101
|
Lan Y, Bai P, Chen Z, Neelamegam R, Placzek MS, Wang H, Fiedler SA, Yang J, Yuan G, Qu X, Schmidt HR, Song J, Normandin MD, Ran C, Wang C. Novel radioligands for imaging sigma-1 receptor in brain using positron emission tomography (PET). Acta Pharm Sin B 2019; 9:1204-1215. [PMID: 31867166 PMCID: PMC6900558 DOI: 10.1016/j.apsb.2019.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
The sigma-1 receptor (σ 1R) is a unique intracellular protein. σ 1R plays a major role in various pathological conditions in the central nervous system (CNS), implicated in several neuropsychiatric disorders. Imaging of σ 1R in the brain using positron emission tomography (PET) could serve as a noninvasively tool for enhancing the understanding of the disease's pathophysiology. Moreover, σ 1R PET tracers can be used for target validation and quantification in diagnosis. Herein, we describe the radiosynthesis, in vivo PET/CT imaging of novel σ 1R 11C-labeled radioligands based on 6-hydroxypyridazinone, [11C]HCC0923 and [11C]HCC0929. Two radioligands have high affinities to σ 1R, with good selectivity. In mice PET/CT imaging, both radioligands showed appropriate kinetics and distributions. Additionally, the specific interactions of two radioligands were reduced by compounds 13 and 15 (self-blocking). Of the two, [11C]HCC0929 was further investigated in positive ligands blocking studies, using classic σ 1R agonist SA 4503 and σ 1R antagonist PD 144418. Both σ 1R ligands could extensively decreased the uptake of [11C]HCC0929 in mice brain. Besides, the biodistribution of major brain regions and organs of mice were determined in vivo. These studies demonstrated that two radioligands, especially [11C]HCC0929, possessed ideal imaging properties and might be valuable tools for non-invasive quantification of σ 1R in brain.
Collapse
Key Words
- 11C-labeled radioligand
- 3D, three-dimensional
- 6-Hydroxypyridazinone
- AF, ammonium formate
- BBB, brain blood barrier
- BP, binding potential
- Brain imaging
- CNS, center nervous systems
- CRPS, complex regional pain syndrome
- DMF, dimethyl formamide
- DMSO, dimethylsulfoxide
- ER, endoplasmic reticulum
- LCP, lipidic cubic phase
- MAM, mitochondria-associated ER membrane
- PCP, phencyclidine
- PET
- PET, positron emission tomography
- TFA, trifluoroacetic acid
- σ1R
- σ1R, sigma-1 receptor
- σ2R, sigma-2 receptor
Collapse
Affiliation(s)
- Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stephanie A. Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gengyang Yuan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xiying Qu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hayden R. Schmidt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02129, USA
| | - Jinchun Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
102
|
Rao B, Leng X, Zeng Y, Lin Y, Chen R, Zhou Q, Hagemann AR, Kuroki LM, McCourt CK, Mutch DG, Powell MA, Hagemann IS, Zhu Q. Optical Resolution Photoacoustic Microscopy of Ovary and Fallopian Tube. Sci Rep 2019; 9:14306. [PMID: 31586106 PMCID: PMC6778126 DOI: 10.1038/s41598-019-50743-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer is the leading cause of death among gynecological cancers, but is poorly amenable to preoperative diagnosis. In this study, we investigate the feasibility of "optical biopsy," using high-optical-resolution photoacoustic microscopy (OR-PAM) to quantify the microvasculature of ovarian and fallopian tube tissue. The technique is demonstrated using excised human ovary and fallopian tube specimens imaged immediately after surgery. Quantitative parameters are derived using Amira software. The parameters include three-dimensional vascular segment count, total volume and length, which are associated with tumor angiogenesis. Qualitative results of OR-PAM demonstrate that malignant ovarian tissue has larger and more tortuous blood vessels as well as smaller vessels of different sizes, while benign and normal ovarian tissue has smaller vessels of uniform size. Quantitative analysis shows that malignant ovaries have greater tumor vessel volume, length and number of segments, as compared with benign and normal ovaries. The vascular pattern of benign fallopian tube is different than that of benign ovarian tissue. Our initial results demonstrate the potential of OR-PAM as an imaging tool for fast assessment of ovarian tissue and fallopian tube and could avoid unnecessary surgery if the risk of the examined ovary is extremely low.
Collapse
Affiliation(s)
- Bin Rao
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA
- Applied Bioptics LLC, St Louis, MO, 63146, USA
| | - Xiandong Leng
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA
| | - Yifeng Zeng
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA
| | - Yixiao Lin
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA
| | - Ruimin Chen
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrea R Hagemann
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lindsay M Kuroki
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carolyn K McCourt
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David G Mutch
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew A Powell
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ian S Hagemann
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Quing Zhu
- Biomedical Engineering, Washington University, St Louis, MO, 63130, USA.
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
103
|
Meier S, Alfonsi F, Kurniawan ND, Milne MR, Kasherman MA, Delogu A, Piper M, Coulson EJ. The p75 neurotrophin receptor is required for the survival of neuronal progenitors and normal formation of the basal forebrain, striatum, thalamus and neocortex. Development 2019; 146:dev.181933. [PMID: 31488566 DOI: 10.1242/dev.181933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022]
Abstract
During development, the p75 neurotrophin receptor (p75NTR) is widely expressed in the nervous system where it regulates neuronal differentiation, migration and axonal outgrowth. p75NTR also mediates the survival and death of newly born neurons, with functional outcomes being dependent on both timing and cellular context. Here, we show that knockout of p75NTR from embryonic day 10 (E10) in neural progenitors using a conditional Nestin-Cre p75NTR floxed mouse causes increased apoptosis of progenitor cells. By E14.5, the number of Tbr2-positive progenitor cells was significantly reduced and the rate of neurogenesis was halved. Furthermore, in adult knockout mice, there were fewer cortical pyramidal neurons, interneurons, cholinergic basal forebrain neurons and striatal neurons, corresponding to a relative reduction in volume of these structures. Thalamic midline fusion during early postnatal development was also impaired in Nestin-Cre p75NTR floxed mice, indicating a novel role for p75NTR in the formation of this structure. The phenotype of this strain demonstrates that p75NTR regulates multiple aspects of brain development, including cortical progenitor cell survival, and that expression during early neurogenesis is required for appropriate formation of telencephalic structures.
Collapse
Affiliation(s)
- Sonja Meier
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Fabienne Alfonsi
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, 4072 Brisbane, Australia
| | - Michael R Milne
- School of Biomedical Sciences, The University of Queensland, 4072 Brisbane, Australia
| | - Maria A Kasherman
- Griffith Institute for Drug Discovery, Griffith University, 4122 Brisbane, Australia
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College, London SE5 9RX, UK
| | - Michael Piper
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia .,School of Biomedical Sciences, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
104
|
Brendel M, Deussing M, Blume T, Kaiser L, Probst F, Overhoff F, Peters F, von Ungern-Sternberg B, Ryazanov S, Leonov A, Griesinger C, Zwergal A, Levin J, Bartenstein P, Yakushev I, Cumming P, Boening G, Ziegler S, Herms J, Giese A, Rominger A. Late-stage Anle138b treatment ameliorates tau pathology and metabolic decline in a mouse model of human Alzheimer's disease tau. Alzheimers Res Ther 2019; 11:67. [PMID: 31370885 PMCID: PMC6670231 DOI: 10.1186/s13195-019-0522-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Augmenting the brain clearance of toxic oligomers with small molecule modulators constitutes a promising therapeutic concept against tau deposition. However, there has been no test of this concept in animal models of Alzheimer's disease (AD) with initiation at a late disease stage. Thus, we aimed to investigate the effects of interventional late-stage Anle138b treatment, which previously indicated great potential to inhibit oligomer accumulation by binding of pathological aggregates, on the metabolic decline in transgenic mice with established tauopathy in a longitudinal 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) study. METHODS Twelve transgenic mice expressing all six human tau isoforms (hTau) and ten controls were imaged by FDG-PET at baseline (14.5 months), followed by randomization into Anle138b treatment and vehicle groups for 3 months. FDG-PET was repeated after treatment for 3 months, and brains were analyzed by tau immunohistochemistry. Longitudinal changes of glucose metabolism were compared between study groups, and the end point tau load was correlated with individual FDG-PET findings. RESULTS Tau pathology was significantly ameliorated by late-stage Anle138b treatment when compared to vehicle (frontal cortex - 53%, p < 0.001; hippocampus - 59%, p < 0.005). FDG-PET revealed a reversal of metabolic decline during Anle138b treatment, whereas the vehicle group showed ongoing deterioration. End point glucose metabolism in the brain of hTau mice had a strong correlation with tau deposition measured by immunohistochemistry (R = 0.92, p < 0.001). CONCLUSION Late-stage oligomer modulation effectively ameliorated tau pathology in hTau mice and rescued metabolic function. Molecular imaging by FDG-PET can serve for monitoring effects of Anle138b treatment.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Tanja Blume
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Federico Probst
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Felix Overhoff
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Finn Peters
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Sergey Ryazanov
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrei Leonov
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- MODAG GmbH, 55324 Wendelsheim, Germany
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- DFG Research Centre Nanoscale Microscopy and Molecular Physiology of the Brain, 37070 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Yakushev
- Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany
- Department of Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Australia
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität, Feodor Lynen-Str. 23, 81377 Munich, Germany
| | - Armin Giese
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- MODAG GmbH, 55324 Wendelsheim, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr.15, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| |
Collapse
|
105
|
Feo R, Giove F. Towards an efficient segmentation of small rodents brain: A short critical review. J Neurosci Methods 2019; 323:82-89. [DOI: 10.1016/j.jneumeth.2019.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/27/2023]
|
106
|
Leiter I, Bascuñana P, Bengel FM, Bankstahl JP, Bankstahl M. Attenuation of epileptogenesis by 2-deoxy-d-glucose is accompanied by increased cerebral glucose supply, microglial activation and reduced astrocytosis. Neurobiol Dis 2019; 130:104510. [PMID: 31212069 DOI: 10.1016/j.nbd.2019.104510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 06/02/2019] [Accepted: 06/14/2019] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Neuronal excitability and brain energy homeostasis are strongly interconnected and evidence suggests that both become altered during epileptogenesis. Pharmacologic modulation of cerebral glucose metabolism might therefore exert anti-epileptogenic effects. Here we provide mechanistic insights into effects of the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) on experimental epileptogenesis by longitudinal 2-deoxy-2[18F]fluoro-d-glucose positron emission tomography ([18F]FDG PET) and histology. METHODS To imitate epileptogenesis, 6 Hz-corneal kindling was performed in male NMRI mice by twice daily electrical stimulation for 21 days. Kindling groups were treated i.p. 1 min after each stimulation with either 250 mg/kg 2-DG (CoKi_2-DG) or saline (CoKi_vehicle). A separate group of unstimulated mice was treated with 2-DG (2-DG_only). Dynamic 60-min [18F]FDG PET/CT scans were acquired at baseline and interictally on days 10 and 17 of kindling. [18F]FDG uptake (%injected dose/cc) was quantified in predefined regions of interest (ROI) using a MRI-based brain atlas, and kinetic modelling was performed to evaluate glucose net influx rate Ki and glucose metabolic rate MRGlu. Furthermore, statistical parametric mapping (SPM) analysis was applied on kinetic brain maps. For histological evaluation, brain sections were stained for glucose transporter 1 (GLUT1), astrocytes, microglia, as well as dying neurons. RESULTS Post-stimulation 2-DG treatment attenuated early kindling progression, indicated by a reduction of fully-kindled mice, and a lower overall percentage of type five seizures. While 2-DG treatment alone led to globally increased Ki and MRGlu values at day 17, kindling progression per se did not influence glucose turnover. Kindling accompanied by 2-DG treatment, however, resulted in regionally elevated [18F]FDG uptake as well as increased Ki at days 10 and 17 compared both to baseline and to the 2-DG_only group. In hippocampus and thalamus, higher MRGlu values were found in the CoKi_2-DG vs. the CoKi_vehicle group at day 17. t maps resulting from SPM analysis generally confirmed the results of the ROI analysis, and additionally revealed increased MRGlu restricted to the ventral hippocampus when comparing the CoKi_2-DG and the 2-DG_only group both at days 10 and, more distinct, day 17. Immunohistochemical staining showed an attenuated kindling-induced regional activation of astrocytes in the CoKi_2-DG group. Interestingly, 2-DG treatment alone (and also in combination with kindling, but not kindling alone) led to increased microglial activation scores, whereas neither staining of GLUT1 nor of dying neurons revealed any differences to untreated controls. CONCLUSIONS Post-stimulation treatment with 2-DG exerts disease-modifying effects in the mouse 6 Hz corneal kindling model. The observed local increase in glucose supply and turnover, the alleviation of astroglial activation and the activation of microglia by 2-DG might contribute separately or in combination to its positive interference with epileptogenesis.
