101
|
Cai Z, Li M, Zhu Z, Wang X, Huang Y, Li T, Gong H, Yan M. Biological Degradation of Plastics and Microplastics: A Recent Perspective on Associated Mechanisms and Influencing Factors. Microorganisms 2023; 11:1661. [PMID: 37512834 PMCID: PMC10386651 DOI: 10.3390/microorganisms11071661] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Plastic and microplastic pollution has caused a great deal of ecological problems because of its persistence and potential adverse effects on human health. The degradation of plastics through biological processes is of great significance for ecological health, therefore, the feasibility of plastic degradation by microorganisms has attracted a lot of attention. This study comprises a preliminary discussion on the biodegradation mechanism and the advantages and roles of different bacterial enzymes, such as PET hydrolase and PCL-cutinase, in the degradation of different polymers, such as PET and PCL, respectively. With a particular focus on their modes of action and potential enzymatic mechanisms, this review sums up studies on the biological degradation of plastics and microplastics related to mechanisms and influencing factors, along with their enzymes in enhancing the degradation of synthetic plastics in the process. In addition, biodegradation of plastic is also affected by plastic additives and plasticizers. Plasticizers and additives in the composition of plastics can cause harmful impacts. To further improve the degradation efficiency of polymers, various pretreatments to improve the efficiency of biodegradation, which can cause a significant reduction in toxic plastic pollution, were also preliminarily discussed here. The existing research and data show a large number of microorganisms involved in plastic biodegradation, though their specific mechanisms have not been thoroughly explored yet. Therefore, there is a significant potential for employing various bacterial strains for efficient degradation of plastics to improve human health and safety.
Collapse
Affiliation(s)
- Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yuanyin Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Tianmu Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
102
|
Klose L, Meyer-Heydecke N, Wongwattanarat S, Chow J, Pérez García P, Carré C, Streit W, Antranikian G, Romero AM, Liese A. Towards Sustainable Recycling of Epoxy-Based Polymers: Approaches and Challenges of Epoxy Biodegradation. Polymers (Basel) 2023; 15:2653. [PMID: 37376299 PMCID: PMC10305103 DOI: 10.3390/polym15122653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Epoxy resins are highly valued for their remarkable mechanical and chemical properties and are extensively used in various applications such as coatings, adhesives, and fiber-reinforced composites in lightweight construction. Composites are especially important for the development and implementation of sustainable technologies such as wind power, energy-efficient aircrafts, and electric cars. Despite their advantages, their non-biodegradability raises challenges for the recycling of polymer and composites in particular. Conventional methods employed for epoxy recycling are characterized by their high energy consumption and the utilization of toxic chemicals, rendering them rather unsustainable. Recent progress has been made in the field of plastic biodegradation, which is considered more sustainable than energy-intensive mechanical or thermal recycling methods. However, the current successful approaches in plastic biodegradation are predominantly focused on polyester-based polymers, leaving more recalcitrant plastics underrepresented in this area of research. Epoxy polymers, characterized by their strong cross-linking and predominantly ether-based backbone, exhibit a highly rigid and durable structure, placing them within this category. Therefore, the objective of this review paper is to examine the various approaches that have been employed for the biodegradation of epoxy so far. Additionally, the paper sheds light on the analytical techniques utilized in the development of these recycling methods. Moreover, the review addresses the challenges and opportunities entailed in epoxy recycling through bio-based approaches.
Collapse
Affiliation(s)
- Leon Klose
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Neele Meyer-Heydecke
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Sasipa Wongwattanarat
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Pablo Pérez García
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Camille Carré
- Airbus Defence and Space GmbH, Central Research and Technology, 81663 Munich, Germany
| | - Wolfgang Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Ana Malvis Romero
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
103
|
Singh S, Malyan SK, Maithani C, Kashyap S, Tyagi VK, Singh R, Malhotra S, Sharma M, Kumar A, Panday BK, Pandey RP. Microplastics in landfill leachate: Occurrence, health concerns, and removal strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118220. [PMID: 37290308 DOI: 10.1016/j.jenvman.2023.118220] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Landfills are commonly used to manage solid waste, but they can contribute to microplastic (MPs) pollution. As plastic waste degrades in landfills, MPs are released into the surrounding environment, contaminating soil, groundwater, and surface water. This poses a threat to human health and the environment, as MPs can adsorb toxic substances. This paper provides a comprehensive review of the degradation process of macroplastics into microplastics, the types of MPs found in landfill leachate (LL), and the potential toxicity of microplastic pollution. The study also evaluates various physical-chemical and biological treatment methods for removing MPs from wastewater. The concentration of MPs in young landfills is higher than in old landfills, and specific polymers such as polypropylene, polystyrene, nylon, and polycarbonate contribute significantly to microplastic contamination. Primary treatments such as chemical precipitation and electrocoagulation can remove up to 60-99% of total MPs from wastewater, while tertiary treatments such as sand filtration, ultrafiltration, and reverse osmosis can remove up to 90-99%. Advanced techniques, such as a combination of membrane bioreactor, ultrafiltration, and nanofiltration (MBR + UF + NF), can achieve even higher removal rates. Overall, this paper highlights the importance of continuous monitoring of microplastic pollution and the need for effective microplastic removal from LL to protect human and environmental health. However, more research is needed to determine the actual cost and feasibility of these treatment processes at a larger scale.
Collapse
Affiliation(s)
- Sandeep Singh
- Environmnetal Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Sandeep K Malyan
- Department of Environmental Studies, Dyal Singh Evening College, University of Delhi, New Delhi, 110003, India
| | - Chinmay Maithani
- Department of Civil Engineering, National Institute of Technology Warangal, Hanumakonda, 506004, India
| | | | - Vinay Kumar Tyagi
- Environmnetal Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| | - Rajesh Singh
- Environmnetal Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | - Sarthak Malhotra
- Department of Environmental Studies, Dyal Singh Evening College, University of Delhi, New Delhi, 110003, India
| | - Manish Sharma
- Department of Botany, University of Rajasthan, Jaipur, Rajasthan, 302004, India
| | - Amit Kumar
- Soil Science and Chemistry Section, Host Plant Division, Central Sericultural Research & Training Institute, CSB, Mysore, Karnataka, 570008, India
| | - Bijay K Panday
- State Water and Sanitation Mission, Government of Uttrakhand, Dehradun, Uttarakhand, 248002, India
| | - R P Pandey
- Environmnetal Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India
| |
Collapse
|
104
|
Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, Javed M, Othman MHD, Goh HH, Chew KW. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. CHEMOSPHERE 2023; 325:138367. [PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Hafiz Muhammad Umer Aslam
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
105
|
Mahmad A, Ubaidah Noh T, Izzah Khalid N. Eco-friendly water treatment: The role of MIL metal–organic frameworks for the bisphenols adsorption from water. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
106
|
Hooda S, Mondal P. Insights into the degradation of high-density polyethylene microplastics using microbial strains: Effect of process parameters, degradation kinetics and modeling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:143-153. [PMID: 37059038 DOI: 10.1016/j.wasman.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The extensive distribution of microplastics and their abundance around the world has raised a global concern because of the lack of proper disposal channels as well as poor knowledge of their implications on human health. Sustainable remediation techniques are required owing to the absence of proper disposal methods. The present study explores the deterioration process of high-density polyethylene (HDPE) microplastics using various microbes along with the kinetics and modeling of the process using multiple non-linear regression models. Ten different microbial strains were used for the degradation of microplastics for a period of 30 days. Effect of process parameters on the degradation process was studied with the selected five microbial strains that presented the best degradation results. The reproducibility and efficacy of the process were tested for an extended period of 90 days. Fourier-transform infrared spectroscopy (FTIR) and field emission-scanning electron microscopy (FE-SEM) were used for the analysis of microplastics. Polymer reduction and half-life were evaluated. Pseudomonas putida achieved the maximum degradation efficiency of 12.07% followed by Rhodococcus ruber (11.36%), Pseudomonas stutzeri (8.28%), Bacillus cereus (8.26%), and Brevibacillus borstelensis (8.02%) after 90 days. Out of 14 models tested, 5 were found capable of modeling the process kinetics and based on simplicity and statistical data, Modified Michaelis-Menten model (F8; R2 = 0.97) was selected as superior to others. This study successfully establishes the potential of bioremediation of microplastics as the viable process.
Collapse
Affiliation(s)
- Sanjeevani Hooda
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Prasenjit Mondal
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
107
|
Arora Y, Sharma S, Sharma V. Microalgae in Bioplastic Production: A Comprehensive Review. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023; 48:7225-7241. [PMID: 37266400 PMCID: PMC10183103 DOI: 10.1007/s13369-023-07871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/28/2023] [Indexed: 06/03/2023]
Abstract
The current era of industrialization includes a constantly increasing demand for plastic products, but because plastics are rarely recycled and are not biodegradable plastic pollution or "white pollution" has been the result. The consumption of petroleum-based plastics will be 20% of global annual oil by 2050, and thus there is an inevitable need to find an innovative solution to reduce plastic pollution. The biodegradable and environmentally benign bioplastics are suitable alternative to fossil-based plastics in the market due to sustainability, less carbon footprint, lower toxicity and high degradability rate. Microalgal species is an innovative approach to be explored and improved for bioplastic production. Microalgae are generally present in abundant quantity in our ecosystem, and polysaccharide in the algae can be processed and utilized to make biopolymers. Also, these species have a high growth rate and can be easily cultivated in wastewater streams. The review aims to determine the recent status of bioplastic production techniques from microalgal species and also reveal optimization opportunities involved in the process. Several strategies for bioplastic production from algal biomass are being discussed nowadays, and the most prominent are "with blending" (blending of algal biomass with bioplastics and starch) and "without blending" (microalgae as a feedstock for polyhydroxyalkanoates production). The advanced research on modern bioengineering techniques and well-established genetic tools like CRISPR-Cas9 should be encouraged to develop recombinant microalgae strains with elevated levels of PHA/PHB inside the cell.
