101
|
Burmeister SS, Rodriguez Moncalvo VG, Pfennig KS. Monoaminergic integration of diet and social signals in the brains of juvenile spadefoot toads. ACTA ACUST UNITED AC 2017; 220:3135-3141. [PMID: 28659306 DOI: 10.1242/jeb.159954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/21/2017] [Indexed: 01/19/2023]
Abstract
Social behavior often includes the production of species-specific signals (e.g. mating calls or visual displays) that evoke context-dependent behavioral responses from conspecifics. Monoamines are important neuromodulators that have been implicated in context-dependent social behavior, yet we know little about the development of monoaminergic systems and whether they mediate the effects of early life experiences on adult behavior. We examined the effects of diet and social signals on monoamines early in development in the plains spadefoot toad (Spea bombifrons), a species in which diet affects the developmental emergence of species recognition and body condition affects the expression of adult mating preferences. To do so, we manipulated the diet of juveniles for 6 weeks following metamorphosis and collected their brains 40 min following the presentation of either a conspecific or a heterospecific call. We measured levels of monoamines and their metabolites using high pressure liquid chromatography from tissue punches of the auditory midbrain (i.e. torus semicircularis), hypothalamus and preoptic area. We found that call type affected dopamine and noradrenaline signaling in the auditory midbrain and that diet affected dopamine and serotonin in the hypothalamus. In the preoptic area, we detected an interaction between diet and call type, indicating that diet modulates how the preoptic area integrates social information. Our results suggest that the responsiveness of monoamine systems varies across the brain and highlight preoptic dopamine and noradrenaline as candidates for mediating effects of early diet experience on later expression of social preferences.
Collapse
Affiliation(s)
- Sabrina S Burmeister
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA .,Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
102
|
Zhang W, Didehvar D, Wang G, Yi J, Gilbert ER, Cline MA. Anorexigenic effect of serotonin is associated with changes in hypothalamic nuclei activity in an avian model. Gen Comp Endocrinol 2017; 246:81-87. [PMID: 25963044 DOI: 10.1016/j.ygcen.2015.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/03/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022]
Abstract
The anorexigenic effect of serotonin (5HT) has been documented for decades; however, its central mechanism has not been fully elucidated, especially so in non-mammalian vertebrates. Therefore, we centrally injected 5HT to chicks and measured several appetite-associated parameters. Chicks that received central 5HT dose- and time-dependently decreased food intake while water intake was not affected. To determine which hypothalamic nuclei were associated with this effect c-Fos immunoreactivity was measured in appetite-associated nuclei. Only the ventromedial hypothalamus and arcuate nucleus were activated. Whole blood glucose was measured after 5HT injection but was not affected. From the hypothalamus, several appetite-associated mRNAs were measured by real-time PCR after 5HT injection but not one of these showed any difference in expression. Lastly, a comprehensive behavior analysis demonstrated that 5HT caused reducing pecking and increased deep rest. Together we interpret these results as exogenous 5HT injection causes short term satiety that is likely a secondary effect to an increase in the amount of time spent in deep rest.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Dillon Didehvar
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Jiaqing Yi
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
103
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
104
|
Melanocortin 4 receptor ligands modulate energy homeostasis through urocortin 1 neurons of the centrally projecting Edinger-Westphal nucleus. Neuropharmacology 2017; 118:26-37. [DOI: 10.1016/j.neuropharm.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 11/24/2022]
|
105
|
Chalvon-Demersay T, Blachier F, Tomé D, Blais A. Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Front Nutr 2017; 4:5. [PMID: 28373974 PMCID: PMC5357654 DOI: 10.3389/fnut.2017.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/01/2017] [Indexed: 01/26/2023] Open
Abstract
Obesity is an increasing major public health concern asking for dietary strategies to limit weight gain and associated comorbidities. In this review, we present animal models, particularly rats and mice, which have been extensively used by scientists to understand the consequences of diet quality on weight gain and health. Notably, modulation of dietary protein quantity and/or quality has been shown to exert huge effects on body composition homeostasis through the modulation of food intake, energy expenditure, and metabolic pathways. Interestingly, the perinatal window appears to represent a critical period during which the protein intake of the dam can impact the offspring’s weight gain and feeding behavior. Animal models are also widely used to understand the processes and mechanisms that contribute to obesity at different physiological and pathophysiological stages. An interesting example of such aspect is the situation of decreased estrogen level occurring at menopause, which is linked to weight gain and decreased energy expenditure. To study metabolic disorders associated with such situation, estrogen withdrawal in ovariectomized animal models to mimic menopause are frequently used. According to many studies, clear species-specific differences exist between rats and mice that need to be taken into account when results are extrapolated to humans.
Collapse
Affiliation(s)
- Tristan Chalvon-Demersay
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - François Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Anne Blais
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| |
Collapse
|
106
|
Silva LCA, Viana MB, Andrade JS, Souza MA, Céspedes IC, D'Almeida V. Tryptophan overloading activates brain regions involved with cognition, mood and anxiety. AN ACAD BRAS CIENC 2017; 89:273-283. [PMID: 28225852 DOI: 10.1590/0001-3765201720160177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/18/2016] [Indexed: 12/25/2022] Open
Abstract
Tryptophan is the only precursor of serotonin and mediates serotonergic activity in the brain. Previous studies have shown that the administration of tryptophan or tryptophan depletion significantly alters cognition, mood and anxiety. Nevertheless, the neurobiological alterations that follow these changes have not yet been fully investigated. The aim of this study was to verify the effects of a tryptophan-enriched diet on immunoreactivity to Fos-protein in the rat brain. Sixteen male Wistar rats were distributed into two groups that either received standard chow diet or a tryptophan-enriched diet for a period of thirty days. On the morning of the 31st day, animals were euthanized and subsequently analyzed for Fos-immunoreactivity (Fos-ir) in the dorsal and median raphe nuclei and in regions that receive serotonin innervation from these two brain areas. Treatment with a tryptophan-enriched diet increased Fos-ir in the prefrontal cortex, nucleus accumbens, paraventricular hypothalamus, arcuate and ventromedial hypothalamus, dorsolateral and dorsomedial periaqueductal grey and dorsal and median raphe nucleus. These observations suggest that the physiological and behavioral alterations that follow the administration of tryptophan are associated with the activation of brain regions that regulate cognition and mood/anxiety-related responses.
Collapse
Affiliation(s)
- Luana C A Silva
- 1Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 3º andar, 04023-062 São Paulo, SP, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim, 136, 3º andar, 11060-001 Santos, SP, Brazil
| | - José S Andrade
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim, 136, 3º andar, 11060-001 Santos, SP, Brazil
| | - Melyssa A Souza
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim, 136, 3º andar, 11060-001 Santos, SP, Brazil
| | - Isabel C Céspedes
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim, 136, 3º andar, 11060-001 Santos, SP, Brazil
| | - Vânia D'Almeida
- 1Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 3º andar, 04023-062 São Paulo, SP, Brazil
| |
Collapse
|
107
|
Versteeg RI, Koopman KE, Booij J, Ackermans MT, Unmehopa UA, Fliers E, la Fleur SE, Serlie MJ. Serotonin Transporter Binding in the Diencephalon Is Reduced in Insulin-Resistant Obese Humans. Neuroendocrinology 2017; 105:141-149. [PMID: 27626923 PMCID: PMC5637289 DOI: 10.1159/000450549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/02/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Altered brain dopaminergic and serotonergic pathways have been shown in obese rodents and humans, but it is unknown whether this is related to obesity per se or to the metabolic derangements associated with obesity. METHODS We performed a case-control study in insulin-sensitive obese (ISO) and insulin-resistant obese (IRO) subjects (n = 12) and age-matched lean controls (n = 8) and measured serotonin transporter (SERT) binding in the whole diencephalon and specifically in the hypothalamus, as well as dopamine transporter (DAT) binding in the striatum using 123I- FP-CIT single-photon emission computed tomography. We assessed insulin sensitivity using the homeostatic model assessment of insulin resistance. RESULTS BMI did not differ between the IRO and ISO subjects. SERT binding in the diencephalon was significantly lower in IRO than in ISO subjects, but was not different between lean and obese subjects. SERT binding in the hypothalamus tended to be reduced in obese versus lean subjects, but was not different between IRO and ISO subjects. Striatal DAT binding was similar between lean and obese subjects as well as between ISO and IRO subjects. CONCLUSIONS We conclude that SERT binding in the diencephalon is reduced in insulin-resistant subjects independently of body weight, while hypothalamic SERT binding tends to be lower in obesity, with no difference between insulin-resistant and insulin-sensitive subjects. This suggests that the metabolic perturbations associated with obesity independently affect SERT binding within the diencephalon.
