101
|
Skolasinska P, Basak C, Qin S. Influence of Strenuous Physical Activity and Cardiorespiratory Fitness on Age-Related Differences in Brain Activations During Varieties of Cognitive Control. Neuroscience 2023; 520:58-83. [PMID: 37054946 PMCID: PMC10234626 DOI: 10.1016/j.neuroscience.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
While there is extensive literature on the beneficial effects of physical activity on age differences in cognitive control, limited research exists on comparing the contributions of strenuous physical activity (sPA) and cardiorespiratory fitness (CRF) to fluctuations in the blood oxygen level-dependent (BOLD) signals during varieties of cognitive control. The current study addresses this gap in knowledge by investigating BOLD signal differences between high-fit and low-fit older adults, determined by their sPA or CRF, during a novel fMRI task with a hybrid block and event-related design that included transient activations (during switching, updating and their combination trials) and sustained activations (during proactive and reactive control blocks). fBOLD signals from older (n = 25) were compared to more functionally efficient younger (n = 15) adults. High-sPA old showed higher task accuracy than Low-sPA old and similar accuracy as young. Whole-brain fMRI analyses identified higher BOLD activations (esp. dlPFC/MFG) in high-fit old during updating and combination trials that were similar to young, suggesting maintenance of BOLD signals in higher fit older adults during working memory updating. Additionally, both High-sPA and High-CRF related compensatory overactivation were observed in left parietal and occipital areas during sustained activations, which were positively correlated with older adults' accuracy. These results suggest that physical fitness is a modifier of age-related changes in BOLD signal modulation elicited in response to increasing cognitive control demands, with higher fitness in old contributing to both compensatory overactivations and maintenance of task-related brain activations during cognitive control, whereas lower fitness contributed to maladaptive overactivations during lower cognitive demands.
Collapse
Affiliation(s)
- Paulina Skolasinska
- Center for Vital Longevity, Department of Psychology, The University of Texas at Dallas, USA
| | - Chandramallika Basak
- Center for Vital Longevity, Department of Psychology, The University of Texas at Dallas, USA.
| | - Shuo Qin
- Center for Vital Longevity, Department of Psychology, The University of Texas at Dallas, USA
| |
Collapse
|
102
|
Key MN, Szabo-Reed AN. Impact of Diet and Exercise Interventions on Cognition and Brain Health in Older Adults: A Narrative Review. Nutrients 2023; 15:2495. [PMID: 37299458 PMCID: PMC10255782 DOI: 10.3390/nu15112495] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The ability to preserve cognitive function and protect brain structure from the effects of the aging process and neurodegenerative disease is the goal of non-pharmacologic, lifestyle interventions focused on brain health. This review examines, in turn, current diet and exercise intervention trends and the collective progress made toward understanding their impact on cognition and brain health. The diets covered in this review include the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND), ketogenic diet, intermittent fasting, and weight loss management. The exercise approaches covered in this review include endurance, resistance, combined exercise programs, yoga, tai chi, and high-intensity interval training. Although valuable evidence is building concerning how diet and exercise influence cognitive performance and brain structure, many of the open questions in the field are concerned with why we see these effects. Therefore, more strategically designed intervention studies are needed to reveal the likely multiple mechanisms of action in humans.
Collapse
Affiliation(s)
- Mickeal N. Key
- KU Alzheimer’s Disease Research Center, Fairway, KS 66205, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Amanda N. Szabo-Reed
- KU Alzheimer’s Disease Research Center, Fairway, KS 66205, USA;
- Department of Internal Medicine, Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
103
|
Montemurro S, Filippini N, Ferrazzi G, Mantini D, Arcara G, Marino M. Education differentiates cognitive performance and resting state fMRI connectivity in healthy aging. Front Aging Neurosci 2023; 15:1168576. [PMID: 37293663 PMCID: PMC10244540 DOI: 10.3389/fnagi.2023.1168576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Objectives In healthy aging, the way people cope differently with cognitive and neural decline is influenced by exposure to cognitively enriching life-experiences. Education is one of them, so that in general, the higher the education, the better the expected cognitive performance in aging. At the neural level, it is not clear yet how education can differentiate resting state functional connectivity profiles and their cognitive underpinnings. Thus, with this study, we aimed to investigate whether the variable education allowed for a finer description of age-related differences in cognition and resting state FC. Methods We analyzed in 197 healthy individuals (137 young adults aged 20-35 and 60 older adults aged 55-80 from the publicly available LEMON database), a pool of cognitive and neural variables, derived from magnetic resonance imaging, in relation to education. Firstly, we assessed age-related differences, by comparing young and older adults. Then, we investigated the possible role of education in outlining such differences, by splitting the group of older adults based on their education. Results In terms of cognitive performance, older adults with higher education and young adults were comparable in language and executive functions. Interestingly, they had a wider vocabulary compared to young adults and older adults with lower education. Concerning functional connectivity, the results showed significant age- and education-related differences within three networks: the Visual-Medial, the Dorsal Attentional, and the Default Mode network (DMN). For the DMN, we also found a relationship with memory performance, which strengthen the evidence that this network has a specific role in linking cognitive maintenance and FC at rest in healthy aging. Discussion Our study revealed that education contributes to differentiating cognitive and neural profiles in healthy older adults. Also, the DMN could be a key network in this context, as it may reflect some compensatory mechanisms relative to memory capacities in older adults with higher education.
Collapse
Affiliation(s)
| | | | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Leuven, Belgium
| | | | - Marco Marino
- Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
104
|
Koshino H, Osaka M, Shimokawa T, Kaneda M, Taniguchi S, Minamoto T, Yaoi K, Azuma M, Higo K, Osaka N. Cooperation and competition between the default mode network and frontal parietal network in the elderly. Front Psychol 2023; 14:1140399. [PMID: 37275713 PMCID: PMC10237017 DOI: 10.3389/fpsyg.2023.1140399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023] Open
Abstract
Recent research has shown that the Default Mode Network (DMN) typically exhibits increased activation during processing of social and personal information but shows deactivation during working memory (WM) tasks. Previously, we reported the Frontal Parietal Network (FPN) and DMN showed coactivation during task preparation whereas the DMN exhibited deactivation during task execution in working memory tasks. Aging research has shown that older adults exhibited decreased functional connectivity in the DMN relative to younger adults. Here, we investigated whether age-related cognitive decline is related to a reduced relationship between the FPN and DMN using a working memory task during the execution period. First, we replicated our previous finding that the FPN and DMN showed coactivation during the preparation period, whereas the DMN showed deactivation during the execution period. The older adults showed reduced DMN activity during task preparation and reduced deactivation during task execution; however, they exhibited a higher magnitude of activation in the FPN than the young individuals during task execution. Functional connectivity analyses showed that the elderly group, compared to the young group, showed weaker correlations within the FPN and the DMN, weaker positive correlations between the FPN and DMN during task preparation, and weaker negative correlations between the FPN and DMN during execution. The results suggest that cognitive decline in the older adults might be related to reduced connectivity within the DMN as well as between the FPN and DMN.
Collapse
Affiliation(s)
- Hideya Koshino
- Department of Psychology, California State University, San Bernardino, CA, United States
| | - Mariko Osaka
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Tetsuya Shimokawa
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Mizuki Kaneda
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Seira Taniguchi
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Takehiro Minamoto
- Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan
| | - Ken Yaoi
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Miyuki Azuma
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Katsuki Higo
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka, Japan
| | - Naoyuki Osaka
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| |
Collapse
|
105
|
Pollak C, Kügler D, Breteler MMB, Reuter M. Quantifying MR Head Motion in the Rhineland Study - A Robust Method for Population Cohorts. Neuroimage 2023; 275:120176. [PMID: 37209757 DOI: 10.1016/j.neuroimage.2023.120176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Abstract
Head motion during MR acquisition reduces image quality and has been shown to bias neuromorphometric analysis. The quantification of head motion, therefore, has both neuroscientific as well as clinical applications, for example, to control for motion in statistical analyses of brain morphology, or as a variable of interest in neurological studies. The accuracy of markerless optical head tracking, however, is largely unexplored. Furthermore, no quantitative analysis of head motion in a general, mostly healthy population cohort exists thus far. In this work, we present a robust registration method for the alignment of depth camera data that sensitively estimates even small head movements of compliant participants. Our method outperforms the vendor-supplied method in three validation experiments: 1. similarity to fMRI motion traces as a low-frequency reference, 2. recovery of the independently acquired breathing signal as a high-frequency reference, and 3. correlation with image-based quality metrics in structural T1-weighted MRI. In addition to the core algorithm, we establish an analysis pipeline that computes average motion scores per time interval or per sequence for inclusion in downstream analyses. We apply the pipeline in the Rhineland Study, a large population cohort study, where we replicate age and body mass index (BMI) as motion correlates and show that head motion significantly increases over the duration of the scan session. We observe weak, yet significant interactions between this within-session increase and age, BMI, and sex. High correlations between fMRI and camera-based motion scores of proceeding sequences further suggest that fMRI motion estimates can be used as a surrogate score in the absence of better measures to control for motion in statistical analyses.
Collapse
Affiliation(s)
- Clemens Pollak
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Kügler
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Martin Reuter
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
106
|
Fan Y, Wang L, Jiang H, Fu Y, Ma Z, Wu X, Wang Y, Song Y, Fan F, Lv Y. Depression circuit adaptation in post-stroke depression. J Affect Disord 2023; 336:52-63. [PMID: 37201899 DOI: 10.1016/j.jad.2023.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lesion locations of post-stroke depression (PSD) mapped to a depression circuit which centered by the left dorsolateral prefrontal cortex (DLPFC). However, it remains unknown whether the compensatory adaptations that may occur in this depression circuit due to the lesions in PSD. METHODS Rs-fMRI data were collected from 82 non-depressed stroke patients (Stroke), 39 PSD patients and 74 healthy controls (HC). We tested the existence of depression circuit, examined PSD-related alterations of DLPFC-seeded connectivity and their associations with depression severity, and analyzed the connectivity between each repetitive transcranial magnetic stimulation (rTMS) target and DLPFC to find the best treatment target for PSD. RESULTS We found that: 1) the left DLPFC showed significantly stronger connectivity to lesions of PSD than Stroke group; 2) in comparison to both Stroke and HC groups, PSD exhibited increased connectivity with DLPFC in bilateral lingual gyrus, contralesional superior frontal gyrus, precuneus, and middle frontal gyrus (MFG); 3) the connectivity between DLPFC and the contralesional lingual gyrus positively correlated with depression severity; 4) the rTMS target in center of MFG showed largest between-group difference in connectivity with DLPFC, and also reported the highest predicted clinical efficacy. LIMITATIONS Longitudinal studies are required to explore the alterations of depression circuit in PSD as the disease progress. CONCLUSION PSD underwent specific alterations in depression circuit, which may help to establish objective imaging markers for early diagnosis and interventions of the disease.
Collapse
Affiliation(s)
- Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Luoyu Wang
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibo Jiang
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhui Fu
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Zhenqiang Ma
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Xiaoyan Wu
- Department of Image, Anshan Changda Hospital, Anshan, Liaoning 114005, China
| | - Yiying Wang
- Department of Ultrasonics, Anshan Changda Hospital, Anshan, Liaoning, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, Liaoning, China.
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China.