Collapse
Affiliation(s)
- Yukta Arora
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Jalandhar, Punjab India
| | - Shivika Sharma
- Biochemical Conversion Division, SSS-NIBE, Kapurthala, Punjab India
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Jalandhar, Punjab India
| |
Collapse
|
108
|
Nyamjav I, Jang Y, Park N, Lee YE, Lee S. Physicochemical and Structural Evidence that Bacillus cereus Isolated from the Gut of Waxworms ( Galleria mellonella Larvae) Biodegrades Polypropylene Efficiently In Vitro. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:1-14. [PMID: 37361349 PMCID: PMC10171730 DOI: 10.1007/s10924-023-02878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/28/2023]
Abstract
Biodegradation of plastic waste using microorganisms has been proposed as one of the solutions to the increasing worldwide plastic waste. Polypropylene (PP) is the second most used plastic used in various industries, and it has been widely used in the production of personal protective equipment such as masks due to the COVID-19 pandemic. Therefore, biodegradation of PP becomes very important. Here, we present results on the physicochemical and structural studies of PP biodegradation by Bacillus cereus isolated from the gut of the waxworms, Galleria mellonella larvae. We also studied the biodegradability of PP by the gut microbiota compared with Bacillus cereus. We analyzed the microbial degradation of the PP surface using scanning electron microscopy and energy - dispersive X-ray spectroscopy and confirmed that the physical and chemical changes were caused by Bacillus cereus and the gut microbiota. The chemical structural changes were further investigated using X-ray photoelectron microscopy and Fourier - transform - infrared spectroscopy, and it was confirmed that the oxidation of the PP surface proceeded with the formation of carbonyl groups (C=O), ester groups (C-O), and hydroxyl groups (-OH) by Bacillus cereus. Additionally, the gut microbiota composed of diverse microbial species showed equal oxidation of PP compared to Bacillus cereus. More importantly, high temperature gel permeation chromatography (HT-GPC) analysis showed that Bacillus cereus exhibited quantitatively a higher biodegradability of PP compared to the gut microbiota. Our results suggest that Bacillus cereus possesses a complete set of enzymes required to initiate the oxidation of the carbon chain of PP and will be used to discover new enzymes and genes that are involved in degrading PP. Supplementary Information The online version contains supplementary material available at 10.1007/s10924-023-02878-y.
Collapse
Affiliation(s)
- Indra Nyamjav
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Yejin Jang
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Nohyoon Park
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Ye Eun Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| |
Collapse
|
109
|
Ren SY, Ni HG. Biodeterioration of Microplastics by Bacteria Isolated from Mangrove Sediment. TOXICS 2023; 11:toxics11050432. [PMID: 37235247 DOI: 10.3390/toxics11050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
As a kind of ubiquitous emerging pollutant, microplastics (MPs) are persistent in the environment and have a large impact on the ecosystem. Fortunately, some microorganisms in the natural environment can degrade these persistent MPs without creating secondary pollution. In this study, 11 different MPs were selected as carbon sources to screen the microorganisms for degradable MPs and explore the possible mechanism of degradation. After repeated domestication, a relatively stable microbial community was obtained after approximately 30 days later. At this time, the biomass of the medium ranged from 88 to 699 mg/L. The growth of bacteria with different MPs ranged from 0.030 to 0.090 optical density (OD) 600 of the first generation to 0.009-0.081 OD 600 of the third generation. The weight loss method was used to determine the biodegradation ratios of different MPs. The mass losses of polyhydroxybutyrate (PHB), polyethylene (PE), and polyhydroxyalkanoate (PHA) were relatively large, at 13.4%, 13.0%, and 12.7%, respectively; these figures for polyvinyl chloride (PVC) and polystyrene (PS) were relatively slight, 8.90% and 9.10%, respectively. The degradation half-life (t1/2) of 11 kinds of MPs ranges from 67 to 116 days. Among the mixed strains, Pseudomonas sp., Pandoraea sp., and Dyella sp. grew well. The possible degradation mechanism is that such microbial aggregates can adhere to the surface of MPs and form complex biofilms, secrete extracellular and intracellular enzymes, etc., break the hydrolyzable chemical bonds or ends of molecular chains by attacking the plastic molecular chains, and produce monomers, dimers, and other oligomers, leading to the reduction of the molecular weight of the plastic itself.
Collapse
Affiliation(s)
- Shu-Yan Ren
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
110
|
Soni A, Das PK, Yusuf M, Ridha S, Kamyab H, Alam MA, Masood F, Chelliapan S, Ubaidullah M, Pandit B, Prakash C. Synergy of silica sand and waste plastics as thermoplastic composites on abrasive wear characteristics under conditions of different loads and sliding speeds. CHEMOSPHERE 2023; 323:138233. [PMID: 36863626 DOI: 10.1016/j.chemosphere.2023.138233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The diverse nature of polymers with attractive properties has replaced the conventional materials with polymeric composites. The present study was sought to evaluate the wear performance of thermoplastic-based composites under the conditions of different loads and sliding speeds. In the present study, nine different composites were developed by using low-density polyethylene (LDPE), high-density polyethylene (HDPE) and polyethylene terephthalate (PET) with partial sand replacements i.e., 0, 30, 40, and 50 wt%. The abrasive wear was evaluated as per the ASTM G65 standard test for abrasive wear through a dry-sand rubber wheel apparatus under the applied loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N) and sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s). The optimum density and compressive strength were obtained to be 2.0555 g/cm3 and 46.20 N/mm2, respectively for the composites HDPE60 and HDPE50 respectively. The minimum value of abrasive wear were found to 0.02498, 0.03430, 0.03095, 0.09020 and 0.03267 (cm3) under the considered loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N), respectively. Moreover, the composites LDPE50, LDPE100, LDPE100, LDPE50PET20 and LDPE60 showed a minimum abrasive wear of 0.03267, 0.05949, 0.05949, 0.03095 and 0.10292 at the sliding speeds of 0.5388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s), respectively. The wear response varied non-linearly with the conditions of loads and sliding speeds. Micro-cutting, plastic deformations, fiber peelings, etc. were included as the possible wear mechanism. The possible correlations between wear and mechanical properties, and throughout discussions for wear behaviors through the morphological analyses of the worn-out surfaces were provided.
Collapse
Affiliation(s)
- Ashish Soni
- Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, 799046, India
| | - Pankaj Kumar Das
- Department of Mechanical Engineering, National Institute of Technology, Agartala, Tripura, 799046, India
| | - Mohammad Yusuf
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| | - Syahrir Ridha
- Department of Petroleum Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia; Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Mohammad Azad Alam
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Faisal Masood
- Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur, 54100, Malaysia
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de La Universidad 30, 28911, Leganés, Madrid, Spain
| | - Chander Prakash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
111
|
Idris SN, Amelia TSM, Bhubalan K, Lazim AMM, Zakwan NAMA, Jamaluddin MI, Santhanam R, Amirul AAA, Vigneswari S, Ramakrishna S. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review. ENVIRONMENTAL RESEARCH 2023; 231:115988. [PMID: 37105296 DOI: 10.1016/j.envres.2023.115988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Plastics have become an integral part of human life. Single-use plastics (SUPs) are disposable plastics designed to be used once then promptly discarded or recycled. This SUPs range from packaging and takeaway containers to disposable razors and hotel toiletries. Synthetic plastics, which are made of non-renewable petroleum and natural gas resources, require decades to perpetually disintegrate in nature thus contribute to plastic pollution worldwide, especially in marine environments. In response to these problems, bioplastics or bio-based and biodegradable polymers from renewable sources has been considered as an alternative. Understanding the mechanisms behind the degradation of conventional SUPs and biodegradability of their greener counterpart, bioplastics, is crucial for appropriate material selection in the future. This review aims to provide insights into the degradation or disintegration of conventional single-use plastics and the biodegradability of the different types of greener-counterparts, bioplastics, their mechanisms, and conditions. This review highlights on the biodegradation in the environments including composting systems. Here, the various types of alternative biodegradable polymers, such as bacterially biosynthesised bioplastics, natural fibre-reinforced plastics, starch-, cellulose-, lignin-, and soy-based polymers were explored. Review of past literature revealed that although bioplastics are relatively eco-friendly, their natural compositions and properties are inconsistent. Furthermore, the global plastic market for biodegradable plastics remains relatively small and require further research and commercialization efforts, especially considering the urgency of plastic and microplastic pollution as currently critical global issue. Biodegradable plastics have potential to replace conventional plastics as they show biodegradation ability under real environments, and thus intensive research on the various biodegradable plastics is needed to inform stakeholders and policy makers on the appropriate response to the gradually emerging biodegradable plastics.
Collapse
Affiliation(s)
- Siti Norliyana Idris
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Anim Maisara Mohd Lazim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Muhammad Imran Jamaluddin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Rameshkumar Santhanam
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang, Malaysia.
| | - Sevakumaran Vigneswari
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, national University of Singapore, 119260, Singapore.
| |
Collapse
|
112
|
Meegoda JN, Hettiarachchi MC. A Path to a Reduction in Micro and Nanoplastics Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085555. [PMID: 37107837 PMCID: PMC10139116 DOI: 10.3390/ijerph20085555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Microplastics (MP) are plastic particles less than 5 mm in size. There are two categories of MP: primary and secondary. Primary or microscopic-sized MP are intentionally produced material. Fragmentation of large plastic debris through physical, chemical, and oxidative processes creates secondary MP, the most abundant type in the environment. Microplastic pollution has become a global environmental problem due to their abundance, poor biodegradability, toxicological properties, and negative impact on aquatic and terrestrial organisms including humans. Plastic debris enters the aquatic environment via direct dumping or uncontrolled land-based sources. While plastic debris slowly degrades into MP, wastewater and stormwater outlets discharge a large amount of MP directly into water bodies. Additionally, stormwater carries MP from sources such as tire wear, artificial turf, fertilizers, and land-applied biosolids. To protect the environment and human health, the entry of MP into the environment must be reduced or eliminated. Source control is one of the best methods available. The existing and growing abundance of MP in the environment requires the use of multiple strategies to combat pollution. These strategies include reducing the usage, public outreach to eliminate littering, reevaluation and use of new wastewater treatment and sludge disposal methods, regulations on macro and MP sources, and a wide implementation of appropriate stormwater management practices such as filtration, bioretention, and wetlands.
