101
|
Weiler A, Volkenhoff A, Hertenstein H, Schirmeier S. Metabolite transport across the mammalian and insect brain diffusion barriers. Neurobiol Dis 2017; 107:15-31. [PMID: 28237316 DOI: 10.1016/j.nbd.2017.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 01/02/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
The nervous system in higher vertebrates is separated from the circulation by a layer of specialized endothelial cells. It protects the sensitive neurons from harmful blood-derived substances, high and fluctuating ion concentrations, xenobiotics or even pathogens. To this end, the brain endothelial cells and their interlinking tight junctions build an efficient diffusion barrier. A structurally analogous diffusion barrier exists in insects, where glial cell layers separate the hemolymph from the neural cells. Both types of diffusion barriers, of course, also prevent influx of metabolites from the circulation. Because neuronal function consumes vast amounts of energy and necessitates influx of diverse substrates and metabolites, tightly regulated transport systems must ensure a constant metabolite supply. Here, we review the current knowledge about transport systems that carry key metabolites, amino acids, lipids and carbohydrates into the vertebrate and Drosophila brain and how this transport is regulated. Blood-brain and hemolymph-brain transport functions are conserved and we can thus use a simple, genetically accessible model system to learn more about features and dynamics of metabolite transport into the brain.
Collapse
Affiliation(s)
- Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Helen Hertenstein
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|
102
|
Hui L, Han M, Du XD, Zhang BH, He SC, Shao TN, Yin GZ. Serum ApoB levels in depressive patients: associated with cognitive deficits. Sci Rep 2017; 7:39992. [PMID: 28054633 PMCID: PMC5215543 DOI: 10.1038/srep39992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022] Open
Abstract
Cognitive deficits have been regarded as one of the most significant clinical symptoms of depressive disorder. Accumulating evidence has shown that apolipoprotein B (ApoB) levels, which are responsible for inducing neurodegeneration, may be involved in cognitive deficits. This study examines cognitive deficits, and the correlation of serum ApoB levels with cognitive deficits of depressive disorder. 90 depressive patients and 90 healthy controls with matched age and gender were recruited. Cognition was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Serum ApoB levels in depressive patients were measured by immunoturbidimetric method. Our results showed that depressive patients had lower scores of cognition including RBANS total score and subscales of language and delayed memory (all, p < 0.001) than healthy controls after controlling for the variables. The differences in cognitive functions also passed Bonferroni corrections. Serum ApoB levels were negatively correlated with delayed memory score in depressive patients (r = −0.30, p = 0.01). Furthermore, stepwise multivariate regression analysis indicated that serum ApoB levels independently contributed to delayed memory in depressive patients (t = −2.68, p = 0.01). Our findings support that serum ApoB levels may be involved in delayed memory decline in depressive patients. Depressive patients also experience greater cognitive deficits, especially in delayed memory and language than healthy controls.
Collapse
Affiliation(s)
- Li Hui
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu, PR China
| | - Mei Han
- School of Medicine, IHMRI, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiang Dong Du
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu, PR China
| | - Bao Hua Zhang
- Beijing HuilongGuan Hospital, Peking University, Beijing 100096, PR China
| | - Shu Chang He
- Department of Psychology, Peking University, Beijing 100000, PR China
| | - Tian Nan Shao
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu, PR China
| | - Guang Zhong Yin
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215008, Jiangsu, PR China
| |
Collapse
|
103
|
Liu Z, Zhang C, Khodadadi-Jamayran A, Dang L, Han X, Kim K, Li H, Zhao R. Canonical microRNAs Enable Differentiation, Protect Against DNA Damage, and Promote Cholesterol Biosynthesis in Neural Stem Cells. Stem Cells Dev 2016; 26:177-188. [PMID: 27762676 DOI: 10.1089/scd.2016.0259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neural stem cells (NSCs) have the capacity to differentiate into neurons, astrocytes, and oligodendrocytes, and therefore represent a promising donor tissue source for treating neurodegenerative diseases and repairing injuries of the nervous system. However, it remains unclear how canonical microRNAs (miRNAs), the subset of miRNAs requiring the Drosha-Dgcr8 microprocessor and the type III RNase Dicer for biogenesis, regulate NSCs. In this study, we established and characterized Dgcr8-/- NSCs from conditionally Dgcr8-disrupted mouse embryonic brain. RNA-seq analysis demonstrated that disruption of Dgcr8 in NSCs causes a complete loss of canonical miRNAs and an accumulation of pri-miRNAs. Dgcr8-/- NSCs can be stably propagated in vitro, but progress through the cell cycle at reduced rates. When induced for differentiation, Dgcr8-/- NSCs failed to differentiate into neurons, astrocytes, or oligodendrocytes under permissive conditions. Compared to Dgcr8+/- NSCs, Dgcr8-/- NSCs exhibit significantly increased DNA damage. Comparative RNA-seq analysis and gene set enrichment analysis (GSEA) revealed that Dgcr8-/- NSCs significantly downregulate genes associated with neuronal differentiation, cell cycle progression, DNA replication, protein translation, and DNA damage repair. Furthermore, we discovered that Dgcr8-/- NSCs significantly downregulate genes responsible for cholesterol biosynthesis and demonstrated that Dgcr8-/- NSCs contain lower levels of cholesterol. Together, our data demonstrate that canonical miRNAs play essential roles in enabling lineage specification, protecting DNA against damage, and promoting cholesterol biosynthesis in NSCs.