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China.
| |
Collapse
|
107
|
Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl Psychiatry 2023; 13:160. [PMID: 37160884 PMCID: PMC10169845 DOI: 10.1038/s41398-023-02464-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Late-life depression occurring in older adults is common, recurrent, and malignant. It is characterized by affective symptoms, but also cognitive decline, medical comorbidity, and physical disability. This behavioral and cognitive presentation results from altered function of discrete functional brain networks and circuits. A wide range of factors across the lifespan contributes to fragility and vulnerability of those networks to dysfunction. In many cases, these factors occur earlier in life and contribute to adolescent or earlier adulthood depressive episodes, where the onset was related to adverse childhood events, maladaptive personality traits, reproductive events, or other factors. Other individuals exhibit a later-life onset characterized by medical comorbidity, pro-inflammatory processes, cerebrovascular disease, or developing neurodegenerative processes. These later-life processes may not only lead to vulnerability to the affective symptoms, but also contribute to the comorbid cognitive and physical symptoms. Importantly, repeated depressive episodes themselves may accelerate the aging process by shifting allostatic processes to dysfunctional states and increasing allostatic load through the hypothalamic-pituitary-adrenal axis and inflammatory processes. Over time, this may accelerate the path of biological aging, leading to greater brain atrophy, cognitive decline, and the development of physical decline and frailty. It is unclear whether successful treatment of depression and avoidance of recurrent episodes would shift biological aging processes back towards a more normative trajectory. However, current antidepressant treatments exhibit good efficacy for older adults, including pharmacotherapy, neuromodulation, and psychotherapy, with recent work in these areas providing new guidance on optimal treatment approaches. Moreover, there is a host of nonpharmacological treatment approaches being examined that take advantage of resiliency factors and decrease vulnerability to depression. Thus, while late-life depression is a recurrent yet highly heterogeneous disorder, better phenotypic characterization provides opportunities to better utilize a range of nonspecific and targeted interventions that can promote recovery, resilience, and maintenance of remission.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damek Homiack
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
108
|
Bray NW, Pieruccini-Faria F, Witt ST, Bartha R, Doherty TJ, Nagamatsu LS, Almeida QJ, Liu-Ambrose T, Middleton LE, Bherer L, Montero-Odasso M. Combining exercise with cognitive training and vitamin D 3 to improve functional brain connectivity (FBC) in older adults with mild cognitive impairment (MCI). Results from the SYNERGIC trial. GeroScience 2023:10.1007/s11357-023-00805-6. [PMID: 37162700 PMCID: PMC10170058 DOI: 10.1007/s11357-023-00805-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Changes in functional brain connectivity (FBC) may indicate how lifestyle modifications can prevent the progression to dementia; FBC identifies areas that are spatially separate but temporally synchronized in their activation and is altered in those with mild cognitive impairment (MCI), a prodromal state between healthy cognitive aging and dementia. Participants with MCI were randomly assigned to one of five study arms. Three times per week for 20-weeks, participants performed 30-min of (control) cognitive training, followed by 60-min of (control) physical exercise. Additionally, a vitamin D3 (10,000 IU/pill) or a placebo capsule was ingested three times per week for 20-weeks. Using the CONN toolbox, we measured FBC change (Post-Pre) across four statistical models that collapsed for and/or included some or all study arms. We conducted Pearson correlations between FBC change and changes in physical and cognitive functioning. Our sample included 120 participants (mean age: 73.89 ± 6.50). Compared to the pure control, physical exercise (model one; p-False Discovery Rate (FDR) < 0.01 & < 0.05) with cognitive training (model two; p-FDR = < 0.001), and all three interventions combined (model four; p-FDR = < 0.01) demonstrated an increase in FBC between regions of the Default-Mode Network (i.e., hippocampus and angular gyrus). After controlling for false discovery rate, there were no significant correlations between change in connectivity and change in cognitive or physical function. Physical exercise alone appears to be as efficacious as combined interventional strategies in altering FBC, but implications for behavioral outcomes remain unclear.
Collapse
Affiliation(s)
- Nick W Bray
- Cumming School of Medicine, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, 550 Wellington Road, Room A3-116, London, ON, N6C-0A7, Canada.
| | - Frederico Pieruccini-Faria
- Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, 550 Wellington Road, Room A3-116, London, ON, N6C-0A7, Canada
- Department of Medicine, Division of Geriatric Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A-5C1, Canada
| | - Suzanne T Witt
- BrainsCAN, Western University, London, ON, N6A-3K7, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A-5C1, Canada
- Robarts Research Institute, Western University, London, ON, N6A-5B7, Canada
| | - Timothy J Doherty
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A-5C1, Canada
- Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A-5C1, Canada
| | - Lindsay S Nagamatsu
- Faculty of Health Sciences, School of Kinesiology, Western University, London, ON, N6G-2V4, Canada
| | - Quincy J Almeida
- Faculty of Science, Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, N2L-3C5, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, V6T-1Z3, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Laura E Middleton
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, N2L-3G1, Canada
| | - Louis Bherer
- Department of Medicine, University of Montréal, Montréal, QC, H3T-1J4, Canada
- Research Centre, Montreal Heart Institute, Montréal, QC, H1T-1C8, Canada
| | - Manuel Montero-Odasso
- Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, 550 Wellington Road, Room A3-116, London, ON, N6C-0A7, Canada.
- Department of Medicine, Division of Geriatric Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A-5C1, Canada.
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A-5C1, Canada.
| |
Collapse
|
109
|
Ficek-Tani B, Horien C, Ju S, Xu W, Li N, Lacadie C, Shen X, Scheinost D, Constable T, Fredericks C. Sex differences in default mode network connectivity in healthy aging adults. Cereb Cortex 2023; 33:6139-6151. [PMID: 36563018 PMCID: PMC10183749 DOI: 10.1093/cercor/bhac491] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Women show an increased lifetime risk of Alzheimer's disease (AD) compared with men. Characteristic brain connectivity changes, particularly within the default mode network (DMN), have been associated with both symptomatic and preclinical AD, but the impact of sex on DMN function throughout aging is poorly understood. We investigated sex differences in DMN connectivity over the lifespan in 595 cognitively healthy participants from the Human Connectome Project-Aging cohort. We used the intrinsic connectivity distribution (a robust voxel-based metric of functional connectivity) and a seed connectivity approach to determine sex differences within the DMN and between the DMN and whole brain. Compared with men, women demonstrated higher connectivity with age in posterior DMN nodes and lower connectivity in the medial prefrontal cortex. Differences were most prominent in the decades surrounding menopause. Seed-based analysis revealed higher connectivity in women from the posterior cingulate to angular gyrus, which correlated with neuropsychological measures of declarative memory, and hippocampus. Taken together, we show significant sex differences in DMN subnetworks over the lifespan, including patterns in aging women that resemble changes previously seen in preclinical AD. These findings highlight the importance of considering sex in neuroimaging studies of aging and neurodegeneration.
Collapse
Affiliation(s)
- Bronte Ficek-Tani
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, United States
| | - Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT 06520, United States
| | - Nancy Li
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Carolyn Fredericks
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
110
|
Zhang H, Diaz MT. Task difficulty modulates age-related differences in functional connectivity during word production. BRAIN AND LANGUAGE 2023; 240:105263. [PMID: 37062160 PMCID: PMC10164070 DOI: 10.1016/j.bandl.2023.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Older adults typically report increased difficulty with language production, while its neural bases are less clear. The current study investigated the neural bases of age-related differences in language production at the word level and the modulating effect of task difficulty, focusing on task-based functional connectivity. Using an English phonological Go/No-Go picture naming task, task difficulty was manipulated by varying the proportion of naming trials (Go trials) and inhibition trials (No-Go trials) across runs. Behaviorally, compared to younger adults, older adults performed worse, and showed larger effects of task difficulty. Neurally, older adults had lower within language network connectivity compared to younger adults. Moreover, older adults' language network became less segregated as task difficulty increased. These results are consistent with the Compensation-Related Utilization of Neural Circuits Hypothesis, suggesting that the brain becomes less specified and efficient with increased task difficulty, and that these effects are stronger among older adults (i.e., more dedifferentiated).
Collapse
Affiliation(s)
- Haoyun Zhang
- University of Macau, Taipa, Macau; The Pennsylvania State University, University Park, PA 16801, USA.
| | - Michele T Diaz
- The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
111
|
Tagliabue CF, Varesio G, Assecondi S, Vescovi M, Mazza V. Age-related effects on online and offline learning in visuo-spatial working memory. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2023; 30:486-503. [PMID: 35313784 DOI: 10.1080/13825585.2022.2054926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Learning results from online (within-session) and offline (between-sessions) changes. Heterogeneity of age-related effects in learning may be ascribed to aging differentially affecting these two processes. We investigated the contribution of online and offline consolidation in visuo-spatial working memory (vWM). Younger and older participants performed a vWM task on day one and after nine days, allowing us to disentangle online and offline learning effects. To test whether offline consolidation needs continuous practice, two additional groups of younger and older adults performed the same vWM task in between the two assessments. Similarly to other cognitive domains, older adults improved vWM through online (during session one) but not through offline learning. Practice was necessary to improve vWM between sessions in older participants. Younger adults instead exhibited only offline improvement, regardless of practice. The findings suggest that while online learning remains efficient in aging, practice is instead required to support more fragile offline mechanisms.
Collapse
Affiliation(s)
| | - Greta Varesio
- Center for Mind/Brain Sciences (Cimec), University of Trento, Rovereto, Italy
| | - Sara Assecondi
- Center for Mind/Brain Sciences (Cimec), University of Trento, Rovereto, Italy
| | - Massimo Vescovi
- Center for Mind/Brain Sciences (Cimec), University of Trento, Rovereto, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences (Cimec), University of Trento, Rovereto, Italy
| |
Collapse
|
112
|
Korkki SM, Richter FR, Gellersen HM, Simons JS. Reduced memory precision in older age is associated with functional and structural differences in the angular gyrus. Neurobiol Aging 2023; 129:109-120. [PMID: 37300913 DOI: 10.1016/j.neurobiolaging.2023.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 06/12/2023]
Abstract
Decreased fidelity of mnemonic representations plays a critical role in age-related episodic memory deficits, yet the brain mechanisms underlying such reductions remain unclear. Using functional and structural neuroimaging, we examined how changes in two key nodes of the posterior-medial network, the hippocampus and the angular gyrus (AG), might underpin loss of memory precision in older age. Healthy young and older adults completed a memory task that involved reconstructing object features on a continuous scale. Investigation of blood-oxygen-level-dependent (BOLD) activity during retrieval revealed an age-related reduction in activity reflecting successful recovery of object features in the hippocampus, whereas trial-wise modulation of BOLD signal by graded memory precision was diminished in the AG. Gray matter volume of the AG further predicted individual differences in memory precision in older age, beyond likelihood of successful retrieval. These findings provide converging evidence for a role of functional and structural integrity of the AG in constraining the fidelity of episodic remembering in older age, yielding new insights into parietal contributions to age-related episodic memory decline.
Collapse
Affiliation(s)
- Saana M Korkki
- Department of Psychology, University of Cambridge, Cambridge, UK; Aging Research Center, Karolinska Institute and Stockholm University, Solna, Sweden.
| | - Franziska R Richter
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, Netherlands
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
113
|
Lugtmeijer S, Geerligs L, Tsvetanov KA, Mitchell DJ, Cam-Can, Campbell KL. Lifespan differences in visual short-term memory load-modulated functional connectivity. Neuroimage 2023; 270:119982. [PMID: 36848967 DOI: 10.1016/j.neuroimage.2023.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023] Open
Abstract
Working memory is critical to higher-order executive processes and declines throughout the adult lifespan. However, our understanding of the neural mechanisms underlying this decline is limited. Recent work suggests that functional connectivity between frontal control and posterior visual regions may be critical, but examinations of age differences therein have been limited to a small set of brain regions and extreme group designs (i.e., comparing young and older adults). In this study, we build on previous research by using a lifespan cohort and a whole-brain approach to investigate working memory load-modulated functional connectivity in relation to age and performance. The article reports on analysis of the Cambridge center for Ageing and Neuroscience (Cam-CAN) data. Participants from a population-based lifespan cohort (N = 101, age 23-86) performed a visual short-term memory task during functional magnetic resonance imaging. Visual short-term memory was measured with a delayed recall task for visual motion with three different loads. Whole-brain load-modulated functional connectivity was estimated using psychophysiological interactions in a hundred regions of interest, sorted into seven networks (Schaefer et al., 2018, Yeo et al., 2011). Results showed that load-modulated functional connectivity was strongest within the dorsal attention and visual networks during encoding and maintenance. With increasing age, load-modulated functional connectivity strength decreased throughout the cortex. Whole-brain analyses for the relation between connectivity and behavior were non-significant. Our results give additional support to the sensory recruitment model of working memory. We also demonstrate the widespread negative impact of age on the modulation of functional connectivity by working memory load. Older adults might already be close to ceiling in terms of their neural resources at the lowest load and therefore less able to further increase connectivity with increasing task demands.