Collapse
Affiliation(s)
- Jay N. Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence: ; Tel.: +1-973-596-2464
| | | |
Collapse
|
113
|
Huang F, Hu J, Chen L, Wang Z, Sun S, Zhang W, Jiang H, Luo Y, Wang L, Zeng Y, Fang L. Microplastics may increase the environmental risks of Cd via promoting Cd uptake by plants: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130887. [PMID: 36731321 DOI: 10.1016/j.jhazmat.2023.130887] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and cadmium (Cd) are widely distributed in soil ecosystems, posing a potential threat to agricultural production and human health. However, the coupled effects of MPs and Cd in soil-plant systems remain largely unknown, especially on a large scale. In this study, a meta-analysis was conducted to evaluate the influence of MPs on plant growth and Cd accumulation under the Cd contamination conditions. Our results showed that MPs had significantly negative effects on shoot biomass (a decrease of 11.8 %) and root biomass (a decrease of 8.79 %). MPs also significantly increased Cd accumulation in the shoots and roots by 14.6 % and 13.5 %, respectively, revealing that MPs promote plant Cd uptake. Notably, polyethylene displayed a stronger promoting effect (an increase of 29.4 %) on Cd accumulation among these MP types. MPs induced a significantly increase (9.75 %) in concentration of soil available Cd and a slight decrease in soil pH, which may be the main driver promoting plant Cd uptake. MP addition posed physiological toxicity risks to plants by inhibiting photosynthesis and enhancing oxidative damage, directly demonstrating that MPs in combination with Cd can pose synergetic toxicity risks to plants. We further noted that MPs altered microbial diversity, likely influencing Cd bioavailability in soil-plant systems. Overall, our study has important implications for the combined impacts of Cd and MPs on plants and provides new insights into developing guidelines for the sustainable use of MPs in agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jinzhao Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Wanming Zhang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Hu Jiang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Ying Luo
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Lei Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
114
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
115
|
Lu Q, Zhou Y, Sui Q, Zhou Y. Mechanism and characterization of microplastic aging process: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:100. [PMID: 36935734 PMCID: PMC10010843 DOI: 10.1007/s11783-023-1700-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
With the increasing production of petroleum-based plastics, the problem of environmental pollution caused by plastics has aroused widespread concern. Microplastics, which are formed by the fragmentation of macro plastics, are bio-accumulate easily due to their small size and slow degradation under natural conditions. The aging of plastics is an inevitable process for their degradation and enhancement of adsorption performance toward pollutants due to a series of changes in their physiochemical properties, which significantly increase the toxicity and harm of plastics. Therefore, studies should focus on the aging process of microplastics through reasonable characterization methods to promote the aging process and prevent white pollution. This review summarizes the latest progress in natural aging process and characterization methods to determine the natural aging mechanism of microplastics. In addition, recent advances in the artificial aging of microplastic pollutants are reviewed. The degradation status and by-products of biodegradable plastics in the natural environment and whether they can truly solve the plastic pollution problem have been discussed. Findings from the literature pointed out that the aging process of microplastics lacks professional and exclusive characterization methods, which include qualitative and quantitative analyses. To lessen the toxicity of microplastics in the environment, future research directions have been suggested based on existing problems in the current research. This review could provide a systematic reference for in-depth exploration of the aging mechanism and behavior of microplastics in natural and artificial systems.
Collapse
Affiliation(s)
- Qinwei Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237 China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 China
| |
Collapse
|
116
|
Chaudhary V, Thakur N, Chaudhary S, Bangar SP. Remediation plan of nano/microplastic toxicity in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:397-442. [PMID: 36863840 DOI: 10.1016/bs.afnr.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Microplastic pollution is causing a stir globally due to its persistent and ubiquitous nature. The scientific collaboration is diligently working on improved, effective, sustainable, and cleaner measures to control the nano/microplastic load in the environment especially wrecking the aquatic habitat. This chapter discusses the challenges encountered in nano/microplastic control and improved technologies like density separation, continuous flow centrifugation, oil extraction protocol, electrostatic separation to extract and quantify the same. Although it is still in the early stages of research, biobased control measures, like meal worms and microbes to degrade microplastics in the environment have been proven effective. Besides the control measures, practical alternatives to microplastics can be developed like core-shell powder, mineral powder, and biobased food packaging systems like edible films and coatings developed using various nanotechnological tools. Lastly, the existing and ideal stage of global regulations is compared, and key research areas are pinpointed. This holistic coverage would enable manufacturers and consumers to reconsider their production and purchase decisions for sustainable development goals.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Neha Thakur
- Department of Livestock Products Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Suman Chaudhary
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, United States.
| |
Collapse
|
117
|
Gupta KK, Sharma KK, Chandra H. Utilization of Bacillus cereus strain CGK5 associated with cow feces in the degradation of commercially available high-density polyethylene (HDPE). Arch Microbiol 2023; 205:101. [PMID: 36862211 DOI: 10.1007/s00203-023-03448-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
The accumulation and mismanagement of high-density polyethylene (HDPE) waste in the environment is a complex problem in the present scenario. Biodegradation of this thermoplastic polymer is a promising environmentally sustainable method that offers a significant opportunity to address plastic waste management with minimal negative repercussion on the environment. In this framework, HDPE-degrading bacterium strain CGK5 was isolated from the fecal matter of cow. The biodegradation efficiency of strain was assessed, including percentage reduction in HDPE weight, cell surface hydrophobicity, extracellular biosurfactant production, viability of surface adhered cells, as well as biomass in terms of protein content. Through molecular techniques, strain CGK5 was identified as Bacillus cereus. Significant weight loss of 1.83% was observed in the HDPE film treated with strain CGK5 for 90 days. The FE-SEM analysis revealed the profused bacterial growth which ultimately caused the distortions in HDPE films. Furthermore, EDX study indicated a significant decrease in percentage carbon content at atomic level, whereas FTIR analysis confirmed chemical groups' transformation as well as an increment in the carbonyl index supposedly caused by bacterial biofilm biodegradation. Our findings shed light on the ability of our strain B. cereus CGK5 to colonize and use HDPE as a sole carbon source, demonstrating its applicability for future eco-friendly biodegradation processes.
Collapse
Affiliation(s)
- Kartikey Kumar Gupta
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India
| | - Kamal Kant Sharma
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India.
| | - Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Uttarakhand, Haridwar, India
| |
Collapse
|
118
|
Shah R, Nguyen TV, Marcora A, Ruffell A, Hulthen A, Pham K, Wijffels G, Paull C, Beale DJ. Exposure to polylactic acid induces oxidative stress and reduces the ceramide levels in larvae of greater wax moth (Galleria mellonella). ENVIRONMENTAL RESEARCH 2023; 220:115137. [PMID: 36563977 DOI: 10.1016/j.envres.2022.115137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plastic biodegradation by insects has made significant progress, opening up new avenues for the treatment of plastic waste. Wax moth larvae, for example, have attracted the attention of the scientific community because they are known to chew, ingest, and biodegrade natural polymer bee waxes. Despite this, we know very little about how these insects perform on manufactured plastics or how manufactured plastics affect insect metabolism. As a result, we studied the metabolism of greater wax moths (Galleria mellonella) fed on molasses-supplemented polylactic acid plastic (PLA) blocks. An analysis of the central carbon metabolism (CCM) metabolites was performed using liquid chromatography triple quadrupole mass spectrometry (LC-QQQ-MS), while an analysis of untargeted metabolites and lipids was conducted using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). In total, 169 targeted CCM metabolites, 222 untargeted polar metabolites, and 196 untargeted nonpolar lipids were identified within the insect samples. In contrast, compared to control larvae, PLA-fed larvae displayed significantly different levels of 97 CCM metabolites, 75 polar metabolites, and 57 lipids. Purine and pyrimidine metabolisms were affected by PLA feeding, as well as amino acid metabolism, carbohydrates, cofactors, vitamins, and related metabolisms. Additionally, PLA exposure disrupted insect energy metabolism and oxidative stress, among other metabolic disturbances. The larvae fed PLA have lower levels of several lipids, suggesting a reduction in lipid reserves, and ceramide levels are likely to have changed due to apoptosis and inflammation. The study indicates that G. mellonella larvae could ingest PLA but this process causes some metabolic stress for the host. Future studies of the molecular pathways of this biodegradation process might help to provide strategies for stress reduction that would speed up insect digestion of plastic.
Collapse
Affiliation(s)
- Rohan Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Thao V Nguyen
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Anna Marcora
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Angela Ruffell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Andrew Hulthen
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Khoa Pham
- CSIRO Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton VIC 4067, Australia
| | - Gene Wijffels
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Cate Paull
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia.
| |
Collapse
|
119
|
Bertocchini F, Arias CF. Why have we not yet solved the challenge of plastic degradation by biological means? PLoS Biol 2023; 21:e3001979. [PMID: 36881558 PMCID: PMC9990942 DOI: 10.1371/journal.pbio.3001979] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
The invention of fossil fuel-derived plastics changed and reshaped society for the better; however, their mass production has created an unprecedented accumulation of waste and an environmental crisis. Scientists are searching for better ways to reduce plastic waste than the current methods of mechanical recycling and incineration, which are only partial solutions. Biological means of breaking down plastics have been investigated as alternatives, with studies mostly focusing on using microorganisms to biologically degrade sturdy plastics like polyethylene (PE). Unfortunately, after a few decades of research, biodegradation by microorganisms has not provided the hoped-for results. Recent studies suggest that insects could provide a new avenue for investigation into biotechnological tools, with the discovery of enzymes that can oxidize untreated PE. But how can insects provide a solution that could potentially make a difference? And how can biotechnology revolutionize the plastic industry to stop ongoing/increasing contamination?