Collapse
Affiliation(s)
- Ina Leiter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover and Center for Systems Neuroscience, Bünteweg 17, 30559 Hannover, Germany; Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Frank Michael Bengel
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jens Peter Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover and Center for Systems Neuroscience, Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
107
|
Jacob A, Ma Y, Nasiri E, Ochani M, Carrion J, Peng S, Brenner M, Huerta PT, Wang P. Extracellular cold inducible RNA-binding protein mediates binge alcohol-induced brain hypoactivity and impaired cognition in mice. Mol Med 2019; 25:24. [PMID: 31146675 PMCID: PMC6543653 DOI: 10.1186/s10020-019-0092-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol abuse affects the brain regions responsible for memory, coordination and emotional processing. Binge alcohol drinking has shown reductions in brain activity, but the molecular targets have not been completely elucidated. We hypothesized that brain cells respond to excessive alcohol by releasing a novel inflammatory mediator, called cold inducible RNA-binding protein (CIRP), which is critical for the decreased brain metabolic activity and impaired cognition. METHODS Male wild type (WT) mice and mice deficient in CIRP (CIRP-/-) were studied before and after exposure to binge alcohol level by assessment of relative brain glucose metabolism with fluorodeoxyglucose (18FDG) and positron emission tomography (PET). Mice were also examined for object-place memory (OPM) and open field (OF) tasks. RESULTS Statistical Parametric Analysis (SPM) of 18FDG-PET uptake revealed marked decreases in relative glucose metabolism in distinct brain regions of WT mice after binge alcohol. Regional analysis (post hoc) revealed that while activity in the temporal (secondary visual) and limbic (entorhinal/perirhinal) cortices was decreased in WT mice, relative glucose metabolic activity was less suppressed in the CIRP-/- mice. Group and condition interaction analysis revealed differing responses in relative glucose metabolism (decrease in WT mice but increase in CIRP-/- mice) after alcohol in brain regions including the hippocampus and the cortical amygdala where the percent changes in metabolic activity correlated with changes in object discrimination performance. Behaviorally, alcohol-treated WT mice were impaired in exploring a repositioned object in the OPM task, and were more anxious in the OF task, whereas CIRP-/- mice were not impaired in these tasks. CONCLUSION CIRP released from brain cells could be responsible for regional brain metabolic hypoactivity leading to cognitive impairment under binge alcohol conditions.
Collapse
Affiliation(s)
- Asha Jacob
- Immunology and Inflammation, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Elham Nasiri
- Laboratory of Immune & Neural Networks, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Mahendar Ochani
- Immunology and Inflammation, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Joseph Carrion
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Max Brenner
- Immunology and Inflammation, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Patricio T. Huerta
- Laboratory of Immune & Neural Networks, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Ping Wang
- Immunology and Inflammation, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
- Departments of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| |
Collapse
|
108
|
Toyonaga T, Smith LM, Finnema SJ, Gallezot JD, Naganawa M, Bini J, Mulnix T, Cai Z, Ropchan J, Huang Y, Strittmatter SM, Carson RE. In Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease. J Nucl Med 2019; 60:1780-1786. [PMID: 31101744 DOI: 10.2967/jnumed.118.223867] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
11C-UCB-J is a new PET tracer for synaptic density imaging. Recently, we conducted 11C-UCB-J PET on patients with mild cognitive impairment or early Alzheimer disease (AD) and found a 41% decrease in specific binding in the hippocampus compared with healthy subjects. We hypothesized that 11C-UCB-J may have potential to be a general biomarker for evaluating AD treatment effects via monitoring of synaptic density changes. In this study, we performed longitudinal 11C-UCB-J PET on AD mice to measure the treatment effects of saracatinib, which previously demonstrated synaptic changes with postmortem methods. Methods: Nine wild-type (WT) mice and 9 amyloid precursor protein and presenilin 1 double-transgenic (APPswe/PS1ΔE9 [APP/PS1]) mice underwent 3 11C-UCB-J PET measurements: at baseline, after treatment, and during drug washout. After baseline measurements, saracatinib, a Fyn kinase inhibitor currently in clinical development for AD treatment, was administered by oral gavage for 41 ± 11 d. Treatment-phase measurements were performed on the last day of treatment, and washout-phase measurements occurred more than 27 d after the end of treatment. SUVs from 30 to 60 min after injection of 11C-UCB-J were calculated and normalized by the whole-brain (WB) or brain stem (BS) average values as SUV ratio (SUVR(WB) or SUVR-1(BS)). Results: Hippocampal SUVR(WB) at baseline was significantly lower in APP/PS1 than WT mice (APP/PS1: 1.11 ± 0.04, WT: 1.15 ± 0.02, P = 0.033, unpaired t test). Using SUVR-1(BS) in the hippocampus, there was also a significant difference at baseline (APP/PS1: 0.48 ± 0.13, WT: 0.65 ± 0.10, P = 0.017, unpaired t test). After treatment with saracatinib, hippocampal SUVR(WB) in APP/PS1 mice was significantly increased (P = 0.037, paired t test). A trend-level treatment effect was seen with hippocampal SUVR-1(BS). Saracatinib treatment effects may persist, as there were no significant differences between WT and APP/PS1 mice after drug washout. Conclusion: On the basis of the 11C-UCB-J PET results, hippocampal synaptic density was lower in APP/PS1 mice than in WT mice at baseline, and this deficit was normalized by treatment with saracatinib. These results support the use of 11C-UCB-J PET to identify disease-specific synaptic deficits and to monitor treatment effects in AD.
Collapse
Affiliation(s)
- Takuya Toyonaga
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Levi M Smith
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut; and
| | - Sjoerd J Finnema
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jean-Dominique Gallezot
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Mika Naganawa
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jason Bini
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Tim Mulnix
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Zhengxin Cai
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jim Ropchan
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut; and.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
109
|
Linninger A, Hartung G, Badr S, Morley R. Mathematical synthesis of the cortical circulation for the whole mouse brain-part I. theory and image integration. Comput Biol Med 2019; 110:265-275. [PMID: 31247510 DOI: 10.1016/j.compbiomed.2019.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/25/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022]
Abstract
Microcirculation plays a significant role in cerebral metabolism and blood flow control, yet explaining and predicting functional mechanisms remains elusive because it is difficult to make physiologically accurate mathematical models of the vascular network. As a precursor to the human brain, this paper presents a computational framework for synthesizing anatomically accurate network models for the cortical blood supply in mouse. It addresses two critical deficiencies in cerebrovascular modeling. At the microscopic length scale of individual capillaries, we present a novel synthesis method for building anatomically consistent capillary networks with loops and anastomoses (=microcirculatory closure). This overcomes shortcomings in existing algorithms which are unable to create closed circulatory networks. A second critical innovation allows the incorporation of detailed anatomical features from image data into vascular growth. Specifically, computed tomography and two photon laser scanning microscopy data are input into the novel synthesis algorithm to build the cortical circulation for the entire mouse brain in silico. Computer predictions of blood flow and oxygen exchange executed on synthetic large-scale network models are expected to elucidate poorly understood functional mechanisms of the cerebral circulation.
Collapse
Affiliation(s)
- Andreas Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA; Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA.
| | - Grant Hartung
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Shoale Badr
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan Morley
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
110
|
Cellular-level understanding of supraspinal control: what can be learned from zebrafish? CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
111
|
|
112
|
Adlimoghaddam A, Snow WM, Stortz G, Perez C, Djordjevic J, Goertzen AL, Ko JH, Albensi BC. Regional hypometabolism in the 3xTg mouse model of Alzheimer's disease. Neurobiol Dis 2019; 127:264-277. [PMID: 30878533 DOI: 10.1016/j.nbd.2019.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative disease. Although neurofibrillary tangles and amyloid beta are classic hallmarks of AD, the earliest deficits in AD progression may be caused by unknown factors. One suspected factor has to do with brain energy metabolism. To investigate this factor, brain metabolic activity in 3xTg-AD mice and age-matched controls were measured with FDG-PET. Significant hypometabolic changes (p < .01) in brain metabolism were detected in the cortical piriform and insular regions of AD brains relative to controls. These regions are associated with olfaction, which is a potential clinical marker for AD progression as well as neurogenesis. The activity of the terminal component of the mitochondrial respiratory chain (complex IV) and the expression of complex I-V were significantly decreased (p < .05), suggesting that impaired metabolic activity coupled with impaired oxidative phosphorylation leads to decreased mitochondrial bioenergetics and subsequent Neurodegeneration. Although there is an association between neuroinflammatory pathological markers (microglial) and hypometabolism in AD, there was no association found between neuropathological (Aβ, tau, and astrocytes) and functional changes in AD sensitive brain regions, also suggesting that brain hypometabolism occurs prior to AD pathology. Therefore, targeting metabolic mechanisms in cortical piriform and insular regions at early stages may be a promising approach for preventing, slowing, and/or blocking the onset of AD and preserving neurogenesis.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada.
| | | | | | - Claudia Perez
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada
| | - Jelena Djordjevic
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada
| | | | - Ji Hyun Ko
- Dept. of Human Anatomy and Cell Science, University of Manitoba, Canada; Health Sciences Centre, Canada
| | - Benedict C Albensi
- St. Boniface Hospital Research, Canada; Dept. of Pharmacology & Therapeutics, University of Manitoba, Canada.
| |
Collapse
|
113
|
Zhang CR, Kurniawan ND, Yamada L, Fleming W, Kaminen-Ahola N, Ahola A, Galloway G, Chong S. Early gestational ethanol exposure in mice: Effects on brain structure, energy metabolism and adiposity in adult offspring. Alcohol 2019; 75:1-10. [PMID: 30316966 DOI: 10.1016/j.alcohol.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023]
Abstract
We examined whether an early-life event - ethanol exposure in the initial stages of pregnancy - affected offspring brain structure, energy metabolism, and body composition in later life. Consumption of 10% (v/v) ethanol by inbred C57BL/6J female mice from 0.5 to 8.5 days post coitum was used to model alcohol exposure during the first 3-4 weeks of gestation in humans, when pregnancy is not typically recognized. At adolescence (postnatal day [P] 28) and adulthood (P64), the brains of male offspring were scanned ex vivo using ultra-high field (16.4 T) magnetic resonance imaging and diffusion tensor imaging. Energy metabolism and body composition were measured in adulthood by indirect calorimetry and dual-energy X-ray absorptiometry (DXA), respectively. Ethanol exposure had no substantial impact on white matter organization in the anterior commissure, corpus callosum, hippocampal commissure, internal capsule, optic tract, or thalamus. Whole brain volume and the volumes of the neocortex, cerebellum, and caudate putamen were also unaffected. Subtle, but non-significant, effects were observed on the hippocampus and the hypothalamus in adult ethanol-exposed male offspring. Ethanol exposure was additionally associated with a trend toward decreased oxygen consumption, carbon dioxide production, and reduced daily energy expenditure, as well as significantly increased adiposity, albeit with normal body weight and food intake, in adult male offspring. In summary, ethanol exposure restricted to early gestation had subtle long-term effects on the structure of specific brain regions in male offspring. The sensitivity of the hippocampus to ethanol-induced damage is reminiscent of that reported by other studies - despite differences in the level, timing, and duration of exposure - and likely contributes to the cognitive impairment that characteristically results from prenatal ethanol exposure. The hypothalamus plays an important role in regulating metabolism and energy homeostasis. Our finding of altered daily energy expenditure and adiposity in adult ethanol-exposed males is consistent with the idea that central nervous system abnormalities also underpin some of the metabolic phenotypes associated with ethanol exposure in pregnancy.