Collapse
Affiliation(s)
- Selma Lugtmeijer
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Linda Geerligs
- Radboud University, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, the Netherlands.
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom.
| | - Cam-Can
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), University of Cambridge and MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom.
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
114
|
Skapetze L, Owino S, Lo EH, Arai K, Merrow M, Harrington M. Rhythms in barriers and fluids: Circadian clock regulation in the aging neurovascular unit. Neurobiol Dis 2023; 181:106120. [PMID: 37044366 DOI: 10.1016/j.nbd.2023.106120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The neurovascular unit is where two very distinct physiological systems meet: The central nervous system (CNS) and the blood. The permeability of the barriers separating these systems is regulated by time, including both the 24 h circadian clock and the longer processes of aging. An endogenous circadian rhythm regulates the transport of molecules across the blood-brain barrier and the circulation of the cerebrospinal fluid and the glymphatic system. These fluid dynamics change with time of day, and with age, and especially in the context of neurodegeneration. Factors may differ depending on brain region, as can be highlighted by consideration of circadian regulation of the neurovascular niche in white matter. As an example of a potential target for clinical applications, we highlight chaperone-mediated autophagy as one mechanism at the intersection of circadian dysregulation, aging and neurodegenerative disease. In this review we emphasize key areas for future research.
Collapse
Affiliation(s)
- Lea Skapetze
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sharon Owino
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America.
| |
Collapse
|
115
|
Patelaki E, Foxe JJ, Mantel EP, Kassis G, Freedman EG. Paradoxical improvement of cognitive control in older adults under dual-task walking conditions is associated with more flexible reallocation of neural resources: A Mobile Brain-Body Imaging (MoBI) study. Neuroimage 2023; 273:120098. [PMID: 37037381 DOI: 10.1016/j.neuroimage.2023.120098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Combining walking with a demanding cognitive task is traditionally expected to elicit decrements in gait and/or cognitive task performance. However, it was recently shown that, in a cohort of young adults, most participants improved performance when walking was added to performance of a Go/NoGo response inhibition task. The present study aims to extend these previous findings to an older adult cohort, to investigate whether this improvement when dual-tasking is observed in healthy older adults. Mobile Brain/Body Imaging (MoBI) was used to record electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and behavioral responses in the Go/NoGo task, during sitting or walking on a treadmill, in 34 young adults and 37 older adults. Increased response accuracy during walking, independent of age, was found to correlate with slower responses to stimuli (r = 0.44) and with walking-related EEG amplitude modulations over frontocentral regions (r = 0.47) during the sensory gating (N1) and conflict monitoring (N2) stages of inhibition, and over left-lateralized prefrontal regions (r = 0.47) during the stage of inhibitory control implementation. These neural activity changes are related to the cognitive component of inhibition, and they were interpreted as signatures of behavioral improvement during walking. On the other hand, aging, independent of response accuracy during walking, was found to correlate with slower treadmill walking speeds (r = -0.68) and attenuation in walking-related EEG amplitude modulations over left-dominant frontal (r = -0.44) and parietooccipital regions (r = 0.48) during the N2 stage, and over centroparietal regions (r = 0.48) during the P3 stage. These neural activity changes are related to the motor component of inhibition, and they were interpreted as signatures of aging. Older adults whose response accuracy 'paradoxically' improved during walking manifested neural signatures of both behavioral improvement and aging, suggesting that their flexibility in reallocating neural resources while walking might be maintained for the cognitive but not for the motor inhibitory component. These distinct neural signatures of aging and behavior can potentially be used to identify 'super-agers', or individuals at risk for cognitive decline due to aging or neurodegenerative disease.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall Rochester, New York, 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| | - Emma P Mantel
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - George Kassis
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, 14642, USA.
| |
Collapse
|
116
|
Kida T, Tanaka E, Kakigi R, Inui K. Brain-wide network analysis of resting-state neuromagnetic data. Hum Brain Mapp 2023; 44:3519-3540. [PMID: 36988453 DOI: 10.1002/hbm.26295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study performed a brain-wide network analysis of resting-state magnetoencephalograms recorded from 53 healthy participants to visualize elaborate brain maps of phase- and amplitude-derived graph-theory metrics at different frequencies. To achieve this, we conducted a vertex-wise computation of threshold-independent graph metrics by combining proportional thresholding and a conjunction analysis and applied them to a correlation analysis of age and brain networks. Source power showed a frequency-dependent cortical distribution. Threshold-independent graph metrics derived from phase- and amplitude-based connectivity showed similar or different distributions depending on frequency. Vertex-wise age-brain correlation maps revealed that source power at the beta band and the amplitude-based degree at the alpha band changed with age in local regions. The present results indicate that a brain-wide analysis of neuromagnetic data has the potential to reveal neurophysiological network features in the human brain in a resting state.
Collapse
Affiliation(s)
- Tetsuo Kida
- Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Emi Tanaka
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
117
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
118
|
Chuang KC, Ramakrishnapillai S, Madden K, St Amant J, McKlveen K, Gwizdala K, Dhullipudi R, Bazzano L, Carmichael O. Brain effective connectivity and functional connectivity as markers of lifespan vascular exposures in middle-aged adults: The Bogalusa Heart Study. Front Aging Neurosci 2023; 15:1110434. [PMID: 36998317 PMCID: PMC10043334 DOI: 10.3389/fnagi.2023.1110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionEffective connectivity (EC), the causal influence that functional activity in a source brain location exerts over functional activity in a target brain location, has the potential to provide different information about brain network dynamics than functional connectivity (FC), which quantifies activity synchrony between locations. However, head-to-head comparisons between EC and FC from either task-based or resting-state functional MRI (fMRI) data are rare, especially in terms of how they associate with salient aspects of brain health.MethodsIn this study, 100 cognitively-healthy participants in the Bogalusa Heart Study aged 54.2 ± 4.3years completed Stroop task-based fMRI, resting-state fMRI. EC and FC among 24 regions of interest (ROIs) previously identified as involved in Stroop task execution (EC-task and FC-task) and among 33 default mode network ROIs (EC-rest and FC-rest) were calculated from task-based and resting-state fMRI using deep stacking networks and Pearson correlation. The EC and FC measures were thresholded to generate directed and undirected graphs, from which standard graph metrics were calculated. Linear regression models related graph metrics to demographic, cardiometabolic risk factors, and cognitive function measures.ResultsWomen and whites (compared to men and African Americans) had better EC-task metrics, and better EC-task metrics associated with lower blood pressure, white matter hyperintensity volume, and higher vocabulary score (maximum value of p = 0.043). Women had better FC-task metrics, and better FC-task metrics associated with APOE-ε4 3–3 genotype and better hemoglobin-A1c, white matter hyperintensity volume and digit span backwards score (maximum value of p = 0.047). Better EC rest metrics associated with lower age, non-drinker status, and better BMI, white matter hyperintensity volume, logical memory II total score, and word reading score (maximum value of p = 0.044). Women and non-drinkers had better FC-rest metrics (value of p = 0.004).DiscussionIn a diverse, cognitively healthy, middle-aged community sample, EC and FC based graph metrics from task-based fMRI data, and EC based graph metrics from resting-state fMRI data, were associated with recognized indicators of brain health in differing ways. Future studies of brain health should consider taking both task-based and resting-state fMRI scans and measuring both EC and FC analyses to get a more complete picture of functional networks relevant to brain health.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA, United States
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
- *Correspondence: Kai-Cheng Chuang,
| | - Sreekrishna Ramakrishnapillai
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Kaitlyn Madden
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Julia St Amant
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kevin McKlveen
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Kathryn Gwizdala
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | | | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
119
|
Kesidou E, Theotokis P, Damianidou O, Boziki M, Konstantinidou N, Taloumtzis C, Sintila SA, Grigoriadis P, Evangelopoulos ME, Bakirtzis C, Simeonidou C. CNS Ageing in Health and Neurodegenerative Disorders. J Clin Med 2023; 12:2255. [PMID: 36983254 PMCID: PMC10054919 DOI: 10.3390/jcm12062255] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The process of ageing is characteristic of multicellular organisms associated with late stages of the lifecycle and is manifested through a plethora of phenotypes. Its underlying mechanisms are correlated with age-dependent diseases, especially neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) that are accompanied by social and financial difficulties for patients. Over time, people not only become more prone to neurodegeneration but they also lose the ability to trigger pivotal restorative mechanisms. In this review, we attempt to present the already known molecular and cellular hallmarks that characterize ageing in association with their impact on the central nervous system (CNS)'s structure and function intensifying possible preexisting pathogenetic conditions. A thorough and elucidative study of the underlying mechanisms of ageing will be able to contribute further to the development of new therapeutic interventions to effectively treat age-dependent manifestations of neurodegenerative diseases.
Collapse
Affiliation(s)
- Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Olympia Damianidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Natalia Konstantinidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Charilaos Taloumtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Styliani-Aggeliki Sintila
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Panagiotis Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Constantina Simeonidou
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
120
|
Abellaneda-Pérez K, Cattaneo G, Cabello-Toscano M, Solana-Sánchez J, Mulet-Pons L, Vaqué-Alcázar L, Perellón-Alfonso R, Solé-Padullés C, Bargalló N, Tormos JM, Pascual-Leone A, Bartrés-Faz D. Purpose in life promotes resilience to age-related brain burden in middle-aged adults. Alzheimers Res Ther 2023; 15:49. [PMID: 36915148 PMCID: PMC10009845 DOI: 10.1186/s13195-023-01198-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Disease-modifying agents to counteract cognitive impairment in older age remain elusive. Hence, identifying modifiable factors promoting resilience, as the capacity of the brain to maintain cognition and function with aging and disease, is paramount. In Alzheimer's disease (AD), education and occupation are typical cognitive reserve proxies. However, the importance of psychological factors is being increasingly recognized, as their operating biological mechanisms are elucidated. Purpose in life (PiL), one of the pillars of psychological well-being, has previously been found to reduce the deleterious effects of AD-related pathological changes on cognition. However, whether PiL operates as a resilience factor in middle-aged individuals and what are the underlying neural mechanisms remain unknown. METHODS Data was obtained from 624 middle-aged adults (mean age 53.71 ± 6.9; 303 women) from the Barcelona Brain Health Initiative cohort. Individuals with lower (LP; N = 146) and higher (HP; N = 100) PiL rates, according to the division of this variable into quintiles, were compared in terms of cognitive status, a measure reflecting brain burden (white matter lesions; WMLs), and resting-state functional connectivity, examining system segregation (SyS) parameters using 14 common brain circuits. RESULTS Neuropsychological status and WMLs burden did not differ between the PiL groups. However, in the LP group, greater WMLs entailed a negative impact on executive functions. Subjects in the HP group showed lower SyS of the dorsal default-mode network (dDMN), indicating lesser segregation of this network from other brain circuits. Specifically, HP individuals had greater inter-network connectivity between specific dDMN nodes, including the frontal cortex, the hippocampal formation, the midcingulate region, and the rest of the brain. Greater functional connectivity in some of these nodes positively correlated with cognitive performance. CONCLUSION Expanding previous findings on AD pathology and advanced age, the present results suggest that higher rates of PiL may promote resilience against brain changes already observable in middle age. Furthermore, having a purposeful life implies larger functional integration of the dDMN, which may potentially reflect greater brain reserve associated to better cognitive function.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain. .,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain. .,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | - Gabriele Cattaneo
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - María Cabello-Toscano
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Javier Solana-Sánchez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Lídia Mulet-Pons
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain.,Neuroradiology Section, Radiology Department, Diagnostic Image Center, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep M Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.,Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David Bartrés-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/ Casanova, 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.