Collapse
Affiliation(s)
- Federica Bertocchini
- Department of Plant and Microbial Biotechnology, Centro de Investigaciones Biológicas-Margarita Salas, CSIC, Madrid, Spain
- * E-mail: (FB); (CFA)
| | - Clemente F. Arias
- Department of Plant and Microbial Biotechnology, Centro de Investigaciones Biológicas-Margarita Salas, CSIC, Madrid, Spain
- * E-mail: (FB); (CFA)
| |
Collapse
|
120
|
Zhou Y, Ashokkumar V, Amobonye A, Bhattacharjee G, Sirohi R, Singh V, Flora G, Kumar V, Pillai S, Zhang Z, Awasthi MK. Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121106. [PMID: 36681374 DOI: 10.1016/j.envpol.2023.121106] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Since the advent of microplastics, it has become a vital component, directly or indirectly, in our daily lives. With advancements in their use, microplastics have become an integral part of personal care, cosmetics, and cleaning products (PCCPs) and emerged as a domestic source of environmental pollution. Over the years, researchers have ascertained the harmful effects of microplastics on the environment. In this context, the assessment and monitoring of microplastics in PCCPs require considerable attention. In addition, it raises concern regarding the need to develop innovative, sustainable, and environmentally safe technologies to combat microplastic pollution. Therefore, this review is an endeavor to uncover the fate, route and degradation mechanism of cosmetic microplastics. In addition, the major technological advancement in cosmetic microplastic removal and the steps directed toward mitigating cosmetic microplastic pollution are also discussed.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Veeramuthu Ashokkumar
- Biorefineries for Biofuels & Bioproducts Laboratory, Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa
| | - Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001, Uttarakhand, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - G Flora
- Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602105, India
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban, 4000, South Africa
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
121
|
Parsaeimehr A, Miller CM, Ozbay G. Microplastics and their interactions with microbiota. Heliyon 2023; 9:e15104. [PMID: 37089279 PMCID: PMC10113872 DOI: 10.1016/j.heliyon.2023.e15104] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
As a new pollutant, Microplastics (MPs) are globally known for their negative impacts on different ecosystems and living organisms. MPs are easily taken up by the ecosystem in a variety of organisms due to their small size, and cause immunological, neurological, and respiratory diseases in the impacted organism. Moreover, in the impacted environments, MPs can release toxic additives and act as a vector and scaffold for colonization and transportation of specific microbes and lead to imbalances in microbiota and the biogeochemical and nutrients dynamic. To address the concerns on controlling the MPs pollution on the microbiota and ecosystem, the microbial biodegradation of MPs can be potentially considered as an effective environment friendly approach. The objectives of the presented paper are to provide information on the toxicological effects of MPs on microbiota, to discuss the negative impacts of microbial colonization of MPs, and to introduce the microbes with biodegradation ability of MPs.
Collapse
|
122
|
Capozzi F, Sorrentino MC, Cascone E, Iuliano M, De Tommaso G, Granata A, Giordano S, Spagnuolo V. Biomonitoring of Airborne Microplastic Deposition in Semi-Natural and Rural Sites Using the Moss Hypnum cupressiforme. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12050977. [PMID: 36903839 PMCID: PMC10005416 DOI: 10.3390/plants12050977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
We show that the native moss Hypnum cupressiforme can be used as a biomonitor of atmospheric microplastics (MPs). The moss was collected in seven semi-natural and rural sites in Campania (southern Italy) and was analyzed for the presence of MPs, according to standard protocols. Moss samples from all sites accumulated MPs, with fibers representing the largest fraction of plastic debris. Higher numbers of MPs and longer fibers were recorded in moss samples from sites closer to urbanized areas, likely as the results of a continuous flux from sources. The MP size class distribution showed that small size classes characterized sites having a lower level of MP deposition and a high altitude above sea level.
Collapse
Affiliation(s)
- Fiore Capozzi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Maria Cristina Sorrentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
- Correspondence: or
| | - Eleonora Cascone
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Mauro Iuliano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Gaetano De Tommaso
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Angelo Granata
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Simonetta Giordano
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Valeria Spagnuolo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| |
Collapse
|
123
|
Orlando M, Molla G, Castellani P, Pirillo V, Torretta V, Ferronato N. Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives. Int J Mol Sci 2023; 24:3877. [PMID: 36835289 PMCID: PMC9967032 DOI: 10.3390/ijms24043877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.
Collapse
Affiliation(s)
- Marco Orlando
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Pietro Castellani
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Valentina Pirillo
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 21100 Varese, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| | - Navarro Ferronato
- Department of Theoretical and Applied Sciences (DiSTA), University of Insubria, Via G.B. Vico 46, 21100 Varese, Italy
| |
Collapse
|
124
|
Anand U, Dey S, Bontempi E, Ducoli S, Vethaak AD, Dey A, Federici S. Biotechnological methods to remove microplastics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1787-1810. [PMID: 36785620 PMCID: PMC9907217 DOI: 10.1007/s10311-022-01552-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 05/14/2023]
Abstract
Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, University of Calcutta, Ajodhya, Shyampur, Howrah, 711312 India
| | - Elza Bontempi
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Serena Ducoli
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
125
|
Bashirova N, Poppitz D, Klüver N, Scholz S, Matysik J, Alia A. A mechanistic understanding of the effects of polyethylene terephthalate nanoplastics in the zebrafish (Danio rerio) embryo. Sci Rep 2023; 13:1891. [PMID: 36732581 PMCID: PMC9894871 DOI: 10.1038/s41598-023-28712-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Plastic pollution, especially by nanoplastics (NPs), has become an emerging topic due to the widespread existence and accumulation in the environment. The research on bioaccumulation and toxicity mechanism of NPs from polyethylene terephthalate (PET), which is widely used for packaging material, have been poorly investigated. Herein, we report the first use of high-resolution magic-angle spinning (HRMAS) NMR based metabolomics in combination with toxicity assay and behavioural end points to get systems-level understanding of toxicity mechanism of PET NPs in intact zebrafish embryos. PET NPs exhibited significant alterations on hatching and survival rate. Accumulation of PET NPs in larvae were observed in liver, intestine, and kidney, which coincide with localization of reactive oxygen species in these areas. HRMAS NMR data reveal that PET NPs cause: (1) significant alteration of metabolites related to targeting of the liver and pathways associated with detoxification and oxidative stress; (2) impairment of mitochondrial membrane integrity as reflected by elevated levels of polar head groups of phospholipids; (3) cellular bioenergetics as evidenced by changes in numerous metabolites associated with interrelated pathways of energy metabolism. Taken together, this work provides for the first time a comprehensive system level understanding of toxicity mechanism of PET NPs exposure in intact larvae.
Collapse
Affiliation(s)
- Narmin Bashirova
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany.,Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - David Poppitz
- Institute of Chemical Technology, Leipzig University, Leipzig, Germany
| | - Nils Klüver
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jörg Matysik
- Institute for Analytical Chemistry, Leipzig University, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany. .,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
126
|
Bacha AUR, Nabi I, Zaheer M, Jin W, Yang L. Biodegradation of macro- and micro-plastics in environment: A review on mechanism, toxicity, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160108. [PMID: 36370786 DOI: 10.1016/j.scitotenv.2022.160108] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Plastic waste has gained remarkable research attention due to its accumulation, associated environmental issues, and impact on living organisms. In order to overcome this challenge, there is an urgent need for its removal from the environment. Under this menace, finding appropriate treatment methods like biodegradation instead of typical treatment methods is of supreme importance. However, there is a limited review on bio-decomposition of plastics, existing microbial species, their degradation efficacy, and mechanism. From this point of view, this study focused on a brief overview of biodegradation such as influencing factors on biodegradation, existing species for macro- and micro-plastics, and present research gap. Degradation percentage, limitations of existing species, and future recommendations are proposed. Microbial species such as bacteria, algae, and fungi have the ability to decompose plastics but they are unable to completely mineralize the plastics. Meanwhile, there is limited knowledge about the involved enzymes in plastics degradation, especially in the case of algae. Bio-decomposition of plastics requires more stringent conditions which are usually feasible for field application. This work will be a reference for new researchers to use this effective strategy for plastic pollution removal.
Collapse
Affiliation(s)
- Aziz-Ur-Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Iqra Nabi
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Muhammad Zaheer
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China.
| |
Collapse
|
127
|
Li K, Jia W, Xu L, Zhang M, Huang Y. The plastisphere of biodegradable and conventional microplastics from residues exhibit distinct microbial structure, network and function in plastic-mulching farmland. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130011. [PMID: 36155295 DOI: 10.1016/j.jhazmat.2022.130011] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The inhomogeneity of plastisphere and soil may result in different microbial communities, thus potentially affecting soil functions. Biodegradable plastics offer an alternative to conventional plastics, nevertheless, the inadequate end-of-life treatment of biodegradable plastics may release more microplastics. Herein, we collected PE and PBAT/PLA microplastics in plastic-mulching farmland in Hebei, China. The bacterial communities of soil, PE and PBAT/PLA plastisphere were investigated using 16 S high-throughput sequencing. We found that the structure of bacterial communities in PBAT/PLA plastisphere were significantly distinct from PE plastisphere and soil. The alpha diversities in PBAT/PLA plastisphere were significantly lower than PE plastisphere and soil. Statistical analysis of differentially ASVs suggested that PBAT/PLA microplastics act as a filter, enriching taxa with the capability to degrade plastic polymers such as Proteobacteria and Actinobacteria. Compared to PE plastisphere, PBAT/PLA plastisphere has networks of less complexity, lower modularity, and more competitive interactions. Predicted metabolic pathways involved in human diseases, carbohydrate metabolism, amino acid metabolism, and xenobiotic biodegradation and metabolism were promoted in PBAT/PLA plastisphere, along with the facilitation in abundance of genes associated with carbon and nitrogen cycling. Our results highlighted the uniqueness of plastisphere of biodegradable microplastics from conventional microplastics and their potential impact on soil functions.