Collapse
Affiliation(s)
| | | | | | - Mariëtte T. Ackermans
- Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Mireille J. Serlie
- Department of Endocrinology and Metabolism
- *Mireille J. Serlie, Academic Medical Center, University of Amsterdam, Meibergdreef 9, NL-1105 AZ Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
108
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
109
|
Garfield AS, Davies JR, Burke LK, Furby HV, Wilkinson LS, Heisler LK, Isles AR. Increased alternate splicing of Htr2c in a mouse model for Prader-Willi syndrome leads disruption of 5HT 2C receptor mediated appetite. Mol Brain 2016; 9:95. [PMID: 27931246 PMCID: PMC5144496 DOI: 10.1186/s13041-016-0277-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022] Open
Abstract
Alternate splicing of serotonin (5-hydroxytryptamine; 5-HT) 2C receptor (5-HT2CR) pre-RNA is negatively regulated by the small nucleolar RNA, Snord115, loss of which is observed in nearly all individuals with Prader-Willi Syndrome (PWS), a multigenic disorder characterised by hyperphagia and obesity. Given the role of the 5-HT2CR in the regulation of ingestive behaviour we investigated the pathophysiological implications of Snord115 deficiency on 5-HT2CR regulated appetite in a genotypically relevant PWS mouse model (PWS-IC). Specifically, we demonstrate that loss of Snord115 expression is associated with increased levels of hypothalamic truncated 5-HT2CR pre-mRNA. The 5-HT2CR promotes appetite suppression via engagement of the central melanocortin system. Pro-opiomelancortin (Pomc) mRNA levels within the arcuate nucleus of the hypothalamus (ARC) were reduced in PWS-IC mice. We then went on to assess the functional consequences of these molecular changes, demonstrating that PWS-IC mice are unresponsive to an anorectic doses of a 5-HT2CR agonist and that this is associated with attenuated activation of POMC neurons within the ARC. These data provide new insight into the significance of Htr2c pre-mRNA processing to the physiological regulation of appetite and potentially the pathological manifestation of hyperphagia in PWS. Furthermore, these findings have translational relevance for individuals with PWS who may seek to control appetite with another 5-HT2CR agonist, the new obesity treatment lorcaserin.
Collapse
Affiliation(s)
- Alastair S Garfield
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.,Present address: Cardiovascular and Metabolic Disease, Pfizer, Cambridge, MA, 02139, USA
| | - Jennifer R Davies
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine and Pscyhology, Cardiff University, Cardiff, UK
| | - Luke K Burke
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Hannah V Furby
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine and Pscyhology, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine and Pscyhology, Cardiff University, Cardiff, UK
| | - Lora K Heisler
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine and Pscyhology, Cardiff University, Cardiff, UK.
| |
Collapse
|
110
|
Luo M, Li Y, Zhong W. Do dorsal raphe 5-HT neurons encode “beneficialness”? Neurobiol Learn Mem 2016; 135:40-49. [DOI: 10.1016/j.nlm.2016.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
111
|
Salvi V, Mencacci C, Barone-Adesi F. H1-histamine receptor affinity predicts weight gain with antidepressants. Eur Neuropsychopharmacol 2016; 26:1673-7. [PMID: 27593622 DOI: 10.1016/j.euroneuro.2016.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/23/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
Weight gain and metabolic abnormalities are extensively found in patients taking psychotropic medications. Although mainly antipsychotics have been implicated, also antidepressants carry the potential to induce weight gain, with tricyclics and mirtazapine being associated with the greatest weight gain. It has been suggested that this could be due to the different ability of antidepressants to block adrenergic, cholinergic, and histaminergic postsynaptic receptors. To date, however, the link between antidepressant-induced weight gain and their receptor affinity profile has not been established. We reanalysed data from a previous meta-analysis to evaluate whether weight change is associated with specific receptor affinity of antidepressants. We retrieved data from the only meta-analysis that assessed weight change with antidepressants. We searched in the Psychoactive Drug Screening Program (PDSP) Ki database data on the affinities of antidepressants to receptors hypothetically linked with weight change: H1-histamine, 5HT2c, M3-muscarinic, and α1A-adrenergic receptors. The association between weight change and receptor affinities was estimated using meta-regression. We found a significant association between the affinity of antidepressants to H1-receptor and weight gain (p value: <0.001). An association between weight gain and receptor affinity was also observed in the models for 5HT2c, M3, and α1A receptors. However, the association disappeared when H1-receptor was included in the models. This reanalysis of data demonstrates that anti-histaminergic activity is the strongest predictor of weight gain with antidepressants. These results further stress a reclassification of antidepressants according to their pharmacodynamic properties, and suggest avoiding prescribing antidepressants with an anti-histaminergic profile to patients at risk for cardio-metabolic disturbances.
Collapse
Affiliation(s)
- Virginio Salvi
- Department of Neuroscience, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Claudio Mencacci
- Department of Neuroscience, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | |
Collapse
|
112
|
Hardaway JA, Jensen J, Kim M, Mazzone CM, Sugam JA, Diberto JF, Lowery-Gionta EG, Hwa LS, Pleil KE, Bulik CM, Kash TL. Nociceptin receptor antagonist SB 612111 decreases high fat diet binge eating. Behav Brain Res 2016; 307:25-34. [PMID: 27036650 PMCID: PMC4896639 DOI: 10.1016/j.bbr.2016.03.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Binge eating is a dysregulated form of feeding behavior that occurs in multiple eating disorders including binge-eating disorder, the most common eating disorder. Feeding is a complex behavioral program supported through the function of multiple brain regions and influenced by a diverse array of receptor signaling pathways. Previous studies have shown the overexpression of the opioid neuropeptide nociceptin (orphanin FQ, N/OFQ) can induce hyperphagia, but the role of endogenous nociceptin receptor (NOP) in naturally occurring palatability-induced hyperphagia is unknown. In this study we adapted a simple, replicable form of binge eating of high fat food (HFD). We found that male and female C57BL/6J mice provided with daily one-hour access sessions to HFD eat significantly more during this period than those provided with continuous 24h access. This form of feeding is rapid and entrained. Chronic intermittent HFD binge eating produced hyperactivity and increased light zone exploration in the open field and light-dark assays respectively. Treatment with the potent and selective NOP antagonist SB 612111 resulted in a significant dose-dependent reduction in binge intake in both male and female mice, and, unlike treatment with the serotonin selective reuptake inhibitor fluoxetine, produced no change in total 24-h food intake. SB 612111 treatment also significantly decreased non-binge-like acute HFD consumption in male mice. These data are consistent with the hypothesis that high fat binge eating is modulated by NOP signaling and that the NOP system may represent a promising novel receptor to explore for the treatment of binge eating.
Collapse
Affiliation(s)
- J Andrew Hardaway
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jennifer Jensen
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Michelle Kim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Christopher M Mazzone
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jonathan A Sugam
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Jeffrey F Diberto
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Lara S Hwa
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Cynthia M Bulik
- UNC Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Nutrition, University of North Carolina at Chapel Hill, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, NC, USA; UNC Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
113
|
Lauffer L, Glas E, Gudermann T, Breit A. Endogenous 5-HT2C Receptors Phosphorylate the cAMP Response Element Binding Protein via Protein Kinase C-Promoted Activation of Extracellular-Regulated Kinases-1/2 in Hypothalamic mHypoA-2/10 Cells. J Pharmacol Exp Ther 2016; 358:39-49. [PMID: 27189964 DOI: 10.1124/jpet.116.232397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/25/2016] [Indexed: 02/01/2023] Open
Abstract
Serotonin 5-HT2C receptors (5-HT2CR) activate Gq proteins and are expressed in the central nervous system (CNS). 5-HT2CR regulate emotion, feeding, reward, or cognition and may serve as promising drug targets to treat psychiatric disorders or obesity. Owing to technical difficulties in isolating cells from the CNS and the lack of suitable cell lines endogenously expressing 5-HT2CR, our knowledge about this receptor subtype in native environments is rather limited. The hypothalamic mHypoA-2/10 cell line was recently established and resembles appetite-regulating hypothalamic neurons of the paraventricular nucleus (PVN), where 5-HT2CR have been detected in vivo. Therefore, we tested mHypoA-2/10 cells for endogenous 5-HT2CR expression. Serotonin or the 5-HT2CR preferential agonist WAY-161,503 initiated cAMP response element (CRE)-dependent gene transcription with EC50 values of 15.5 ± 9.8 and 1.1 ± 0.9 nM, respectively. Both responses were blocked by two unrelated 5-HT2CR-selective antagonists (SB-242,084, RS-102,221) but not by a 5-HT2AR (EMD-281,014) or 5-HT2BR (RS-127,455) antagonists. By single-cell calcium imaging, we found that serotonin and WAY-161,503 induced robust calcium transients, which were also blunted by both 5-HT2CR antagonists. Additionally we revealed, first, that 5-HT2CR induced CRE activation via protein kinase C (PKC)-mediated engagement of extracellular-regulated kinases-1/2 and, second, that intrinsic activity of WAY-161,503 was in the range of 0.3-0.5 compared with serotonin, defining the frequently used 5-HT2CR agonist as a partial agonist of endogenous 5-HT2CR. In conclusion, we have shown that hypothalamic mHypoA-2/10 cells endogenously express 5-HT2CR and thus are the first cell line in which to analyze 5-HT2CR pharmacology, signaling, and regulation in its natural environment.
Collapse
Affiliation(s)
- Lisa Lauffer
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Evi Glas
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
114
|
Dwarkasing JT, Marks DL, Witkamp RF, van Norren K. Hypothalamic inflammation and food intake regulation during chronic illness. Peptides 2016; 77:60-6. [PMID: 26158772 DOI: 10.1016/j.peptides.2015.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/14/2015] [Accepted: 06/22/2015] [Indexed: 02/08/2023]
Abstract
Anorexia is a common symptom in chronic illness. It contributes to malnutrition and strongly affects survival and quality of life. A common denominator of many chronic diseases is an elevated inflammatory status, which is considered to play a pivotal role in the failure of food-intake regulating systems in the hypothalamus. In this review, we summarize findings on the role of hypothalamic inflammation on food intake regulation involving hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC). Furthermore, we outline the role of serotonin in the inability of these peptide based food-intake regulating systems to respond and adapt to changes in energy metabolism during chronic disease.
