
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Dario Ronchi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Sabrina Salani
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marianna Guida
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Via Galvani 31, 39100 Bolzano, Italy.
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| | - Romana Fato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy.
| | - Maria Teresa Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Annamaria Vallelunga
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Italy.
| | - Francesca Del Sorbo
- Neurology Unit I, Neurological Institute "C. Besta" IRCCS Foundation, Milan, Italy.
| | - Antonio Elia
- Neurology Unit I, Neurological Institute "C. Besta" IRCCS Foundation, Milan, Italy.
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, IRCCS Foundation Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, IRCCS Foundation Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Gabriele Mora
- Department of Neurological Rehabilitation, ICS Maugeri, IRCCS, Istituto Scientifico di Milano, Milan, Italy.
| | - Alberto Albanese
- Department of Neurology, Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Filippo Cogiamanian
- U.O. Neurofisiopatologia, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Ardolino
- U.O. Neurofisiopatologia, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Stefania Corti
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Giacomo P Comi
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | | | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
130
|
Chidambaram SB, Bhat A, Ray B, Sugumar M, Muthukumar SP, Manivasagam T, Justin Thenmozhi A, Essa MM, Guillemin GJ, Sakharkar MK. Cocoa beans improve mitochondrial biogenesis via PPARγ/PGC1α dependent signalling pathway in MPP + intoxicated human neuroblastoma cells (SH-SY5Y). Nutr Neurosci 2018; 23:471-480. [PMID: 30207204 DOI: 10.1080/1028415x.2018.1521088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenols are shown to protect from or delay the progression of chronic neurodegenerative diseases. Mitochondrial dysfunction plays a key role in the pathogenesis of Parkinson's disease (PD). This study was aims to gain insight into the role of ahydroalcoholic extract of cocoa (standardised for epicatechin content) on mitochondrial biogenesis in MPP+ intoxicated human neuroblastoma cells (SHSY5Y). The effects of cocoa on PPARγ, PGC1α, Nrf2 and TFAM protein expression and mitochondrial membrane potential were evaluated. A pre-exposure to cocoa extract decreased reactive oxygen species formation and restored mitochondrial membrane potential. The cocoa extract was found to up-regulate the expression of PPARγ and the downstream signalling proteins PGC1α, Nrf2 and TFAM. It increased the expression of the anti-apoptotic protein BCl2 and increased superoxide dismutase activity. Further, the cocoa extract down-regulated the expression of mitochondria fission 1 (Fis1) and up-regulated the expression of mitochondria fusion 2 (Mfn2) proteins, suggesting an improvement in mitochondrial functions in MPP+ intoxicated cells upon treatment with cocoa. Interestingly, cocoa up-regulates the expression of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis. No change in the expression of PPARγ on treatment with cocoa extract was observed when the cells were pre-treated with PPARγ antagonist GW9662. This data suggests that cocoa mediates mitochondrial biogenesis via a PPARγ/PGC1α dependent signalling pathway and also has the ability to improve dopaminergic functions by increasing tyrosine hydroxylase expression. Based on our data, we propose that a cocoa bean extract and products thereof could be used as potential nutritional supplements for neuroprotection in PD.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Dept of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 57 00 15, KA, India
| | - Abid Bhat
- Dept of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 57 00 15, KA, India
| | - Bipul Ray
- Dept of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysore 57 00 15, KA, India
| | - Mani Sugumar
- Research and Development Centre, Bharathiar University, Coimbatore 641046, TN, India
| | - Serva Peddha Muthukumar
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysore 570020, KA, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai nagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai nagar, Tamilnadu, India
| | | | - Gilles J Guillemin
- Neuropharmacology group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, NSW 2109, Australia
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, Canada S7N 5C9
| |
Collapse
|
131
|
Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD. Life Sci 2018; 209:455-465. [DOI: 10.1016/j.lfs.2018.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/11/2018] [Accepted: 08/19/2018] [Indexed: 12/31/2022]
|
132
|
Zhou Y, Li M, Zhu DL, Jiang T, Gao Q, Tang XH, Zhang SG, Lu J, Zhang YD. Neuroprotective effect of angiotensin-(1–7) against rotenone-induced oxidative damage in CATH.a neurons. Toxicol In Vitro 2018; 50:373-382. [DOI: 10.1016/j.tiv.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022]
|
133
|
Mitochondrial DNA variants modulate genetic susceptibility to Parkinson's disease in Han Chinese. Neurobiol Dis 2018; 114:17-23. [DOI: 10.1016/j.nbd.2018.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/18/2018] [Accepted: 02/21/2018] [Indexed: 12/26/2022] Open
|
134
|
Fu MH, Wu CW, Lee YC, Hung CY, Chen IC, Wu KLH. Nrf2 activation attenuates the early suppression of mitochondrial respiration due to the α-synuclein overexpression. Biomed J 2018; 41:169-183. [PMID: 30080657 PMCID: PMC6138761 DOI: 10.1016/j.bj.2018.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND α-synuclein (SNCA) accumulation in the substantia nigra is one of the characteristic pathologies of Parkinson's disease (PD). A53T missense mutations in the SNCA gene has been proved to enhance the expression of SNCA and accelerate the onset of PD. Mitochondrial dysfunction in SNCA aggregation has been under debate for decades but the causal relationship remains uncertain. At a later stage of PD, the cellular dysfunctions are complicated and multiple factors are tangled. Our aim here is to investigate the mitochondrial functional changes and clarify the main causal mechanism at earlier-stage of PD. METHODS We used the mutant A53T SNCA-expressed neuro 2a (N2a) cells without detectable cell death to investigate: 1) whether SNCA overexpression impairs the mitochondrial respiration and biogenesis. 2) The role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signal in SNCA-induced mitochondria dysfunction. RESULTS Accompanying with the increment of SNCA, reactive oxygen species (ROS) accumulation was increased. The maximal respiratory capacity was suppressed. Meanwhile, mitochondrial complex 1 activity and the activity of nicotinamide adenine dinucleotide (NADH) cytochrome C reductase (NCCR) were decreased. Moreover, the mitochondrial DNA (mtDNA) copy number was decreased. On the other hand, the nuclear peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), Nrf2, and the cytosolic mitochondrial transcription factor A (TFAM) were increased at an early stage and declined thereafter. Above factors triggered by SNCA were reversed by tBHQ, a Nrf2 activator. CONCLUSION These results suggested that at an early stage, SNCA-overexpressed increase mtROS accumulation, mitochondrial dysfunction and mtDNA decrement. Nrf2, PGC-1α and TFAM were upregulated to compromise mitochondrial dysfunction. tBHQ effectively reversed the SNCA-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Chi Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan.
| |
Collapse
|
135
|
|
136
|
nrDNA:mtDNA copy number ratios as a comparative metric for evolutionary and conservation genetics. Heredity (Edinb) 2018; 121:105-111. [PMID: 29752470 DOI: 10.1038/s41437-018-0088-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/17/2018] [Accepted: 04/13/2018] [Indexed: 11/09/2022] Open
Abstract
Identifying genetic cues of functional relevance is key to understanding the drivers of evolution and increasingly important for the conservation of biodiversity. This study introduces nuclear ribosomal DNA (nrDNA) to mitochondrial DNA (mtDNA) copy number ratios as a metric with which to screen for this functional genetic variation prior to more extensive omics analyses. To illustrate the metric, quantitative PCR was used to estimate nrDNA (18S) to mtDNA (16S) copy number ratios in muscle tissue from samples of two zooplankton species: Salpa thompsoni caught near Elephant Island (Southern Ocean) and S. fusiformis sampled off Gough Island (South Atlantic). Average 18S:16S ratios in these samples were 9:1 and 3:1, respectively. nrDNA 45S arrays and mitochondrial genomes were then deep sequenced to uncover the sources of intra-individual genetic variation underlying these 18S:16S copy number differences. The deep sequencing profiles obtained were consistent with genetic changes resulting from adaptive processes, including an expansion of nrDNA and damage to mtDNA in S. thompsoni, potentially in response to the polar environment. Beyond this example from zooplankton, nrDNA:mtDNA copy number ratios offer a promising metric to help identify genetic variation of functional relevance in animals more broadly.