Collapse
Affiliation(s)
- Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Mengjun Zhang
- Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Marine Institute for Bioresources and Environment, Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
128
|
Yang XG, Wen PP, Yang YF, Jia PP, Li WG, Pei DS. Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front Microbiol 2023; 13:1001750. [PMID: 36687617 PMCID: PMC9852869 DOI: 10.3389/fmicb.2022.1001750] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/22/2022] [Indexed: 01/09/2023] Open
Abstract
Traditional plastics, such as polyethylene (PE), polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyurethane (PUR), and other plastic polymers, are difficult to degrade and are gradually accumulated in the environment to cause a serious environmental problem, which is urgently needed to develop novel treatments or control technology. The biodegradation of plastics has gained great attention due to the advantages of green and safe characteristics. Microorganisms play a vital role in the biodegradation of plastics, including environmental microbes (in vitro) and gut microbes of insects (in vivo). Microbial degradation in environmental conditions in vitro is extremely slow for major plastics at degradation rates on the basis of a month or even a year time, but recent discoveries show that the fast biodegradation of specific plastics, such as PS, PE, and PUR, in some invertebrates, especially insects, could be enhanced at rates on basis of hours; the biodegradation in insects is likely to be gut microbial-dependent or synergetic bioreactions in animal digestive systems. This review comprehensively summarizes the latest 7-year (2016-2022) publications on plastic biodegradation by insects and microorganisms, elucidates the mechanism of plastic degradation in insects and environmental microbes, and highlights the cutting-edge perspectives for the potential applications of plastic biodegradation.
Collapse
Affiliation(s)
- Xian-Guang Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ping-Ping Wen
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yi-Fan Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Wei-Guo Li
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
129
|
Zhai X, Zhang XH, Yu M. Microbial colonization and degradation of marine microplastics in the plastisphere: A review. Front Microbiol 2023; 14:1127308. [PMID: 36876073 PMCID: PMC9981674 DOI: 10.3389/fmicb.2023.1127308] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Marine microplastic pollution is a growing problem for ecotoxicology that needs to be resolved. In particular, microplastics may be carriers of "dangerous hitchhikers," pathogenic microorganisms, i.e., Vibrio. Microplastics are colonized by bacteria, fungi, viruses, archaea, algae and protozoans, resulting in the biofilm referred to as the "plastisphere." The microbial community composition of the plastisphere differs significantly from those of surrounding environments. Early dominant pioneer communities of the plastisphere belong to primary producers, including diatoms, cyanobacteria, green algae and bacterial members of the Gammaproteobacteria and Alphaproteobacteria. With time, the plastisphere mature, and the diversity of microbial communities increases quickly to include more abundant Bacteroidetes and Alphaproteobacteria than natural biofilms. Factors driving the plastisphere composition include environmental conditions and polymers, with the former having a much larger influence on the microbial community composition than polymers. Microorganisms of the plastisphere may play key roles in degradation of plastic in the oceans. Up to now, many bacterial species, especially Bacillus and Pseudomonas as well as some polyethylene degrading biocatalysts, have been shown to be capable of degrading microplastics. However, more relevant enzymes and metabolisms need to be identified. Here, we elucidate the potential roles of quorum sensing on the plastic research for the first time. Quorum sensing may well become a new research area to understand the plastisphere and promote microplastics degradation in the ocean.
Collapse
Affiliation(s)
- Xinyi Zhai
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
130
|
Jannesarahmadi S, Aminzadeh M, Raga R, Shokri N. Effects of microplastics on evaporation dynamics in porous media. CHEMOSPHERE 2023; 311:137023. [PMID: 36330984 DOI: 10.1016/j.chemosphere.2022.137023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) pollution is an emerging threat to soil ecosystems. The present study aims to investigate the impacts of MPs on soil water evaporation dynamics and patterns. Two series of laboratory experiments were conducted using sand particles and clay mixed with different MPs to investigate how evaporation dynamics and patterns are influenced by the presence of MPs. Quartz sand including 0, 0.75, 1.5, and 4.5% of Polyethylene (PE) and Polyvinylchloride (PVC) were used to evaluate MPs effects on evaporation rates while bentonite mixed with sand and 0, 0.75, 1.5, 4.5, 6, 8, and 10% of PE and PVC were used to investigate evaporation-induced cracking patterns. The experiments were conducted under controlled laboratory conditions in a climate chamber at constant ambient temperature. Our results suggest that the addition of MPs led to more water evaporation compared to the samples without MPs. Microscopic imaging and analysis enabled us to evaluate the possible MPs effects on the modification of soil characteristics and pore structure affecting the evaporation behavior. Moreover, although increasing MPs concentrations appeared to induce only minor effects on the crack morphology formed as a result of evaporation from the mixture of sand and bentonite, the type of MPs (PE vs PVC) had more notable effects on the drying-induced cracking patterns. The reported experimental data and analysis extend our physical understanding of the parameters influencing soil water evaporation in the presence of MPs.
Collapse
Affiliation(s)
- Sahar Jannesarahmadi
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, Am Schwarzenberg-Campus 3 (E), 21073 Hamburg, Germany; Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
| | - Milad Aminzadeh
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, Am Schwarzenberg-Campus 3 (E), 21073 Hamburg, Germany.
| | - Roberto Raga
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
| | - Nima Shokri
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, Am Schwarzenberg-Campus 3 (E), 21073 Hamburg, Germany.
| |
Collapse
|
131
|
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J. Marine-derived fungi as biocatalysts. Front Microbiol 2023; 14:1125639. [PMID: 36922968 PMCID: PMC10008910 DOI: 10.3389/fmicb.2023.1125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.
Collapse
Affiliation(s)
- Jorge R Virués-Segovia
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Salvador Muñoz-Mira
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Rosa Durán-Patrón
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s/n, Torre sur, 4ª Planta, Universidad de Cádiz, Cádiz, Spain
| |
Collapse
|
132
|
Jiménez‐Arroyo C, Tamargo A, Molinero N, Moreno‐Arribas MV. The gut microbiota, a key to understanding the health implications of micro(nano)plastics and their biodegradation. Microb Biotechnol 2023; 16:34-53. [PMID: 36415969 PMCID: PMC9803334 DOI: 10.1111/1751-7915.14182] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
The effects of plastic debris on the environment and plant, animal, and human health are a global challenge, with micro(nano)plastics (MNPs) being the main focus. MNPs are found so often in the food chain that they are provoking an increase in human intake. They have been detected in most categories of consumed foods, drinking water, and even human feces. Therefore, oral ingestion becomes the main source of exposure to MNPs, and the gastrointestinal tract, primarily the gut, constantly interacts with these small particles. The consequences of human exposure to MNPs remain unclear. However, current in vivo studies and in vitro gastrointestinal tract models have shown that MNPs of several types and sizes impact gut intestinal bacteria, affecting gut homeostasis. The typical microbiome signature of MNP ingestion is often associated with dysbiosis and loss of resilience, leads to frequent pathogen outbreaks, and local and systemic metabolic disorders. Moreover, the small micro- and nano-plastic particles found in animal tissues with accumulated evidence of microbial degradation of plastics/MNPs by bacteria and insect gut microbiota raise the issue of whether human gut bacteria make key contributions to the bio-transformation of ingested MNPs. Here, we discuss these issues and unveil the complex interplay between MNPs and the human gut microbiome. Therefore, the elucidation of the biological consequences of this interaction on both host and microbiota is undoubtedly challenging. It is expected that microbial biotechnology and microbiome research could help decipher the extent to which gut microorganisms diversify and MNP-determinant species, mechanisms, and enzymatic systems, as well as become important to understand our response to MNP exposure and provide background information to inspire future holistic studies.
Collapse
Affiliation(s)
| | - Alba Tamargo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL)CSIC‐UAMMadridSpain
| | - Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL)CSIC‐UAMMadridSpain
| | | |
Collapse
|
133
|
Zhang C, Mu Y, Li T, Jin FJ, Jin CZ, Oh HM, Lee HG, Jin L. Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the "Plastisphere". Front Microbiol 2023; 14:1181967. [PMID: 37138608 PMCID: PMC10150012 DOI: 10.3389/fmicb.2023.1181967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Numerous microorganisms and other invertebrates that are able to degrade polyethylene (PE) have been reported. However, studies on PE biodegradation are still limited due to its extreme stability and the lack of explicit insights into the mechanisms and efficient enzymes involved in its metabolism by microorganisms. In this review, current studies of PE biodegradation, including the fundamental stages, important microorganisms and enzymes, and functional microbial consortia, were examined. Considering the bottlenecks in the construction of PE-degrading consortia, a combination of top-down and bottom-up approaches is proposed to identify the mechanisms and metabolites of PE degradation, related enzymes, and efficient synthetic microbial consortia. In addition, the exploration of the plastisphere based on omics tools is proposed as a future principal research direction for the construction of synthetic microbial consortia for PE degradation. Combining chemical and biological upcycling processes for PE waste could be widely applied in various fields to promote a sustainable environment.