Collapse
Affiliation(s)
- Zhong Liu
- 1 Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham , Birmingham, Alabama
| | - Cheng Zhang
- 2 Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine , Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Alireza Khodadadi-Jamayran
- 1 Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham , Birmingham, Alabama
| | - Lam Dang
- 3 Cancer Biology and Genetics Program, Center for Cell Engineering, Center for Stem Cell Biology, Sloan-Kettering Institute, Cell and Developmental Biology Program, Weill Medical College of Cornell University , New York, New York
| | - Xiaosi Han
- 4 Department of Neurology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kitai Kim
- 3 Cancer Biology and Genetics Program, Center for Cell Engineering, Center for Stem Cell Biology, Sloan-Kettering Institute, Cell and Developmental Biology Program, Weill Medical College of Cornell University , New York, New York
| | - Hu Li
- 2 Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine , Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Rui Zhao
- 1 Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
104
|
Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, Benraiss A, Kasper T, Song W, Takano T, Holtzman DM, Nedergaard M, Deane R. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener 2016; 11:74. [PMID: 27931262 PMCID: PMC5146863 DOI: 10.1186/s13024-016-0138-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation. Methods We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test. Results We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2 > apoE3 > apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state. Conclusions Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiyagaragan M Achariyar
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Baoman Li
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA.,Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Weiguo Peng
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Philip B Verghese
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Yang Shi
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Evan McConnell
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, Division of Cell and Gene Therapy, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Tristan Kasper
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Wei Song
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Takahiro Takano
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, and the Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA
| | - Rashid Deane
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Department of Neurosurgery, University of Rochester Medical Center, University of Rochester, Rochester, NY, 14642, USA.
| |
Collapse
|
105
|
Finan GM, Realubit R, Chung S, Lütjohann D, Wang N, Cirrito JR, Karan C, Kim TW. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes. Cell Chem Biol 2016; 23:1526-1538. [DOI: 10.1016/j.chembiol.2016.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 09/13/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
|
106
|
Boehm-Cagan A, Bar R, Harats D, Shaish A, Levkovitz H, Bielicki JK, Johansson JO, Michaelson DM. Differential Effects of apoE4 and Activation of ABCA1 on Brain and Plasma Lipoproteins. PLoS One 2016; 11:e0166195. [PMID: 27824936 PMCID: PMC5100931 DOI: 10.1371/journal.pone.0166195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/24/2016] [Indexed: 01/28/2023] Open
Abstract
Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brain apoE is the main cholesterol transporter, in the periphery apoE and apoA-I both serve as the major cholesterol transporters. We presently investigated the extent to which apoE genotype and CS-6253 treatment to apoE3 and apoE4-targeted replacement mice affects the plasma levels and lipid particle distribution of apoE, and those of plasma and brain apoA-I and apoJ. This revealed that plasma levels of apoE4 were lower and eluted faster following FPLC than plasma apoE3. Treatment with CS-6253 increased the levels of plasma apoE4 and rendered the elution profile of apoE4 similar to that of apoE3. Similarly, the levels of plasma apoA-I were lower in the apoE4 mice compared to apoE3 mice, and this effect was partially reversed by CS-6253. Conversely, the levels of apoA-I in the brain which were higher in the apoE4 mice, were unaffected by CS-6253. The plasma levels of apoJ were higher in apoE4 mice than apoE3 mice and this effect was abolished by CS-6253. Similar but less pronounced effects were obtained in the brain. In conclusion, these results suggest that apoE4 affects the levels of apoA-I and apoJ and that the anti-apoE4 beneficial effects of CS-6253 may be related to both central and peripheral mechanisms.