Collapse
|
114
|
Hess A, Hinz R, Keliris GA, Boehm-Sturm P. On the Usage of Brain Atlases in Neuroimaging Research. Mol Imaging Biol 2019; 20:742-749. [PMID: 30094652 DOI: 10.1007/s11307-018-1259-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Brain atlases play a key role in modern neuroimaging analysis of brain structure and function. We review available atlas databases for humans and animals and illustrate common state-of-the-art workflows in neuroimaging research based on image registration. Advances in noninvasive imaging methods, 3D ex vivo microscopy, and image processing are summarized which will eventually close the current resolution gap between brain atlases based on conventional 2D histology and those based on 3D in vivo imaging.
Collapse
Affiliation(s)
- Andreas Hess
- Institute for Experimental Pharmacology, Friedrich Alexander University Erlangen Nuremberg, Fahrstraße 17, 91054, Erlangen, Germany.
| | - Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
115
|
Zinnhardt B, Belloy M, Fricke IB, Orije J, Guglielmetti C, Hermann S, Wagner S, Schäfers M, Van der Linden A, Jacobs AH. Molecular Imaging of Immune Cell Dynamics During De- and Remyelination in the Cuprizone Model of Multiple Sclerosis by [ 18F]DPA-714 PET and MRI. Theranostics 2019; 9:1523-1537. [PMID: 31037121 PMCID: PMC6485187 DOI: 10.7150/thno.32461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Activation and dysregulation of innate, adaptive and resident immune cells in response to damage determine the pathophysiology of demyelinating disorders. Among the plethora of involved cells, microglia/macrophages and astrocytes play an important role in the pathogenesis of demyelinating disorders. The in-depth investigation of the spatio-temporal profile of these cell types in vivo may inform about the exact disease state and localization as well as may allow to monitor therapeutic modulation of the components of the neuroinflammatory response during the course of multiple sclerosis (MS). In this study, we aimed to non-invasively decipher the degree and temporal profile of neuroinflammation (TSPO - [18F]DPA-714 PET) in relation to selected magnetic resonance imaging (MRI) parameters (T2 maps) in the cuprizone (CPZ)-induced model of demyelination. Methods: C57Bl6 (n=30) mice were fed with a standard chow mixed with 0.2% (w/w) CPZ for 4 (n=10; demyelination) and 6 weeks (n=10; spontaneous remyelination). The degree of neuroinflammation at de- and remyelination was assessed by [18F]DPA-714 PET, multi-echo T2 MRI, autoradiography and immunohistochemistry. Results: CPZ-induced brain alterations were confirmed by increase of T2 relaxation times in both white and grey matter after 3 and 5 weeks of CPZ. Peak [18F]DPA-714 was found in the corpus callosum (CC, white matter), the hippocampus (HC, grey matter) and thalamus (grey matter) after 4 weeks of CPZ treatment and declined after 6 weeks of CPZ. Ex vivo autoradiography and dedicated immunofluorescence showed demyelination/remyelination with corresponding increased/decreased TSPO levels in the CC and hippocampus, confirming the spatial distribution of [18F]DPA-714 in vivo. The expression of TSPO microglia and astrocytes is time-dependent in this model. Microglia predominantly express TSPO at demyelination, while the majority of astrocytes express TSPO during remyelination. The combination of PET- and MRI-based imaging biomarkers demonstrated the regional and temporal development of the CPZ model-associated neuroinflammatory response in grey and white matter regions. Conclusions: The combination of [18F]DPA-714 PET and T2 mapping may allow to further elucidate the regional and temporal profile of inflammatory signals depending on the myelination status, although the underlying inflammatory microenvironment changes. A combination of the described imaging biomarkers may facilitate the development of patient-tailored strategies for immunomodulatory and neuro-restorative therapies in MS.
Collapse
Affiliation(s)
- Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- PET Imaging in Drug Design and Development (PET3D)
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Michaël Belloy
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Inga B. Fricke
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- Current affiliation: TECHNA Institute for the Advancement of Technology for Health, University Health Network; Institute of Biomaterials and Biomedical Engineering, University of Toronto; both Toronto, Ontario, Canada
| | - Jasmien Orije
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Caroline Guglielmetti
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Stefan Wagner
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Department of Nuclear Medicine, Universitätsklinikum Münster, Münster, Germany
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium
- PET Imaging in Drug Design and Development (PET3D)
- Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| |
Collapse
|
116
|
Ma D, Holmes HE, Cardoso MJ, Modat M, Harrison IF, Powell NM, O'Callaghan JM, Ismail O, Johnson RA, O'Neill MJ, Collins EC, Beg MF, Popuri K, Lythgoe MF, Ourselin S. Study the Longitudinal in vivo and Cross-Sectional ex vivo Brain Volume Difference for Disease Progression and Treatment Effect on Mouse Model of Tauopathy Using Automated MRI Structural Parcellation. Front Neurosci 2019; 13:11. [PMID: 30733665 PMCID: PMC6354066 DOI: 10.3389/fnins.2019.00011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022] Open
Abstract
Brain volume measurements extracted from structural MRI data sets are a widely accepted neuroimaging biomarker to study mouse models of neurodegeneration. Whether to acquire and analyze data in vivo or ex vivo is a crucial decision during the phase of experimental designs, as well as data analysis. In this work, we extracted the brain structures for both longitudinal in vivo and single-time-point ex vivo MRI acquired from the same animals using accurate automatic multi-atlas structural parcellation, and compared the corresponding statistical and classification analysis. We found that most gray matter structures volumes decrease from in vivo to ex vivo, while most white matter structures volume increase. The level of structural volume change also varies between different genetic strains and treatment. In addition, we showed superior statistical and classification power of ex vivo data compared to the in vivo data, even after resampled to the same level of resolution. We further demonstrated that the classification power of the in vivo data can be improved by incorporating longitudinal information, which is not possible for ex vivo data. In conclusion, this paper demonstrates the tissue-specific changes, as well as the difference in statistical and classification power, between the volumetric analysis based on the in vivo and ex vivo structural MRI data. Our results emphasize the importance of longitudinal analysis for in vivo data analysis.
Collapse
Affiliation(s)
- Da Ma
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom.,School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Holly E Holmes
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Manuel J Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Nick M Powell
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - James M O'Callaghan
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Ozama Ismail
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Ross A Johnson
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | | | - Emily C Collins
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mirza F Beg
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Karteek Popuri
- Tailored Therapeutics, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
117
|
Downes DP, Collins JHP, Lama B, Zeng H, Nguyen T, Keller G, Febo M, Long JR. Characterization of Brain Metabolism by Nuclear Magnetic Resonance. Chemphyschem 2019; 20:216-230. [PMID: 30536696 PMCID: PMC6501841 DOI: 10.1002/cphc.201800917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Indexed: 12/15/2022]
Abstract
The noninvasive, quantitative ability of nuclear magnetic resonance (NMR) spectroscopy to characterize small molecule metabolites has long been recognized as a major strength of its application in biology. Numerous techniques exist for characterizing metabolism in living, excised, or extracted tissue, with a particular focus on 1 H-based methods due to the high sensitivity and natural abundance of protons. With the increasing use of high magnetic fields, the utility of in vivo 1 H magnetic resonance spectroscopy (MRS) has markedly improved for measuring specific metabolite concentrations in biological tissues. Higher fields, coupled with recent developments in hyperpolarization, also enable techniques for complimenting 1 H measurements with spectroscopy of other nuclei, such as 31 P and 13 C, and for combining measurements of metabolite pools with metabolic flux measurements. We compare ex vivo and in vivo methods for studying metabolism in the brain using NMR and highlight insights gained through using higher magnetic fields, the advent of dissolution dynamic nuclear polarization, and combining in vivo MRS and ex vivo NMR approaches.
Collapse
Affiliation(s)
- Daniel P Downes
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - James H P Collins
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| | - Bimala Lama
- Department of Chemistry and Biochemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309-0215, United States
| | - Huadong Zeng
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| | - Tan Nguyen
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - Gabrielle Keller
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Box 100256, Gainesville, FL, 32610-0256, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology and McKnight Brain Institute, University of Florida, Box 100245, Gainesville, FL, 32610-0245, United States
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, FL, 32610-0015, United States
| |
Collapse
|
118
|
Oishi S, Harkins D, Kurniawan ND, Kasherman M, Harris L, Zalucki O, Gronostajski RM, Burne THJ, Piper M. Heterozygosity for Nuclear Factor One X in mice models features of Malan syndrome. EBioMedicine 2019; 39:388-400. [PMID: 30503862 PMCID: PMC6354567 DOI: 10.1016/j.ebiom.2018.11.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Nuclear Factor One X (NFIX) haploinsufficiency in humans results in Malan syndrome, a disorder characterized by overgrowth, macrocephaly and intellectual disability. Although clinical assessments have determined the underlying symptomology of Malan syndrome, the fundamental mechanisms contributing to the enlarged head circumference and intellectual disability in these patients remains undefined. METHODS Here, we used Nfix heterozygous mice as a model to investigate these aspects of Malan syndrome. Volumetric magnetic resonance imaging (MRI) was used to calculate the volumes of 20 brain sub regions. Diffusion tensor MRI was used to perform tractography-based analyses of the corpus callosum, hippocampal commissure, and anterior commissure, as well as structural connectome mapping of the whole brain. Immunohistochemistry examined the neocortical cellular populations. Two behavioral assays were performed, including the active place avoidance task to assess spatial navigation and learning and memory function, and the 3-chambered sociability task to examine social behaviour. FINDINGS Adult Nfix+/- mice exhibit significantly increased brain volume (megalencephaly) compared to wildtypes, with the cerebral cortex showing the highest increase. Moreover, all three forebrain commissures, in particular the anterior commissure, revealed significantly reduced fractional anisotropy, axial and radial diffusivity, and tract density intensity. Structural connectome analyses revealed aberrant connectivity between many crucial brain regions. Finally, Nfix+/- mice exhibit behavioral deficits that model intellectual disability. INTERPRETATION Collectively, these data provide a significant conceptual advance in our understanding of Malan syndrome by suggesting that megalencephaly underlies the enlarged head size of these patients, and that disrupted cortical connectivity may contribute to the intellectual disability these patients exhibit. FUND: Australian Research Council (ARC) Discovery Project Grants, ARC Fellowship, NYSTEM and Australian Postgraduate Fellowships.