| |
Collapse
|
121
|
The times they are a-changin': a proposal on how brain flexibility goes beyond the obvious to include the concepts of "upward" and "downward" to neuroplasticity. Mol Psychiatry 2023; 28:977-992. [PMID: 36575306 PMCID: PMC10005965 DOI: 10.1038/s41380-022-01931-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Since the brain was found to be somehow flexible, plastic, researchers worldwide have been trying to comprehend its fundamentals to better understand the brain itself, make predictions, disentangle the neurobiology of brain diseases, and finally propose up-to-date treatments. Neuroplasticity is simple as a concept, but extremely complex when it comes to its mechanisms. This review aims to bring to light an aspect about neuroplasticity that is often not given enough attention as it should, the fact that the brain's ability to change would include its ability to disconnect synapses. So, neuronal shrinkage, decrease in spine density or dendritic complexity should be included within the concept of neuroplasticity as part of its mechanisms, not as an impairment of it. To that end, we extensively describe a variety of studies involving topics such as neurodevelopment, aging, stress, memory and homeostatic plasticity to highlight how the weakening and disconnection of synapses organically permeate the brain in so many ways as a good practice of its intrinsic physiology. Therefore, we propose to break down neuroplasticity into two sub-concepts, "upward neuroplasticity" for changes related to synaptic construction and "downward neuroplasticity" for changes related to synaptic deconstruction. With these sub-concepts, neuroplasticity could be better understood from a bigger landscape as a vector in which both directions could be taken for the brain to flexibly adapt to certain demands. Such a paradigm shift would allow a better understanding of the concept of neuroplasticity to avoid any data interpretation bias, once it makes clear that there is no morality with regard to the organic and physiological changes that involve dynamic biological systems as seen in the brain.
Collapse
|
122
|
Hilt PM, Bertrand MF, Féasson L, Lebon F, Mourey F, Ruffino C, Rozand V. Motor Imagery Training Is Beneficial for Motor Memory of Upper and Lower Limb Tasks in Very Old Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3541. [PMID: 36834234 PMCID: PMC9963345 DOI: 10.3390/ijerph20043541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Human aging is associated with a decline in the capacity to memorize recently acquired motor skills. Motor imagery training is a beneficial method to compensate for this deterioration in old adults. It is not yet known whether these beneficial effects are maintained in very old adults (>80 years), who are more affected by the degeneration processes. The aim of this study was to evaluate the effectiveness of a mental training session of motor imagery on the memorization of new motor skills acquired through physical practice in very old adults. Thus, 30 very old adults performed 3 actual trials of a manual dexterity task (session 1) or a sequential footstep task (session 2) as fast as they could before and after a 20 min motor imagery training (mental-training group) or watching a documentary for 20 min (control group). Performance was improved after three actual trials for both tasks and both groups. For the control group, performance decreased in the manual dexterity task after the 20 min break and remained stable in the sequential footstep task. For the mental-training group, performance was maintained in the manual dexterity task after the 20 min motor imagery training and increased in the sequential footstep task. These results extended the benefits of motor imagery training to the very old population, showing that even a short motor imagery training session improved their performance and favored the motor memory process. These results confirmed that motor imagery training is an effective method to complement traditional rehabilitation protocols.
Collapse
Affiliation(s)
- Pauline M. Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Mathilde F. Bertrand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Léonard Féasson
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
- Université Jean Monnet Saint-Etienne, CHU Saint-Etienne, Myology Unit, Referent Center for Neuromuscular Diseases, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - France Mourey
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Laboratory Culture Sport Health and Society (C3S−UR 4660), Sport and Performance Department, University of Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| |
Collapse
|
123
|
Varanasi S, Tuli R, Han F, Chen R, Choa FS. Age Related Functional Connectivity Signature Extraction Using Energy-Based Machine Learning Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031603. [PMID: 36772649 PMCID: PMC9920122 DOI: 10.3390/s23031603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 05/14/2023]
Abstract
The study of brain connectivity plays an important role in understanding the functional organizations of the brain. It also helps to identify connectivity signatures that can be used for evaluating neural disorders and monitoring treatment efficacy. In this work, age-related changes in brain connectivity are studied to obtain aging signatures based on various modeling techniques. These include an energy-based machine learning technique to identify brain network interaction differences between two age groups with a large (30 years) age gap between them. Disconnectivity graphs and activation maps of the seven prominent resting-state networks (RSN) were obtained from functional MRI data of old and young adult subjects. Two-sample t-tests were performed on the local minimums with Bonferroni correction to control the family-wise error rate. These local minimums are connectivity states showing not only which brain regions but also how strong they are working together. They work as aging signatures that can be used to differentiate young and old groups. We found that the attention network's connectivity signature is a state with all the regions working together and young subjects have a stronger average connectivity among these regions. We have also found a common pattern between young and old subjects where the left and right brain regions of the frontal network are sometimes working separately instead of together. In summary, in this work, we combined machine learning and statistical approaches to extract connectivity signatures, which can be utilized to distinguish aging brains and monitor possible treatment efficacy.
Collapse
Affiliation(s)
- Sravani Varanasi
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- Correspondence:
| | - Roopan Tuli
- Department of Electrical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Fei Han
- The Hilltop Institute, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Fow-Sen Choa
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
124
|
Hrybouski S, Das SR, Xie L, Wisse LEM, Kelley M, Lane J, Sherin M, DiCalogero M, Nasrallah I, Detre JA, Yushkevich PA, Wolk DA. Aging and Alzheimer's Disease Have Dissociable Effects on Medial Temporal Lobe Connectivity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.18.23284749. [PMID: 36711782 PMCID: PMC9882834 DOI: 10.1101/2023.01.18.23284749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighborhood - the Anterior-Temporal and Posterior-Medial brain networks - in normal agers, individuals with preclinical Alzheimer's disease, and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbors in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (1) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (2) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and, (3) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging vs. Alzheimer's disease.
Collapse
|
125
|
Zhang F, Khan AF, Ding L, Yuan H. Network organization of resting-state cerebral hemodynamics and their aliasing contributions measured by functional near-infrared spectroscopy. J Neural Eng 2023; 20:016012. [PMID: 36535032 PMCID: PMC9855663 DOI: 10.1088/1741-2552/acaccb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Objective. Spontaneous fluctuations of cerebral hemodynamics measured by functional magnetic resonance imaging (fMRI) are widely used to study the network organization of the brain. The temporal correlations among the ultra-slow, <0.1 Hz fluctuations across the brain regions are interpreted as functional connectivity maps and used for diagnostics of neurological disorders. However, despite the interest narrowed in the ultra-slow fluctuations, hemodynamic activity that exists beyond the ultra-slow frequency range could contribute to the functional connectivity, which remains unclear.Approach. In the present study, we have measured the brain-wide hemodynamics in the human participants with functional near-infrared spectroscopy (fNIRS) in a whole-head, cap-based and high-density montage at a sampling rate of 6.25 Hz. In addition, we have acquired resting state fMRI scans in the same group of participants for cross-modal evaluation of the connectivity maps. Then fNIRS data were deliberately down-sampled to a typical fMRI sampling rate of ∼0.5 Hz and the resulted differential connectivity maps were subject to a k-means clustering.Main results. Our diffuse optical topographical analysis of fNIRS data have revealed a default mode network (DMN) in the spontaneous deoxygenated and oxygenated hemoglobin changes, which remarkably resemble the same fMRI network derived from participants. Moreover, we have shown that the aliased activities in the down-sampled optical signals have altered the connectivity patterns, resulting in a network organization of aliased functional connectivity in the cerebral hemodynamics.Significance.The results have for the first time demonstrated that fNIRS as a broadly accessible modality can image the resting-state functional connectivity in the posterior midline, prefrontal and parietal structures of the DMN in the human brain, in a consistent pattern with fMRI. Further empowered by the fast sampling rate of fNIRS, our findings suggest the presence of aliased connectivity in the current understanding of the human brain organization.
Collapse
Affiliation(s)
- Fan Zhang
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, United States of America
| | - Ali F Khan
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, United States of America
| | - Lei Ding
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, United States of America
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK 73019, United States of America
| | - Han Yuan
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019, United States of America
- Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK 73019, United States of America
| |
Collapse
|
126
|
Ghahremani M, Nathan S, Smith EE, McGirr A, Goodyear B, Ismail Z. Functional connectivity and mild behavioral impairment in dementia-free elderly. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12371. [PMID: 36698771 PMCID: PMC9847513 DOI: 10.1002/trc2.12371] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
Background Mild behavioral impairment (MBI) is a syndrome that uses later-life emergent and persistent neuropsychiatric symptoms (NPS) to identify a group at high risk for incident dementia. MBI is associated with neurodegenerative disease markers in advance of syndromic dementia. Functional connectivity (FC) correlates of MBI are understudied and could provide further insights into mechanisms early in the disease course. We used resting-state functional magnetic resonance imaging (rs-fMRI) to test the hypothesis that FC within the default mode network (DMN) and salience network (SN) of persons with MBI (MBI+) is reduced, relative to those without (MBI-). Methods From two harmonized dementia-free cohort studies, using a score of ≥6 on the MBI Checklist to define MBI status, 32 MBI+ and 63 MBI- individuals were identified (mean age: 71.7 years; 54.7% female). Seed-based connectivity analysis was implemented in each MBI group using the CONN fMRI toolbox (v20.b), with the posterior cingulate cortex (PCC) as the seed region within the DMN and anterior cingulate cortex (ACC) as the seed within the SN. The average time series from the PCC and ACC were used to determine FC with other regions within the DMN (medial prefrontal cortex, lateral inferior parietal cortex) and SN (anterior insula, supramarginal gyrus, rostral prefrontal cortex), respectively. Age, sex, years of education, and Montreal Cognitive Assessment scores were included as model covariates. The false discovery rate approach was used to correct for multiple comparisons, with a p-value of .05 considered significant. Results For the DMN, MBI+ individuals exhibited reduced FC between the PCC and the medial prefrontal cortex, compared to MBI-. For the SN, MBI+ individuals exhibited reduced FC between the ACC and left anterior insula. Conclusion MBI in dementia-free older adults is associated with reduced FC in networks known to be disrupted in dementia. Our results complement the evidence linking MBI with Alzheimer's disease biomarkers. Highlights Resting-state functional magnetic resonance imaging was completed in 95 dementia-free persons from FAVR and COMPASS-ND studies.Participants were stratified by informant-rated Mild Behavioral Impairment Checklist (MBI-C) score, ≥6 for MBI+.MBI+ participants showed reduced functional connectivity (FC) within the default mode network and salience network.These FC changes are consistent with those seen in early-stage Alzheimer's disease.MBI may help identify persons with early-stage neurodegenerative disease.