Collapse
Affiliation(s)
- J T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | - D L Marks
- Department of Pediatric Endocrinology, Oregon Health & Sciences University, Portland, OR 97201, USA
| | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - K van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
115
|
Martin-Gronert MS, Stocker CJ, Wargent ET, Cripps RL, Garfield AS, Jovanovic Z, D'Agostino G, Yeo GSH, Cawthorne MA, Arch JRS, Heisler LK, Ozanne SE. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats. Dis Model Mech 2016; 9:401-12. [PMID: 26769798 PMCID: PMC4852506 DOI: 10.1242/dmm.023903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.
Collapse
Affiliation(s)
- Malgorzata S Martin-Gronert
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Claire J Stocker
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Edward T Wargent
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Roselle L Cripps
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Zorica Jovanovic
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Giles S H Yeo
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Michael A Cawthorne
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Jonathan R S Arch
- Clore Laboratory, Buckingham Institute for Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Lora K Heisler
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Susan E Ozanne
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
116
|
Patel DD, Galarneau D. Serotonin Syndrome With Fluoxetine: Two Case Reports. Ochsner J 2016; 16:554-557. [PMID: 27999518 PMCID: PMC5158166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Serotonin syndrome is a rare but serious complication of treatment with serotonergic agents. In its severe manifestations, death can ensue. Early recognition and aggressive management are crucial to mitigating the syndrome. Often the presentation can be subtle and easy to miss. CASE REPORTS We present 2 cases of serotonin syndrome seen in the psychiatric consultation service of a busy academic hospital. Both patients had favorable outcomes because of early recognition and aggressive management. CONCLUSION Physicians should carefully consider and rule out the clinical diagnosis of serotonin syndrome when presented with an agitated or confused patient who is taking serotonergic agents.
Collapse
Affiliation(s)
| | - David Galarneau
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
- Department of Psychiatry, Ochsner Clinic Foundation, New Orleans, LA
| |
Collapse
|
117
|
A refined high carbohydrate diet is associated with changes in the serotonin pathway and visceral obesity. Genet Res (Camb) 2015; 97:e23. [PMID: 26707058 DOI: 10.1017/s0016672315000233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Consumption of palatable foods high in refined carbohydrate has been implicated as a contributing factor to the epidemic levels of obesity. Such foods may disrupt appetite regulation in the hypothalamus through alterations in hunger and satiety signalling. This investigation examined whether a palatable high refined carbohydrate (HRC) diet with the potential to induce obesity was linked to modulation of serotonin and dopamine signalling within the hypothalamus of rats. Male Wistar rats were allowed ad libitum access to either a palatable refined carbohydrate enriched (HRC) diet or standard chow (SC). Visceral fat percentage was used as a measure of the animals' weight gain during the trial. Real-time PCR was applied to determine any variation in levels of expression of the serotonin (Slc6A4 or Sert) and dopamine transporter (Slc6A3 or Dat) genes. After 29 weeks, the HRC group showed a significant increase in visceral fat percentage accompanied by increased expression of Sert. Higher levels of circulating triglycerides were also seen. This investigation determined that a refined high carbohydrate diet is associated with visceral obesity, increased circulating lipids in the blood and distorted serotonergic signalling, which possibly alters satiety and hunger signals.
Collapse
|
118
|
Namkung J, Kim H, Park S. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis. Mol Cells 2015; 38:1023-8. [PMID: 26628041 PMCID: PMC4696992 DOI: 10.14348/molcells.2015.0258] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 12/22/2022] Open
Abstract
Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment.
Collapse
Affiliation(s)
- Jun Namkung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141,
Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141,
Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Medicine, Catholic Kwandong University, Gangwon 25601,
Korea
| |
Collapse
|
119
|
Morandini L, Ramallo MR, Moreira RG, Höcht C, Somoza GM, Silva A, Pandolfi M. Serotonergic outcome, stress and sexual steroid hormones, and growth in a South American cichlid fish fed with an L-tryptophan enriched diet. Gen Comp Endocrinol 2015; 223:27-37. [PMID: 26449161 DOI: 10.1016/j.ygcen.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/11/2015] [Accepted: 10/04/2015] [Indexed: 11/24/2022]
Abstract
Reared animals for edible or ornamental purposes are frequently exposed to high aggression and stressful situations. These factors generally arise from conspecifics in densely breeding conditions. In vertebrates, serotonin (5-HT) has been postulated as a key neuromodulator and neurotransmitter involved in aggression and stress. The essential amino acid L-tryptophan (trp) is crucial for the synthesis of 5-HT, and so, leaves a gateway for indirectly augmenting brain 5-HT levels by means of a trp-enriched diet. The cichlid fish Cichlasoma dimerus, locally known as chanchita, is an autochthonous, potentially ornamental species and a fruitful laboratory model which behavior and reproduction has been studied over the last 15years. It presents complex social hierarchies, and great asymmetries between subordinate and dominant animals in respect to aggression, stress, and reproductive chance. The first aim of this work was to perform a morphological description of chanchita's brain serotonergic system, in both males and females. Then, we evaluated the effects of a trp-supplemented diet, given during 4weeks, on brain serotonergic activity, stress and sexual steroid hormones, and growth in isolated specimens. Results showed that chanchita's brain serotonergic system is composed of several populations of neurons located in three main areas: pretectum, hypothalamus and raphe, with no clear differences between males and females at a morphological level. Animals fed with trp-enriched diets exhibited higher forebrain serotonergic activity and a significant reduction in their relative cortisol levels, with no effects on sexual steroid plasma levels or growth parameters. Thus, this study points to food trp enrichment as a "neurodietary'' method for elevating brain serotonergic activity and decreasing stress, without affecting growth or sex steroid hormone levels.
Collapse
Affiliation(s)
- Leonel Morandini
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE e IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güirlades 2160, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Roberto Ramallo
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE e IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güirlades 2160, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências-USP, Rua do Matão, travessa 14, n.321, sala 220 CidadeUniversitária, São Paulo, Brazil
| | - Christian Höcht
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
| | - Gustavo Manuel Somoza
- IIB-INTECH (CONICET-UNSAM), Av. Intendente Marino km 8.2 (B 7130IWA) Chascomús, Buenos Aires, Argentina
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE e IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güirlades 2160, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
120
|
Current Perspectives on Long-term Obesity Pharmacotherapy. Can J Diabetes 2015; 40:184-91. [PMID: 26507402 DOI: 10.1016/j.jcjd.2015.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/06/2015] [Accepted: 07/20/2015] [Indexed: 01/17/2023]
Abstract
Approximately 1 in 4 adult Canadians are obese and, thus, are at an elevated risk for developing type 2 diabetes, cardiovascular disease and other conditions. Current treatment guidelines recommend that obese individuals lose 5% to 10% of their starting weights to minimize the risk factors for cardiovascular disease and reduce the risk for developing type 2 diabetes or hypertension. All obesity-management strategies involve lifestyle management, but few patients will lose a significant amount of weight and manage to keep it off over the long term using just this strategy. Bariatric surgery is associated with significant long-term weight loss but is restricted to subjects with very high body mass indices, who often wait many years to undergo the procedure. Recent breakthroughs in understanding the mechanisms underlying the development and maintenance of elevated body fat have led to the arrival of new obesity pharmacotherapies. These novel antiobesity therapies, which work by reducing energy intake or through increasing satiety, decreasing hunger, or reducing absorption of calories, may be used indefinitely once patients have demonstrated significant responses (usually defined as ≥5% weight loss) over the first 12 weeks of treatment. To date, 2 long-term obesity pharmacotherapies have been approved and are available in Canada: liraglutide and orlistat. Here, I summarize the mechanisms and clinical features of medications for long-term obesity management that are available in Canada, as well as those available in other jurisdictions or are currently in development.
Collapse
|
121
|
Derkach KV, Kuznetsova LA, Sharova TS, Ignat’eva PA, Bondareva VM, Shpakov AO. The effect of prolonged metformin treatment on the activity of the adenylyl cyclase system and NO-synthase in the brain and myocardium of obese rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x1505003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
122
|
Albin S, Kaun K, Knapp JM, Chung P, Heberlein U, Simpson J. A Subset of Serotonergic Neurons Evokes Hunger in Adult Drosophila. Curr Biol 2015; 25:2435-40. [DOI: 10.1016/j.cub.2015.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 07/01/2015] [Accepted: 08/04/2015] [Indexed: 01/18/2023]
|
123
|
Trapp S, Cork SC. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. Am J Physiol Regul Integr Comp Physiol 2015; 309:R795-804. [PMID: 26290108 DOI: 10.1152/ajpregu.00333.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/13/2015] [Indexed: 01/28/2023]
Abstract
Within the brain, glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Additionally, GLP-1 influences the mesolimbic reward system to modulate the rewarding properties of palatable food. GLP-1 is produced in the gut and by hindbrain preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarii (NTS) and medullary intermediate reticular nucleus. Transgenic mice expressing glucagon promoter-driven yellow fluorescent protein revealed that PPG neurons not only project to central autonomic control regions and mesolimbic reward centers, but also strongly innervate spinal autonomic neurons. Therefore, these brain stem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to sympathetic preganglionic neurons. Electrical recordings from PPG neurons in vitro have revealed that they receive synaptic inputs from vagal afferents entering via the solitary tract. Vagal afferents convey satiation to the brain from signals like postprandial gastric distention or activation of peripheral GLP-1 receptors. CCK and leptin, short- and long-term satiety peptides, respectively, increased the electrical activity of PPG neurons, while ghrelin, an orexigenic peptide, had no effect. These findings indicate that satiation is a main driver of PPG neuronal activation. They also show that PPG neurons are in a prime position to respond to both immediate and long-term indicators of energy and feeding status, enabling regulation of both energy balance and general autonomic homeostasis. This review discusses the question of whether PPG neurons, rather than gut-derived GLP-1, are providing the physiological substrate for the effects elicited by central nervous system GLP-1 receptor activation.