Collapse
Affiliation(s)
- Sabrina Oishi
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Danyon Harkins
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nyoman D Kurniawan
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria Kasherman
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; The Francis Crick Institute, 1 Midland Road, King's Cross, London, United Kingdom
| | - Oressia Zalucki
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Thomas H J Burne
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, Brisbane, QLD 4076, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
119
|
Rivera-Marrero S, Fernández-Maza L, León-Chaviano S, Sablón-Carrazana M, Bencomo-Martínez A, Perera-Pintado A, Prats-Capote A, Zoppolo F, Kreimerman I, Pardo T, Reyes L, Balcerzyk M, Dubed-Bandomo G, Mercerón-Martínez D, Espinosa-Rodríguez LA, Engler H, Savio E, Rodríguez-Tanty C. [ 18F]Amylovis as a Potential PET Probe for β-Amyloid Plaque: Synthesis, In Silico, In vitro and In vivo Evaluations. Curr Radiopharm 2019; 12:58-71. [PMID: 30605068 PMCID: PMC6463402 DOI: 10.2174/1874471012666190102165053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia. Neuroimaging methods have widened the horizons for AD diagnosis and therapy. The goals of this work are the synthesis of 2-(3-fluoropropyl)-6-methoxynaphthalene (5) and its [18F]-radiolabeled counterpart ([18F]Amylovis), the in silico and in vitro comparative evaluations of [18F]Amylovis and [11C]Pittsburg compound B (PIB) and the in vivo preclinical evaluation of [18F]Amylovis in transgenic and wild mice. METHODS Iron-catalysis cross coupling reaction, followed by fluorination and radiofluorination steps were carried out to obtain 5 and 18F-Amylovis. Protein/Aß plaques binding, biodistribution, PET/CT Imaging and immunohistochemical studies were conducted in healthy/transgenic mice. RESULTS The synthesis of 5 was successful obtained. Comparative in silico studies predicting that 5 should have affinity to the Aβ-peptide, mainly through π-π interactions. According to a dynamic simulation study the ligand-Aβ peptide complexes are stable in simulation-time (ΔG = -5.31 kcal/mol). [18F]Amylovis was obtained with satisfactory yield, high radiochemical purity and specific activity. The [18F]Amylovis log Poct/PBS value suggests its potential ability for crossing the blood brain barrier (BBB). According to in vitro assays, [18F]Amylovis has an adequate stability in time. Higher affinity to Aβ plaques were found for [18F]Amylovis (Kd 0.16 nmol/L) than PIB (Kd 8.86 nmol/L) in brain serial sections of 3xTg-AD mice. Biodistribution in healthy mice showed that [18F]Amylovis crosses the BBB with rapid uptake (7 %ID/g at 5 min) and good washout (0.11±0.03 %ID/g at 60 min). Comparative PET dynamic studies of [18F]Amylovis in healthy and transgenic APPSwe/PS1dE9 mice, revealed a significant high uptake in the mice model. CONCLUSION The in silico, in vitro and in vivo results justify that [18F]Amylovis should be studied as a promissory PET imaging agent to detect the presence of Aβ senile plaques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eduardo Savio
- Address correspondence to this author at Radiopharmacy R&D, Uruguayan Center of Molecular Imaging (CUDIM), Montevideo, Uruguay; Tel: 598-24803238; Ext: 122; E-mail:
| | - Chryslaine Rodríguez-Tanty
- Address correspondence to this author at Radiopharmacy R&D, Uruguayan Center of Molecular Imaging (CUDIM), Montevideo, Uruguay; Tel: 598-24803238; Ext: 122; E-mail:
| |
Collapse
|
120
|
Schweser F, Zivadinov R. Quantitative susceptibility mapping (QSM) with an extended physical model for MRI frequency contrast in the brain: a proof-of-concept of quantitative susceptibility and residual (QUASAR) mapping. NMR IN BIOMEDICINE 2018; 31:e3999. [PMID: 30246892 PMCID: PMC6296773 DOI: 10.1002/nbm.3999] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/21/2018] [Accepted: 06/28/2018] [Indexed: 05/12/2023]
Abstract
Quantitative susceptibility mapping (QSM) aims to calculate the tissue's magnetic susceptibility distribution from its perturbing effect on the MRI static main magnetic field. The method is increasingly being applied to study iron and myelin in clinical and preclinical settings. However, recent experimental and theoretical findings have challenged the fundamental theoretical assumptions that form the basis of current numerical implementations of QSM algorithms. The present work introduces a new class of susceptibility mapping algorithms, termed quantitative susceptibility and residual mapping (QUASAR), which takes into account frequency contributions not related to the spatial variation of bulk magnetic susceptibility in the Lorentz sphere model. We present a simple proof-of-concept QUASAR algorithm that, unlike most of the QSM algorithms currently used widely, results in an improved anatomical accuracy of the susceptibility distribution without any a priori assumptions about the susceptibility distribution during the field-to-source inversion. The algorithm was evaluated both in silico and in vivo in the preclinical setting. Our preliminary application of QUASAR in rodents provides the first in vivo evidence that the susceptibility-field model traditionally used in the QSM field cannot fully explain the frequency contrast in brain tissues. Only when an additional local frequency contribution is added to the physical model can the frequency contrast in the brain be related properly to the underlying anatomy.
Collapse
Affiliation(s)
- Ferdinand Schweser
- University at Buffalo, The State University of New York, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, New York, United States
| | - Robert Zivadinov
- University at Buffalo, The State University of New York, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, New York, United States
| |
Collapse
|
121
|
Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex. PLoS Comput Biol 2018; 14:e1006549. [PMID: 30452440 PMCID: PMC6277127 DOI: 10.1371/journal.pcbi.1006549] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/03/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
Recent advances in modeling oxygen supply to cortical brain tissue have begun to elucidate the functional mechanisms of neurovascular coupling. While the principal mechanisms of blood flow regulation after neuronal firing are generally known, mechanistic hemodynamic simulations cannot yet pinpoint the exact spatial and temporal coordination between the network of arteries, arterioles, capillaries and veins for the entire brain. Because of the potential significance of blood flow and oxygen supply simulations for illuminating spatiotemporal regulation inside the cortical microanatomy, there is a need to create mathematical models of the entire cerebral circulation with realistic anatomical detail. Our hypothesis is that an anatomically accurate reconstruction of the cerebrocirculatory architecture will inform about possible regulatory mechanisms of the neurovascular interface. In this article, we introduce large-scale networks of the murine cerebral circulation spanning the Circle of Willis, main cerebral arteries connected to the pial network down to the microcirculation in the capillary bed. Several multiscale models were generated from state-of-the-art neuroimaging data. Using a vascular network construction algorithm, the entire circulation of the middle cerebral artery was synthesized. Blood flow simulations indicate a consistent trend of higher hematocrit in deeper cortical layers, while surface layers with shorter vascular path lengths seem to carry comparatively lower red blood cell (RBC) concentrations. Moreover, the variability of RBC flux decreases with cortical depth. These results support the notion that plasma skimming serves a self-regulating function for maintaining uniform oxygen perfusion to neurons irrespective of their location in the blood supply hierarchy. Our computations also demonstrate the practicality of simulating blood flow for large portions of the mouse brain with existing computer resources. The efficient simulation of blood flow throughout the entire middle cerebral artery (MCA) territory is a promising milestone towards the final aim of predicting blood flow patterns for the entire brain. The brain’s astonishing cognitive capacity depends on the coordination between neurons and the cerebral circulation, a system known as the neurovascular unit. The spatial and temporal coupling between these two networks is the object of intense research. However, the concise anatomical description of the cerebral circulation has so far been intractable. This paper introduces a methodology for the in silico creation of realistic models for the entire cerebral circulation. This innovation incorporates topological data from several neuroimaging modalities covering three lengths scales as input into a computer algorithm, which assembles anatomically accurate circulatory networks. When simulating blood flow as red blood cells suspended in plasma for experimental and synthetic cortical network models, we discovered that red blood cells tend to be more concentrated in deeper layers of the cortex compared to the surface. RBC fluxes are more homogenous in deeper layers. The phenomenon of depth dependent red blood cell supply supports the notion that the intricate architecture of the cortical microcirculation serves a self-regulating function to maintain uniform oxygen perfusion to neurons. We also demonstrate the practicality of predicting blood flow patterns for the entire brain with existing computer power.
Collapse
|
122
|
Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, Blanchet P, Attié-Bitach T, Berland S, Boogert S, Boppudi S, Bridges CJ, Cho MT, Dobyns WB, Donnai D, Douglas J, Earl DL, Edwards TJ, Faivre L, Fregeau B, Genevieve D, Gérard M, Gatinois V, Holder-Espinasse M, Huth SF, Izumi K, Kerr B, Lacaze E, Lakeman P, Mahida S, Mirzaa GM, Morgan SM, Nowak C, Peeters H, Petit F, Pilz DT, Puechberty J, Reinstein E, Rivière JB, Santani AB, Schneider A, Sherr EH, Smith-Hicks C, Wieland I, Zackai E, Zhao X, Gronostajski RM, Zenker M, Richards LJ. NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly. Am J Hum Genet 2018; 103:752-768. [PMID: 30388402 PMCID: PMC6218805 DOI: 10.1016/j.ajhg.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.
Collapse
Affiliation(s)
- Ina Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jonathan W C Lim
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Ryan J Dean
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Patricia Blanchet
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Tania Attié-Bitach
- INSERM U1163, Laboratory of Embryology and Genetics of Congenital Malformations, Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, Paris 75015, France
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen 5021, Norway
| | - Steven Boogert
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Sangamitra Boppudi
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Caitlin J Bridges
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | | | - William B Dobyns
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Jessica Douglas
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laurence Faivre
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David Genevieve
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Marion Gérard
- Service de Génétique, CHU de Caen - Hôpital Clémenceau, Caen Cedex 14000, France
| | - Vincent Gatinois
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Muriel Holder-Espinasse
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Samuel F Huth
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kosuke Izumi
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust; Division of Evolution and Genomic Sciences School of Biological Sciences, and University of Manchester, Manchester M13 9WL, UK
| | - Elodie Lacaze
- Department of genetics, Le Havre Hospital, 76600 Le Havre, France
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Sonal Mahida
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics (Genetics), University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sian M Morgan
- All Wales Genetics Laboratory, Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Catherine Nowak
- Boston Children's Hospital - The Feingold Center, Waltham, MA 02115, USA
| | - Hilde Peeters
- Center for Human Genetics, University Hospital Leuven, KU Leuven, Leuven 3000, Belgium
| | - Florence Petit
- Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille 59000, France
| | - Daniela T Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Jacques Puechberty
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Eyal Reinstein
- Medical Genetics Institute, Meir Medical Center, Kfar-Saba 4428164, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Jean-Baptiste Rivière
- UMR1231, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon 21079, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire Dijon, Dijon 21079, France; Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Avni B Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anouck Schneider
- INSERM U1183, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SORO, Montpellier 34295, France
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany
| | - Elaine Zackai
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaonan Zhao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg 39120, Germany.
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The Faculty of Medicine Brisbane, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
123
|
Hasegawa-Ishii S, Shimada A, Imamura F. Neuroplastic changes in the olfactory bulb associated with nasal inflammation in mice. J Allergy Clin Immunol 2018; 143:978-989.e3. [PMID: 30315829 DOI: 10.1016/j.jaci.2018.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Rhinitis and rhinosinusitis are olfactory disorders caused by inflammation of the nasal passage and paranasal sinuses. Although patients with chronic rhinosinusitis have smaller olfactory bulbs (OBs), there is limited knowledge regarding the influence of chronic nasal inflammation on OB neurons. OBJECTIVE Repeated intranasal administration of LPS that induced persistent nasal inflammation in mice caused a loss of olfactory sensory neurons (OSNs) and gliosis and synaptic loss in the OBs within 3 weeks. The present study aimed to clarify the effects of long-term LPS treatment on the OB neurocircuit. METHODS LPS was repeatedly administered into a mouse nostril for up to 24 weeks. For the recovery analyses, the mice received LPS for 10 weeks and were subsequently maintained without additional treatment for another 10 weeks. The effects of these treatments on the OBs were examined histologically. Three or more mice were analyzed per group. RESULTS Long-term repeated LPS administration caused OB atrophy, particularly in the layers along which OSN axons travel and in the superficial external plexiform layer, in which tufted cells form synapses with interneurons. Interestingly, the OBs recovered from atrophy after cessation of LPS administration: OB volume and superficial external plexiform layer thickness returned to pretreatment levels after the nontreatment period. In contrast, OSN regeneration was incomplete. CONCLUSION These results suggest that chronic nasal inflammation induces structural changes in a specific OB circuit related to tufted cells, whereas tufted cells retain a high degree of plasticity that enables recovery from structural damages after inflammation subsides.