Collapse
Affiliation(s)
- Maryam Ghahremani
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineCalgaryAlbertaCanada
| | - Santhosh Nathan
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Eric E. Smith
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical NeurosciencesCumming School of MedicineCalgaryAlbertaCanada
| | - Alexander McGirr
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineCalgaryAlbertaCanada
| | - Bradley Goodyear
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineCalgaryAlbertaCanada
- Department of Clinical NeurosciencesCumming School of MedicineCalgaryAlbertaCanada
- Department of RadiologyCumming School of MedicineCalgaryAlbertaCanada
| | - Zahinoor Ismail
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryCumming School of MedicineCalgaryAlbertaCanada
- Department of Clinical NeurosciencesCumming School of MedicineCalgaryAlbertaCanada
- College of Medicine and HealthUniversity of ExeterExeterUK
| |
Collapse
|
127
|
The functional connectivity between left insula and left medial superior frontal gyrus underlying the relationship between rumination and procrastination. Neuroscience 2023; 509:1-9. [PMID: 36427671 DOI: 10.1016/j.neuroscience.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Procrastination is regarded as a prevalent problematic behavior that impairs people's physical and mental health. Although previous studies have indicated that trait rumination is robustly positively correlated with procrastination, it remains unknown about the neural substrates underlying the relationship between trait rumination and procrastination. To address this issue, we used voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) approaches to explore the neural basis of the relationship between trait rumination and procrastination. Our behavior results found that trait rumination was significantly positively correlated to procrastination, while the VBM analysis showed that trait rumination was negatively correlated with gray matter volume of the insula. Furthermore, the RSFC results revealed a negative association of the left insula-lmSFG (left medial superior frontal gyrus) functional connectivity with trait rumination. More importantly, the mediation analysis showed that trait rumination could completely mediate the relationship between left insula-lmSFG functional connectivity and procrastination. These results suggest that the left insula-lmSFG functional connectivity involved in emotion regulation modulates the association between trait rumination and procrastination, which provides neural evidence for the relationship between trait rumination and procrastination.
Collapse
|
128
|
Zhang X, An H, Chen Y, Shu N. Neurobiological Mechanisms of Cognitive Decline Correlated with Brain Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:127-146. [PMID: 37418211 DOI: 10.1007/978-981-99-1627-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive decline has emerged as one of the greatest health threats of old age. Meanwhile, aging is the primary risk factor for Alzheimer's disease (AD) and other prevalent neurodegenerative disorders. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain aging. Despite playing an important role in the pathogenesis and incidence of disease, brain aging has not been well understood at a molecular level. Recent advances in the biology of aging in model organisms, together with molecular- and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline. This chapter seeks to integrate the knowledge about the neurological mechanisms of age-related cognitive changes that underlie aging.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Haiting An
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
| |
Collapse
|
129
|
Sang F, Xu K, Chen Y. Brain Network Organization and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:99-108. [PMID: 37418209 DOI: 10.1007/978-981-99-1627-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Despite recent substantial progress in neuroscience, the mechanisms and principles of the complex structure, functions, and the relationship between the brain and cognitive functions have not been fully understood. The modeling method of brain network can provide a new perspective for neuroscience research, and it is possible to provide new solutions to the related research problems. On this basis, the researchers define the concept of human brain connectome to highlight and emphasize the importance of network modeling methods in neuroscience. For example, using diffusion-weighted magnetic resonance imaging (dMRI) technology and fiber tractography methods, a white matter connection network of the whole brain can be constructed. From the perspective of brain function, functional magnetic resonance imaging (fMRI) data can build the brain functional connection network. A structural covariation modeling method is used to obtain a brain structure covariation network, and it appears to reflect developmental coordination or synchronized maturation between areas of the brain. In addition, network modeling and analysis methods can also be applied to other types of image data, such as positron emission tomography (PET), electroencephalogram (EEG), and magnetoencephalography (MEG). This chapter mainly reviews the research progress of researchers on brain structure, function, and other aspects at the network level in recent years.
Collapse
Affiliation(s)
- Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Kai Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China.
| |
Collapse
|
130
|
Salimi M, Ayene F, Parsazadegan T, Nazari M, Jamali Y, Raoufy MR. Nasal airflow promotes default mode network activity. Respir Physiol Neurobiol 2023; 307:103981. [DOI: 10.1016/j.resp.2022.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
131
|
Tomasi D, Volkow ND. Brain motion networks predict head motion during rest- and task-fMRI. Front Neurosci 2023; 17:1096232. [PMID: 37113158 PMCID: PMC10126373 DOI: 10.3389/fnins.2023.1096232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction The capacity to stay still during scanning, which is necessary to avoid motion confounds while imaging, varies markedly between people. Methods Here we investigated the effect of head motion on functional connectivity using connectome-based predictive modeling (CPM) and publicly available brain functional magnetic resonance imaging (fMRI) data from 414 individuals with low frame-to-frame motion (Δd < 0.18 mm). Leave-one-out was used for internal cross-validation of head motion prediction in 207 participants, and twofold cross-validation was used in an independent sample (n = 207). Results and Discussion Parametric testing, as well as CPM-based permutations for null hypothesis testing, revealed strong linear associations between observed and predicted values of head motion. Motion prediction accuracy was higher for task- than for rest-fMRI, and for absolute head motion (d) than for Δd. Denoising attenuated the predictability of head motion, but stricter framewise displacement threshold (FD = 0.2 mm) for motion censoring did not alter the accuracy of the predictions obtained with lenient censoring (FD = 0.5 mm). For rest-fMRI, prediction accuracy was lower for individuals with low motion (mean Δd < 0.02 mm; n = 200) than for those with moderate motion (Δd < 0.04 mm; n = 414). The cerebellum and default-mode network (DMN) regions that forecasted individual differences in d and Δd during six different tasks- and two rest-fMRI sessions were consistently prone to the deleterious effect of head motion. However, these findings generalized to a novel group of 1,422 individuals but not to simulated datasets without neurobiological contributions, suggesting that cerebellar and DMN connectivity could partially reflect functional signals pertaining to inhibitory motor control during fMRI.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
- *Correspondence: Dardo Tomasi,
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
- National Institute on Drug Abuse, Bethesda, MD, United States
| |
Collapse
|
132
|
Krämer C, Stumme J, da Costa Campos L, Rubbert C, Caspers J, Caspers S, Jockwitz C. Classification and prediction of cognitive performance differences in older age based on brain network patterns using a machine learning approach. Netw Neurosci 2023; 7:122-147. [PMID: 37339286 PMCID: PMC10270720 DOI: 10.1162/netn_a_00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 09/22/2023] Open
Abstract
Age-related cognitive decline varies greatly in healthy older adults, which may partly be explained by differences in the functional architecture of brain networks. Resting-state functional connectivity (RSFC) derived network parameters as widely used markers describing this architecture have even been successfully used to support diagnosis of neurodegenerative diseases. The current study aimed at examining whether these parameters may also be useful in classifying and predicting cognitive performance differences in the normally aging brain by using machine learning (ML). Classifiability and predictability of global and domain-specific cognitive performance differences from nodal and network-level RSFC strength measures were examined in healthy older adults from the 1000BRAINS study (age range: 55-85 years). ML performance was systematically evaluated across different analytic choices in a robust cross-validation scheme. Across these analyses, classification performance did not exceed 60% accuracy for global and domain-specific cognition. Prediction performance was equally low with high mean absolute errors (MAEs ≥ 0.75) and low to none explained variance (R2 ≤ 0.07) for different cognitive targets, feature sets, and pipeline configurations. Current results highlight limited potential of functional network parameters to serve as sole biomarker for cognitive aging and emphasize that predicting cognition from functional network patterns may be challenging.
Collapse
Affiliation(s)
- Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas da Costa Campos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
133
|
Setton R, Mwilambwe-Tshilobo L, Girn M, Lockrow AW, Baracchini G, Hughes C, Lowe AJ, Cassidy BN, Li J, Luh WM, Bzdok D, Leahy RM, Ge T, Margulies DS, Misic B, Bernhardt BC, Stevens WD, De Brigard F, Kundu P, Turner GR, Spreng RN. Age differences in the functional architecture of the human brain. Cereb Cortex 2022; 33:114-134. [PMID: 35231927 PMCID: PMC9758585 DOI: 10.1093/cercor/bhac056] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
The intrinsic functional organization of the brain changes into older adulthood. Age differences are observed at multiple spatial scales, from global reductions in modularity and segregation of distributed brain systems, to network-specific patterns of dedifferentiation. Whether dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed, experience-dependent changes, or both, is uncertain. We employed a multimethod strategy to interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was collected in younger (n = 181) and older (n = 120) healthy adults. Cortical parcellation sensitive to individual variation was implemented for precision functional mapping of each participant while preserving group-level parcel and network labels. ME-fMRI processing and gradient mapping identified global and macroscale network differences. Multivariate functional connectivity methods tested for microscale, edge-level differences. Older adults had lower BOLD signal dimensionality, consistent with global network dedifferentiation. Gradients were largely age-invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns in older adults. Visual and somatosensory regions were more integrated within the functional connectome; default and frontoparietal control network regions showed greater connectivity; and the dorsal attention network was more integrated with heteromodal regions. These findings highlight the importance of multiscale, multimethod approaches to characterize the architecture of functional brain aging.
Collapse
Affiliation(s)
- Roni Setton
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Laetitia Mwilambwe-Tshilobo
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Amber W Lockrow
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Colleen Hughes
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Wen-Ming Luh
- National Institutes of Health, National Institute on Aging, Baltimore, MD, USA
| | - Danilo Bzdok
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
- Mila – Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Richard M Leahy
- Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | - Bratislav Misic
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - W Dale Stevens
- Department of Psychology, York University, Toronto, ON, Canada
| | - Felipe De Brigard
- Department of Philosophy, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience, Durham, NC, USA
| | - Prantik Kundu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary R Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| |
Collapse
|
134
|
Markov NT, Lindbergh CA, Staffaroni AM, Perez K, Stevens M, Nguyen K, Murad NF, Fonseca C, Campisi J, Kramer J, Furman D. Age-related brain atrophy is not a homogenous process: Different functional brain networks associate differentially with aging and blood factors. Proc Natl Acad Sci U S A 2022; 119:e2207181119. [PMID: 36459652 PMCID: PMC9894212 DOI: 10.1073/pnas.2207181119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022] Open
Abstract
Aging is characterized by a progressive loss of brain volume at an estimated rate of 5% per decade after age 40. While these morphometric changes, especially those affecting gray matter and atrophy of the temporal lobe, are predictors of cognitive performance, the strong association with aging obscures the potential parallel, but more specific role, of individual subject physiology. Here, we studied a cohort of 554 human subjects who were monitored using structural MRI scans and blood immune protein concentrations. Using machine learning, we derived a cytokine clock (CyClo), which predicted age with good accuracy (Mean Absolute Error = 6 y) based on the expression of a subset of immune proteins. These proteins included, among others, Placenta Growth Factor (PLGF) and Vascular Endothelial Growth Factor (VEGF), both involved in angiogenesis, the chemoattractant vascular cell adhesion molecule 1 (VCAM-1), the canonical inflammatory proteins interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), the chemoattractant IP-10 (CXCL10), and eotaxin-1 (CCL11), previously involved in brain disorders. Age, sex, and the CyClo were independently associated with different functionally defined cortical networks in the brain. While age was mostly correlated with changes in the somatomotor system, sex was associated with variability in the frontoparietal, ventral attention, and visual networks. Significant canonical correlation was observed for the CyClo and the default mode, limbic, and dorsal attention networks, indicating that immune circulating proteins preferentially affect brain processes such as focused attention, emotion, memory, response to social stress, internal evaluation, and access to consciousness. Thus, we identified immune biomarkers of brain aging which could be potential therapeutic targets for the prevention of age-related cognitive decline.