Collapse
|
137
|
Park JS, Davis RL, Sue CM. Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr Neurol Neurosci Rep 2018; 18:21. [PMID: 29616350 PMCID: PMC5882770 DOI: 10.1007/s11910-018-0829-3] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of Review Parkinson’s disease (PD) is a complex neurodegenerative disorder, the aetiology of which is still largely unknown. Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in PD pathophysiology. Here we review recent developments around mitochondrial dysfunction in familial and sporadic PD, with a brief overview of emerging therapies targeting mitochondrial dysfunction. Recent Findings Increasing evidence supports the critical role for mitochondrial dysfunction in the development of sporadic PD, while the involvement of familial PD-related genes in the regulation of mitochondrial biology has been expanded by the discovery of new mitochondria-associated disease loci and the identification of their novel functions. Summary Recent research has expanded knowledge on the mechanistic details underlying mitochondrial dysfunction in PD, with the discovery of new therapeutic targets providing invaluable insights into the essential role of mitochondria in PD pathogenesis and unique opportunities for drug development.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St. Leonards, Sydney, NSW, 2065, Australia.,Sydney Medical School-Northern, University of Sydney, St. Leonards, Sydney, NSW, 2065, Australia
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St. Leonards, Sydney, NSW, 2065, Australia.,Sydney Medical School-Northern, University of Sydney, St. Leonards, Sydney, NSW, 2065, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St. Leonards, Sydney, NSW, 2065, Australia. .,Sydney Medical School-Northern, University of Sydney, St. Leonards, Sydney, NSW, 2065, Australia. .,Department of Neurology, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, Sydney, NSW, 2065, Australia.
| |
Collapse
|
138
|
Gureev AP, Shaforostova EA, Starkov AA, Popov VN. β-Guanidinopropionic Acid Stimulates Brain Mitochondria Biogenesis and Alters Cognitive Behavior in Nondiseased Mid-Age Mice. J Exp Neurosci 2018; 12:1179069518766524. [PMID: 29636631 PMCID: PMC5888816 DOI: 10.1177/1179069518766524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 01/29/2023] Open
Abstract
β-guanidinopropionic acid (β-GPA) has been used as a nutritional supplement for increasing physical strength and endurance with positive and predictable results. In muscles, it works as a nonadaptive stimulator of mitochondria biogenesis; it also increases lipid metabolism. There are data indicating that β-GPA can be also neuroprotective, but its mechanisms of action in the brain are less understood. We studied the effects of β-GPA on animal behavior and mitochondrial biogenesis in the cortex and midbrain of mid-age healthy mice. We found that even short-term 3-week-long β-GPA treatment increased the mitochondrial DNA (mtDNA) copy number in the cortex and ventral midbrain, as well as the expression of several key antioxidant and metabolic enzymes—indicators of mitochondria proliferation and the activation of Nrf2/ARE signaling cascade. At the same time, β-GPA downregulated the expression of the β-oxidation genes. Administration of β-GPA in mice for 3 weeks improved the animals’ physical strength and endurance health, ie, increased their physical strength and endurance and alleviated anxiety. Thus, β-GPA might be considered an adaptogene affecting both the muscle and brain metabolism in mammals.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Anatoly A Starkov
- Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
139
|
Santos D, Santos MJ, Alves-Ferreira M, Coelho T, Sequeiros J, Alonso I, Oliveira P, Sousa A, Lemos C, Grazina M. mtDNA copy number associated with age of onset in familial amyloid polyneuropathy. J Neurol Neurosurg Psychiatry 2018; 89:300-304. [PMID: 29018163 DOI: 10.1136/jnnp-2017-316657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transthyretin-related familial amyloid polyneuropathy (TTR-FAP Val30Met) shows a wide variation in age-at-onset (AO) between generations and genders, as in Portuguese families, where women display a later onset and a larger anticipation (>10 years). Mitochondrial DNA (mtDNA) copy number was assessed to clarify whether it has a modifier effect on AO variability in Portuguese patients. METHODS The mtDNA copy number of 262 samples (175 Val30Met TTR carriers and 87 controls (proven Val30Val)) was quantified by quantitative real-time PCR. Statistical analysis was performed using IBM SPSS V.23 software. RESULTS This study shows that Val30Met TTR carriers have a significantly higher (p<0.001) mean mtDNA copy number than controls. Furthermore, the highest mtDNA copy number mean was observed in early-onset patients (AO <40 years). Importantly, early-onset offspring showed a significant increase (p=0.002) in the mtDNA copy number, when compared with their late AO parents. CONCLUSIONS The present findings suggest, for the first time, that mtDNA copy number may be associated with earlier events and may therefore be further explored as a potential biomarker for follow-up of TTR-FAP Val30Met carriers.