Collapse
Affiliation(s)
- Sanae Hasegawa-Ishii
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pa; Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | | | - Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pa.
| |
Collapse
|
124
|
Ahlschwede KM, Curran GL, Rosenberg JT, Grant SC, Sarkar G, Jenkins RB, Ramakrishnan S, Poduslo JF, Kandimalla KK. Cationic carrier peptide enhances cerebrovascular targeting of nanoparticles in Alzheimer's disease brain. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:258-266. [PMID: 30300748 DOI: 10.1016/j.nano.2018.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022]
Abstract
Accumulation of amyloid beta (Aβ) peptides in the cerebral vasculature, referred to as cerebral amyloid angiopathy (CAA), is widely observed in Alzheimer's disease (AD) brain and was shown to accelerate cognitive decline. There is no effective method for detecting cerebrovascular amyloid (CVA) and treat CAA. The targeted nanoparticles developed in this study effectively migrated from the blood flow to the vascular endothelium as determined by using quartz crystal microbalance with dissipation monitoring (QCM-D) technology. We also improved the stability, and blood-brain barrier (BBB) transcytosis of targeted nanoparticles by coating them with a cationic BBB penetrating peptide (K16ApoE). The K16ApoE-Targeted nanoparticles demonstrated specific targeting of vasculotropic DutchAβ40 peptide accumulated in the cerebral vasculature. Moreover, K16ApoE-Targeted nanoparticles demonstrated significantly greater uptake into brain and provided specific MRI contrast to detect brain amyloid plaques.
Collapse
Affiliation(s)
- Kristen M Ahlschwede
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA; Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience and Biochemistry/Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Geoffry L Curran
- Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience and Biochemistry/Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA; Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Samuel C Grant
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA; Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Gobinda Sarkar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robert B Jenkins
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Subramanian Ramakrishnan
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA; Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Joseph F Poduslo
- Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience and Biochemistry/Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA; Molecular Neurobiology Laboratory, Departments of Neurology, Neuroscience and Biochemistry/Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
125
|
Abstract
Array tomography encompasses light and electron microscopy modalities that offer unparalleled opportunities to explore three-dimensional cellular architectures in extremely fine structural and molecular detail. Fluorescence array tomography achieves much higher resolution and molecular multiplexing than most other fluorescence microscopy methods, while electron array tomography can capture three-dimensional ultrastructure much more easily and rapidly than traditional serial-section electron microscopy methods. A correlative fluorescence/electron microscopy mode of array tomography furthermore offers a unique capacity to merge the molecular discrimination strengths of multichannel fluorescence microscopy with the ultrastructural imaging strengths of electron microscopy. This essay samples the first decade of array tomography, highlighting applications in neuroscience.
Collapse
|
126
|
|
127
|
Agarwal N, Xu X, Gopi M. Geometry processing of conventionally produced mouse brain slice images. J Neurosci Methods 2018; 306:45-56. [PMID: 29689283 PMCID: PMC6086593 DOI: 10.1016/j.jneumeth.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. NEW METHOD In this paper, we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. RESULTS Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as one of the application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. COMPARISON WITH EXISTING METHOD(S) To the best of our knowledge the presented work is the first that automatically registers both clean as well as highly damaged high-resolutions histological slices of mouse brain to a 3D annotated reference atlas space. CONCLUSIONS This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data.
Collapse
Affiliation(s)
- Nitin Agarwal
- Department of Computer Science, University of California, Irvine, CA 92697-3435, United States.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715, United States; Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2625, United States
| | - M Gopi
- Department of Computer Science, University of California, Irvine, CA 92697-3435, United States
| |
Collapse
|
128
|
Tolomeo D, Micotti E, Serra SC, Chappell M, Snellman A, Forloni G. Chemical exchange saturation transfer MRI shows low cerebral 2-deoxy-D-glucose uptake in a model of Alzheimer's Disease. Sci Rep 2018; 8:9576. [PMID: 29934551 PMCID: PMC6015016 DOI: 10.1038/s41598-018-27839-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Glucose is the central nervous system's only energy source. Imaging techniques capable to detect pathological alterations of the brain metabolism are useful in different diagnostic processes. Such techniques are also beneficial for assessing the evaluation efficacy of therapies in pre-clinical and clinical stages of diseases. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a possible alternative to positron emission tomography (PET) imaging that has been widely explored in cancer research in humans and animal models. We propose that pathological alterations in brain 2-deoxy-D-glucose (2DG) uptake, typical of neurodegenerative diseases, can be detected with CEST MRI. Transgenic mice overexpressing a mutated form of amyloid precusrsor protein (APP23), a model of Alzheimer's disease, analyzed with CEST MRI showed a clear reduction of 2DG uptake in different brain regions. This was reminiscent of the cerebral condition observed in Alzheimer's patients. The results indicate the feasibility of CEST for analyzing the brain metabolic state, with better image resolution than PET in experimental models.
Collapse
Affiliation(s)
- Daniele Tolomeo
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy
| | - Edoardo Micotti
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy
| | | | - Michael Chappell
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, 6396, Oxford, UK
| | - Anniina Snellman
- Medicity Research Laboratory, University of Turku, (Tykistökatu 6, FI-20510), Turku, Finland.,Turku PET Centre, University of Turku, (Kiinamyllynkatu 4-8, FI-20520,), Turku, Finland
| | - Gianluigi Forloni
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, IRCCS, Mario Negri Institute for Pharmacological Research, Milan, (MI), Italy.
| |
Collapse
|
129
|
Kesler SR, Acton P, Rao V, Ray WJ. Functional and structural connectome properties in the 5XFAD transgenic mouse model of Alzheimer's disease. Netw Neurosci 2018; 2:241-258. [PMID: 30215035 PMCID: PMC6130552 DOI: 10.1162/netn_a_00048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Neurodegeneration in Alzheimer's disease (AD) is associated with amyloid-beta peptide accumulation into insoluble amyloid plaques. The five-familial AD (5XFAD) transgenic mouse model exhibits accelerated amyloid-beta deposition, neuronal dysfunction, and cognitive impairment. We aimed to determine whether connectome properties of these mice parallel those observed in patients with AD. We obtained diffusion tensor imaging and resting-state functional magnetic resonance imaging data for four transgenic and four nontransgenic male mice. We constructed both structural and functional connectomes and measured their topological properties by applying graph theoretical analysis. We compared connectome properties between groups using both binarized and weighted networks. Transgenic mice showed higher characteristic path length in weighted structural connectomes and functional connectomes at minimum density. Normalized clustering and modularity were lower in transgenic mice across the upper densities of the structural connectome. Transgenic mice also showed lower small-worldness index in higher structural connectome densities and in weighted structural networks. Hyper-correlation of structural and functional connectivity was observed in transgenic mice compared with nontransgenic controls. These preliminary findings suggest that 5XFAD mouse connectomes may provide useful models for investigating the molecular mechanisms of AD pathogenesis and testing the effectiveness of potential treatments.
Collapse
Affiliation(s)
- Shelli R Kesler
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Acton
- Neurodegeneration Consortium, Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikram Rao
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William J Ray
- Neurodegeneration Consortium, Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
130
|
Meier SR, Syvänen S, Hultqvist G, Fang XT, Roshanbin S, Lannfelt L, Neumann U, Sehlin D. Antibody-Based In Vivo PET Imaging Detects Amyloid-β Reduction in Alzheimer Transgenic Mice After BACE-1 Inhibition. J Nucl Med 2018; 59:1885-1891. [PMID: 29853653 PMCID: PMC6278900 DOI: 10.2967/jnumed.118.213140] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/07/2018] [Indexed: 12/26/2022] Open
Abstract
Visualization of amyloid-β (Aβ) pathology with PET has become an important tool for making a specific clinical diagnosis of Alzheimer disease (AD). However, the available amyloid PET radioligands, such as 11C-Pittsburgh compound B, reflect levels of insoluble Aβ plaques but do not capture soluble and protofibrillar Aβ forms. Furthermore, the plaque load appears to be fairly static during clinical stages of AD and may not be affected by Aβ-reducing treatments. The aim of the present study was to investigate whether a novel PET radioligand based on an antibody directed toward soluble aggregates of Aβ can be used to detect changes in Aβ levels during disease progression and after treatment with a β-secretase (BACE-1) inhibitor. Methods: One set of transgenic mice (tg-ArcSwe, a model of Aβ pathology) aged between 7 and 16 mo underwent PET with the Aβ protofibril-selective radioligand 124I-RmAb158-scFv8D3 (where RmAb is recombinant mouse monoclonal antibody and scFv is single-chain variable fragment) to follow progression of Aβ pathology in the brain. A second set of tg-ArcSwe mice, aged 10 mo, were treated with the BACE-1 inhibitor NB-360 for 3 mo and compared with an untreated control group. A third set of tg-ArcSwe mice, also aged 10 mo, underwent PET as a baseline group. Brain tissue was isolated after PET to determine levels of Aβ by ELISA and immunohistochemistry. Results: The concentration of 124I-RmAb158-scFv8D3, as measured in vivo with PET, increased with age and corresponded well with the ex vivo autoradiography and Aβ immunohistochemistry results. Mice treated with NB-360 showed significantly lower in vivo PET signals than untreated animals and were similar to the baseline animals. The decreased 124I-RmAb158-scFv8D3 concentrations in NB-360-treated mice, as quantified with PET, corresponded well with the decreased Aβ levels measured in postmortem brain. Conclusion: Several treatments for AD are in phase 2 and 3 clinical trials, but the possibility of studying treatment effects in vivo on the important, nonfibrillar, forms of Aβ is limited. This study demonstrated the ability of the Aβ protofibril-selective radioligand 124I-RmAb158-scFv8D3 to follow disease progression and detect treatment effects with PET imaging in tg-ArcSwe mice.
Collapse
Affiliation(s)
- Silvio R Meier
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Xiaotian T Fang
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Sahar Roshanbin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden.,BioArctic AB, Stockholm, Sweden; and
| | - Ulf Neumann
- Neuroscience Research, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
131
|
Increased Superoxide Dismutase 2 by Allopregnanolone Ameliorates ROS-Mediated Neuronal Death in Mice with Pilocarpine-Induced Status Epilepticus. Neurochem Res 2018; 43:1464-1475. [PMID: 29855848 DOI: 10.1007/s11064-018-2561-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 12/19/2022]
Abstract
Excessive production of reactive oxygen species (ROS), along with dysfunction of the antioxidant defense system, such as that involving superoxide dismutase (SOD), may play a major role in neuronal death following status epilepticus (SE). Neurosteroids, which are allosteric modulators of the GABAA receptor in cerebral metabolism, have been suggested as being neuroprotective in various animal models; however, their effect to preventing ROS has not been examined. Herein, we investigate the neuroprotective role of allopregnanolone, the prototypical neurosteroid in the brain, in relation to the ROS-mediated neuronal injury. Adult male C57BL/6 mice were subjected to SE and treated with allopregnanolone. Hippocampal cell death was assessed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and ROS production was investigated by in situ detection of oxidized hydroethidine. SOD2 expression was analyzed by both western blot and immunofluorescent staining in the hippocampal subfields. In mice treated with allopregnanolone after SE, hippocampal cell death, DNA fragmentation, oxidative DNA damage, and ROS production were reduced significantly compared to mice subjected to vehicle treatment after SE. Hippocampal SOD2 expression was significantly increased by allopregnanolone. These finding suggest that allopregnanolone plays a neuroprotective role, with not only anticonvulsant but also antioxidant effects, by increasing SOD2 in pilocarpine-induced SE model.
Collapse
|
132
|
Crivelli SM, Paulus A, Markus J, Bauwens M, Berkes D, De Vries HE, Mulder MT, Walter J, Mottaghy FM, Losen M, Martinez-Martinez P. Synthesis, Radiosynthesis, and Preliminary in vitro and in vivo Evaluation of the Fluorinated Ceramide Trafficking Inhibitor (HPA-12) for Brain Applications. J Alzheimers Dis 2018; 60:783-794. [PMID: 28922150 DOI: 10.3233/jad-161231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ceramide levels are increased in blood and brain tissue of Alzheimer's disease (AD) patients. Since the ceramide transporter protein (CERT) is the only known protein able to mediate non-vesicular transfer of ceramide between organelle membranes, the modulation of CERT function may impact on ceramide accumulation. The competitive CERT inhibitor N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide (HPA-12) interferes with ceramide trafficking. To understand the role of ceramide/CERT in AD, HPA-12 can be a useful tool to modulate ceramide trafficking. Here we first report the synthesis and in vitro properties of HPA-12 radiolabeled with fluorine-18 and present preliminary in vitro and in vivo positron emission tomography (PET) imaging and biodistribution data. In vitro results demonstrated that the fluorination did not alter the biological properties of HPA-12 since the [fluorine-19]HPA-12, interferes with 5-DMB-ceramide trafficking in HeLa cells. Radiolabeled HPA-12, [fluorine-18]HPA-12, was obtained with a radiochemical yield of 90% and a specific activity of 73 MBq/μmol. PET imaging on wild-type mice showed hepatobiliary clearance and a brain uptake on the order of 0.3 standard uptake value (SUV) one hour post injection. Furthermore, the biodistribution data showed that after removal of the blood by intracardial perfusion, radioactivity was still measurable in the brain demonstrating that the [fluorine-18]HPA-12 crosses the blood brain barrier and is retained in the brain.