Collapse
Affiliation(s)
- Nikola T. Markov
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA94945
| | - Cutter A. Lindbergh
- Department of Neurology, Memory and Aging Center, University of California San Francisco, Weill Institute for Neurosciences, San Francisco, CA94158
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT06030
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California San Francisco, Weill Institute for Neurosciences, San Francisco, CA94158
| | - Kevin Perez
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA94945
- University of Lausanne, LausanneCH-1015, Switzerland
| | - Michael Stevens
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA94945
| | - Khiem Nguyen
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA94945
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City70000, Vietnam
| | - Natalia F. Murad
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA94945
| | - Corrina Fonseca
- Department of Neurology, Memory and Aging Center, University of California San Francisco, Weill Institute for Neurosciences, San Francisco, CA94158
| | - Judith Campisi
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA94945
| | - Joel Kramer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, Weill Institute for Neurosciences, San Francisco, CA94158
| | - David Furman
- Buck AI Platform, Buck Institute for Research on Aging, Novato, CA94945
- Instituto de Investigaciones en Medicina Traslacional, Universidad Austral, Consejo Nacional de Investigaciones Científicas y Técnicas, Pilar1629, Argentina
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
135
|
Hsu CL, Manor B, Iloputaife I, Oddsson LIE, Lipsitz L. Six month lower-leg mechanical tactile sensory stimulation alters functional network connectivity associated with improved gait in older adults with peripheral neuropathy – A pilot study. Front Aging Neurosci 2022; 14:1027242. [PMID: 36408098 PMCID: PMC9669982 DOI: 10.3389/fnagi.2022.1027242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Foot sole somatosensory impairment associated with peripheral neuropathy (PN) is prevalent and a strong independent risk factor for gait disturbance and falls in older adults. Walkasins, a lower-limb sensory prosthesis, has been shown to improve gait and mobility in people with PN by providing afferent input related to foot sole pressure distributions via lower-leg mechanical tactile stimulation. Given that gait and mobility are regulated by sensorimotor and cognitive brain networks, it is plausible improvements in gait and mobility from wearing the Walkasins may be associated with elicited neuroplastic changes in the brain. As such, this study aimed to examine changes in brain network connectivity after 26 weeks of daily use of the prosthesis among individuals with diagnosed PN and balance problems. In this exploratory investigation, assessments of participant characteristics, Functional Gait Assessment (FGA), and resting-state functional magnetic resonance imaging were completed at study baseline and 26 weeks follow-up. We found that among those who have completed the study (N = 8; mean age 73.7 years) we observed a five-point improvement in FGA performance as well as significant changes in network connectivity over the 26 weeks that were correlated with improved FGA performance. Specifically, greater improvement in FGA score over 26 weeks was associated with increased connectivity within the Default Mode Network (DMN; p < 0.01), the Somatosensory Network (SMN; p < 0.01), and the Frontoparietal Network (FPN; p < 0.01). FGA improvement was also correlated with increased connectivity between the DMN and the FPN (p < 0.01), and decreased connectivity between the SMN and both the FPN (p < 0.01) and cerebellum (p < 0.01). These findings suggest that 26 weeks of daily use of the Walkasins device may provide beneficial neural modulatory changes in brain network connectivity via the sensory replacement stimulation that are relevant to gait improvements among older adults with PN.
Collapse
Affiliation(s)
- Chun Liang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Roslindale, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Chun Liang Hsu,
| | - Brad Manor
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Roslindale, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ikechkwu Iloputaife
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Roslindale, MA, United States
| | - Lars I. E. Oddsson
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
- RxFunction Inc., Eden Prairie, MN, United States
| | - Lewis Lipsitz
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Roslindale, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
136
|
Stanford WC, Mucha PJ, Dayan E. A robust core architecture of functional brain networks supports topological resilience and cognitive performance in middle- and old-aged adults. Proc Natl Acad Sci U S A 2022; 119:e2203682119. [PMID: 36282912 PMCID: PMC9636938 DOI: 10.1073/pnas.2203682119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Aging is associated with gradual changes in cognition, yet some individuals exhibit protection against age-related cognitive decline. The topological characteristics of brain networks that promote protection against cognitive decline in aging are unknown. Here, we investigated whether the robustness and resilience of brain networks, queried via the delineation of the brain's core network structure, relate to age and cognitive performance in a cross-sectional dataset of healthy middle- and old-aged adults (n = 478, ages 40 to 90 y). First, we decomposed each subject's functional brain network using k-shell decomposition and found that age was negatively associated with robust core network structures. Next, we perturbed these networks, via attack simulations, and found that resilience of core brain network nodes also declined in relationship to age. We then partitioned our dataset into middle- (ages 40 to 65 y, n = 300) and old- (ages 65 to 90 y, n = 178) aged subjects and observed that older individuals had less robust core connectivity and resilience. Following these analyses, we found that episodic memory was positively related to robust connectivity and core resilience, particularly within the default node, limbic, and frontoparietal control networks. Importantly, we found that age-related differences in episodic memory were positively related to core resilience, which indicates a potential role for core resilience in protection against cognitive decline. Together, these findings suggest that robust core connectivity and resilience of brain networks could facilitate high cognitive performance in aging.
Collapse
Affiliation(s)
- William C. Stanford
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| | - Peter J. Mucha
- Department of Mathematics, Dartmouth College, Hanover, NH 03755
| | - Eran Dayan
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514
| |
Collapse
|
137
|
Grennan G, Balasubramani PP, Vahidi N, Ramanathan D, Jeste DV, Mishra J. Dissociable neural mechanisms of cognition and well-being in youth versus healthy aging. Psychol Aging 2022; 37:827-842. [PMID: 36107693 PMCID: PMC9669243 DOI: 10.1037/pag0000710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Mental health, cognition, and their underlying neural processes in healthy aging are rarely studied simultaneously. Here, in a sample of healthy younger (n = 62) and older (n = 54) adults, we compared subjective mental health as well as objective global cognition across several core cognitive domains with simultaneous electroencephalography (EEG). We found significantly greater symptoms of anxiety, depression, and loneliness in youth and in contrast, greater mental well-being in older adults. Yet, global performance across core cognitive domains was significantly worse in older adults. EEG-based source imaging of global cognitive task-evoked processing showed reduced suppression of activity in the anterior medial prefrontal default mode network (DMN) region in older adults relative to youth. Global cognitive performance efficiency was predicted by greater activity in the right dorsolateral prefrontal cortex in younger adults and in contrast, by greater activity in right inferior frontal cortex in older adults. Furthermore, greater mental well-being in older adults related to lesser global task-evoked activity in the posterior DMN. Overall, these results suggest dissociated neural mechanisms underlying global cognition and mental well-being in youth versus healthy aging. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Gillian Grennan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
| | - Pragathi Priyadharsini Balasubramani
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
| | - Nasim Vahidi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
- Department of Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| | - Dilip V Jeste
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jyoti Mishra
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
138
|
Strain JF, Brier MR, Tanenbaum A, Gordon BA, McCarthy JE, Dincer A, Marcus DS, Chhatwal JP, Graff-Radford NR, Day GS, la Fougère C, Perrin RJ, Salloway S, Schofield PR, Yakushev I, Ikeuchi T, Vöglein J, Morris JC, Benzinger TLS, Bateman RJ, Ances BM, Snyder AZ. Covariance-based vs. correlation-based functional connectivity dissociates healthy aging from Alzheimer disease. Neuroimage 2022; 261:119511. [PMID: 35914670 PMCID: PMC9750733 DOI: 10.1016/j.neuroimage.2022.119511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023] Open
Abstract
Prior studies of aging and Alzheimer disease have evaluated resting state functional connectivity (FC) using either seed-based correlation (SBC) or independent component analysis (ICA), with a focus on particular functional systems. SBC and ICA both are insensitive to differences in signal amplitude. At the same time, accumulating evidence indicates that the amplitude of spontaneous BOLD signal fluctuations is physiologically meaningful. We systematically compared covariance-based FC, which is sensitive to amplitude, vs. correlation-based FC, which is not, in affected individuals and controls drawn from two cohorts of participants including autosomal dominant Alzheimer disease (ADAD), late onset Alzheimer disease (LOAD), and age-matched controls. Functional connectivity was computed over 222 regions of interest and group differences were evaluated in terms of components projected onto a space of lower dimension. Our principal observations are: (1) Aging is associated with global loss of resting state fMRI signal amplitude that is approximately uniform across resting state networks. (2) Thus, covariance FC measures decrease with age whereas correlation FC is relatively preserved in healthy aging. (3) In contrast, symptomatic ADAD and LOAD both lead to loss of spontaneous activity amplitude as well as severely degraded correlation structure. These results demonstrate a double dissociation between age vs. Alzheimer disease and the amplitude vs. correlation structure of resting state BOLD signals. Modeling results suggest that the AD-associated loss of correlation structure is attributable to a relative increase in the fraction of locally restricted as opposed to widely shared variance.
Collapse
Affiliation(s)
- Jeremy F Strain
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Matthew R Brier
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Aaron Tanenbaum
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in Saint Louis, Box 8225, 660 South Euclid Ave, St. Louis, MO 63110, USA; Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
| | - John E McCarthy
- Department of Mathematics and Statistics, Washington University, St. Louis, MO 63130, USA
| | - Aylin Dincer
- Department of Radiology, Washington University in Saint Louis, Box 8225, 660 South Euclid Ave, St. Louis, MO 63110, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University in Saint Louis, Box 8225, 660 South Euclid Ave, St. Louis, MO 63110, USA; Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jasmeer P Chhatwal
- Martinos Center, Massachusetts General Hospital, 149 13th St Room 2662, Charlestown, MA 02129, USA
| | - Neill R Graff-Radford
- Department of Neurology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Fl 32224, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Fl 32224, USA
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, Universityhospital Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany
| | - Richard J Perrin
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110, USA; Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Stephen Salloway
- Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW 2131, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Japan
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität Munich, Germany
| | - John C Morris
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110, USA; Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University in Saint Louis, Box 8225, 660 South Euclid Ave, St. Louis, MO 63110, USA; Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110, USA; Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110, USA; Department of Radiology, Washington University in Saint Louis, Box 8225, 660 South Euclid Ave, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University in Saint Louis, St. Louis, MO 63110, USA; Department of Radiology, Washington University in Saint Louis, Box 8225, 660 South Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|
139
|
Xia H, He Q, Chen A. Understanding cognitive control in aging: A brain network perspective. Front Aging Neurosci 2022; 14:1038756. [PMID: 36389081 PMCID: PMC9659905 DOI: 10.3389/fnagi.2022.1038756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive control decline is a major manifestation of brain aging that severely impairs the goal-directed abilities of older adults. Magnetic resonance imaging evidence suggests that cognitive control during aging is associated with altered activation in a range of brain regions, including the frontal, parietal, and occipital lobes. However, focusing on specific regions, while ignoring the structural and functional connectivity between regions, may impede an integrated understanding of cognitive control decline in older adults. Here, we discuss the role of aging-related changes in functional segregation, integration, and antagonism among large-scale networks. We highlight that disrupted spontaneous network organization, impaired information co-processing, and enhanced endogenous interference promote cognitive control declines during aging. Additionally, in older adults, severe damage to structural network can weaken functional connectivity and subsequently trigger cognitive control decline, whereas a relatively intact structural network ensures the compensation of functional connectivity to mitigate cognitive control impairment. Thus, we propose that age-related changes in functional networks may be influenced by structural networks in cognitive control in aging (CCA). This review provided an integrative framework to understand the cognitive control decline in aging by viewing the brain as a multimodal networked system.
Collapse
Affiliation(s)
- Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
140
|
Soleimani B, Das P, Dushyanthi Karunathilake IM, Kuchinsky SE, Simon JZ, Babadi B. NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis. Neuroimage 2022; 260:119496. [PMID: 35870697 PMCID: PMC9435442 DOI: 10.1016/j.neuroimage.2022.119496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Identifying the directed connectivity that underlie networked activity between different cortical areas is critical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magnetoencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from the MEG measurements, integrated with source localization, and employs the resulting parameter estimates to produce a precise statistical characterization of the detected GC links. We offer several theoretical and algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and application to MEG data from an auditory task involving tone processing from both younger and older participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch, network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network-level characterization of neural activity during tone processing and resting state by delineating task- and age-related connectivity changes.
Collapse
Affiliation(s)
- Behrad Soleimani
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Proloy Das
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA; Department of Biology, University of Maryland College Park, MD, USA.