Collapse
Affiliation(s)
- Diana Santos
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria João Santos
- Centre for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics (LGB), Universidade de Coimbra, Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal
| | - Miguel Alves-Ferreira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Teresa Coelho
- Unidade Corino de Andrade (UCA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Jorge Sequeiros
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Centro de Genética Preditiva e Preventiva (CGPP), Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Centro de Genética Preditiva e Preventiva (CGPP), Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Instituto de Saúde Pública (ISPUP), Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,UnIGENe, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Manuela Grazina
- Centre for Neuroscience and Cell Biology, Laboratory of Biochemical Genetics (LGB), Universidade de Coimbra, Coimbra, Portugal.,Faculdade de Medicina da Universidade de Coimbra (FMUC), Coimbra, Portugal
| |
Collapse
|
140
|
Brunst KJ, Sanchez-Guerra M, Chiu YHM, Wilson A, Coull BA, Kloog I, Schwartz J, Brennan KJ, Bosquet Enlow M, Wright RO, Baccarelli AA, Wright RJ. Prenatal particulate matter exposure and mitochondrial dysfunction at the maternal-fetal interface: Effect modification by maternal lifetime trauma and child sex. ENVIRONMENT INTERNATIONAL 2018; 112:49-58. [PMID: 29248865 PMCID: PMC6094933 DOI: 10.1016/j.envint.2017.12.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Prenatal ambient fine particulate matter (PM2.5) and maternal chronic psychosocial stress have independently been linked to changes in mithochondrial DNA copy number (mtDNAcn), a marker of mitochondrial response and dysfunction. Further, overlapping research shows sex-specific effects of PM2.5 and stress on developmental outcomes. Interactions among PM2.5, maternal stress, and child sex have not been examined in this context. METHODS We examined associations among exposure to prenatal PM2.5, maternal lifetime traumatic stressors, and mtDNAcn at birth in a sociodemographically diverse pregnancy cohort (N=167). Mothers' daily exposure to PM2.5 over gestation was estimated using a satellite-based spatio-temporally resolved prediction model. Lifetime exposure to traumatic stressors was ascertained using the Life Stressor Checklist-Revised; exposure was categorized as high vs. low based on a median split. Quantitative real-time polymerase chain reaction (qPCR) was used to determine mtDNAcn in placenta and cord blood leukocytes. Bayesian Distributed Lag Interaction regression models (BDLIMs) were used to statistically model and visualize the PM2.5 timing-dependent pattern of associations with mtDNAcn and explore effect modification by maternal lifetime trauma and child sex. RESULTS Increased PM2.5 exposure across pregnancy was associated with decreased mtDNAcn in cord blood (cumulative effect estimate=-0.78; 95%CI -1.41, -0.16). Higher maternal lifetime trauma was associated with reduced mtDNAcn in placenta (β=-0.33; 95%CI -0.63, -0.02). Among women reporting low trauma, increased PM2.5 exposure late in pregnancy (30-38weeks gestation) was significantly associated with decreased mtDNAcn in placenta; no significant association was found in the high trauma group. BDLIMs identified a significant 3-way interaction between PM2.5, maternal trauma, and child sex. Specifically, PM2.5 exposure between 25 and 40weeks gestation was significantly associated with increased placental mtDNAcn among boys of mothers reporting high trauma. In contrast, PM2.5 exposure in this same window was significantly associated with decreased placental mtDNAcn among girls of mothers reporting low trauma. Similar 3-way interactive effects were observed in cord blood. CONCLUSIONS These results indicate that joint exposure to PM2.5 in late pregnancy and maternal lifetime trauma influence mtDNAcn at the maternal-fetal interface in a sex-specific manner. Additional studies will assist in understanding if the sex-specific patterns reflect distinct pathophysiological processes in addition to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kelly J Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH 45267, United States.
| | - Marco Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico.
| | - Yueh-Hsiu Mathilda Chiu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States.