Collapse
Affiliation(s)
- Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Simon C Cork
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
124
|
Alciati A, Caldirola D, Foschi D, Perna G. Psychiatric Disorders and Childhood Parental Loss in Obesity: Relationship with the Mode of Weight Gain. JOURNAL OF LOSS & TRAUMA 2015. [DOI: 10.1080/15325024.2015.1075796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
125
|
The Food Contaminant Mycotoxin Deoxynivalenol Inhibits the Swallowing Reflex in Anaesthetized Rats. PLoS One 2015; 10:e0133355. [PMID: 26192767 PMCID: PMC4507856 DOI: 10.1371/journal.pone.0133355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/26/2015] [Indexed: 12/04/2022] Open
Abstract
Deoxynivalenol (DON), one of the most abundant mycotoxins found on cereals, is known to be implicated in acute and chronic illnesses in both humans and animals. Among the symptoms, anorexia, reduction of weight gain and decreased nutrition efficiency were described, but the mechanisms underlying these effects on feeding behavior are not yet totally understood. Swallowing is a major motor component of ingestive behavior which allows the propulsion of the alimentary bolus from the mouth to the esophagus. To better understand DON effects on ingestive behaviour, we have studied its effects on rhythmic swallowing in the rat, after intravenous and central administration. Repetitive electrical stimulation of the superior laryngeal nerve or of the tractus solitarius, induces rhythmic swallowing that can be recorded using electromyographic electrodes inserted in sublingual muscles. Here we provide the first demonstration that, after intravenous and central administration, DON strongly inhibits the swallowing reflex with a short latency and in a dose dependent manner. Moreover, using c-Fos staining, a strong neuronal activation was observed in the solitary tract nucleus which contains the central pattern generator of swallowing and in the area postrema after DON intravenous injection. Our data show that DON modifies swallowing and interferes with central neuronal networks dedicated to food intake regulation.
Collapse
|
126
|
Brosda J, Müller N, Bert B, Fink H. Modulatory Role of Postsynaptic 5-Hydroxytryptamine Type 1A Receptors in (±)-8-Hydroxy-N,N-dipropyl-2-aminotetralin-Induced Hyperphagia in Mice. ACS Chem Neurosci 2015; 6:1176-85. [PMID: 25781502 DOI: 10.1021/cn5003094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brain serotonin (5-HT) is involved in the control of food intake. The ingestive effects of 5-HT are mediated by various receptor subtypes, among others the 5-HT1A receptor. While the involvement of presynaptic 5-HT1A receptors is regarded as certain, the role of postsynaptic 5-HT1A receptors is rather vague. Here, we studied the role of the 5-HT1A receptor on feeding in non-food-deprived and food-deprived (young adult and adult, both sexes) wild-type NMRI mice as well as transgenic NMRI mice, which are characterized by a distinct overexpression of postsynaptic 5-HT1A receptors. The known hyperphagic effect of the 5-HT1A receptor full agonist 8-OH-DPAT ((±)-8-hydroxy-N,N-dipropyl-2-aminotetralin) in non-food-deprived animals was demonstrated in male NMRI wild-type mice and could be antagonized by the selective 5-HT1A receptor antagonist WAY100635. In transgenic mice, this hyperphagic response was induced at lower doses, with an earlier onset and even in females. However, in adult male transgenic mice, the hyperphagic effect did not occur. In food-deprived NMRI wild-type as well as transgenic mice, 8-OH-DPAT first induced a hypophagic and subsequently a hyperphagic effect. Again, in transgenic animals most responses occurred at lower doses and with an earlier onset. The results indicate that postsynaptic 5-HT1A receptors exert a modulatory function in food intake in free-feeding and fasted mice, which for the first time shows an involvement of postsynaptic 5-HT1A receptors in feeding behavior. Understanding the function of pre- and postsynaptic 5-HT1A receptors may help to achieve new insights into the regulation of food intake and foster prospective treatment strategies for eating disorders.
Collapse
Affiliation(s)
- Jan Brosda
- Freie Universität Berlin, Institute of Pharmacology and Toxicology,
School of Veterinary Medicine, 14195 Berlin, Germany
| | - Nadine Müller
- Freie Universität Berlin, Institute of Pharmacology and Toxicology,
School of Veterinary Medicine, 14195 Berlin, Germany
| | - Bettina Bert
- Freie Universität Berlin, Institute of Pharmacology and Toxicology,
School of Veterinary Medicine, 14195 Berlin, Germany
| | - Heidrun Fink
- Freie Universität Berlin, Institute of Pharmacology and Toxicology,
School of Veterinary Medicine, 14195 Berlin, Germany
| |
Collapse
|
127
|
Kurhe Y, Mahesh R. Ondansetron attenuates co-morbid depression and anxiety associated with obesity by inhibiting the biochemical alterations and improving serotonergic neurotransmission. Pharmacol Biochem Behav 2015; 136:107-16. [PMID: 26188166 DOI: 10.1016/j.pbb.2015.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/05/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
In our earlier study we reported the antidepressant activity of ondansetron in obese mice. The present study investigates the effect of ondansetron on depression and anxiety associated with obesity in experimental mice with biochemical evidences. Male Swiss albino mice were fed with high fat diet (HFD) for 14weeks to induce obesity. Then the subsequent treatment with ondansetron (0.5 and 1mg/kg, p.o.), classical antidepressant escitalopram (ESC) (10mg/kg, p.o.) and vehicle (distilled water 10ml/kg, p.o.) was given once daily for 28days. Behavioral assay for depression including sucrose preference test, forced swim test (FST) and anxiety such as light dark test (LDT) and hole board test (HBT) were performed in obese mice. Furthermore, in biochemical estimations oral glucose tolerance test (OGTT), plasma leptin, insulin, corticosterone, brain oxidative stress marker malonaldehyde (MDA), antioxidant reduced glutathione (GSH) and serotonin assays were performed. Results indicated that HFD fed obese mice showed severe depressive and anxiety-like behaviors. Chronic treatment with ondansetron inhibited the co-morbid depression and anxiety in obese mice by increasing sucrose consumption in sucrose preference test and reducing the immobility time in FST, increasing time and transitions of light chamber in LDT, improving head dip and crossing scores in HBT compared to HFD control mice. Ondansetron in obese mice inhibited glucose sensitivity in OGTT, improved plasma leptin and insulin sensitivity, reversed hypothalamic pituitary adrenal (HPA) axis hyperactivity by reducing the corticosterone concentration, restored brain pro-oxidant/anti-oxidant balance by inhibiting MDA and elevating GSH concentrations and facilitated serotonergic neurotransmission. In conclusion, ondansetron reversed the co-morbid depression and anxiety associated with obesity in experimental mice by attenuating the behavioral and biochemical abnormalities.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India.
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India
| |
Collapse
|
128
|
Association of Body Mass Index with Depression, Anxiety and Suicide-An Instrumental Variable Analysis of the HUNT Study. PLoS One 2015; 10:e0131708. [PMID: 26167892 PMCID: PMC4500562 DOI: 10.1371/journal.pone.0131708] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/04/2015] [Indexed: 11/19/2022] Open
Abstract
Objective While high body mass index is associated with an increased risk of depression and anxiety, cumulative evidence indicates that it is a protective factor for suicide. The associations from conventional observational studies of body mass index with mental health outcomes are likely to be influenced by reverse causality or confounding by ill-health. In the present study, we investigated the associations between offspring body mass index and parental anxiety, depression and suicide in order to avoid problems with reverse causality and confounding by ill-health. Methods We used data from 32,457 mother-offspring and 27,753 father-offspring pairs from the Norwegian HUNT-study. Anxiety and depression were assessed using the Hospital Anxiety and Depression Scale and suicide death from national registers. Associations between offspring and own body mass index and symptoms of anxiety and depression and suicide mortality were estimated using logistic and Cox regression. Causal effect estimates were estimated with a two sample instrument variable approach using offspring body mass index as an instrument for parental body mass index. Results Both own and offspring body mass index were positively associated with depression, while the results did not indicate any substantial association between body mass index and anxiety. Although precision was low, suicide mortality was inversely associated with own body mass index and the results from the analysis using offspring body mass index supported these results. Adjusted odds ratios per standard deviation body mass index from the instrumental variable analysis were 1.22 (95% CI: 1.05, 1.43) for depression, 1.10 (95% CI: 0.95, 1.27) for anxiety, and the instrumental variable estimated hazard ratios for suicide was 0.69 (95% CI: 0.30, 1.63). Conclusion The present study’s results indicate that suicide mortality is inversely associated with body mass index. We also found support for a positive association between body mass index and depression, but not for anxiety.