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
141
|
Morand A, Segobin S, Lecouvey G, Gonneaud J, Eustache F, Rauchs G, Desgranges B. Alterations in resting-state functional connectivity associated to the age-related decline in time-based prospective memory. Cereb Cortex 2022; 33:4374-4383. [PMID: 36130116 DOI: 10.1093/cercor/bhac349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/12/2022] Open
Abstract
Time-based prospective memory (TBPM) is defined as the ability to remember to perform intended actions at a specific time in the future. TBPM is impaired in aging, and this decline has been associated with white-matter alterations within the superior fronto-occipital fasciculus. In the present study, we used resting-state functional magnetic resonance imaging from 22 healthy young (26 ± 5.2 years) and 23 older (63 ± 6.1 years) participants to investigate how age-related alterations in resting-state functional connectivity are related to TBPM performance, and whether these alterations are associated with the white-matter disruptions we have previously observed with diffusion tensor imaging. Whole-brain analyses revealed lower resting-state functional connectivity in older participants compared with younger ones, which in turn correlated with TBPM performance. These correlations were mainly located in the salience network and the parietal part of the frontoparietal network. Our findings suggest that resting-state functional connectivity alterations contribute to the age-related decline in TBPM.
Collapse
Affiliation(s)
- Alexandrine Morand
- Normandie Universite, UNICAEN, PSL Universite Paris, EPHE, Inserm, U1077, CHU de Caen, NIMH, GIP Cyceron, Pole des Formations et de Recherche en Sante, 2 rue des Rochambelles, F-14032 Caen Cedex CS 14032, France
- Normandie Universite, UNICAEN, Inserm, U1237, PHIND, Institut Blood and Brain @Caen-Normandie, GIP Cyceron, Bd Henri Becquerel, BP 5229, 14074 Caen Cedex 5, France
| | - Shailendra Segobin
- Normandie Universite, UNICAEN, PSL Universite Paris, EPHE, Inserm, U1077, CHU de Caen, NIMH, GIP Cyceron, Pole des Formations et de Recherche en Sante, 2 rue des Rochambelles, F-14032 Caen Cedex CS 14032, France
| | - Grégory Lecouvey
- Normandie Universite, UNICAEN, PSL Universite Paris, EPHE, Inserm, U1077, CHU de Caen, NIMH, GIP Cyceron, Pole des Formations et de Recherche en Sante, 2 rue des Rochambelles, F-14032 Caen Cedex CS 14032, France
| | - Julie Gonneaud
- Normandie Universite, UNICAEN, Inserm, U1237, PHIND, Institut Blood and Brain @Caen-Normandie, GIP Cyceron, Bd Henri Becquerel, BP 5229, 14074 Caen Cedex 5, France
| | - Francis Eustache
- Normandie Universite, UNICAEN, PSL Universite Paris, EPHE, Inserm, U1077, CHU de Caen, NIMH, GIP Cyceron, Pole des Formations et de Recherche en Sante, 2 rue des Rochambelles, F-14032 Caen Cedex CS 14032, France
| | - Géraldine Rauchs
- Normandie Universite, UNICAEN, PSL Universite Paris, EPHE, Inserm, U1077, CHU de Caen, NIMH, GIP Cyceron, Pole des Formations et de Recherche en Sante, 2 rue des Rochambelles, F-14032 Caen Cedex CS 14032, France
- Normandie Universite, UNICAEN, Inserm, U1237, PHIND, Institut Blood and Brain @Caen-Normandie, GIP Cyceron, Bd Henri Becquerel, BP 5229, 14074 Caen Cedex 5, France
| | - Béatrice Desgranges
- Normandie Universite, UNICAEN, PSL Universite Paris, EPHE, Inserm, U1077, CHU de Caen, NIMH, GIP Cyceron, Pole des Formations et de Recherche en Sante, 2 rue des Rochambelles, F-14032 Caen Cedex CS 14032, France
| |
Collapse
|
142
|
Associations of lifetime concussion history and repetitive head impact exposure with resting-state functional connectivity in former collegiate American football players: An NCAA 15-year follow-up study. PLoS One 2022; 17:e0273918. [PMID: 36084077 PMCID: PMC9462826 DOI: 10.1371/journal.pone.0273918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to examine associations of lifetime concussion history (CHx) and an advanced metric of lifetime repetitive head impact exposure with resting-state functional connectivity (rsFC) across the whole-brain and among large-scale functional networks (Default Mode; Dorsal Attention; and Frontoparietal Control) in former collegiate football players. Individuals who completed at least one year of varsity collegiate football were eligible to participate in this observational cohort study (n = 48; aged 36–41 years; 79.2% white/Caucasian; 12.5±4.4 years of football played; all men). Individuals were excluded if they reported history/suspicion of psychotic disorder with active symptoms, contraindications to participation in study procedures (e.g., MRI safety concern), or inability to travel. Each participant provided concussion and football playing histories. Self-reported concussion history was analyzed in two different ways based on prior research: dichotomous “High” (≥3 concussions; n = 28) versus “Low” (<3 concussions; n = 20); and four ordinal categories (0–1 concussion [n = 19]; 2–4 concussions [n = 8]; 5–7 concussions [n = 9]; and ≥8 concussions [n = 12]). The Head Impact Exposure Estimate (HIEE) was calculated from football playing history captured via structured interview. Resting-state fMRI and T1-weighted MRI were acquired and preprocessed using established pipelines. Next, rsFC was calculated using the Seitzman et al., (2020) 300-ROI functional atlas. Whole-brain, within-network, and between-network rsFC were calculated using all ROIs and network-specific ROIs, respectively. Effects of CHx and HIEE on rsFC values were examined using separate multivariable linear regression models, with a-priori α set to 0.05. We observed no statistically significant associations between rsFC outcomes and either CHx or HIEE (ps ≥ .12). Neither CHx nor HIEE were associated with neural signatures that have been observed in studies of typical and pathological aging. While CHx and repetitive head impacts have been associated with changes in brain health in older former athletes, our preliminary results suggest that associations with rsFC may not be present in early midlife former football players.
Collapse
|
143
|
Li Y, Liu H, Yu H, Yang H, Guo M, Cao C, Pang H, Liu Y, Cao K, Fan G. Alterations of voxel-wise spontaneous activity and corresponding brain functional networks in multiple system atrophy patients with mild cognitive impairment. Hum Brain Mapp 2022; 44:403-417. [PMID: 36073537 PMCID: PMC9842910 DOI: 10.1002/hbm.26058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023] Open
Abstract
Emerging evidence has indicated that cognitive impairment is an underrecognized feature of multiple system atrophy (MSA). Mild cognitive impairment (MCI) is related to a high risk of dementia. However, the mechanism underlying MCI in MSA remains controversial. In this study, we conducted the amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) analyses to detect the characteristics of local neural activity and corresponding network alterations in MSA patients with MCI (MSA-MCI). We enrolled 80 probable MSA patients classified as cognitively normal (MSA-NC, n = 36) and MSA-MCI (n = 44) and 40 healthy controls. Compared with MSA-NC, MSA-MCI exhibited decreased ALFF in the right dorsal lateral prefrontal cortex (RDLPFC) and increased ALFF in the right cerebellar lobule IX and lobule IV-V. In the secondary FC analyses, decreased FC in the left inferior parietal lobe (IPL) was observed when we set the RDLPFC as the seed region. Decreased FC in the bilateral cuneus, left precuneus, and left IPL and increased FC in the right middle temporal gyrus were shown when we set the right cerebellar lobule IX as the seed region. Furthermore, FC of DLPFC-IPL and cerebello-cerebral circuit, as well as ALFF alterations, were significantly correlated with Montreal Cognitive Assessment scores in MSA patients. We also employed whole-brain voxel-based morphometry analysis, but no gray matter atrophy was detected between the patient subgroups. Our findings indicate that altered spontaneous activity in the DLPFC and the cerebellum and disrupted DLPFC-IPL, cerebello-cerebral networks are possible biomarkers of early cognitive decline in MSA patients.
Collapse
Affiliation(s)
- Yingmei Li
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hu Liu
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Hongmei Yu
- Department of Neurology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Huaguang Yang
- Department of Radiology, Renmin HospitalWuhan UniversityWuhanHubeiChina
| | - Miaoran Guo
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Chenghao Cao
- Department of Radiology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Huize Pang
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Yu Liu
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Kaiqiang Cao
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| | - Guoguang Fan
- Department of Radiology, The First HospitalChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
144
|
Fenton L, Weissberger GH, Boyle PA, Mosqueda L, Yassine HN, Nguyen AL, Lim AC, Han SD. Cognitive and neuroimaging correlates of financial exploitation vulnerability in older adults without dementia: Implications for early detection of Alzheimer's disease. Neurosci Biobehav Rev 2022; 140:104773. [PMID: 35811006 PMCID: PMC9815424 DOI: 10.1016/j.neubiorev.2022.104773] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/11/2023]
Abstract
Neuropathology characteristic of Alzheimer's disease (AD) begins to accumulate years to decades before cognitive changes are clinically detectable on standard neuropsychological tests. This presents a challenge for early intervention efforts and has spurred research on the identification of behavioral correlates of early neuropathological changes. Recent evidence suggests that financial exploitation vulnerability (FEV) due to impaired decision making may serve as an early behavioral manifestation of AD neuropathology, thereby indicating an increased likelihood for subsequent cognitive decline. An understanding of the underlying mechanisms of FEV is therefore warranted for the identification of individuals at risk for cognitive decline due to AD, and for empowering and protecting older adults vulnerable to financial exploitation. In the current review, we first highlight the devastating consequences of financial exploitation of older adults. We then summarize research on the cognitive, neuroimaging, and neuropathological correlates of FEV in older adults without dementia and propose a theoretical model in which early accumulation of AD pathology manifests as FEV. We conclude with clinical implications and directions for future research.
Collapse
Affiliation(s)
- Laura Fenton
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA, USA
| | - Gali H Weissberger
- The Interdisciplinary Department of Social Sciences, Bar-Ilan University, Raman Gat, Israel
| | - Patricia A Boyle
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Laura Mosqueda
- Department of Family Medicine, Keck School of Medicine of USC, Alhambra, CA, USA; USC School of Gerontology, Los Angeles, CA, USA
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Annie L Nguyen
- Department of Family Medicine, Keck School of Medicine of USC, Alhambra, CA, USA
| | - Aaron C Lim
- Department of Family Medicine, Keck School of Medicine of USC, Alhambra, CA, USA
| | - S Duke Han
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Family Medicine, Keck School of Medicine of USC, Alhambra, CA, USA; Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA; USC School of Gerontology, Los Angeles, CA, USA.
| |
Collapse
|
145
|
Lindsey HM, Lazar M, Mercuri G, Rath JF, Bushnik T, Flanagan S, Voelbel GT. The effects of plasticity-based cognitive rehabilitation on resting-state functional connectivity in chronic traumatic brain injury: A pilot study. NeuroRehabilitation 2022; 51:133-150. [DOI: 10.3233/nre-210264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Traumatic brain injury (TBI) often results in chronic impairments to cognitive function, and these may be related to disrupted functional connectivity (FC) of the brain at rest. OBJECTIVE: To investigate changes in default mode network (DMN) FC in adults with chronic TBI following 40 hours of auditory processing speed training. METHODS: Eleven adults with chronic TBI underwent 40-hours of auditory processing speed training over 13-weeks and seven adults with chronic TBI were assigned to a non-intervention control group. For all participants, resting-state FC and cognitive and self-reported function were measured at baseline and at a follow-up visit 13-weeks later. RESULTS: No significant group differences in cognitive function or resting-state FC were observed at baseline. Following training, the intervention group demonstrated objective and subjective improvements on cognitive measures with moderate-to-large effect sizes. Repeated measures ANCOVAs revealed significant (p < 0.001) group×time interactions, suggesting training-related changes in DMN FC, and semipartial correlations demonstrated that these were associated with changes in cognitive functioning. CONCLUSIONS: Changes in the FC between the DMN and other resting-state networks involved in the maintenance and manipulation of internal information, attention, and sensorimotor functioning may be facilitated through consistent participation in plasticity-based auditory processing speed training in adults with chronic TBI.