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, United States.
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, MA 02115, United States.
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, P.O.B 653, Beer Sheva, Israel.
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States.
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 W 168th St., New York, NY 10032, United States.
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02215, United States; Department of Psychiatry, Harvard Medical School, 401 Park Dr., Boston, MA 02215, United States.
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102nd St., New York, NY 10029, United States; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102nd St., New York, NY 10029, United States.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 W 168th St., New York, NY 10032, United States.
| | - Rosalind J Wright
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, 17 East 102nd St., New York, NY 10029, United States.
| |
Collapse
|
141
|
Guyatt AL, Burrows K, Guthrie PAI, Ring S, McArdle W, Day INM, Ascione R, Lawlor DA, Gaunt TR, Rodriguez S. Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women. Mitochondrion 2018; 39:9-19. [PMID: 28818596 PMCID: PMC5832987 DOI: 10.1016/j.mito.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease. The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N=2278) and the second at 69.4 (5.5) years (N=2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits. Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were >0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: -0.06, [-0.098, -0.022], p=0.002), but this association did not replicate in the younger cohort. Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.
Collapse
Affiliation(s)
- Anna L Guyatt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Philip A I Guthrie
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Sue Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Wendy McArdle
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Ian N M Day
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| |
Collapse
|
142
|
Strobbe D, Caporali L, Iommarini L, Maresca A, Montopoli M, Martinuzzi A, Achilli A, Olivieri A, Torroni A, Carelli V, Ghelli A. Haplogroup J mitogenomes are the most sensitive to the pesticide rotenone: Relevance for human diseases. Neurobiol Dis 2018; 114:129-139. [PMID: 29486301 DOI: 10.1016/j.nbd.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence that the sequence variation of mitochondrial DNA (mtDNA), which clusters in population- and/or geographic-specific haplogroups, may result in functional effects that, in turn, become relevant in disease predisposition or protection, interaction with environmental factors and ultimately in modulating longevity. To unravel functional differences between mtDNA haplogroups we here employed transmitochondrial cytoplasmic hybrid cells (cybrids) grown in galactose medium, a culture condition that forces oxidative phosphorylation, and in the presence of rotenone, the classic inhibitor of respiratory Complex I. Under this experimental paradigm we assessed functional parameters such as cell viability and respiration, ATP synthesis, reactive oxygen species production and mtDNA copy number. Our analyses show that haplogroup J1, which is common in western Eurasian populations, is the most sensitive to rotenone, whereas K1 mitogenomes orchestrate the best compensation, possibly because of the haplogroup-specific missense variants impinging on Complex I function. Remarkably, haplogroups J1 and K1 fit the genetic associations previously established with Leber's hereditary optic neuropathy (LHON) for J1, as a penetrance enhancer, and with Parkinson's disease (PD) for K1, as a protective background. Our findings provide functional evidences supporting previous well-established genetic associations of specific haplogroups with two neurodegenerative pathologies, LHON and PD. Our experimental paradigm is instrumental to highlighting the subtle functional differences characterizing mtDNA haplogroups, which will be increasingly needed to dissect the role of mtDNA genetic variation in health, disease and longevity.