Collapse
Affiliation(s)
- Anat Boehm-Cagan
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roni Bar
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dror Harats
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Aviv Shaish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - Hana Levkovitz
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel-Hashomer 5265601, Israel
| | - John K. Bielicki
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720, United States of America
| | - Jan O. Johansson
- Artery Therapeutics, Inc. San Ramon, California, United States of America
| | - Daniel M. Michaelson
- The Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- * E-mail:
| |
Collapse
|
107
|
Choi J, Gao J, Kim J, Hong C, Kim J, Tontonoz P. The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis. Sci Transl Med 2016; 7:314ra184. [PMID: 26582899 DOI: 10.1126/scitranslmed.aad1904] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Apolipoprotein E (ApoE) is an important modifier of Alzheimer's disease (AD) pathogenesis, and its abundance has been linked to the clearance of β-amyloid (Aβ) in the brain. The pathways that control the clearance of ApoE in the brain are incompletely understood. We report that Idol, an E3 ubiquitin ligase that targets the low-density lipoprotein receptor (LDLR) for degradation, is a critical determinant of brain ApoE metabolism and Aβ plaque biogenesis. Previous work has shown that Idol contributes minimally to the regulation of hepatic LDLR expression in mice. By contrast, we demonstrate that Idol is a primary physiological regulator of LDLR protein in the brain, controlling the clearance of both ApoE-containing high-density lipoprotein (HDL) particles and Aβ. We studied the consequences of loss of Idol expression in a transgenic mouse model of Aβ amyloidosis. Idol deficiency increased brain LDLR, decreased ApoE, decreased soluble and insoluble Aβ, reduced amyloid plaque burden, and ameliorated neuroinflammation. These findings identify Idol as a gatekeeper of LDLR-dependent ApoE and Aβ clearance in the brain and a potential enzyme target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Jinkuk Choi
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Gao
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaekwang Kim
- Department of Neuroscience, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Cynthia Hong
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA.
| | - Peter Tontonoz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
108
|
Caberlotto L, Marchetti L, Lauria M, Scotti M, Parolo S. Integration of transcriptomic and genomic data suggests candidate mechanisms for APOE4-mediated pathogenic action in Alzheimer's disease. Sci Rep 2016; 6:32583. [PMID: 27585646 PMCID: PMC5009326 DOI: 10.1038/srep32583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023] Open
Abstract
Among the genetic factors known to increase the risk of late onset Alzheimer’s diseases (AD), the presence of the apolipoproteine e4 (APOE4) allele has been recognized as the one with the strongest effect. However, despite decades of research, the pathogenic role of APOE4 in Alzheimer’s disease has not been clearly elucidated yet. In order to investigate the pathogenic action of APOE4, we applied a systems biology approach to the analysis of transcriptomic and genomic data of APOE44 vs. APOE33 allele carriers affected by Alzheimer’s disease. Network analysis combined with a novel technique for biomarker computation allowed the identification of an alteration in aging-associated processes such as inflammation, oxidative stress and metabolic pathways, indicating that APOE4 possibly accelerates pathological processes physiologically induced by aging. Subsequent integration with genomic data indicates that the Notch pathway could be the nodal molecular mechanism altered in APOE44 allele carriers with Alzheimer’s disease. Interestingly, PSEN1 and APP, genes whose mutation are known to be linked to early onset Alzheimer’s disease, are closely linked to this pathway. In conclusion, APOE4 role on inflammation and oxidation through the Notch signaling pathway could be crucial in elucidating the risk factors of Alzheimer’s disease.