Collapse
Affiliation(s)
- Chengxiao Zhang
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yulin Mu
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Taihua Li
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
- Hyung-Gwan Lee,
| | - Long Jin
- College of Biology and the Environment, Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Long Jin,
| |
Collapse
|
134
|
Goudriaan M, Morales VH, van der Meer MTJ, Mets A, Ndhlovu RT, van Heerwaarden J, Simon S, Heuer VB, Hinrichs KU, Niemann H. A stable isotope assay with 13C-labeled polyethylene to investigate plastic mineralization mediated by Rhodococcus ruber. MARINE POLLUTION BULLETIN 2023; 186:114369. [PMID: 36462423 DOI: 10.1016/j.marpolbul.2022.114369] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Methods that unambiguously prove microbial plastic degradation and allow for quantification of degradation rates are necessary to constrain the influence of microbial degradation on the marine plastic budget. We developed an assay based on stable isotope tracer techniques to determine microbial plastic mineralization rates in liquid medium on a lab scale. For the experiments, 13C-labeled polyethylene (13C-PE) particles (irradiated with UV-light to mimic exposure of floating plastic to sunlight) were incubated in liquid medium with Rhodococcus ruber as a model organism for proof of principle. The transfer of 13C from 13C-PE into the gaseous and dissolved CO2 pools translated to microbially mediated mineralization rates of up to 1.2 % yr-1 of the added PE. After incubation, we also found highly 13C-enriched membrane fatty acids of R. ruber including compounds involved in cellular stress responses. We demonstrated that isotope tracer techniques are a valuable tool to detect and quantify microbial plastic degradation.
Collapse
Affiliation(s)
- Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands.
| | - Victor Hernando Morales
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands; Centro de Investigación Mariña, University of Vigo, Department of Ecology and Animal Biology, Biological Oceanography Group, 36319 Vigo, Spain
| | - Marcel T J van der Meer
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Anchelique Mets
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Rachel T Ndhlovu
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Johan van Heerwaarden
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Sina Simon
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Verena B Heuer
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, the Netherlands; CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
135
|
Kim JH, Choi SH, Park MG, Park DH, Son KH, Park HY. Polyurethane biodegradation by Serratia sp. HY-72 isolated from the intestine of the Asian mantis Hierodula patellifera. Front Microbiol 2022; 13:1005415. [PMID: 36601396 PMCID: PMC9806174 DOI: 10.3389/fmicb.2022.1005415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Polyurethane (PU), currently replacing existing synthetic materials worldwide, is a synthetic polymer derived from polyols, isocyanates, and a chain extender added by condensation reactions. PU wastes which are difficult to recycle, are commonly discarded in landfills and flow into ecosystems, thereby causing serious environmental problems. In recent years, insect-associated microbes have become a promising, eco-friendly strategy as an alternative to plastic recycling. This study aimed to evaluate the potential of Serratia sp. HY-72 strain isolated from the intestine of the Asian mantis (Hierodula patellifera) for PU degradation. The 65 kDa family I.3 lipase which degrades PU was identified and characterized, with a specific activity of 2,883 U mg-1. The bacterial filtrates and the recombinant lipase degraded Impranil (a colloidal polyester-PU dispersion, 100 g l-1) by 85.24 and 78.35% after 72 h incubation, respectively. Fourier transform infrared spectroscopy analysis revealed changes in Impranil functional groups, with decreased C=O functional group and aliphatic chain signals, and increased N-H bending with C-N stretching and C-O stretching. The current study also revealed that the HY-72 strain biodegraded the commercial PU foams (polyester- and polyether- PU) with 23.95 and 10.95% weight loss after 2 weeks, respectively with changes in surface morphology and structure such as cracks, roughness, and surface roughening. Altogether, this is one of the few studies reporting biodegradation of PU by the insect-associated microbe. These findings suggest that the insect-associated microbe could be a promising resource for biodegradation and recycling of plastic waste.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung Hoon Choi
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Min Gu Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Dong Hwan Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Hee Son
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea,*Correspondence: Kwang-Hee Son,
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea,Ho-Yong Park,
| |
Collapse
|
136
|
Co-diet supplementation of low density polyethylene and honeybee wax did not influence the core gut bacteria and associated enzymes of Galleria mellonella larvae (Lepidoptera: Pyralidae). Int Microbiol 2022; 26:397-409. [PMID: 36484909 DOI: 10.1007/s10123-022-00303-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022]
Abstract
The current plastic pollution throughout the world is a rising concern that demands the optimization of biodegradation processes. One avenue for this is to identify plastic-degrading bacteria and associated enzymes from the gut bacteria of insect models such as Tenebrio molitor, Plodia interpunctella or Galleria mellonella that have the ability to ingest and rapidly degrade polyethylene. Therefore, this study takes part in understanding the role of the gut bacteria by investigating G. mellonella as a biological model feeding with a diet based on honeybee wax mixed or not with low-density polyethylene. Gut microbiome was analyzed by high throughput 16S rRNA sequencing, and Enterococcaceae and Oxalobacteraceae were found to be the major bacterial families. Compared to the control, the supplementation of low-density polyethylene did not cause significant modification of the bacterial microbiota at community and taxa levels, suggesting bacterial microbiome resilience. The bacterial proteome analysis of gut contents was encouraging for the identification of plastic degrading enzymes such as the phenylacetaldehyde dehydrogenase which participate in styrene degradation. This study allowed a better characterization of the gut bacteria of G. mellonella and provided a basis for the further study of biodegradation of polyethylene based on the bacterial microbiota from insect guts.
Collapse
|
137
|
Ahmad Shukri ZN, Che Engku Chik CEN, Hossain S, Othman R, Endut A, Lananan F, Terkula IB, Kamaruzzan AS, Abdul Rahim AI, Draman AS, Kasan NA. A novel study on the effectiveness of bioflocculant-producing bacteria Bacillus enclensis, isolated from biofloc-based system as a biodegrader in microplastic pollution. CHEMOSPHERE 2022; 308:136410. [PMID: 36115480 DOI: 10.1016/j.chemosphere.2022.136410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Zuhayra Nasrin Ahmad Shukri
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Che Engku Noramalina Che Engku Chik
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Shahadat Hossain
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Rohisyamuddin Othman
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Azizah Endut
- Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Terengganu, Malaysia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Terengganu, Malaysia.
| | - Iber Benedict Terkula
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Amyra Suryatie Kamaruzzan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Ahmad Ideris Abdul Rahim
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Ahmad Shuhaimi Draman
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
138
|
Oliveira J, Almeida PL, Sobral RG, Lourenço ND, Gaudêncio SP. Marine-Derived Actinomycetes: Biodegradation of Plastics and Formation of PHA Bioplastics-A Circular Bioeconomy Approach. Mar Drugs 2022; 20:md20120760. [PMID: 36547907 PMCID: PMC9783806 DOI: 10.3390/md20120760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Plastics are present in the majority of daily-use products worldwide. Due to society's production and consumption patterns, plastics are accumulating in the environment, causing global pollution issues and intergenerational impacts. Our work aims to contribute to the development of solutions and sustainable methods to mitigate this pressing problem, focusing on the ability of marine-derived actinomycetes to accelerate plastics biodegradation and produce polyhydroxyalkanoates (PHAs), which are biodegradable bioplastics. The thin plastic films' biodegradation was monitored by weight loss, changes in the surface chemical structure (Infra-Red spectroscopy FTIR-ATR), and by mechanical properties (tensile strength tests). Thirty-six marine-derived actinomycete strains were screened for their plastic biodegradability potential. Among these, Streptomyces gougerotti, Micromonospora matsumotoense, and Nocardiopsis prasina revealed ability to degrade plastic films-low-density polyethylene (LDPE), polystyrene (PS) and polylactic acid (PLA) in varying conditions, namely upon the addition of yeast extract to the culture media and the use of UV pre-treated thin plastic films. Enhanced biodegradation by these bacteria was observed in both cases. S. gougerotti degraded 0.56% of LDPE films treated with UV radiation and 0.67% of PS films when inoculated with yeast extract. Additionally, N. prasina degraded 1.27% of PLA films when these were treated with UV radiation, and yeast extract was added to the culture medium. The main and most frequent differences observed in FTIR-ATR spectra during biodegradation occurred at 1740 cm-1, indicating the formation of carbonyl groups and an increase in the intensity of the bands, which indicates oxidation. Young Modulus decreased by 30% on average. In addition, S. gougerotti and M. matsumotoense, besides biodegrading conventional plastics (LDPE and PS), were also able to use these as a carbon source to produce degradable PHA bioplastics in a circular economy concept.
Collapse
Affiliation(s)
- Juliana Oliveira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Science Departments, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro L. Almeida
- I3N-CENIMAT, Materials Science Department, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Physics Department, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisbon, Portugal
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Science Departments, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Nídia D. Lourenço
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Science Departments, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Science Departments, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-21-2948300; Fax: +351-21-2948550
| |
Collapse
|
139
|
Kokilathasan N, Dittrich M. Nanoplastics: Detection and impacts in aquatic environments - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157852. [PMID: 35944628 DOI: 10.1016/j.scitotenv.2022.157852] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The rise in the global production of plastics has led to severe concerns about the impacts of plastics in aquatic environments. Although plastic materials degrade over extreme long periods, they can be broken down through physical, chemical, and/or biological processes to form microplastics (MPs), defined here as particles between 1 μm and 5 mm in size, and later to form nanoplastics (NPls), defined as particles <1 μm in size. We know little about the abundance and effects of NPls, even though a lot of research has been conducted on the ecotoxicological impacts of MPs on both aquatic biota. Nevertheless, there is evidence that NPls can both bypass the cell membranes of microorganisms and bioaccumulate in the tissues and organs of higher organisms. This review analyzes 150 publications collected by searching through the databases Web of Science, SCOPUS, and Google Scholar using keywords such as nanoplastics*, aquatic*, detection*, toxic*, biofilm*, formation*, and extracellular polymeric substance* as singular or plural combinations. We highlight and critically synthesize current studies on the formation and degradation of NPls, NPls' interactions with aquatic biota and biofilm communities, and methods of detection. One reason for the missing data and studies in this area of research is the lack of a protocol for the detection of, and suitable methods for the characterization of, NPls in the field. Our primary aim is to identify gaps in knowledge throughout the review and define future directions of research to address the impacts of NPls in aquatic environments. The development of consistent and standardized sets of procedures would address the gaps in knowledge regarding the formation and degradation of NPls as well as sampling and characterizing natural NPls needed to observe the full extent of NPls on aquatic biota and biofilm communities.