Collapse
|
129
|
Stanquini LA, Resstel LBM, Corrêa FMA, Joca SRL, Scopinho AA. Prelimbic cortex 5-HT1A and 5-HT2C receptors are involved in the hypophagic effects caused by fluoxetine in fasted rats. Pharmacol Biochem Behav 2015; 136:31-8. [PMID: 26143050 DOI: 10.1016/j.pbb.2015.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/20/2022]
Abstract
The regulation of food intake involves a complex interplay between the central nervous system and the activity of organs involved in energy homeostasis. Besides the hypothalamus, recognized as the center of this regulation, other structures are involved, especially limbic regions such as the ventral medial prefrontal cortex (vMPFC). Monoamines, such as serotonin (5-HT), play an important role in appetite regulation. However, the effect in the vMPFC of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on food intake has not been studied. The aim of the present study was to study the effects on food intake of fed and fasted rats evoked by fluoxetine injection into the prelimbic cortex (PL), a sub-region of the vMPFC, or given systemically, and which 5-HT receptors in the PL are involved in fluoxetine responses. Fluoxetine was injected into the PL or given systemically in male Wistar rats. Independent groups of rats were pretreated with intra-PL antagonists of 5-HT receptors: 5-HT1A (WAY100635), 5-HT2C (SB242084) or 5-HT1B (SB216641). Fluoxetine (0.1; 1; 3; 10nmol/200nL) injected into the PL induced a dose-dependent hypophagic effect in fasted rats. This effect was reversed by prior local treatment with WAY100635 (1; 10nmol) or SB242084 (1; 10nmol), but not with SB216641 (0.2; 2.5; 10nmol). Systemic fluoxetine induced a hypophagic effect, which was blocked by intra-PL 5-HT2C antagonist (10nmol) administration. Our findings suggest that PL 5-HT neurotransmission modulates the central control of food intake and 5-HT1A and 5-HT2C receptors in the PL could be potential targets for the action of fluoxetine.
Collapse
Affiliation(s)
- Laura A Stanquini
- Laboratory of Pharmacology, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leonardo B M Resstel
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, SP, Brazil
| | - Fernando M A Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Laboratory of Pharmacology, Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, SP, Brazil
| | - América A Scopinho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
130
|
Central 5-HT neurotransmission modulates weight loss following gastric bypass surgery in obese individuals. J Neurosci 2015; 35:5884-9. [PMID: 25855196 DOI: 10.1523/jneurosci.3348-14.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cerebral serotonin (5-HT) system shows distinct differences in obesity compared with the lean state. Here, it was investigated whether serotonergic neurotransmission in obesity is a stable trait or changes in association with weight loss induced by Roux-in-Y gastric bypass (RYGB) surgery. In vivo cerebral 5-HT2A receptor and 5-HT transporter binding was determined by positron emission tomography in 21 obese [four men; body mass index (BMI), 40.1 ± 4.1 kg/m(2)] and 10 lean (three men; BMI, 24.6 ± 1.5 kg/m(2)) individuals. Fourteen obese individuals were re-examined after RYGB surgery. First, it was confirmed that obese individuals have higher cerebral 5-HT2A receptor binding than lean individuals. Importantly, we found that higher presurgical 5-HT2A receptor binding predicted greater weight loss after RYGB and that the change in 5-HT2A receptor and 5-HT transporter binding correlated with weight loss after RYGB. The changes in the 5-HT neurotransmission before and after RYGB are in accordance with a model wherein the cerebral extracellular 5-HT level modulates the regulation of body weight. Our findings support that the cerebral 5-HT system contributes both to establish the obese condition and to regulate the body weight in response to RYGB.
Collapse
|
131
|
Burke LK, Heisler LK. 5-hydroxytryptamine medications for the treatment of obesity. J Neuroendocrinol 2015; 27:389-98. [PMID: 25925636 DOI: 10.1111/jne.12287] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
The central 5-hydroxytryptamine (5-HT; serotonin) system represents a fundamental component of the brain's control of energy homeostasis. Medications targeting the 5-HT pathway have been at the forefront of obesity treatment for the past 15 years. Pharmacological agents targeting 5-HT receptors (5-HTR), in combination with genetic models of 5-HTR manipulation, have uncovered a role for specific 5-HTRs in energy balance and reveal the 5-HT2 C R as the principal 5-HTR mediating this homeostatic process. Capitalising on this neurophysiological machinery, 5-HT2 C R agonists improve obesity and glycaemic control in patient populations. The underlying therapeutic mechanism has been probed using model systems and appears to be achieved primarily through 5-HT2 C R modulation of the brain melanocortin circuit via activation of pro-opiomelanocortin neurones signalling at melanocortin4 receptors. Thus, 5-HT2 C R agonists offer a means to improve obesity and type 2 diabetes, which are conditions that now represent global challenges to human health.
Collapse
Affiliation(s)
- L K Burke
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - L K Heisler
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
132
|
Li B, Shao D, Luo Y, Wang P, Liu C, Zhang X, Cui R. Role of 5-HT3 receptor on food intake in fed and fasted mice. PLoS One 2015; 10:e0121473. [PMID: 25789930 PMCID: PMC4366218 DOI: 10.1371/journal.pone.0121473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/16/2015] [Indexed: 12/15/2022] Open
Abstract
Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem.
Collapse
Affiliation(s)
- Bingjin Li
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Dongyuan Shao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yungang Luo
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Pu Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Changhong Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Xingyi Zhang
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
| | - Ranji Cui
- Jilin provincial key laboratory on molecular and chemical genetic, Second hospital of Jilin University, Changchun, 130024, China
- * E-mail:
| |
Collapse
|
133
|
Dwarkasing JT, Boekschoten MV, Argilès JM, van Dijk M, Busquets S, Penna F, Toledo M, Laviano A, Witkamp RF, van Norren K. Differences in food intake of tumour-bearing cachectic mice are associated with hypothalamic serotonin signalling. J Cachexia Sarcopenia Muscle 2015; 6:84-94. [PMID: 26136415 PMCID: PMC4435100 DOI: 10.1002/jcsm.12008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/11/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Anorexia is a common symptom among cancer patients and contributes to malnutrition and strongly impinges on quality of life. Cancer-induced anorexia is thought to be caused by an inability of food intake-regulating systems in the hypothalamus to respond adequately to negative energy balance during tumour growth. Here, we show that this impaired response of food-intake control is likely to be mediated by altered serotonin signalling and by failure in post-transcriptional neuropeptide Y (NPY) regulation. METHODS Two tumour cachectic mouse models with different food intake behaviours were used: a C26-colon adenocarcinoma model with increased food intake and a Lewis lung carcinoma model with decreased food intake. This contrast in food intake behaviour between tumour-bearing (TB) mice in response to growth of the two different tumours was used to distinguish between processes involved in cachexia and mechanisms that might be important in food intake regulation. The hypothalamus was used for transcriptomics (affymetrix chips). RESULTS In both models, hypothalamic expression of orexigenic NPY was significantly higher compared with controls, suggesting that this change does not directly reflect food intake status but might be linked to negative energy balance in cachexia. Expression of genes involved in serotonin signalling showed to be different between C26-TB mice and Lewis lung carcinoma-TB mice and was inversely associated with food intake. In vitro, using hypothalamic cell lines, serotonin repressed neuronal hypothalamic NPY secretion while not affecting messenger NPY expression, suggesting that serotonin signalling can interfere with NPY synthesis, transport, or secretion. CONCLUSIONS Altered serotonin signalling is associated with changes in food intake behaviour in cachectic TB mice. Serotonins' inhibitory effect on food intake under cancer cachectic conditions is probably via affecting the NPY system. Therefore, serotonin regulation might be a therapeutic target to prevent the development of cancer-induced eating disorders.
Collapse
Affiliation(s)
- Jvalini T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Joseph M Argilès
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | | | - Silvia Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | - Fabio Penna
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | - Miriam Toledo
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | | | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Klaske van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
134
|
Muti M, Del Grande C, Musetti L, Marazziti D, Turri M, Cirronis M, Pergentini I, Corsi M, Dell'Osso L, Corsini GU. Serum uric acid levels and different phases of illness in bipolar I patients treated with lithium. Psychiatry Res 2015; 225:604-8. [PMID: 25547850 DOI: 10.1016/j.psychres.2014.11.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 01/31/2023]
Abstract
Recent findings support the role of purinergic system dysfunction in the pathophysiology of bipolar disorder (BD). The present study aimed to evaluate the pattern of serum uric acid levels in a sample of 98 BD I patients followed-up prospectively in a naturalistic study and treated with lithium monotherapy or in association with other mood stabilizers (valproate or carbamazepine), in relation to different phases of illness and to pharmacological treatment. The results showed that uric acid levels were significantly higher in patients suffering from a manic/mixed episode, than in those euthymic or during a depressive phase. Further, these levels were related to the Clinical Global Impression-Bipolar Version (CGI-BP) scale score for the severity of manic symptoms. A positive correlation was found also with male sex and with serum lithium levels. These findings suggest that a dysregulation of the purinergic system may occur during manic/mixed episodes, and they support a possible role of serum uric acid levels as a state-dependent marker of BD manic phases.