Collapse
Affiliation(s)
- Daniela Strobbe
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine-University of Padua, Italy
| | | | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | | | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine-University of Padua, Italy
| | - Andrea Martinuzzi
- IRCCS "E. Medea" Scientific Institute Conegliano-Pieve di Soligo Research Center, Pieve di Soligo, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy.
| |
Collapse
|
143
|
Mastroeni D, Nolz J, Khdour OM, Sekar S, Delvaux E, Cuyugan L, Liang WS, Hecht SM, Coleman PD. Oligomeric amyloid β preferentially targets neuronal and not glial mitochondrial-encoded mRNAs. Alzheimers Dement 2018; 14:775-786. [PMID: 29396107 DOI: 10.1016/j.jalz.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Our laboratories have demonstrated that accumulation of oligomeric amyloid β (OAβ) in neurons is an essential step leading to OAβ-mediated mitochondrial dysfunction. METHODS Alzheimer's disease (AD) and matching control hippocampal neurons, astrocytes, and microglia were isolated by laser-captured microdissection from the same subjects, followed by whole-transcriptome sequencing. Complementary in vitro work was performed in OAβ-treated differentiated SH-SY5Y, followed by the use of a novel CoQ10 analogue for protection. This compound is believed to be effective both in suppressing reactive oxygen species and also functioning in mitochondrial electron transport. RESULTS We report decreases in the same mitochondrial-encoded mRNAs in Alzheimer's disease laser-captured CA1 neurons and in OAβ-treated SH-SY5Y cells, but not in laser-captured microglia and astrocytes. Pretreatment with a novel CoQ10 analogue, protects neuronal mitochondria from OAβ-induced mitochondrial changes. DISCUSSION Similarity of expression changes in neurons from Alzheimer's disease brain and neuronal cells treated with OAβ, and the effect of a CoQ10 analogue on the latter, suggests a pretreatment option to prevent OAβ toxicity, long before the damage is apparent.
Collapse
Affiliation(s)
- Diego Mastroeni
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ.
| | - Jennifer Nolz
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| | - Omar M Khdour
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ
| | | | - Elaine Delvaux
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| | | | | | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ
| | - Paul D Coleman
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
144
|
Chae JW, Chua PS, Ng T, Yeo AHL, Shwe M, Gan YX, Dorajoo S, Foo KM, Loh KWJ, Koo SL, Chay WY, Tan TJY, Beh SY, Lim EH, Lee GE, Dent R, Yap YS, Ng R, Ho HK, Chan A. Association of mitochondrial DNA content in peripheral blood with cancer-related fatigue and chemotherapy-related cognitive impairment in early-stage breast cancer patients: a prospective cohort study. Breast Cancer Res Treat 2018; 168:713-721. [DOI: 10.1007/s10549-017-4640-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/23/2017] [Indexed: 12/24/2022]
|
145
|
Glebova KV, Veiko NN, Nikonov AA, Porokhovnik LN, Kostuyk SV. Cell-free DNA as a biomarker in stroke: Current status, problems and perspectives. Crit Rev Clin Lab Sci 2018; 55:55-70. [PMID: 29303618 DOI: 10.1080/10408363.2017.1420032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is currently no proposed stroke biomarker with consistent application in clinical practice. A number of studies have examined cell-free DNA (cfDNA), which circulates in biological fluids during stroke, as a potential biomarker of this disease. The data available suggest that dynamically-determined levels of blood cfDNA may provide new prognostic information for assessment of stroke severity and outcome. However, such an approach has its own difficulties and limitations. This review covers the potential role of cfDNA as a biomarker in stroke, and includes evidence from both animal models and clinical studies, protocols used to analyze cfDNA, and hypotheses on the origin of cfDNA.
Collapse
Affiliation(s)
- Kristina V Glebova
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Natalya N Veiko
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Aleksey A Nikonov
- b Department of Neurology, Neurosurgery and Medical Genetics , Pirogov Russian National Research Medical University , Moscow , Russia
| | - Lev N Porokhovnik
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| | - Svetlana V Kostuyk
- a Laboratory of Molecular Biology , Federal State Budgetary Institution "Research Centre for Medical Genetics" , Moscow , Russia
| |
Collapse
|
146
|
Warren EB, Aicher AE, Fessel JP, Konradi C. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism. PLoS One 2017; 12:e0190456. [PMID: 29287112 PMCID: PMC5747477 DOI: 10.1371/journal.pone.0190456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.