Collapse
Affiliation(s)
- Nigarsan Kokilathasan
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada
| | - Maria Dittrich
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
140
|
Manzi HP, Abou-Shanab RAI, Jeon BH, Wang J, Salama ES. Algae: a frontline photosynthetic organism in the microplastic catastrophe. TRENDS IN PLANT SCIENCE 2022; 27:1159-1172. [PMID: 35792026 DOI: 10.1016/j.tplants.2022.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/31/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Recalcitrancy in microplastics (MPs) contributes to white pollution. Bioremediation can remove MPs and facilitate environmental sustainability. Although recent studies have been conducted on the interaction of algae and MPs, the role of algae in MP removal with the simultaneous implementation of 'omics studies has not yet been discussed. Here, we review the adverse effects of MPs on the environment and possible approaches to remove them from the aquatic environment by using algae. We highlight the mechanism of MP biodegradation, the algal species that have been used, and how these are affected by MPs. We propose that algomics, characterization of biodegrading enzymes, and genetic engineering could be effective strategies for optimizing MP degradation.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Reda A I Abou-Shanab
- College of Biological Sciences, BioTechnology Institute, University of Minnesota, St Paul, MN, USA
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China.
| |
Collapse
|
141
|
Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
142
|
Burelo M, Gaytán I, Loza-Tavera H, Cruz-Morales JA, Zárate-Saldaña D, Cruz-Gómez MJ, Gutiérrez S. Synthesis, characterization and biodegradation studies of polyurethanes: Effect of unsaturation on biodegradability. CHEMOSPHERE 2022; 307:136136. [PMID: 36028127 DOI: 10.1016/j.chemosphere.2022.136136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The presence of unsaturation in the main chain of the polymer promotes the biodegradation process. To elucidate this hypothesis, one unsaturated polyurethane (PUU) and another saturated polyurethane (PUS) were synthesized and then biodegraded, and evidence was found to support this hypothesis. The polyurethanes were synthesized by a polycondensation reaction with yields up to 97%. It is important to note that both polyurethanes were constituted only by the recalcitrant hard segment and showed low crystallinity and molecular weight. Spectroscopic, thermal, and chromatographic techniques were used for physical and structural characterization. Both polyurethanes were biodegraded by the BP8 microbial community and the Cladosporium tenuissimum A3.I.1 fungus during a two-month period. A postbiodegradation characterization revealed the detriment of properties in both materials, indicating successful biodegradation. As a general trend, more efficient biodegradation was observed by the Cladosporium tenuissimum fungus A3.I.1 than by the BP8 microbial community. Specifically, with the fungus, the infrared analysis showed a decrease in the characteristic bands as well as the appearance of new carboxylic acid signals (approximately 1701 cm-1), suggesting the enzymatic cleavage of the urethane group. By comparison to polyurethanes, PUU showed superior biodegradation; using the fungus, a 51% decrease in molecular weight (Mw) for PUU was achieved, in contrast with 36% achieved for PUS. Despite the low crystallinity and molecular weight, the determining factor in biodegradation was the presence of unsaturations along the main chain. Thus, a more efficient oxidative attack is carried out by microorganisms on double bonds. The novel PUU showed similar biodegradation to the known polyester-type PU with highly hydrolysable groups. Consequently, PUU represents a green alternative to conventional polyurethanes and is a key material to achieve biorecycling.
Collapse
Affiliation(s)
- Manuel Burelo
- Laboratorio de Química Sostenible, Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Itzel Gaytán
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México. Ave. Universidad 3000. Col. UNAM. Coyoacán, 04510, Ciudad de México, Mexico
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México. Ave. Universidad 3000. Col. UNAM. Coyoacán, 04510, Ciudad de México, Mexico
| | - Jorge A Cruz-Morales
- Laboratorio de Química Sostenible, Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Daniel Zárate-Saldaña
- Laboratorio de Química Sostenible, Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - M Javier Cruz-Gómez
- Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México. Ave. Universidad 3000. Col. UNAM. Coyoacán, 04510, Ciudad de México, Mexico
| | - Selena Gutiérrez
- Laboratorio de Química Sostenible, Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
143
|
Gabisa EW, Gheewala SH. Microplastics in ASEAN region countries: A review on current status and perspectives. MARINE POLLUTION BULLETIN 2022; 184:114118. [PMID: 36174255 DOI: 10.1016/j.marpolbul.2022.114118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
A literature assessment was conducted to determine the current state of microplastics research in ASEAN countries focusing on 1) microplastics in water, sediment, and water organisms; 2) microplastics' sources and dispersion; and 3) microplastics' environmental consequences, including human toxicity. ASEAN countries contributed only about 5 % of the global scholarly papers on microplastics, with Indonesia contributing the most followed by Malaysia and Thailand. The lack of standard harmonized sampling and processing methodologies made comparisons between research difficult. ASEAN contributes the most to plastic trash ending up in the ocean, indicating a need for more work in this region to prevent plastic pollution. Microplastics are found in every environmental compartment; however, their distribution and environmental consequences have not been sufficiently investigated. There are very few studies on microplastics in the human blood system as well as respiratory organs like the lungs, indicating that more research is needed.
Collapse
Affiliation(s)
- Elias W Gabisa
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bangkok 10140, Thailand; Centre for Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand; Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Shabbir H Gheewala
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Road, Bangkok 10140, Thailand; Centre for Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.
| |
Collapse
|
144
|
Zuo Z, Wang Q, Zhang C, Zou J. Single and combined effects of microplastics and cadmium on juvenile grass carp (Ctenopharyngodon idellus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109424. [PMID: 35918021 DOI: 10.1016/j.cbpc.2022.109424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Microplastics (MPs) have received extensive attention as a new type of environmental pollutants with potential ecological risks. However, there are still few studies on the physiological stress response of aquatic organisms under the interaction of MPs and heavy metals. In this study, grass carp (Ctenopharyngodon idellus) were chosen as experimental fish and were exposed to 5 μm polystyrene microplastics (PS - MPs, 700 μg/L) and cadmium (Cd, 100 μg/L) individually or in combination. The results indicated that the presence of Cd didn't affect the accumulation of MPs in the intestines of grass carp. On the contrary, the concentration of Cd in the intestines of grass carp was higher in the MPs - Cd combined exposure group than in the Cd alone exposure group. Histological analysis revealed multiple abnormalities in the intestines after acute exposure, and the damage in the MPs - Cd combined exposure group was particularly severe. After 24 h of exposure, the expression of pro-inflammatory cytokines was significantly up-regulated in all exposed groups. However, after 48 h of exposure, the expression of inflammatory cytokines was significantly down-regulated, which may be related to intestinal damage. Our results deepen the significance of toxicological studies of MPs exposure, highlight their interaction with heavy metal toxicants, and provide important data for assessing the risk of MPs and heavy metals to grass carp.
Collapse
Affiliation(s)
- Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chaonan Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310000, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
145
|
Liu X, Wang D, Yin Z, Sun L, Pang S, Liu J, Li W, Cui S, Huang W, Du Y, Xie Z. Insights into Evolutionary, Genomic, and Biogeographic Characterizations of Chryseobacterium nepalense Represented by a Polyvinyl Alcohol-Degrading Bacterium, AC3. Microbiol Spectr 2022; 10:e0217922. [PMID: 36000867 PMCID: PMC9602593 DOI: 10.1128/spectrum.02179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/10/2022] [Indexed: 12/31/2022] Open
Abstract
Chryseobacterium spp. are Gram-negative rods found ubiquitously in the environment, with certain species being reported as having unusual degrading properties. Polyvinyl alcohol (PVA) is used widely in industry but causes serious global environmental pollution. Here, we report the complete genome sequence of a novel bacterium, AC3, that efficiently degrades PVA. As the representative genome of Chryseobacterium nepalense, key genomic characteristics (e.g., mobile genetic elements, horizontal genes, genome-scale metabolic network, secondary metabolite biosynthesis gene clusters, and carbohydrate-active enzymes) were comprehensively investigated to reveal the potential genetic features of this species. Core genome phylogenetic analysis in combination with average nucleotide identity, average amino acid identity, and in silico DNA-DNA hybridization values provided an accurate taxonomic position of C. nepalense in the genus Chryseobacterium. Comparative genomic analysis of AC3 with closely related species suggested evolutionary dynamics characterized by a species-specific genetic repertoire, dramatic rearrangements, and evolutionary constraints driven by selective pressure, which facilitated the speciation and adaptative evolution of C. nepalense. Biogeographic characterization indicated that this species is ubiquitously distributed not only in soil habitats but also in a variety of other source niches. Bioinformatic analysis revealed the potential genetic basis of PVA degradation in AC3, which included six putative genes associated with the synthesis of PVA dehydrogenase, cytochrome c, oxidized PVA hydrolase, and secondary alcohol dehydrogenase. Our study reports the first complete genome of C. nepalense with PVA-degrading properties, providing comprehensive insights into the genomic characteristics of this species and increasing our understanding of the microbial degradation of PVA. IMPORTANCE Although PVA is a biodegradable polymer, the widespread use of PVA in global industrialization has resulted in serious environmental problems. To date, knowledge of effective and applicable PVA-degrading bacteria is limited, and thus, the discovery of novel PVA biodegraders is pertinent. Here, we isolated a novel bacterial strain, AC3, which efficiently degraded PVA. The complete genome of AC3 was sequenced as the first genome sequence of the species C. nepalense. Comparative genomic analysis was performed to comprehensively investigate the phylogenetic relationships, genome-scale metabolic network, key genomic characteristics associated with genomic evolution, evolutionary dynamics between AC3 and its close relatives, and biogeographic characterization of C. nepalense, particularly regarding the potential genetic basis of PVA degradation. These findings could advance our understanding of the genomic characteristics of C. nepalense and PVA bioremediation.