Collapse
Affiliation(s)
- Matteo Muti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, Pisa, Italy
| | - Claudia Del Grande
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, Pisa, Italy
| | - Laura Musetti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, Pisa, Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, Pisa, Italy.
| | - Milo Turri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, Pisa, Italy
| | - Marco Cirronis
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, Pisa, Italy
| | - Irene Pergentini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, Pisa, Italy
| | - Martina Corsi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, Pisa, Italy
| | - Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Via Roma 67, Pisa, Italy
| | - Giovanni Umberto Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi 10, Pisa, Italy
| |
Collapse
|
135
|
Brain serotonin signaling does not determine sexual preference in male mice. PLoS One 2015; 10:e0118603. [PMID: 25706994 PMCID: PMC4338231 DOI: 10.1371/journal.pone.0118603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
It was reported recently that male mice lacking brain serotonin (5-HT) lose their preference for females (Liu et al., 2011, Nature, 472, 95–100), suggesting a role for 5-HT signaling in sexual preference. Regulation of sex preference by 5-HT lies outside of the well established roles in this behavior established for the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Presently, mice with a null mutation in the gene for tryptophan hydroxylase 2 (TPH2), which are depleted of brain 5-HT, were tested for sexual preference. When presented with inanimate (urine scents from male or estrous female) or animate (male or female mouse in estrus) sexual stimuli, TPH2-/- males show a clear preference for female over male stimuli. When a TPH2-/- male is offered the simultaneous choice between an estrous female and a male mouse, no sexual preference is expressed. However, when confounding behaviors that are seen among 3 mice in the same cage are controlled, TPH2-/- mice, like their TPH2+/+ counterparts, express a clear preference for female mice. Female TPH2-/- mice are preferred by males over TPH2+/+ females but this does not lead to increased pregnancy success. In fact, if one or both partners in a mating pair are TPH2-/- in genotype, pregnancy success rates are significantly decreased. Finally, expression of the VNO-specific cation channel TRPC2 and of CNGA2 in the MOE of TPH2-/- mice is normal, consistent with behavioral findings that sexual preference of TPH2-/- males for females is intact. In conclusion, 5-HT signaling in brain does not determine sexual preference in male mice. The use of pharmacological agents that are non-selective for the 5-HT neuronal system and that have serious adverse effects may have contributed historically to the stance that 5-HT regulates sexual behavior, including sex partner preference.
Collapse
|
136
|
Rogers SM, Ott SR. Differential activation of serotonergic neurons during short- and long-term gregarization of desert locusts. Proc Biol Sci 2015; 282:20142062. [PMID: 25520357 PMCID: PMC4298206 DOI: 10.1098/rspb.2014.2062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serotonin is a neurochemical with evolutionarily conserved roles in orchestrating nervous system function and behavioural plasticity. A dramatic example is the rapid transformation of desert locusts from cryptic asocial animals into gregarious crop pests that occurs when drought forces them to accumulate on dwindling resources, triggering a profound alteration of behaviour within just a few hours. The onset of crowding induces a surge in serotonin within their thoracic ganglia that is sufficient and necessary to induce the switch from solitarious to gregarious behaviour. To identify the neurons responsible, we have analysed how acute exposure to three gregarizing stimuli--crowding, touching the hind legs or seeing and smelling other locusts--and prolonged group living affect the expression of serotonin in individual neurons in the thoracic ganglia. Quantitative analysis of cell body immunofluorescence revealed three classes of neurons with distinct expressional responses. All ganglia contained neurons that responded to multiple gregarizing stimuli with increased expression. A second class showed increased expression only in response to intense visual and olfactory stimuli from conspecifics. Prolonged group living affected a third and entirely different set of neurons, revealing a two-tiered role of the serotonergic system as both initiator and substrate of socially induced plasticity. This demonstrates the critical importance of ontogenetic time for understanding the function of serotonin in the reorganization of behaviour.
Collapse
Affiliation(s)
- Stephen M Rogers
- School of Biological Sciences, University of Sydney, A08 Heydon-Laurence Building, New South Wales 2006, Australia
| | - Swidbert R Ott
- Department of Biology, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
137
|
Lian J, Huang XF, Pai N, Deng C. Betahistine ameliorates olanzapine-induced weight gain through modulation of histaminergic, NPY and AMPK pathways. Psychoneuroendocrinology 2014; 48:77-86. [PMID: 24992721 DOI: 10.1016/j.psyneuen.2014.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022]
Abstract
Olanzapine is widely used to treat schizophrenia and other disorders, but causes adverse obesity and other metabolic side-effects. Both animal and clinical studies have shown that co-treatment with betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for ameliorating olanzapine-induced weight gain/obesity. To reveal the mechanisms underlying these effects, this study investigated the effects of co-treatment of olanzapine and betahistine (O+B) on expressions of histaminergic H1 receptor (H1R), AMP-activated protein kinase (AMPK), neuropeptide Y (NPY), and proopiomelanocortin (POMC) in the hypothalamus associated with reducing olanzapine-induced weight gain. Olanzapine significantly upregulated the mRNA and protein expressions of H1R, while O+B co-treatment significantly downregulated the H1R levels, compared to the olanzapine-only treatment group. The NPY mRNA expression was significantly enhanced by olanzapine, but it was significantly reversed by O+B co-treatment. The hypothalamic H1R expression was positively correlated with total food intake, and NPY expression. Olanzapine also increased AMPKα activation measured by the AMPKα phosphorylation (pAMPKα)/AMPKα ratio compared with controls, whereas O+B co-treatment decreased the pAMPKα/AMPKα ratio, compared with olanzapine only treatment. The pAMPKα/AMPKα ratio was positively correlated with total food intake and H1R expression. Although olanzapine administration decreased the POMC mRNA level, this level was not affected by O+B co-treatment. Therefore, these results suggested that co-treatment with betahistine may reverse olanzapine-induced body weight gain via the H1R-NPY and H1R-pAMPKα pathways.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, 2522 NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522 NSW, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522 NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, 2010 NSW, Australia
| | - Nagesh Pai
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522 NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, 2522 NSW, Australia; Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, 2522 NSW, Australia; Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, 2010 NSW, Australia.
| |
Collapse
|
138
|
Burke LK, Doslikova B, D'Agostino G, Garfield AS, Farooq G, Burdakov D, Low MJ, Rubinstein M, Evans ML, Billups B, Heisler LK. 5-HT obesity medication efficacy via POMC activation is maintained during aging. Endocrinology 2014; 155:3732-8. [PMID: 25051442 PMCID: PMC4164923 DOI: 10.1210/en.2014-1223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The phenomenon commonly described as the middle-age spread is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and, in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Using a selective ARC-deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite-suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine, and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow-fed young lean (3-5 months old) and middle-aged obese (12-14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT-POMC appetitive anatomical machinery. Specifically, the abundance and signaling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that although 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging, findings of clinical significance to the global aging obese population.
Collapse
Affiliation(s)
- Luke K Burke
- Department of Pharmacology (L.K.B., B.D., G.D., A.S.G., G.F., D.B., B.B., L.K.H.) and Wellcome Trust/Medical Research Council Institute of Metabolic Science (M.L.E.), University of Cambridge, Cambridge, CB2 0QQ, United Kingdom; Rowett Institute of Nutrition and Health (G.D., L.K.H.), University of Aberdeen, Aberdeen, AB21 9SB, United Kingdom; Department of Molecular and Integrative Physiology (M.J.L., M.R.), University of Michigan Medical School, Ann Arbor, Michigan 48105; and Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (M.R.), Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Levone BR, Cella EC, Kochenborger L, da Silva ES, Taschetto APD, Mansur SS, Terenzi MG, Faria MS, Paschoalini MA. Ingestive and locomotor behaviours induced by pharmacological manipulation of <Alpha>-adrenoceptors into the median raphe nucleus. Neuropharmacology 2014; 89:136-45. [PMID: 25261784 DOI: 10.1016/j.neuropharm.2014.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/28/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022]
Abstract
The present study evaluated the involvement of α-adrenoceptors of the median raphe nucleus (MRN) in satiated rats, in food and water intake and motor behaviour. Control groups were treated with saline (SAL) or adrenaline (ADR), injected into the MRN seven minutes after injection of the vehicle used to solubilize the antagonists, propylene glycol (PLG) or SAL. Experimental groups were treated with an α-adrenoceptor antagonist, prazosin (α1, 20 or 40 nmol) or yohimbine (α2, 20 or 40 nmol) or phentolamine (non-selective α, 20 or 40 nmol), followed (later) by injection of ADR or SAL. Behaviour was recorded for 30 min. The injection of ADR and the blockade of α1 receptors resulted in hyperphagia whereas blocking α2 or α1 and α2 simultaneously did not change feeding behaviour. Pre-treatment with prazosin, followed by injection of ADR was not able to cause an increase in the amount of food ingested, while the higher dose of the α1 antagonist reduced the latency to start feeding. Pre-treatment with prazosin also caused hyperactivity. However, pre-treatment with phentolamine or yohimbine was able to block ADR-induced feeding. The present study supports the hypothesis that there is a tonic activation of α1-adrenoceptors in the MRN in satiated rats, which activates an inhibitory influence in areas that control food intake. Injection of ADR seems to activate α2 receptors, resulting in a decrease in the availability of endogenous catecholamines, which reduces the release of the signal that inhibits food intake, leading to hyperphagia.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil.
| | - Elisa Caroline Cella
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil.
| | - Larissa Kochenborger
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil.
| | - Eduardo Simão da Silva
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil.
| | - Ana Paula Dambros Taschetto
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil.
| | - Samira Schultz Mansur
- Department of Morphological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil.
| | - Mariana Graciela Terenzi
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil.
| | - Moacir Serralvo Faria
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil.
| | - Marta Aparecida Paschoalini
- Department of Physiological Sciences, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianopolis, SC, Brazil.
| |
Collapse
|
140
|
Pereira-Figueiredo I, Sancho C, Carro J, Castellano O, López DE. The effects of sertraline administration from adolescence to adulthood on physiological and emotional development in prenatally stressed rats of both sexes. Front Behav Neurosci 2014; 8:260. [PMID: 25147514 PMCID: PMC4123728 DOI: 10.3389/fnbeh.2014.00260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/14/2014] [Indexed: 12/14/2022] Open
Abstract
Sertraline (SERT) is a clinically effective Selective Serotonin Reuptake Inhibitor (SSRI) known to increase and stabilize serotonin levels. This neurotransmitter plays an important role in adolescent brain development in both rodents and humans, and its dysregulation has been correlated with deficits in behavior and emotional regulation. Since prenatal stress may disturb serotoninergic homeostasis, the aim of this study was to examine the long-lasting effects of exposure to SERT throughout adolescence on behavioral and physiological developmental parameters in prenatally stressed Wistar rats. SERT was administered (5 mg/kg/day p.o.) from the age of 1-3 months to half of the progeny, of both sexes, of gestating dams stressed by use of a restraint (PS) or not stressed. Our data reveal that long-term SERT treatment slightly reduced weight gain in both sexes, but reversed the developmental disturbed "catch-up" growth found in PS females. Neither prenatal stress nor SERT treatment induced remarkable alterations in behavior and had no effects on mean startle reflex values. However, a sex-dependent effects of PS was found: in males the PS paradigm slightly increased anxiety-like behavior in the open field, while in females, it impaired startle habituation. In both cases, SERT treatment reversed the phenomena. Additionally, the PS animals exhibited a disturbed leukocyte profile in both sexes, which was reversed by SERT. The present findings are evidence that continuous SERT administration from adolescence through adulthood is safe in rodents and lessens the impact of prenatal stress in rats.