Collapse
Affiliation(s)
- Laura Caberlotto
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068, Rovereto, Italy
| | - Luca Marchetti
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068, Rovereto, Italy
| | - Mario Lauria
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068, Rovereto, Italy
| | - Marco Scotti
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068, Rovereto, Italy.,GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Silvia Parolo
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Piazza Manifattura 1, 38068, Rovereto, Italy
| |
Collapse
|
109
|
Yamazaki Y, Painter MM, Bu G, Kanekiyo T. Apolipoprotein E as a Therapeutic Target in Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs 2016; 30:773-89. [PMID: 27328687 PMCID: PMC5526196 DOI: 10.1007/s40263-016-0361-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that causes progressive cognitive decline. The majority of AD cases are sporadic and late-onset (>65 years old) making it the leading cause of dementia in the elderly. While both genetic and environmental factors contribute to the development of late-onset AD (LOAD), APOE polymorphism is a major genetic risk determinant for LOAD. In humans, the APOE gene has three major allelic variants: ε2, ε3, and ε4, of which APOE ε4 is the strongest genetic risk factor for LOAD, whereas APOE ε2 is protective. Mounting evidence suggests that APOE ε4 contributes to AD pathogenesis through multiple pathways including facilitated amyloid-β deposition, increased tangle formation, synaptic dysfunction, exacerbated neuroinflammation, and cerebrovascular defects. Since APOE modulates multiple biological processes through its corresponding protein apolipoprotein E (apoE), APOE gene and apoE properties have been a promising target for therapy and drug development against AD. In this review, we summarize the current evidence regarding how the APOE ε4 allele contributes to the pathogenesis of AD and how relevant therapeutic approaches can be developed to target apoE-mediated pathways in AD.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Meghan M Painter
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
110
|
Li S, Geiger NH, Soliman ML, Hui L, Geiger JD, Chen X. Caffeine, Through Adenosine A3 Receptor-Mediated Actions, Suppresses Amyloid-β Protein Precursor Internalization and Amyloid-β Generation. J Alzheimers Dis 2016; 47:73-83. [PMID: 26402756 DOI: 10.3233/jad-142223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intraneuronal accumulation and extracellular deposition of amyloid-β (Aβ) protein continues to be implicated in the pathogenesis of Alzheimer's disease (AD), be it familial in origin or sporadic in nature. Aβ is generated intracellularly following endocytosis of amyloid-β protein precursor (AβPP), and, consequently, factors that suppress AβPP internalization may decrease amyloidogenic processing of AβPP. Here we tested the hypothesis that caffeine decreases Aβ generation by suppressing AβPP internalization in primary cultured neurons. Caffeine concentration-dependently blocked low-density lipoprotein (LDL) cholesterol internalization and a specific adenosine A3 receptor (A3R) antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on neuronal internalization of LDL cholesterol. Further implicating A3Rs were findings that a specific A3R agonist increased neuronal internalization of LDL cholesterol. In addition, caffeine as well as siRNA knockdown of A3Rs blocked the ability of LDL cholesterol to increase Aβ levels. Furthermore, caffeine blocked LDL cholesterol-induced decreases in AβPP protein levels in neuronal plasma membranes, increased surface expression of AβPP on neurons, and the A3R antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on AβPP surface expression. Moreover, the A3R agonist decreased neuronal surface expression of AβPP. Our findings suggest that caffeine exerts protective effects against amyloidogenic processing of AβPP at least in part by suppressing A3R-mediated internalization of AβPP.
Collapse
|
111
|
Biswal S, Sharma D, Kumar K, Nag TC, Barhwal K, Hota SK, Kumar B. Global hypoxia induced impairment in learning and spatial memory is associated with precocious hippocampal aging. Neurobiol Learn Mem 2016; 133:157-170. [PMID: 27246251 DOI: 10.1016/j.nlm.2016.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 01/10/2023]
Abstract
Both chronological aging and chronic hypoxia stress have been reported to cause degeneration of hippocampal CA3 neurons and spatial memory impairment through independent pathways. However, the possible occurrence of precocious biological aging on exposure to single episode of global hypoxia resulting in impairment of learning and memory remains to be established. The present study thus aimed at bridging this gap in existing literature on hypoxia induced biological aging. Male Sprague Dawley rats were exposed to simulated hypobaric hypoxia (25,000ft) for different durations and were compared with aged rats. Behavioral studies in Morris Water Maze showed decline in learning abilities of both chronologically aged as well as hypoxic rats as evident from increased latency and pathlength to reach target platform. These behavioral changes in rats exposed to global hypoxia were associated with deposition of lipofuscin and ultrastructural changes in the mitochondria of hippocampal neurons that serve as hallmarks of aging. A single episode of chronic hypobaric hypoxia exposure also resulted in the up-regulation of pro-aging protein, S100A9 and down regulation of Tau, SNAP25, APOE and Sod2 in the hippocampus similar to that in aged rats indicating hypoxia induced accelerated aging. The present study therefore provides evidence for role of biological aging of hippocampal neurons in hypoxia induced impairment of learning and memory.