Collapse
Affiliation(s)
- Simone M Crivelli
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Andreas Paulus
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Medical Imaging, Division of Nuclear Medicine, MUMC, Maastricht, The Netherlands.,Division of Nuclear Medicine, Uniklinikum Aachen, Aachen, Germany
| | - Jozef Markus
- Department of Organic Chemistry, Slovak University of Technology, Bratislava, SlovakRepublic
| | - Matthias Bauwens
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Dusan Berkes
- Department of Organic Chemistry, Slovak University of Technology, Bratislava, SlovakRepublic
| | - Helga E De Vries
- Department of Molecular Cell Biologyand Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Felix M Mottaghy
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Medical Imaging, Division of Nuclear Medicine, MUMC, Maastricht, The Netherlands.,Division of Nuclear Medicine, Uniklinikum Aachen, Aachen, Germany
| | - Mario Losen
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Pilar Martinez-Martinez
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
133
|
Syvänen S, Hultqvist G, Gustavsson T, Gumucio A, Laudon H, Söderberg L, Ingelsson M, Lannfelt L, Sehlin D. Efficient clearance of Aβ protofibrils in AβPP-transgenic mice treated with a brain-penetrating bifunctional antibody. ALZHEIMERS RESEARCH & THERAPY 2018; 10:49. [PMID: 29793530 PMCID: PMC5968497 DOI: 10.1186/s13195-018-0377-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/30/2018] [Indexed: 11/10/2022]
Abstract
Background Amyloid-β (Aβ) immunotherapy is one of the most promising disease-modifying strategies for Alzheimer’s disease (AD). Despite recent progress targeting aggregated forms of Aβ, low antibody brain penetrance remains a challenge. In the present study, we used transferrin receptor (TfR)-mediated transcytosis to facilitate brain uptake of our previously developed Aβ protofibril-selective mAb158, with the aim of increasing the efficacy of immunotherapy directed toward soluble Aβ protofibrils. Methods Aβ protein precursor (AβPP)-transgenic mice (tg-ArcSwe) were given a single dose of mAb158, modified for TfR-mediated transcytosis (RmAb158-scFv8D3), in comparison with an equimolar dose or a tenfold higher dose of unmodified recombinant mAb158 (RmAb158). Soluble Aβ protofibrils and total Aβ in the brain were measured by enzyme-linked immunosorbent assay (ELISA). Brain distribution of radiolabeled antibodies was visualized by positron emission tomography (PET) and ex vivo autoradiography. Results ELISA analysis of Tris-buffered saline brain extracts demonstrated a 40% reduction of soluble Aβ protofibrils in both RmAb158-scFv8D3- and high-dose RmAb158-treated mice, whereas there was no Aβ protofibril reduction in mice treated with a low dose of RmAb158. Further, ex vivo autoradiography and PET imaging revealed different brain distribution patterns of RmAb158-scFv8D3 and RmAb158, suggesting that these antibodies may affect Aβ levels by different mechanisms. Conclusions With a combination of biochemical and imaging analyses, this study demonstrates that antibodies engineered to be transported across the blood-brain barrier can be used to increase the efficacy of Aβ immunotherapy. This strategy may allow for decreased antibody doses and thereby reduced side effects and treatment costs.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmaceutical biosciences, Uppsala University, Uppsala, Sweden
| | - Tobias Gustavsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Astrid Gumucio
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | | | | | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden.,BioArctic AB, Stockholm, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden.
| |
Collapse
|
134
|
Lin A, Kupinski MA, Peterson TE, Shokouhi S, Johnson LC. Task-based design of a synthetic-collimator SPECT system used for small animal imaging. Med Phys 2018; 45:2952-2963. [PMID: 29734479 DOI: 10.1002/mp.12952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 02/12/2018] [Accepted: 02/25/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE In traditional multipinhole SPECT systems, image multiplexing - the overlapping of pinhole projection images - may occur on the detector, which can inhibit quality image reconstructions due to photon-origin uncertainty. One proposed system to mitigate the effects of multiplexing is the synthetic-collimator SPECT system. In this system, two detectors, a silicon detector and a germanium detector, are placed at different distances behind the multipinhole aperture, allowing for image detection to occur at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. The unwanted effects of multiplexing are reduced by utilizing the additional data collected from the front silicon detector. However, determining optimal system configurations for a given imaging task requires efficient parsing of the complex parameter space, to understand how pinhole spacings and the two detector distances influence system performance. METHODS In our simulation studies, we use the ensemble mean-squared error of the Wiener estimator (EMSEW ) as the figure of merit to determine optimum system parameters for the task of estimating the uptake of an 123 I-labeled radiotracer in three different regions of a computer-generated mouse brain phantom. The segmented phantom map is constructed by using data from the MRM NeAt database and allows for the reduction in dimensionality of the system matrix which improves the computational efficiency of scanning the system's parameter space. To contextualize our results, the Wiener estimator is also compared against a region of interest estimator using maximum-likelihood reconstructed data. RESULTS Our results show that the synthetic-collimator SPECT system outperforms traditional multipinhole SPECT systems in this estimation task. We also find that image multiplexing plays an important role in the system design of the synthetic-collimator SPECT system, with optimal germanium detector distances occurring at maxima in the derivative of the percent multiplexing function. Furthermore, we report that improved task performance can be achieved by using an adaptive system design in which the germanium detector distance may vary with projection angle. Finally, in our comparative study, we find that the Wiener estimator outperforms the conventional region of interest estimator. CONCLUSIONS Our work demonstrates how this optimization method has the potential to quickly and efficiently explore vast parameter spaces, providing insight into the behavior of competing factors, which are otherwise very difficult to calculate and study using other existing means.
Collapse
Affiliation(s)
- Alexander Lin
- College of Optical Sciences, University of Arizona, 1630 E. University Ave, Tucson, AZ, USA
| | - Matthew A Kupinski
- College of Optical Sciences, University of Arizona, 1630 E. University Ave, Tucson, AZ, USA
| | - Todd E Peterson
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, USA
| | - Sepideh Shokouhi
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN, USA
| | - Lindsay C Johnson
- Department of Radiology, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA, USA
| |
Collapse
|
135
|
Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A Survey of Methods for 3D Histology Reconstruction. Med Image Anal 2018; 46:73-105. [DOI: 10.1016/j.media.2018.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
|
136
|
Nixon AM, Meadowcroft MD, Neely EB, Snyder AM, Purnell CJ, Wright J, Lamendella R, Nandar W, Huang X, Connor JR. HFE Genotype Restricts the Response to Paraquat in a Mouse Model of Neurotoxicity. J Neurochem 2018; 145:299-311. [PMID: 29315562 DOI: 10.1111/jnc.14299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022]
Abstract
Parkinson's disease is marked clinically by motor dysfunction and pathologically by dopaminergic cell loss in the substantia nigra and iron accumulation in the substantia nigra. The driver underlying iron accumulation remains unknown and could be genetic or environmental. The HFE protein is critical for the regulation of cellular iron uptake. Mutations within this protein are associated with increased iron accumulation including in the brain. We have focused on the commonly occurring H63D variant of the HFE gene as a disease modifier in a number of neurodegenerative diseases. To investigate the role of H63D HFE genotype, we generated a mouse model in which the wild-type (WT) HFE gene is replaced by the H67D gene variant (mouse homolog of the human H63D gene variant). Using paraquat toxicity as the model for Parkinson's disease, we found that WT mice responded as expected with significantly greater motor function, loss of tyrosine hydroxylase staining and increase microglial staining in the substantia nigra, and an increase in R2 relaxation rate within the substantia nigra of the paraquat-treated mice compared to their saline-treated counterparts. In contrast, the H67D mice showed a remarkable resistance to paraquat treatment; specifically differing from the WT mice with no changes in motor function or changes in R2 relaxation rates following paraquat exposure. At baseline, there were differences between the H67D HFE mice and WT mice in gut microbiome profile and increased L-ferritin staining in the substantia nigra that could account for the resistance to paraquat. Of particular note, the H67D HFE mice regardless of whether or not they were treated with paraquat had significantly less tyrosine hydroxylase immunostaining than WT. Our results clearly demonstrate that the HFE genotype impacts the expression of tyrosine hydroxylase in the substantia nigra, the gut microbiome and the response to paraquat providing additional support that the HFE genotype is a disease modifier for Parkinson's disease. Moreover, the finding that the HFE mutant mice are resistant to paraquat may provide a model in which to study resistant mechanisms to neurotoxicants.
Collapse
Affiliation(s)
- Anne M Nixon
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mark D Meadowcroft
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Radiology, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Elizabeth B Neely
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Amanda M Snyder
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Carson J Purnell
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | - Regina Lamendella
- Wright Labs, Huntingdon, Pennsylvania, USA
- Department of Microbiology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Wint Nandar
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuemei Huang
- Department of Neurology, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - James R Connor
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
137
|
Nguyen DL, Wimberley C, Truillet C, Jego B, Caillé F, Pottier G, Boisgard R, Buvat I, Bouilleret V. Longitudinal positron emission tomography imaging of glial cell activation in a mouse model of mesial temporal lobe epilepsy: Toward identification of optimal treatment windows. Epilepsia 2018; 59:1234-1244. [PMID: 29672844 DOI: 10.1111/epi.14083] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Mesiotemporal lobe epilepsy is the most common type of drug-resistant partial epilepsy, with a specific history that often begins with status epilepticus due to various neurological insults followed by a silent period. During this period, before the first seizure occurs, a specific lesion develops, described as unilateral hippocampal sclerosis (HS). It is still challenging to determine which drugs, administered at which time point, will be most effective during the formation of this epileptic process. Neuroinflammation plays an important role in pathophysiological mechanisms in epilepsy, and therefore brain inflammation biomarkers such as translocator protein 18 kDa (TSPO) can be potent epilepsy biomarkers. TSPO is associated with reactive astrocytes and microglia. A unilateral intrahippocampal kainate injection mouse model can reproduce the defining features of human temporal lobe epilepsy with unilateral HS and the pattern of chronic pharmacoresistant temporal seizures. We hypothesized that longitudinal imaging using TSPO positron emission tomography (PET) with 18 F-DPA-714 could identify optimal treatment windows in a mouse model during the formation of HS. METHODS The model was induced into the right dorsal hippocampus of male C57/Bl6 mice. Micro-PET/computed tomographic scanning was performed before model induction and along the development of the HS at 7 days, 14 days, 1 month, and 6 months. In vitro autoradiography and immunohistofluorescence were performed on additional mice at each time point. RESULTS TSPO PET uptake reached peak at 7 days and mostly related to microglial activation, whereas after 14 days, reactive astrocytes were shown to be the main cells expressing TSPO, reflected by a continuing increased PET uptake. SIGNIFICANCE TSPO-targeted PET is a highly potent longitudinal biomarker of epilepsy and could be of interest to determine the therapeutic windows in epilepsy and to monitor response to treatment.