Collapse
Affiliation(s)
- Hannah M. Lindsey
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Department of Psychology, New York University, New York, NY, USA
| | - Mariana Lazar
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Giulia Mercuri
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Psychology, New York University, New York, NY, USA
| | - Joseph F. Rath
- Department of Rehabilitation Medicine, Rusk Rehabilitation at NYU Langone Health, New York, NY, USA
| | - Tamara Bushnik
- Department of Rehabilitation Medicine, Rusk Rehabilitation at NYU Langone Health, New York, NY, USA
| | - Steven Flanagan
- Department of Rehabilitation Medicine, Rusk Rehabilitation at NYU Langone Health, New York, NY, USA
| | - Gerald T. Voelbel
- Department of Rehabilitation Medicine, Rusk Rehabilitation at NYU Langone Health, New York, NY, USA
- Department of Occupational Therapy and Center of Health and Rehabilitation Research, New York University, New York, NY, USA
| |
Collapse
|
146
|
Albertson AJ, Landsness EC, Tang MJ, Yan P, Miao H, Rosenthal ZP, Kim B, Culver JC, Bauer AQ, Lee JM. Normal aging in mice is associated with a global reduction in cortical spectral power and network-specific declines in functional connectivity. Neuroimage 2022; 257:119287. [PMID: 35594811 PMCID: PMC9627742 DOI: 10.1016/j.neuroimage.2022.119287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Normal aging is associated with a variety of neurologic changes including declines in cognition, memory, and motor activity. These declines correlate with neuronal changes in synaptic structure and function. Degradation of brain network activity and connectivity represents a likely mediator of age-related functional deterioration resulting from these neuronal changes. Human studies have demonstrated both general decreases in spontaneous cortical activity and disruption of cortical networks with aging. Current techniques used to study cerebral network activity are hampered either by limited spatial resolution (e.g. electroencephalography, EEG) or limited temporal resolution (e.g., functional magnetic resonance imaging, fMRI). Here we utilize mesoscale imaging of neuronal activity in Thy1-GCaMP6f mice to characterize neuronal network changes in aging with high spatial resolution across a wide frequency range. We show that while evoked activity is unchanged with aging, spontaneous neuronal activity decreases across a wide frequency range (0.01-4 Hz) involving all regions of the cortex. In contrast to this global reduction in cortical power, we found that aging is associated with functional connectivity (FC) deterioration of select networks including somatomotor, cingulate, and retrosplenial nodes. These changes are corroborated by reductions in homotopic FC and node degree within somatomotor and visual cortices. Finally, we found that whole-cortex delta power and delta band node degree correlate with exploratory activity in young but not aged animals. Together these data suggest that aging is associated with global declines in spontaneous cortical activity and focal deterioration of network connectivity, and that these reductions may be associated with age-related behavioral declines.
Collapse
Affiliation(s)
- Asher J Albertson
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Eric C Landsness
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Michelle J Tang
- Duke University School of Medicine, DUMC 3878, Durham, NC 27710, USA
| | - Ping Yan
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Hanyang Miao
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Zachary P Rosenthal
- Medical Scientist Training Program, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Byungchan Kim
- Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
| | - Joseph C Culver
- Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA; Department of Physics, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA; Department of Electrical and Systems Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA; Department of Radiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
147
|
Kim E, Kim S, Kim Y, Cha H, Lee HJ, Lee T, Chang Y. Connectome-based predictive models using resting-state fMRI for studying brain aging. Exp Brain Res 2022; 240:2389-2400. [PMID: 35922524 DOI: 10.1007/s00221-022-06430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
Changes in the brain with age can provide useful information regarding an individual's chronological age. studies have suggested that functional connectomes identified via resting-state functional magnetic resonance imaging (fMRI) could be a powerful feature for predicting an individual's age. We applied connectome-based predictive modeling (CPM) to investigate individual chronological age predictions via resting-state fMRI using open-source datasets. The significant feature for age prediction was confirmed in 168 subjects from the Southwest University Adult Lifespan Dataset. The higher contributing nodes for age production included a positive connection from the left inferior parietal sulcus and a negative connection from the right middle temporal sulcus. On the network scale, the subcortical-cerebellum network was the dominant network for age prediction. The generalizability of CPM, which was constructed using the identified features, was verified by applying this model to independent datasets that were randomly selected from the Autism Brain Imaging Data Exchange I and the Open Access Series of Imaging Studies 3. CPM via resting-state fMRI is a potential robust predictor for determining an individual's chronological age from changes in the brain.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
- Department of Medical and Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Seungho Kim
- Department of Medical and Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Yunheung Kim
- Department of Medical and Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Hyunsil Cha
- Department of Medical and Biological Engineering, Kyungpook National University, Daegu, Korea
| | - Hui Joong Lee
- Department of Radiology, Kyungpook National University School of Medicine, Daegu, Korea
- Department of Radiology, Kyungpook National University Hospital, Daegu, Korea
| | - Taekwan Lee
- Korea Brain Research Institute, Chumdanro 61, Dong-gu, Daegu, 41021, Republic of Korea.
| | - Yongmin Chang
- Department of Medical and Biological Engineering, Kyungpook National University, Daegu, Korea.
- Department of Radiology, Kyungpook National University Hospital, Daegu, Korea.
- The Department of Molecular Medicine and Radiology, Kyungpook National University School of Medicine, 200 Dongduk-Ro Jung-Gu, Daegu, Korea.
| |
Collapse
|
148
|
Farahani FV, Karwowski W, D’Esposito M, Betzel RF, Douglas PK, Sobczak AM, Bohaterewicz B, Marek T, Fafrowicz M. Diurnal variations of resting-state fMRI data: A graph-based analysis. Neuroimage 2022; 256:119246. [PMID: 35477020 PMCID: PMC9799965 DOI: 10.1016/j.neuroimage.2022.119246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms (lasting approximately 24 h) control and entrain various physiological processes, ranging from neural activity and hormone secretion to sleep cycles and eating habits. Several studies have shown that time of day (TOD) is associated with human cognition and brain functions. In this study, utilizing a chronotype-based paradigm, we applied a graph theory approach on resting-state functional MRI (rs-fMRI) data to compare whole-brain functional network topology between morning and evening sessions and between morning-type (MT) and evening-type (ET) participants. Sixty-two individuals (31 MT and 31 ET) underwent two fMRI sessions, approximately 1 hour (morning) and 10 h (evening) after their wake-up time, according to their declared habitual sleep-wake pattern on a regular working day. In the global analysis, the findings revealed the effect of TOD on functional connectivity (FC) patterns, including increased small-worldness, assortativity, and synchronization across the day. However, we identified no significant differences based on chronotype categories. The study of the modular structure of the brain at mesoscale showed that functional networks tended to be more integrated with one another in the evening session than in the morning session. Local/regional changes were affected by both factors (i.e., TOD and chronotype), mostly in areas associated with somatomotor, attention, frontoparietal, and default networks. Furthermore, connectivity and hub analyses revealed that the somatomotor, ventral attention, and visual networks covered the most highly connected areas in the morning and evening sessions: the latter two were more active in the morning sessions, and the first was identified as being more active in the evening. Finally, we performed a correlation analysis to determine whether global and nodal measures were associated with subjective assessments across participants. Collectively, these findings contribute to an increased understanding of diurnal fluctuations in resting brain activity and highlight the role of TOD in future studies on brain function and the design of fMRI experiments.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA,Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA,Corresponding author: Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA. (F.V. Farahani)
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA,Department of Psychology, University of California, Berkeley, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Pamela K. Douglas
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland,Corresponding author. Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland. (M. Fafrowicz)
| |
Collapse
|
149
|
Fareri DS, Hackett K, Tepfer LJ, Kelly V, Henninger N, Reeck C, Giovannetti T, Smith DV. Age-related differences in ventral striatal and default mode network function during reciprocated trust. Neuroimage 2022; 256:119267. [PMID: 35504565 PMCID: PMC9308012 DOI: 10.1016/j.neuroimage.2022.119267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/04/2022] Open
Abstract
Social relationships change across the lifespan as social networks narrow and motivational priorities shift to the present. Interestingly, aging is also associated with changes in executive function, including decision-making abilities, but it remains unclear how age-related changes in both domains interact to impact financial decisions involving other people. To study this problem, we recruited 50 human participants (Nyounger = 26, ages 18-34; Nolder = 24, ages 63-80) to play an economic trust game as the investor with three partners (friend, stranger, and computer) who played the role of investee. Investors underwent functional magnetic resonance imaging (fMRI) during the trust game while investees were seated outside of the scanner. Building on our previous work with younger adults showing both enhanced striatal responses and altered default-mode network (DMN) connectivity as a function of social closeness during reciprocated trust, we predicted that these relations would exhibit age-related differences. We found that striatal responses to reciprocated trust from friends relative to strangers and computers were blunted in older adults relative to younger adults, thus supporting our primary pre-registered hypothesis regarding social closeness. We also found that older adults exhibited enhanced DMN connectivity with the temporoparietal junction (TPJ) during reciprocated trust from friends compared to computers while younger adults exhibited the opposite pattern. Taken together, these results advance our understanding of age-related differences in sensitivity to social closeness in the context of trusting others.
Collapse
Affiliation(s)
- Dominic S Fareri
- Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA.
| | - Katherine Hackett
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Lindsey J Tepfer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Victoria Kelly
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Nicole Henninger
- Lew Klein College of Media and Communication, Temple University, Philadelphia, PA, USA
| | - Crystal Reeck
- Fox School of Business, Temple University, Philadelphia, PA, USA
| | - Tania Giovannetti
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - David V Smith
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
150
|
Alm KH, Soldan A, Pettigrew C, Faria AV, Hou X, Lu H, Moghekar A, Mori S, Albert M, Bakker A. Structural and Functional Brain Connectivity Uniquely Contribute to Episodic Memory Performance in Older Adults. Front Aging Neurosci 2022; 14:951076. [PMID: 35903538 PMCID: PMC9315224 DOI: 10.3389/fnagi.2022.951076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we examined the independent contributions of structural and functional connectivity markers to individual differences in episodic memory performance in 107 cognitively normal older adults from the BIOCARD study. Structural connectivity, defined by the diffusion tensor imaging (DTI) measure of radial diffusivity (RD), was obtained from two medial temporal lobe white matter tracts: the fornix and hippocampal cingulum, while functional connectivity markers were derived from network-based resting state functional magnetic resonance imaging (rsfMRI) of five large-scale brain networks: the control, default, limbic, dorsal attention, and salience/ventral attention networks. Hierarchical and stepwise linear regression methods were utilized to directly compare the relative contributions of the connectivity modalities to individual variability in a composite delayed episodic memory score, while also accounting for age, sex, cerebrospinal fluid (CSF) biomarkers of amyloid and tau pathology (i.e., Aβ42/Aβ40 and p-tau181), and gray matter volumes of the entorhinal cortex and hippocampus. Results revealed that fornix RD, hippocampal cingulum RD, and salience network functional connectivity were each significant independent predictors of memory performance, while CSF markers and gray matter volumes were not. Moreover, in the stepwise model, the addition of sex, fornix RD, hippocampal cingulum RD, and salience network functional connectivity each significantly improved the overall predictive value of the model. These findings demonstrate that both DTI and rsfMRI connectivity measures uniquely contributed to the model and that the combination of structural and functional connectivity markers best accounted for individual variability in episodic memory function in cognitively normal older adults.
Collapse
Affiliation(s)
- Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreia V. Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Arnold Bakker,
| |
Collapse
|