Collapse
Affiliation(s)
- Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Li Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Shiqi Pang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Jianing Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Wei Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, People’s Republic of China
| | - Shiyu Cui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Weiwei Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| | - Yuhui Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Tai’an, China
| |
Collapse
|
146
|
Yao C, Xia W, Dou M, Du Y, Wu J. Oxidative degradation of UV-irradiated polyethylene by laccase-mediator system. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129709. [PMID: 35939906 DOI: 10.1016/j.jhazmat.2022.129709] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene (PE) is one of the most widely used plastics. However, the chemical inertness, inefficient recycling, and random landfilling of PE waste have caused serious pollution to the natural environment. In this study, a series of laccase-mediator systems (LMS) were constructed by combination of two laccases from Botrytis aclada (BaLac) and Bacillus subtilis (BsLac) with three synthetic mediators (ABTS, HBT, and TEMPO) to oxidize LDPE films (UVPE) pretreated with high-temperature UV irradiation. Scanning electron microscopy showed aging phenomena such as etching, fragmentation, and cracking on the surface of the UVPE films after LMS incubation. The FTIR results showed that LMS-UVPE added new oxygen-containing functional groups such as -OH, -CO, and CC. High-temperature gel chromatography confirmed that the average reduction in weight-average molecular weight (Mw) was approximately 40% for the BaLac experimental group. GC-MS analysis showed the presence of oxygen-containing products, such as aldehydes, ketones, and alcohols, in the reaction mixture. To verify the oxidation process UVPE degradation by LMS, we inferred three possible pathways by combined analysis of the oxidation products of LMS on UVPE and model substrates oleic acid and squalene.
Collapse
Affiliation(s)
- Congyu Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingde Dou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yanyi Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
147
|
Myco-degradation of microplastics: an account of identified pathways and analytical methods for their determination. Biodegradation 2022; 33:529-556. [PMID: 36227389 DOI: 10.1007/s10532-022-10001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
Microplastics (MPs) have sparked widespread concern due to their non-degradable and persistent nature in ecosystems. Long-term exposure to microplastics can cause chronic toxicity, including impaired reproduction and malnutrition, threatening biota and humans. Microplastics can also cause ingestion, choking, and entanglement in aquatic populations. Thus, it is crucial to establish remarkably effective approaches to diminish MPs from the environment. In this regard, using fungi for microplastic degradation is beneficial owing to its diverse nature and effective enzymatic system. Extracellular and intracellular enzymes in fungi degrade the plastic polymers into monomers and produce carbon dioxide and water under aerobic conditions whereas methane under anaerobic conditions. Further, fungi also secrete hydrophobins (surface proteins) which serve as a crucial aid in the bioremediation process by promoting substrate mobility and bioavailability. Therefore, the present review provides insight into the mechanism and general pathway of fungal-mediated microplastic degradation. Additionally, analytical techniques for the monitoring of MPs degradation along with the roadblocks and future perspectives have also been discussed. However, more research is required to fully perceive the underlying process of microplastic biodegradation in the environment using fungus, to establish an effective and sustainable practice for its management.
Collapse
|
148
|
Miloloža M, Ukić Š, Cvetnić M, Bolanča T, Kučić Grgić D. Optimization of Polystyrene Biodegradation by Bacillus cereus and Pseudomonas alcaligenes Using Full Factorial Design. Polymers (Basel) 2022; 14:polym14204299. [PMID: 36297877 PMCID: PMC9611612 DOI: 10.3390/polym14204299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Microplastics (MP) are a global environmental problem because they persist in the environment for long periods of time and negatively impact aquatic organisms. Possible solutions for removing MP from the environment include biological processes such as bioremediation, which uses microorganisms to remove contaminants. This study investigated the biodegradation of polystyrene (PS) by two bacteria, Bacillus cereus and Pseudomonas alcaligenes, isolated from environmental samples in which MPs particles were present. First, determining significant factors affecting the biodegradation of MP-PS was conducted using the Taguchi design. Then, according to preliminary experiments, the optimal conditions for biodegradation were determined by a full factorial design (main experiments). The RSM methodology was applied, and statistical analysis of the obtained models was performed to analyze the influence of the studied factors. The most important factors for MP-PS biodegradation by Bacillus cereus were agitation speed, concentration, and size of PS, while agitation speed, size of PS, and optical density influenced the process by Pseudomonas alcaligenes. However, the optimal conditions for biodegradation of MP-PS by Bacillus cereus were achieved at γMP = 66.20, MP size = 413.29, and agitation speed = 100.45. The best conditions for MP-PS biodegradation by Pseudomonas alcaligenes were 161.08, 334.73, and 0.35, as agitation speed, MP size, and OD, respectively. In order to get a better insight into the process, the following analyzes were carried out. Changes in CFU, TOC, and TIC concentrations were observed during the biodegradation process. The increase in TOC values was explained by the detection of released additives from PS particles by LC-MS analysis. At the end of the process, the toxicity of the filtrate was determined, and the surface area of the particles was characterized by FTIR-ATR spectroscopy. Ecotoxicity results showed that the filtrate was toxic, indicating the presence of decomposition by-products. In both FTIR spectra, a characteristic weak peak at 1715 cm−1 was detected, indicating the formation of carbonyl groups (−C=O), confirming that a biodegradation process had taken place.
Collapse
|
149
|
Sanluis-Verdes A, Colomer-Vidal P, Rodriguez-Ventura F, Bello-Villarino M, Spinola-Amilibia M, Ruiz-Lopez E, Illanes-Vicioso R, Castroviejo P, Aiese Cigliano R, Montoya M, Falabella P, Pesquera C, Gonzalez-Legarreta L, Arias-Palomo E, Solà M, Torroba T, Arias CF, Bertocchini F. Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nat Commun 2022; 13:5568. [PMID: 36195604 PMCID: PMC9532405 DOI: 10.1038/s41467-022-33127-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Plastic degradation by biological systems with re-utilization of the by-products could be a future solution to the global threat of plastic waste accumulation. Here, we report that the saliva of Galleria mellonella larvae (wax worms) is capable of oxidizing and depolymerizing polyethylene (PE), one of the most produced and sturdy polyolefin-derived plastics. This effect is achieved after a few hours’ exposure at room temperature under physiological conditions (neutral pH). The wax worm saliva can overcome the bottleneck step in PE biodegradation, namely the initial oxidation step. Within the saliva, we identify two enzymes, belonging to the phenol oxidase family, that can reproduce the same effect. To the best of our knowledge, these enzymes are the first animal enzymes with this capability, opening the way to potential solutions for plastic waste management through bio-recycling/up-cycling. The crucial first step in the biodegradation of polyethylene plastic is oxidation of the polymer. This has traditionally required abiotic pre-treatment, but now Bertocchini and colleagues report two wax worm enzymes capable of catalyzing this oxidation and subsequent degradation at room temperature.
Collapse
Affiliation(s)
- A Sanluis-Verdes
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain
| | - P Colomer-Vidal
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain
| | - F Rodriguez-Ventura
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain
| | - M Bello-Villarino
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain
| | | | - E Ruiz-Lopez
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB)-CSIC, Barcelona, Spain
| | - R Illanes-Vicioso
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB)-CSIC, Barcelona, Spain
| | - P Castroviejo
- Department of Chemistry, Faculty of Science and PCT, University of Burgos, Burgos, Spain
| | | | - M Montoya
- CIB-CSIC, Department of Molecular Biomedicine, Madrid, Spain
| | - P Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - C Pesquera
- Department of Chemistry and Process & Resource Engineering, Inorganic Chemistry Group-University of Cantabria, Nanomedicine-IDIVAL, Santander, Spain
| | - L Gonzalez-Legarreta
- Department of Chemistry and Process & Resource Engineering, Inorganic Chemistry Group-University of Cantabria, Nanomedicine-IDIVAL, Santander, Spain
| | - E Arias-Palomo
- CIB-CSIC, Department of Structural and Chemical Biology, Madrid, Spain
| | - M Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB)-CSIC, Barcelona, Spain
| | - T Torroba
- Department of Chemistry, Faculty of Science and PCT, University of Burgos, Burgos, Spain
| | - C F Arias
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain.
| | - F Bertocchini
- Centro de Investigaciones Biologicas-Margarita Salas (CIB)-Consejo Superior de Investigaciones Cientificas (CSIC), Department of Plant and Microbial Biology, Madrid, Spain.
| |
Collapse
|
150
|
The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective. Bioprocess Biosyst Eng 2022; 45:1865-1878. [PMID: 36173483 DOI: 10.1007/s00449-022-02793-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
Wastewater treatment plants (WWTPs) play the role of intercepting microplastics in the environment and provide a platform for bioremediation to remove microplastics. Despite, this opportunity has not been adequately studied. This paper shows the potential ways microplastics-targeted bioremediation could be incorporated into wastewater treatment through the review of relevant literature on bioaugmentation of water treatment processes for pollutants removal. Having reviewed more than 90 papers in this area, it highlights that bioremediation in WWTPs can be employed through bioaugmentation of secondary biological treatment systems, particularly the aerobic conventional activated sludge, sequencing batch reactor, membrane bioreactor and rotating biological contactor. The efficiency of microplastics removal, however, is influenced by the types and forms of microorganisms used, the polymer types and the incubation time (100% for polycaprolactone with Streptomyces thermoviolaceus and 0.76% for low-density polyethylene with Acinetobacter iwoffii). Bioaugmentation of anaerobic system, though possible, is constrained by comparatively less anaerobic microplastics-degrading microorganisms identified. In tertiary system, bioremediation through biological activated carbon and biological aerated filter can be accomplished and enzymatic membrane reactor can be added to the system for deployment of biocatalysts. During sludge treatment, bioaugmentation and addition of enzymes to composting and anaerobic digestion are potential ways to enhance microplastics breakdown. Limitations of bioremediation in wastewater treatment include longer degradation time of microplastics, incomplete biodegradation, variable efficiency, specific microbial activities and uncertainty in colonization. This paper provides important insight into the practical applications of bioremediation in wastewater treatment for microplastics removal.
Collapse
|