Collapse
Affiliation(s)
- Suryanarayan Biswal
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| | - Deepti Sharma
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| | - Kushal Kumar
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Science, New Delhi, India
| | - Kalpana Barhwal
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| | - Sunil Kumar Hota
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India.
| | - Bhuvnesh Kumar
- Defence Institute of High Altitude Research, C/o 56 APO, Leh-Ladakh, Jammu & Kashmir 901205, India
| |
Collapse
|
112
|
Mahley RW. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arterioscler Thromb Vasc Biol 2016; 36:1305-15. [PMID: 27174096 DOI: 10.1161/atvbaha.116.307023] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022]
Abstract
ApoE on high-density lipoproteins is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). Normally produced mostly by astrocytes, apoE is also produced under neuropathologic conditions by neurons. ApoE on high-density lipoproteins is critical in redistributing cholesterol and phospholipids for membrane repair and remodeling. The 3 main structural isoforms differ in their effectiveness. Unlike apoE2 and apoE3, apoE4 has markedly altered CNS metabolism, is associated with Alzheimer disease and other neurodegenerative disorders, and is expressed at lower levels in brain and cerebrospinal fluid. ApoE4-expressing cultured astrocytes and neurons have reduced cholesterol and phospholipid secretion, decreased lipid-binding capacity, and increased intracellular degradation. Two structural features are responsible for apoE4 dysfunction: domain interaction, in which arginine-61 interacts ionically with glutamic acid-255, and a less stable conformation than apoE3 and apoE2. Blocking domain interaction by gene targeting (replacing arginine-61 with threonine) or by small-molecule structure correctors increases CNS apoE4 levels and lipid-binding capacity and decreases intracellular degradation. Small molecules (drugs) that disrupt domain interaction, so-called structure correctors, could prevent the apoE4-associated neuropathology by blocking the formation of neurotoxic fragments. Understanding how to modulate CNS cholesterol transport and metabolism is providing important insights into CNS health and disease.
Collapse
Affiliation(s)
- Robert W Mahley
- From the Gladstone Institute of Neurological Disease, San Francisco, CA; and Departments of Pathology and Medicine, University of California, San Francisco.
| |
Collapse
|
113
|
Yoon H, Flores LF, Kim J. MicroRNAs in brain cholesterol metabolism and their implications for Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2139-2147. [PMID: 27155217 DOI: 10.1016/j.bbalip.2016.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023]
Abstract
Cholesterol is important for various neuronal functions in the brain. Brain has elaborate regulatory mechanisms to control cholesterol metabolism that are distinct from the mechanisms in periphery. Interestingly, dysregulation of the cholesterol metabolism is strongly associated with a number of neurodegenerative diseases. MicroRNAs are short non-coding RNAs acting as post-transcriptional gene regulators. Recently, several microRNAs are demonstrated to be involved in regulating cholesterol metabolism in the brain. This article reviews the regulatory mechanisms of cellular cholesterol homeostasis in the brain. In addition, we discuss the role of microRNAs in brain cholesterol metabolism and their potential implications for the treatment of Alzheimer's disease. This article is part of a special issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Hyejin Yoon
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, United States; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Luis F Flores
- Biochemistry and Molecular Biology Graduate Program, Mayo Graduate School, Jacksonville, FL, United States
| | - Jungsu Kim
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL, United States; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|
114
|
Wes PD, Sayed FA, Bard F, Gan L. Targeting microglia for the treatment of Alzheimer's Disease. Glia 2016; 64:1710-32. [DOI: 10.1002/glia.22988] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Paul D. Wes
- Neuroinflammation Department; Lundbeck Research USA; Paramus New Jersey
| | - Faten A. Sayed
- Gladstone Institute for Neurodegeneration; San Francisco California
| | | | - Li Gan
- Gladstone Institute for Neurodegeneration; San Francisco California
| |
Collapse
|
115
|
van Niel G. Study of Exosomes Shed New Light on Physiology of Amyloidogenesis. Cell Mol Neurobiol 2016; 36:327-42. [PMID: 26983829 PMCID: PMC11482316 DOI: 10.1007/s10571-016-0357-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/27/2016] [Indexed: 12/18/2022]
Abstract
Accumulation of toxic amyloid oligomers, a key feature in the pathogenesis of amyloid-related diseases, results from an imbalance between generation and clearance of amyloidogenic proteins. Cell biology has brought to light the key roles of multivesicular endosomes (MVEs) and their intraluminal vesicles (ILVs), which can be secreted as exosomes, in amyloid generation and clearance. To better understand these roles, we have investigated a relevant physiological model of amyloid formation in pigment cells. These cells have tuned their endosomes to optimize the formation of functional amyloid fibrils from the premelanosome protein (PMEL) and to avoid potential accumulation of toxic species. The functional amyloids derived from PMEL reveal striking analogies with the generation of Aβ peptides. We have recently strengthened these analogies using extracellular vesicles as reporters of the endosomal processes that regulate PMEL melanogenesis. We have shown that in pigmented cells, apolipoprotein E (ApoE) is associated with ILVs and exosomes, and regulates the formation of PMEL amyloid fibrils in endosomes. This process secures the generation of amyloid fibrils by exploiting ILVs as amyloid-nucleating platforms. This physiological model of amyloidogenesis could shed new light on the roles of MVEs and exosomes in conditions with pathological amyloid metabolism, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Guillaume van Niel
- Institut Curie, PSL Research University, UMR144, Centre de Recherche, 26 rue d'ULM, 75231, Paris, France.