Collapse
Affiliation(s)
| | - Consuelo Sancho
- Neuroscience Institute of Castilla y León (INCYL), University of SalamancaSalamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain
- Department of Physiology and Pharmacology, University of SalamancaSalamanca, Spain
| | - Juan Carro
- Neuroscience Institute of Castilla y León (INCYL), University of SalamancaSalamanca, Spain
| | - Orlando Castellano
- Neuroscience Institute of Castilla y León (INCYL), University of SalamancaSalamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain
- Department of Cell Biology and Pathology, University of SalamancaSalamanca, Spain
| | - Dolores E. López
- Neuroscience Institute of Castilla y León (INCYL), University of SalamancaSalamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University of SalamancaSalamanca, Spain
- Department of Cell Biology and Pathology, University of SalamancaSalamanca, Spain
| |
Collapse
|
141
|
Hesse S, van de Giessen E, Zientek F, Petroff D, Winter K, Dickson JC, Tossici-Bolt L, Sera T, Asenbaum S, Darcourt J, Akdemir UO, Knudsen GM, Nobili F, Pagani M, Vander Borght T, Van Laere K, Varrone A, Tatsch K, Sabri O, Booij J. Association of central serotonin transporter availability and body mass index in healthy Europeans. Eur Neuropsychopharmacol 2014; 24:1240-7. [PMID: 24976619 DOI: 10.1016/j.euroneuro.2014.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 04/09/2014] [Accepted: 05/09/2014] [Indexed: 01/24/2023]
Abstract
UNLABELLED Serotonin-mediated mechanisms, in particular via the serotonin transporter (SERT), are thought to have an effect on food intake and play an important role in the pathophysiology of obesity. However, imaging studies that examined the correlation between body mass index (BMI) and SERT are sparse and provided contradictory results. The aim of this study was to further test the association between SERT and BMI in a large cohort of healthy subjects. METHODS 127 subjects of the ENC DAT database (58 females, age 52 ± 18 years, range 20-83, BMI 25.2 ± 3.8 kg/m(2), range 18.2-41.1) were analysed using region-of-interest (ROI) and voxel-based approaches to calculate [(123)I]FP-CIT specific-to-nonspecific binding ratios (SBR) in the hypothalamus/thalamus and midbrain/brainstem as SERT-specific target regions. RESULTS In the voxel-based analysis, SERT availability and BMI were positively associated in the thalamus, but not in the midbrain. In the ROI-analysis, the interaction between gender and BMI showed a trend with higher correlation coefficient for men in the midbrain albeit not significant (0.033SBRm(2)/kg, p=0.1). CONCLUSIONS The data are in agreement with previous PET findings of an altered central serotonergic tone depending on BMI, as a probable pathophysiologic mechanism in obesity, and should encourage further clinical studies in obesity targeting the serotonergic system.
Collapse
Affiliation(s)
- Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Leipzig University Medical Center, Integrated Research and Treatment Centre (IFB) Adiposity Diseases, Leipzig, Germany.
| | - Elsmarieke van de Giessen
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Franziska Zientek
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - David Petroff
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Centre for Clinical Studies, Leipzig, Germany
| | - Karsten Winter
- Translational Centre for Regenerative Medicine (TRM) Leipzig, Germany
| | - John C Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, UK
| | - Livia Tossici-Bolt
- Department of Medical Physics and Bioengineering, Southampton University Hospitals NHS Trust, Southampton, UK
| | - Terez Sera
- University of Szeged, Department of Nuclear Medicine and Euromedic Szeged, Szeged, Hungary
| | - Susanne Asenbaum
- Department of Nuclear Medicine, Medical University of Vienna, Austria
| | - Jacques Darcourt
- Nuclear Medicine Department, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice, France
| | - Umit O Akdemir
- Department of Nuclear Medicine, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet - University of Copenhagen, Copenhagen, Denmark
| | - Flavio Nobili
- Clinical Neurophysiology Unit, Department of Neuroscience, Ophthalmology and Genetics, San Martino Hospital, University of Genoa, Genoa, Italy
| | - Marco Pagani
- Department of Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden; Institute of Cognitive Sciences and Technologies, CNR, Rome & Padua, Italy
| | - Thierry Vander Borght
- Nuclear Medicine Division, Université Catholique de Louvain, Mont-Godinne Medical Center, Louvain-la-Neuve, Belgium
| | - Koen Van Laere
- Nuclear Medicine, University Hospital, K.U. Leuven, Leuven, Belgium
| | - Andrea Varrone
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Klaus Tatsch
- Department of Nuclear Medicine, University of Munich, Munich, Germany; Department of Nuclear Medicine, Municipal Hospital Karlsruhe Inc., Karlsruhe, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; Leipzig University Medical Center, Integrated Research and Treatment Centre (IFB) Adiposity Diseases, Leipzig, Germany
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
142
|
Mathes CM, Spector AC. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats. Chem Senses 2014; 39:583-93. [PMID: 25056731 DOI: 10.1093/chemse/bju028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior.
Collapse
Affiliation(s)
- Clare M Mathes
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call Street, Tallahassee, FL 32306-4301, USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call Street, Tallahassee, FL 32306-4301, USA
| |
Collapse
|
143
|
Phi-van L, Holtz M, Kjaer JB, van Phi VD, Zimmermann K. A functional variant in the 5'-flanking region of the chicken serotonin transporter gene is associated with increased body weight and locomotor activity. J Neurochem 2014; 131:12-20. [PMID: 24947945 DOI: 10.1111/jnc.12799] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 11/30/2022]
Abstract
In this study, we identified a polymorphism in the 5'-flanking region of the chicken serotonin transporter (5-HTT) gene. Sequencing analysis revealed that in comparison with the wild-type variant (W), a deleted variant (D) is generated by deletion of four nucleotides (5'-AATT-3') and a single nucleotide change (A→T). Using a polyacrylamide gel electrophoresis system, we found that the 360-bp DNA fragment containing the W variant with the wild-type sequence 5'-AATTAATT-3' shows intrinsic DNA curvature while the 356-bp fragment containing the D variant lacking the four base pairs AATT is not curved. Quantitative real-time RT-PCR and ELISA demonstrated that the expression of 5-HTT in D/D chickens was higher than that in W/W and W/D chickens. In addition, transient transfection experiments with chloramphenicol acetyltransferase reporter gene constructs revealed increased 5-HTT promoter activity mediated by the D variant and a silencer activity of the W variant. Interestingly, females and males with D/D genotype showed significant greater increase in body weight from 6 weeks and 16 weeks of age, respectively, and higher body mass index. Moreover, we found that D/D chickens of both genders were physically more active than W/W and W/D chickens.
Collapse
Affiliation(s)
- Loc Phi-van
- Friedrich-Loeffler-Institut (FLI), Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | | | | | | | | |
Collapse
|
144
|
Borgers AJ, Koopman KE, Bisschop PH, Serlie MJ, Swaab DF, Fliers E, la Fleur SE, Alkemade A. Decreased serotonin transporter immunoreactivity in the human hypothalamic infundibular nucleus of overweight subjects. Front Neurosci 2014; 8:106. [PMID: 24860418 PMCID: PMC4030197 DOI: 10.3389/fnins.2014.00106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/23/2014] [Indexed: 11/24/2022] Open
Abstract
Context: That serotonin plays a role in the regulation of feeding behavior and energy metabolism has been known for a long time. Serotonin transporters (SERT) play a crucial role in serotonin signaling by regulating its availability in the synaptic cleft. The neuroanatomy underlying serotonergic signaling in humans is largely unknown, and until now, SERT immunoreactivity in relation to body weight has not been investigated. Objective: To clarify the distribution of SERT immunoreactivity throughout the human hypothalamus and to compare SERT immunoreactivity in the infundibular nucleus (IFN), the human equivalent of the arcuate nucleus, in lean and overweight subjects. Design: First, we investigated the distribution of serotonin transporters (SERT) over the rostro-caudal axis of six post-mortem hypothalami by means of immunohistochemistry. Second, we estimated SERT immunoreactivity in the IFN of lean and overweight subjects. Lastly, double-labeling of SERT with Neuropeptide Y (NPY) and melanocortin cell populations was performed to further identify cells showing basket-like SERT staining. Results: SERT-immunoreactivity was ubiquitously expressed in fibers throughout the hypothalamus and was the strongest in the IFN. Immunoreactivity in the IFN was lower in overweight subjects (p = 0.036). Basket-like staining in the IFN was highly suggestive of synaptic innervation. A very small minority of cells showed SERT double labeling with NPY, agouti-related protein and α–melanocyte stimulating hormone. Conclusions: SERT is ubiquitously expressed in the human hypothalamus. Strong SERT immunoreactivity, was observed in the IFN a region important for appetite regulation, in combination with lower SERT immunoreactivity in the IFN of overweight and obese subjects, may point toward a role for hypothalamic SERT in human obesity.