Collapse
Affiliation(s)
- Duc-Loc Nguyen
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Catriona Wimberley
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Charles Truillet
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Benoit Jego
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Fabien Caillé
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Géraldine Pottier
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Raphaël Boisgard
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Irène Buvat
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France
| | - Viviane Bouilleret
- In Vivo Molecular Imaging Laboratory (IMIV), French National Institute of Health and Medical Research (INSERM), French Alternative Energies and Atomic Energy Commission (CEA), French National Center for Scientific Research (CNRS), Paris Saclay University, Frédéric Joliot Hospital service, Orsay, France.,Neurophysiology and Epilepsy Unit, Bicêtre Hospital, Public Hospitals of Paris (AP-HP), France
| |
Collapse
|
138
|
Brackhan M, Bascuñana P, Ross TL, Bengel FM, Bankstahl JP, Bankstahl M. [18
F]GE180 positron emission tomographic imaging indicates a potential double-hit insult in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Epilepsia 2018; 59:617-626. [DOI: 10.1111/epi.14009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Mirjam Brackhan
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine; Hannover Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
| | - Tobias L. Ross
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
| | - Frank M. Bengel
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
| | - Jens P. Bankstahl
- Department of Nuclear Medicine; Hannover Medical School; Hannover Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine; Hannover Germany
| |
Collapse
|
139
|
Lee S, Kim S, Choi JH. A Novel Visualization Method for Sleep Spindles Based on Source Localization of High Density EEG. Exp Neurobiol 2018; 26:362-368. [PMID: 29302203 PMCID: PMC5746501 DOI: 10.5607/en.2017.26.6.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/30/2017] [Accepted: 12/07/2017] [Indexed: 11/19/2022] Open
Abstract
Equivalent dipole source localization is a well-established approach to localizing the electrical activity in electroencephalogram (EEG). So far, source localization has been used primarily in localizing the epileptic source in human epileptic patients. Currently, source localization techniques have been applied to account for localizing epileptic source among the epileptic patients. Here, we present the first application of source localization in the field of sleep spindle in mouse brain. The spatial distribution of cortical potential was obtained by high density EEG and then the anterior and posterior sleep spindles were classified based on the K-mean clustering algorithm. To solve the forward problem, a realistic geometry brain model was produced based on boundary element method (BEM) using mouse MRI. Then, we applied four different source estimation algorithms (minimum norm, eLORETA, sLORETA, and LORETA) to estimate the spatial location of equivalent dipole source of sleep spindles. The estimated sources of anterior and posterior spindles were plotted in a cine-mode that revealed different topographic patterns of spindle propagation. The characterization of sleep spindles may be better be distinguished by our novel visualization method.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seunghwan Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
140
|
Astroglial Responses to Amyloid-Beta Progression in a Mouse Model of Alzheimer’s Disease. Mol Imaging Biol 2018; 20:605-614. [DOI: 10.1007/s11307-017-1153-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
141
|
Sehlin D, Fang XT, Meier SR, Jansson M, Syvänen S. Pharmacokinetics, biodistribution and brain retention of a bispecific antibody-based PET radioligand for imaging of amyloid-β. Sci Rep 2017; 7:17254. [PMID: 29222502 PMCID: PMC5722892 DOI: 10.1038/s41598-017-17358-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies (mAbs) have not been used as positron emission tomography (PET) ligands for in vivo imaging of the brain because of their limited passage across the blood-brain barrier (BBB). However, due to their high affinity and specificity, mAbs may be an attractive option for brain PET if their brain distribution can be facilitated. In the present study, a F(ab’)2 fragment of the amyloid-beta (Aβ) protofibril selective mAb158 was chemically conjugated to the transferrin receptor (TfR) antibody 8D3 to enable TfR mediated transcytosis across the BBB. The generated bispecific protein, 8D3-F(ab’)2-h158, was subsequently radiolabeled and used for microPET imaging of Aβ pathology in two mouse models of AD. [124I]8D3-F(ab’)2-h158 was distributed across the BBB several fold more than unmodified mAbs in general and its accumulation in the brain reflected disease progression, while its concentration in blood and other organs remained stable across all age groups studied. Cerebellum was largely devoid of 8D3-F(ab’)2-h158 in young and middle aged mice, while mice older than 18 months also showed some accumulation in cerebellum. In a longer perspective, the use of bispecific antibodies as PET ligands may enable in vivo ‘immunohistochemistry’ also of other proteins in the brain for which PET radioligands are lacking.
Collapse
Affiliation(s)
- Dag Sehlin
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden
| | - Xiaotian T Fang
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden
| | - Silvio R Meier
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden
| | - Malin Jansson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE-751 83, Uppsala, Sweden.
| |
Collapse
|
142
|
Clayton EL, Mancuso R, Nielsen TT, Mizielinska S, Holmes H, Powell N, Norona F, Larsen JO, Milioto C, Wilson KM, Lythgoe MF, Ourselin S, Nielsen JE, Johannsen P, Holm I, Collinge J, Oliver PL, Gomez-Nicola D, Isaacs AM. Early microgliosis precedes neuronal loss and behavioural impairment in mice with a frontotemporal dementia-causing CHMP2B mutation. Hum Mol Genet 2017; 26:873-887. [PMID: 28093491 PMCID: PMC5409096 DOI: 10.1093/hmg/ddx003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Frontotemporal dementia (FTD)-causing mutations in the CHMP2B gene lead to the generation of mutant C-terminally truncated CHMP2B. We report that transgenic mice expressing endogenous levels of mutant CHMP2B developed late-onset brain volume loss associated with frank neuronal loss and FTD-like changes in social behaviour. These data are the first to show neurodegeneration in mice expressing mutant CHMP2B and indicate that our mouse model is able to recapitulate neurodegenerative changes observed in FTD. Neuroinflammation has been increasingly implicated in neurodegeneration, including FTD. Therefore, we investigated neuroinflammation in our CHMP2B mutant mice. We observed very early microglial proliferation that develops into a clear pro-inflammatory phenotype at late stages. Importantly, we also observed a similar inflammatory profile in CHMP2B patient frontal cortex. Aberrant microglial function has also been implicated in FTD caused by GRN, MAPT and C9orf72 mutations. The presence of early microglial changes in our CHMP2B mutant mice indicates neuroinflammation may be a contributing factor to the neurodegeneration observed in FTD.
Collapse
Affiliation(s)
- Emma L Clayton
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Renzo Mancuso
- Biological Sciences, University of Southampton, Southampton General Hospital, South Laboratory and Pathology Block, Tremona Road, Southampton SO166YD, UK
| | - Troels Tolstrup Nielsen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Sarah Mizielinska
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Holly Holmes
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Nicholas Powell
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London WC1E 6DD, UK.,Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Frances Norona
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jytte Overgaard Larsen
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), University College London, UK
| | - Carmelo Milioto
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Katherine M Wilson
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Sebastian Ourselin
- Faculty of Health and Medical Sciences, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jörgen E Nielsen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Denmark.,Section of Neurogenetics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Johannsen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Ida Holm
- Laboratory for Experimental Neuropathology, Department of Pathology, Randers Hospital, DK-8930 Randers NØ, Denmark.,Institute of Clinical Medicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - John Collinge
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,MRC Prion Unit, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Diego Gomez-Nicola
- Biological Sciences, University of Southampton, Southampton General Hospital, South Laboratory and Pathology Block, Tremona Road, Southampton SO166YD, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
143
|
Venzi M, Tóth M, Häggkvist J, Bogstedt A, Rachalski A, Mattsson A, Frumento P, Farde L. Differential Effect of APOE Alleles on Brain Glucose Metabolism in Targeted Replacement Mice: An [ 18F]FDG-μPET Study. J Alzheimers Dis Rep 2017; 1:169-180. [PMID: 30480236 PMCID: PMC6159693 DOI: 10.3233/adr-170006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: The Apolipoprotein E (ApoE) alleles ɛ2, ɛ3, and ɛ4 are known to differentially modulate cerebral glucose metabolism and the risk for Alzheimer’s disease (AD) via both amyloid-β (Aβ)-dependent and independent mechanisms. Objective: We investigated the influence of ApoE on cerebral glucose metabolism in humanized APOE Targeted Replacement (TR) mice at ages that precede the comparison of Aβ parenchymal deposits in APOE4-TR mice. Methods: Fludeoxyglucose ([18F]FDG) positron emission tomography (PET) measures were performed longitudinally in homozygous APOE-TR mice (APOE2, APOE3, APOE4; n = 10 for each group) at 3, 5, 11, and 15 months. Results were quantified using standard uptake values and analyzed statistically using a linear mixed effects model. Levels of the Aβ40 and Aβ42 peptides were quantified ex vivo using enzyme-linked immunosorbent assay (ELISA) at 15 months in the same animals. Results: APOE2 mice (versus APOE3) showed a significant increase in glucose metabolism starting at 6 months, peaking at 9 months. No evidence of hypometabolism was apparent in any region or time point for APOE4 mice, which instead displayed a hypermetabolism at 15 months. Whole brain soluble Aβ40 and Aβ42 levels were not significantly different between genotypes at 15 months. Conclusions: Introduction of human APOE alleles ɛ2 and ɛ4 is sufficient to produce alterations in brain glucose metabolism in comparison to the control allele ɛ3, without a concomitant alteration in Aβ40 and Aβ42 levels. These results suggest novel Aβ-independent metabolic phenotypes conferred by ɛ2 and ɛ4 alleles and have important implications for preclinical studies using TR-mice.
Collapse
Affiliation(s)
- Marcello Venzi
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Personalised Healthcare and Biomarkers, AstraZeneca, PET Science Centre, Karolinska Institutet, Sweden
| | - Miklós Tóth
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Häggkvist
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bogstedt
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge, Sweden
| | - Adeline Rachalski
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Personalised Healthcare and Biomarkers, AstraZeneca, PET Science Centre, Karolinska Institutet, Sweden
| | - Anna Mattsson
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Frumento
- Karolinska Institutet, Institute of Environmental Medicine, Unit of Biostatistics, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
144
|
Fish EW, Wieczorek LA, Rumple A, Suttie M, Moy SS, Hammond P, Parnell SE. The enduring impact of neurulation stage alcohol exposure: A combined behavioral and structural neuroimaging study in adult male and female C57BL/6J mice. Behav Brain Res 2017; 338:173-184. [PMID: 29107713 DOI: 10.1016/j.bbr.2017.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Prenatal alcohol exposure (PAE) can cause behavioral and brain alterations over the lifespan. In animal models, these effects can occur following PAE confined to critical developmental periods, equivalent to the third and fourth weeks of human gestation, before pregnancy is usually recognized. The current study focuses on PAE during early neurulation and examines the behavioral and brain structural consequences that appear in adulthood. On gestational day 8 C57BL/6J dams received two alcohol (2.8g/kg, i.p), or vehicle, administrations, four hours apart. Male and female offspring were reared to adulthood and examined for performance on the elevated plus maze, rotarod, open field, Morris water maze, acoustic startle, social preference (i.e. three-chambered social approach test), and the hot plate. A subset of these mice was later evaluated using magnetic resonance imaging to detect changes in regional brain volumes and shapes. In males, PAE increased exploratory behaviors on the elevated plus maze and in the open field; these changes were associated with increased fractional anisotropy in the anterior commissure. In females, PAE reduced social preference and the startle response, and decreased cerebral cortex and brain stem volumes. Vehicle-treated females had larger pituitaries than did vehicle-treated males, but PAE attenuated this sex difference. In males, pituitary size correlated with open field activity, while in females, pituitary size correlated with social activity. These findings indicate that early neurulation PAE causes sex specific behavioral and brain changes in adulthood. Changes in the pituitary suggest that this structure is especially vulnerable to neurulation stage PAE.