- Centre National de la Recherche Scientifique, UMR144, 75248, Paris, France.
| |
Collapse
|
116
|
Abstract
PURPOSE OF REVIEW Dementia is a major cause of disability and institutionalization. Apart from age and apolipoprotein E (APOE) genotype, there are currently no established, clinically relevant, noninvasive markers of dementia. We conducted a literature search of recent observational epidemiological studies evaluating the relevance of HDL cholesterol (HDL-C) and apolipoproteins as biomarkers of future and prevalent risk of dementia. RECENT FINDINGS HDL-C and apolipoproteins, such as apoE have been suggested to play important roles in brain function and have been associated with dementia and Alzheimer's disease in observational studies. However, findings have been inconsistent, especially across study designs. In recent years, modern proteomic approaches have enabled the investigation of further apolipoproteins involved in the deposition and clearance of β-amyloid, a determining factor for subsequent neurodegeneration. SUMMARY Associations in cross-sectional studies are not always indicative of a prospective relationship. Large studies find that plasma HDL-C and apoE are inversely associated with dementia. Higher apoJ levels might be a marker of prevalent dementia, but were not associated with risk of future dementia. The investigation of HDL-C and apolipoproteins in relation to dementia represents an area of opportunity. Additional prospective studies that account for potential confounding factors and that explore potential effect modifiers such as APOE genotype and sex are needed to fully investigate the potential of these noninvasive measures in disease prediction.
Collapse
Affiliation(s)
- Manja Koch
- Harvard T.H. Chan School of Public Health, Department of Nutrition, Boston, Massachusetts, USA
| | - Majken K. Jensen
- Harvard T.H. Chan School of Public Health, Department of Nutrition, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
117
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
118
|
Haddadi M, Nongthomba U, Jahromi SR, Ramesh SR. Transgenic Drosophila model to study apolipoprotein E4-induced neurodegeneration. Behav Brain Res 2015; 301:10-8. [PMID: 26706888 DOI: 10.1016/j.bbr.2015.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 12/01/2022]
Abstract
The ε4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing ε3 and ε4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | - S R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore, Karnataka, India.