Collapse
Affiliation(s)
- Anke J Borgers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Karin E Koopman
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Anneke Alkemade
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Cognitive Science Center Amsterdam, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
145
|
Wang S, Ni Y, Guo F, Sun Z, Ahmed A, Zhao R. Differential expression of hypothalamic fear- and stress-related genes in broiler chickens showing short or long tonic immobility. Domest Anim Endocrinol 2014; 47:65-72. [PMID: 24360202 DOI: 10.1016/j.domaniend.2013.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/07/2013] [Accepted: 11/12/2013] [Indexed: 01/31/2023]
Abstract
The serotonin system and the hypothalamic-pituitary-adrenal axis play important roles in modulating fear and stress-coping characteristics. Tonic immobility (TI) is a fear-related phenotype, and previously we have shown that broiler chickens showing short TI (STI) duration experience better growth performance and higher adaptability to stress. Here, we sought to further elucidate the central mechanisms underlying the phenotypic differences between chickens showing STI and long TI duration, by comparing the hypothalamic expression of genes in the serotonergic system and the hypothalamic-pituitary-adrenal axis under basal and corticosterone-exposed situations. The STI broilers had significantly lower (P < 0.01) hypothalamic expression of serotonin reuptake transporter and serotonin receptor 1A. Moreover, 11β-hydroxysteroid dehydrogenase type 2 was expressed significantly lower in STI chickens at the level of both mRNA (P < 0.01) and protein (P < 0.05). Hypothalamic expression of glucocorticoid receptor (GR) mRNA tended to be higher (P < 0.059) in long TI chickens, but the protein content was approximately 2 times higher (P < 0.01) in STI chickens. The uncoupled expression of GR mRNA and protein was associated with significantly lower (P < 0.05) expression of gga-miR-181a, gga-miR-211, and gga-miR-22, which are predicted to target GR, in STI chickens. Corticosterone administration reduced the mRNA expression of postsynaptic serotonin receptors, 5-hydroxytryptamine receptor 1B (P = 0.059) and 5-hydroxytryptamine receptor 7 (P < 0.05), yet significantly increased the protein content of 11β-hydroxysteroid dehydrogenase type 2 (P < 0.05). These results suggest that broilers of different TI phenotypes have a distinct pattern of hypothalamic expression of fear- and stress-related genes.
Collapse
Affiliation(s)
- S Wang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Henan Institute of Science and Technology, Xinxiang, 453001, China
| | - Y Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - F Guo
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Z Sun
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - A Ahmed
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - R Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
146
|
Poly(basic red 9) doped functionalized multi-walled carbon nanotubes as composite films for neurotransmitters biosensors. Colloids Surf B Biointerfaces 2014; 118:133-9. [PMID: 24815930 DOI: 10.1016/j.colsurfb.2014.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/01/2014] [Accepted: 03/02/2014] [Indexed: 02/02/2023]
Abstract
This paper discusses the electrochemical polymerization of basic dye films, which are composed of basic red 9 (BR9), on various electrodes and the enhancement of the electropolymerization by functionalized multiwall carbon nanotubes (f-MWCNTs) modification of the electrode surface. The presence of f-MWCNTs enhances the surface coverage (Γ) and stability. Poly(BR9) films were electrocatalytically active for epinephrine and serotonin oxidation. The electrocatalytic oxidation current developed from the anodic peak of the redox couple. Electrochemical impedance spectroscopy (EIS) was applied to monitor the whole process of the electrode modification. EIS can provide useful information regarding the impedance changes on the electrode surface between each step. We studied the surface morphology of the composite film using scanning electron microscopy (SEM) and atomic force microscopy (AFM), which revealed that BR9 is doped on f-MWCNTs. Cyclic voltammetry (CV) was used for the measurement of the electroanalytical properties of the analytes. The sensitivity values for the f-MWCNTs/BR9 composite film were higher than the poly(BR9) and f-MWCNTs composite film. Finally, differential pulse voltammetry (DPV) was used for the detection of a mixture of analytes at the f-MWCNTs/BR9 composite film. We simulated a more complex system with both serotonin and epinephrine present simultaneously. This system also exhibited oxidation peaks for serotonin in bovine calf serum (BCS) and epinephrine injection for real samples determination at pH 7.0 at the f-MWCNTs/BR9 composite film.
Collapse
|
147
|
Garfield AS, Burke LK, Shaw J, Evans ML, Heisler LK. Distribution of cells responsive to 5-HT₆ receptor antagonist-induced hypophagia. Behav Brain Res 2014; 266:201-6. [PMID: 24566060 PMCID: PMC4003350 DOI: 10.1016/j.bbr.2014.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/29/2022]
Abstract
The central 5-hydroxytryptamine (5-HT; serotonin) system is well established as an important regulator of appetite and continues to remain a focus of obesity research. While much emphasis has focussed on the 5-HT2C receptor (5-HT2CR) in 5-HT's anorectic effect, pharmacological manipulation of the 5-HT6 receptor (5-HT6R) also reduces appetite and body weight and may be amenable to obesity treatment. However, the neurological circuits that underlie 5-HT6R-induced hypophagia remain to be identified. Using c-fos immunoreactivity (FOS-IR) as a marker of neuronal activation, here we mapped the neuroanatomical targets activated by an anorectic dose of the 5-HT6R antagonist SB-399885 throughout the brain. Furthermore, we quantified SB-399855 activated cells within brain appetitive nuclei, the hypothalamus, dorsal raphe nucleus (DRN) and nucleus of the solitary tract (NTS). Our results reveal that 5-HT6R antagonist-induced hypophagia is associated with significantly increased neuronal activation in two nuclei with an established role in the central control of appetite, the paraventricular nucleus of the hypothalamus (PVH) and the NTS. In contrast, no changes in FOS-IR were observed between treatment groups within other hypothalamic nuclei or DRN. The data presented here provide a first insight into the neural circuitry underlying 5-HT6R antagonist-induced appetite suppression and highlight the PVH and NTS in the coordination of 5-HT6R hypophagia.
Collapse
Affiliation(s)
- Alastair S Garfield
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Luke K Burke
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Jill Shaw
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Mark L Evans
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Lora K Heisler
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK; Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK.
| |
Collapse
|
148
|
Hochkogler CM, Rohm B, Hojdar K, Pignitter M, Widder S, Ley JP, Krammer GE, Somoza V. The capsaicin analog nonivamide decreases total energy intake from a standardized breakfast and enhances plasma serotonin levels in moderately overweight men after administered in an oral glucose tolerance test: A randomized, crossover trial. Mol Nutr Food Res 2014; 58:1282-90. [DOI: 10.1002/mnfr.201300821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/21/2013] [Accepted: 12/24/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Christina M. Hochkogler
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
| | - Barbara Rohm
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
| | - Karin Hojdar
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
| | - Marc Pignitter
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| | | | | | | | - Veronika Somoza
- Christian Doppler Laboratory for Bioactive Aroma Compounds; University of Vienna; Vienna Austria
- Department of Nutritional and Physiological Chemistry; University of Vienna; Vienna Austria
| |
Collapse
|
149
|
Garcia-Garcia A, Tancredi AN, Leonardo ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl) 2014; 231:623-36. [PMID: 24337875 PMCID: PMC3927969 DOI: 10.1007/s00213-013-3389-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Serotonin (5-HT) neurotransmission is intimately linked to anxiety and depression and a diverse body of evidence supports the involvement of the main inhibitory serotonergic receptor, the serotonin-1A (5-HT(1A)) subtype, in both disorders. OBJECTIVES In this review, we examine the function of 5-HT(1A) receptor subpopulations and re-interpret our understanding of their role in mental illness in light of new data, separating both spatial (autoreceptor versus heteroreceptor) and the temporal (developmental versus adult) roles of the endogenous 5-HT(1A) receptors, emphasizing their distinct actions in mediating anxiety and depression-like behaviors. RESULTS It is difficult to unambiguously distinguish the effects of different populations of the 5-HT(1A) receptors with traditional genetic animal models and pharmacological approaches. However, with the advent of novel genetic systems and subpopulation-selective pharmacological agents, direct evidence for the distinct roles of these populations in governing emotion-related behavior is emerging. CONCLUSIONS There is strong and growing evidence for a functional dissociation between auto- and heteroreceptor populations in mediating anxiety and depressive-like behaviors, respectively. Furthermore, while it is well established that 5-HT(1A) receptors act developmentally to establish normal anxiety-like behaviors, the developmental role of 5-HT(1A) heteroreceptors is less clear, and the specific mechanisms underlying the developmental role of each subpopulation are likely to be key elements determining mood control in adult subjects.
Collapse
Affiliation(s)
- Alvaro Garcia-Garcia
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
- Correspondence should be addressed to either AGG at or EDL at , Telephone: (001) 212-543-5266, Fax: (001) 212-543-5129
| | | | - E. David Leonardo
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
- Correspondence should be addressed to either AGG at or EDL at , Telephone: (001) 212-543-5266, Fax: (001) 212-543-5129
| |
Collapse
|
150
|
Tetens J, Thaller G, Krattenmacher N. Genetic and genomic dissection of dry matter intake at different lactation stages in primiparous Holstein cows. J Dairy Sci 2014; 97:520-31. [DOI: 10.3168/jds.2013-7301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022]
|