Collapse
Affiliation(s)
- E W Fish
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| | - L A Wieczorek
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - M Suttie
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S S Moy
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - P Hammond
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S E Parnell
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
145
|
Meadowcroft MD, Wang J, Purnell CJ, Peters DG, Eslinger PJ, Neely EB, Gill DJ, Vasavada M, Ali-Rahmani F, Yang QX, Connor JR. Reduced white matter MRI transverse relaxation rate in cognitively normal H63D-HFE human carriers and H67D-HFE mice. Brain Imaging Behav 2017; 10:1231-1242. [PMID: 26660104 DOI: 10.1007/s11682-015-9494-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mutations within the HFE protein gene sequence have been associated with increased risk of developing a number of neurodegenerative disorders. To this effect, an animal model has been created which incorporates the mouse homologue to the human H63D-HFE mutation: the H67D-HFE knock-in mouse. These mice exhibit alterations in iron management proteins, have increased neuronal oxidative stress, and a disruption in cholesterol regulation. However, it remains undetermined how these differences translate to human H63D carriers in regards to white matter (WM) integrity. To this endeavor, MRI transverse relaxation rate (R2) parametrics were employed to test the hypothesis that WM alterations are present in H63D human carriers and are recapitulated in the H67D mice. H63D carriers exhibit widespread reductions in brain R2 compared to non-carriers within white matter association fibers in the brain. Similar R2 decreases within white matter tracts were observed in the H67D mouse brain. Additionally, an exacerbation of age-related R2 decrease is found in the H67D animal model in white matter regions of interest. The decrease in R2 within white matter tracts of both species is speculated to be multifaceted. The R2 changes are hypothesized to be due to alterations in axonal biochemical tissue composition. The R2 changes observed in both the human-H63D and mouse-H67D data suggest that modified white matter myelination is occurring in subjects with HFE mutations, potentially increasing vulnerability to neurodegenerative disorders.
Collapse
Affiliation(s)
- Mark D Meadowcroft
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA. .,Department of Radiology (The Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA. .,Department of Neural and Behavioral Sciences, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA. .,Departments of Neurosurgery and Radiology, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, H066 - The Center for NMR Research, 500 University Drive, Hershey, PA, 17033, USA.
| | - Jianli Wang
- Department of Radiology (The Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Carson J Purnell
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Douglas G Peters
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Neural and Behavioral Sciences, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Paul J Eslinger
- Department of Neurology, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Elizabeth B Neely
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - David J Gill
- Department of Neurology, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Megha Vasavada
- Department of Radiology (The Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Fatima Ali-Rahmani
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Qing X Yang
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Radiology (The Center for NMR Research), The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
146
|
|
147
|
Raaphorst RM, Savolainen H, Cantore M, van de Steeg E, van Waarde A, Colabufo NA, Elsinga PH, Lammertsma AA, Windhorst AD, Luurtsema G. Comparison of In Vitro Assays in Selecting Radiotracers for In Vivo P-Glycoprotein PET Imaging. Pharmaceuticals (Basel) 2017; 10:ph10030076. [PMID: 29036881 PMCID: PMC5620620 DOI: 10.3390/ph10030076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022] Open
Abstract
Positron emission tomography (PET) imaging of P-glycoprotein (P-gp) in the blood-brain barrier can be important in neurological diseases where P-gp is affected, such as Alzheimer´s disease. Radiotracers used in the imaging studies are present at very small, nanomolar, concentration, whereas in vitro assays where these tracers are characterized, are usually performed at micromolar concentration, causing often discrepant in vivo and in vitro data. We had in vivo rodent PET data of [11C]verapamil, (R)-N-[18F]fluoroethylverapamil, (R)-O-[18F]fluoroethyl-norverapamil, [18F]MC225 and [18F]MC224 and we included also two new molecules [18F]MC198 and [18F]KE64 in this study. To improve the predictive value of in vitro assays, we labeled all the tracers with tritium and performed bidirectional substrate transport assay in MDCKII-MDR1 cells at three different concentrations (0.01, 1 and 50 µM) and also inhibition assay with P-gp inhibitors. As a comparison, we used non-radioactive molecules in transport assay in Caco-2 cells at a concentration of 10 µM and in calcein-AM inhibition assay in MDCKII-MDR1 cells. All the P-gp substrates were transported dose-dependently. At the highest concentration (50 µM), P-gp was saturated in a similar way as after treatment with P-gp inhibitors. Best in vivo correlation was obtained with the bidirectional transport assay at a concentration of 0.01 µM. One micromolar concentration in a transport assay or calcein-AM assay alone is not sufficient for correct in vivo prediction of substrate P-gp PET ligands.
Collapse
Affiliation(s)
- Renske M Raaphorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1085C, 1081 HV Amsterdam, The Netherlands.
| | - Heli Savolainen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Mariangela Cantore
- Dipartimento di Farmacia-Scienze del Farmaco, Università Degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.
- Biofordrug slr, via Orabona 4, 70125 Bari, Italy.
| | - Evita van de Steeg
- Microbiology Systems and Biology Group, Netherlands Organisation for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, The Netherlands.
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università Degli Studi di Bari, via Orabona 4, 70125 Bari, Italy.
- Biofordrug slr, via Orabona 4, 70125 Bari, Italy.
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1085C, 1081 HV Amsterdam, The Netherlands.
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1085C, 1081 HV Amsterdam, The Netherlands.
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
148
|
Mukherjee J, Lao PJ, Betthauser TJ, Samra GK, Pan ML, Patel IH, Liang C, Metherate R, Christian BT. Human brain imaging of nicotinic acetylcholine α4β2* receptors using [ 18 F]Nifene: Selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways. J Comp Neurol 2017; 526:80-95. [PMID: 28875553 DOI: 10.1002/cne.24320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholinergic receptors (nAChR's) have been implicated in several brain disorders, including addiction, Parkinson's disease, Alzheimer's disease and schizophrenia. Here we report in vitro selectivity and functional properties, toxicity in rats, in vivo evaluation in humans, and comparison across species of [18 F]Nifene, a fast acting PET imaging agent for α4β2* nAChRs. Nifene had subnanomolar affinities for hα2β2 (0.34 nM), hα3β2 (0.80 nM) and hα4β2 (0.83 nM) nAChR but weaker (27-219 nM) for hβ4 nAChR subtypes and 169 nM for hα7 nAChR. In functional assays, Nifene (100 μM) exhibited 14% agonist and >50% antagonist characteristics. In 14-day acute toxicity in rats, the maximum tolerated dose (MTD) and the no observed adverse effect level (NOAEL) were estimated to exceed 40 μg/kg/day (278 μg/m2 /day). In human PET studies, [18 F]Nifene (185 MBq; <0.10 μg) was well tolerated with no adverse effects. Distribution volume ratios (DVR) of [18 F]Nifene in white matter thalamic radiations were ∼1.6 (anterior) and ∼1.5 (superior longitudinal fasciculus). Habenula known to contain α3β2 nAChR exhibited low levels of [18 F]Nifene binding while the red nucleus with α2β2 nAChR had DVR ∼1.6-1.7. Females had higher [18 F]Nifene binding in all brain regions, with thalamus showing >15% than males. No significant aging effect was observed in [18 F]Nifene binding over 5 decades. In all species (mice, rats, monkeys, and humans) thalamus showed highest [18 F]Nifene binding with reference region ratios >2 compared to extrathalamic regions. Our findings suggest that [18 F]Nifene PET may be used to study α4β2* nAChRs in various CNS disorders and for translational research.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Patrick J Lao
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| | - Tobey J Betthauser
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| | - Gurleen K Samra
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Min-Liang Pan
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Ishani H Patel
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | | | - Raju Metherate
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Bradley T Christian
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
149
|
Massey SC, Rockne RC, Hawkins-Daarud A, Gallaher J, Anderson ARA, Canoll P, Swanson KR. Simulating PDGF-Driven Glioma Growth and Invasion in an Anatomically Accurate Brain Domain. Bull Math Biol 2017; 80:1292-1309. [PMID: 28842831 DOI: 10.1007/s11538-017-0312-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
Abstract
Gliomas are the most common of all primary brain tumors. They are characterized by their diffuse infiltration of the brain tissue and are uniformly fatal, with glioblastoma being the most aggressive form of the disease. In recent years, the over-expression of platelet-derived growth factor (PDGF) has been shown to produce tumors in experimental rodent models that closely resemble this human disease, specifically the proneural subtype of glioblastoma. We have previously modeled this system, focusing on the key attribute of these experimental tumors-the "recruitment" of oligodendroglial progenitor cells (OPCs) to participate in tumor formation by PDGF-expressing retrovirally transduced cells-in one dimension, with spherical symmetry. However, it has been observed that these recruitable progenitor cells are not uniformly distributed throughout the brain and that tumor cells migrate at different rates depending on the material properties in different regions of the brain. Here we model the differential diffusion of PDGF-expressing and recruited cell populations via a system of partial differential equations with spatially variable diffusion coefficients and solve the equations in two spatial dimensions on a mouse brain atlas using a flux-differencing numerical approach. Simulations of our in silico model demonstrate qualitative agreement with the observed tumor distribution in the experimental animal system. Additionally, we show that while there are higher concentrations of OPCs in white matter, the level of recruitment of these plays little role in the appearance of "white matter disease," where the tumor shows a preponderance for white matter. Instead, simulations show that this is largely driven by the ratio of the diffusion rate in white matter as compared to gray. However, this ratio has less effect on the speed of tumor growth than does the degree of OPC recruitment in the tumor. It was observed that tumor simulations with greater degrees of recruitment grow faster and develop more nodular tumors than if there is no recruitment at all, similar to our prior results from implementing our model in one dimension. Combined, these results show that recruitment remains an important consideration in understanding and slowing glioma growth.
Collapse
Affiliation(s)
- Susan Christine Massey
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Russell C Rockne
- Division of Mathematical Oncology, Department of Information Sciences, City of Hope, Duarte, CA, USA
| | - Andrea Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jill Gallaher
- Integrative Mathematical Oncology, Moffitt Cancer Research Center, Tampa, FL, USA
| | | | - Peter Canoll
- Division of Neuropathology, Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA
| | - Kristin R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA
| |
Collapse
|
150
|
DeBay DR, Reid GA, Macdonald IR, Mawko G, Burrell S, Martin E, Bowen CV, Darvesh S. Butyrylcholinesterase-knockout reduces fibrillar β-amyloid and conserves 18FDG retention in 5XFAD mouse model of Alzheimer's disease. Brain Res 2017; 1671:102-110. [PMID: 28729192 DOI: 10.1016/j.brainres.2017.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder causing dementia. One hallmark of the AD brain is the deposition of β-amyloid (Aβ) plaques. AD is also a state of cholinergic dysfunction and butyrylcholinesterase (BChE) associates with Aβ pathology. A transgenic mouse (5XFAD) is an aggressive amyloidosis model, producing Aβ plaques with which BChE also associates. A derived strain (5XFAD/BChE-KO), with the BChE gene knocked out, has significantly lower fibrillar Aβ than 5XFAD mice at the same age. Therefore, BChE may have a role in Aβ pathogenesis. Furthermore, in AD, diminished glucose metabolism in the brain can be detected in vivo with positron emission tomography (PET) imaging following 2-deoxy-2-(18F)fluoro-D-glucose (18FDG) administration. To determine whether hypometabolism is related to BChE-induced changes in fibrillar Aβ burden, whole brain and regional uptake of 18FDG in 5XFAD and 5XFAD/BChE-KO mice was compared to corresponding wild-type (WT5XFAD and WTBChE-KO) strains at 5months. Diminished fibrillar Aβ burden was confirmed in 5XFAD/BChE-KO mice relative to 5XFAD. 5XFAD and 5XFAD/BChE-KO mice demonstrated reduction in whole brain 18FDG retention compared to respective wild-types. Regional analysis of relevant AD structures revealed reduction in 18FDG retention in 5XFAD mice in all brain regions analyzed (save cerebellum) compared to WT5XFAD. Alternatively, 5XFAD/BChE-KO mice demonstrated a more selective pattern of reduced retention in the cerebral cortex and thalamus compared to WTBChE-KO, while retention in hippocampal formation, amygdala and basal ganglia remained unchanged. This suggests that in knocking out BChE and reducing fibrillar Aβ, a possible protective effect on brain function may be conferred in a number of structures in 5XFAD/BChE-KO mice.
Collapse
Affiliation(s)
- Drew R DeBay
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Biomedical Translational Imaging Centre, Halifax, Nova Scotia, Canada
| | - George A Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ian R Macdonald
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - George Mawko
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Steve Burrell
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Earl Martin
- Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia B3M 2J6, Canada
| | - Chris V Bowen
- Biomedical Translational Imaging Centre, Halifax, Nova Scotia, Canada; Department of Radiology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Biomedical Translational Imaging Centre, Halifax, Nova Scotia, Canada; Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia B3M 2J6, Canada; Department of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|