Collapse
Affiliation(s)
- Emily Booth Warren
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Aidan Edward Aicher
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Joshua Patrick Fessel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christine Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, United States of America
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
147
|
Mortiboys H, Macdonald R, Payne T, Sassani M, Jenkins T, Bandmann O. Translational approaches to restoring mitochondrial function in Parkinson's disease. FEBS Lett 2017; 592:776-792. [PMID: 29178330 DOI: 10.1002/1873-3468.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents have been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarise previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients.
Collapse
Affiliation(s)
- Heather Mortiboys
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Ruby Macdonald
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Payne
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Oliver Bandmann
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| |
Collapse
|
148
|
Niu M, Wang Y, Wang C, Lyu J, Wang Y, Dong H, Long W, Wang D, Kong W, Wang L, Guo X, Sun L, Hu T, Zhai H, Wang H, Wan J. ALR encoding dCMP deaminase is critical for DNA damage repair, cell cycle progression and plant development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5773-5786. [PMID: 29186482 DOI: 10.1093/jxb/erx380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Deoxycytidine monophosphate deaminase (dCMP deaminase, DCD) is crucial to the production of dTTP needed for DNA replication and damage repair. However, the effect of DCD deficiency and its molecular mechanism are poorly understood in plants. Here, we isolated and characterized a rice albinic leaf and growth retardation (alr) mutant that is manifested by albinic leaves, dwarf stature and necrotic lesions. Map-based cloning and complementation revealed that ALR encodes a DCD protein. OsDCD was expressed ubiquitously in all tissues. Enzyme activity assays showed that OsDCD catalyses conversion of dCMP to dUMP, and the ΔDCD protein in the alr mutant is a loss-of-function protein that lacks binding ability. We report that alr plants have typical DCD-mediated imbalanced dNTP pools with decreased dTTP; exogenous dTTP recovers the wild-type phenotype. A comet assay and Trypan Blue staining showed that OsDCD deficiency causes accumulation of DNA damage in the alr mutant, sometimes leading to cell apoptosis. Moreover, OsDCD deficiency triggered cell cycle checkpoints and arrested cell progression at the G1/S-phase. The expression of nuclear and plastid genome replication genes was down-regulated under decreased dTTP, and together with decreased cell proliferation and defective chloroplast development in the alr mutant this demonstrated the molecular and physiological roles of DCD-mediated dNTP pool balance in plant development.
Collapse
Affiliation(s)
- Mei Niu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Jia Lyu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Weiyi Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Liwei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Liting Sun
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Tingting Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Huqu Zhai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
149
|
Bury AG, Pyle A, Elson JL, Greaves L, Morris CM, Hudson G, Pienaar IS. Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson disease. Ann Neurol 2017; 82:1016-1021. [PMID: 29149768 DOI: 10.1002/ana.25099] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 10/16/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023]
Abstract
In Parkinson disease (PD), mitochondrial dysfunction associates with nigral dopaminergic neuronal loss. Cholinergic neuronal loss co-occurs, particularly within a brainstem structure, the pedunculopontine nucleus (PPN). We isolated single cholinergic neurons from postmortem PPNs of aged controls and PD patients. Mitochondrial DNA (mtDNA) copy number and mtDNA deletions were increased significantly in PD patients compared to controls. Furthermore, compared to controls the PD patients had significantly more PPN cholinergic neurons containing mtDNA deletion levels exceeding 60%, a level associated with deleterious effects on oxidative phosphorylation. The current results differ from studies reporting mtDNA depletion in nigral dopaminergic neurons of PD patients. Ann Neurol 2017;82:1016-1021.
Collapse
Affiliation(s)
- Alexander G Bury
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela Pyle
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joanna L Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Laura Greaves
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher M Morris
- Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ilse S Pienaar
- Division of Brain Sciences, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom.,School of Life Sciences, University of Sussex, Falmer, United Kingdom
| |
Collapse
|
150
|
Wu TL. Approximations of distributions of scan statistics of inhomogeneous Poisson processes. J Stat Plan Inference 2017. [DOI: 10.1016/j.jspi.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|