| |
Collapse
|
119
|
Biundo F, Ishiwari K, Del Prete D, D'Adamio L. Interaction of ApoE3 and ApoE4 isoforms with an ITM2b/BRI2 mutation linked to the Alzheimer disease-like Danish dementia: Effects on learning and memory. Neurobiol Learn Mem 2015; 126:18-30. [PMID: 26528887 DOI: 10.1016/j.nlm.2015.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Mutations in Amyloid β Precursor Protein (APP) and in genes that regulate APP processing--such as PSEN1/2 and ITM2b/BRI2--cause familial dementia, such Familial Alzheimer disease (FAD), Familial Danish (FDD) and British (FBD) dementias. The ApoE gene is the major genetic risk factor for sporadic AD. Three major variants of ApoE exist in humans (ApoE2, ApoE3, and ApoE4), with the ApoE4 allele being strongly associated with AD. ITM2b/BRI2 is also a candidate regulatory node genes predicted to mediate the common patterns of gene expression shared by healthy ApoE4 carriers and late-onset AD patients not carrying ApoE4. This evidence provides a direct link between ITM2b/BRI2 and ApoE4. To test whether ApoE4 and pathogenic ITM2b/BRI2 interact to modulate learning and memory, we crossed a mouse carrying the ITM2b/BRI2 mutations that causes FDD knocked-in the endogenous mouse Itm2b/Bri2 gene (FDDKI mice) with human ApoE3 and ApoE4 targeted replacement mice. The resultant ApoE3, FDDKI/ApoE3, ApoE4, FDDKI/ApoE4 male mice were assessed longitudinally for learning and memory at 4, 6, 12, and 16-17 months of age. The results showed that ApoE4-carrying mice displayed spatial working/short-term memory deficits relative to ApoE3-carrying mice starting in early middle age, while long-term spatial memory of ApoE4 mice was not adversely affected even at 16-17 months, and that the FDD mutation impaired working/short-term spatial memory in ApoE3-carrying mice and produced impaired long-term spatial memory in ApoE4-carrying mice in middle age. The present results suggest that the FDD mutation may differentially affect learning and memory in ApoE4 carriers and non-carriers.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Keita Ishiwari
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Dolores Del Prete
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Luciano D'Adamio
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, United States.
| |
Collapse
|
120
|
Siebel AL, Heywood SE, Kingwell BA. HDL and glucose metabolism: current evidence and therapeutic potential. Front Pharmacol 2015; 6:258. [PMID: 26582989 PMCID: PMC4628107 DOI: 10.3389/fphar.2015.00258] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022] Open
Abstract
High-density lipoprotein (HDL) and its principal apolipoprotein A-I (ApoA-I) have now been convincingly shown to influence glucose metabolism through multiple mechanisms. The key clinically relevant observations are that both acute HDL elevation via short-term reconstituted HDL (rHDL) infusion and chronically raising HDL via a cholesteryl ester transfer protein (CETP) inhibitor reduce blood glucose in individuals with type 2 diabetes mellitus (T2DM). HDL may mediate effects on glucose metabolism through actions in multiple organs (e.g., pancreas, skeletal muscle, heart, adipose, liver, brain) by three distinct mechanisms: (i) Insulin secretion from pancreatic beta cells, (ii) Insulin-independent glucose uptake, (iii) Insulin sensitivity. The molecular mechanisms appear to involve both direct HDL signaling actions as well as effects secondary to lipid removal from cells. The implications of glucoregulatory mechanisms linked to HDL extend from glycemic control to potential anti-ischemic actions via increased tissue glucose uptake and utilization. Such effects not only have implications for the prevention and management of diabetes, but also for ischemic vascular diseases including angina pectoris, intermittent claudication, cerebral ischemia and even some forms of dementia. This review will discuss the growing evidence for a role of HDL in glucose metabolism and outline related potential for HDL therapies.
Collapse
Affiliation(s)
- Andrew L Siebel
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute , Melbourne, VIC, Australia
| | - Sarah Elizabeth Heywood
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute , Melbourne, VIC, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Institute , Melbourne, VIC, Australia
| |
Collapse
|
121
|
Robert J, Stukas S, Button E, Cheng WH, Lee M, Fan J, Wilkinson A, Kulic I, Wright SD, Wellington CL. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice. Biochim Biophys Acta Mol Basis Dis 2015; 1862:1027-36. [PMID: 26454209 DOI: 10.1016/j.bbadis.2015.10.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/21/2015] [Accepted: 10/03/2015] [Indexed: 01/13/2023]
Abstract
Many lines of evidence suggest a protective role for high-density lipoprotein (HDL) and its major apolipoprotein (apo)A-I in Alzheimer's Disease (AD). HDL/apoA-I particles are produced by the liver and intestine and, in addition to removing excess cholesterol from the body, are increasingly recognized to have vasoprotective functions. Here we tested the ability of reconstituted HDL (rHDL) consisting of human apoA-I reconstituted with soy phosphatidylcholine for its ability to lower amyloid beta (Aβ) levels in symptomatic APP/PS1 mice, a well-characterized preclinical model of amyloidosis. Animals were treated intravenously either with four weekly doses (chronic study) or a single dose of 60mg/kg of rHDL (acute study). The major finding of our acute study is that soluble brain Aβ40 and Aβ42 levels were significantly reduced within 24h of a single dose of rHDL. By contrast, no changes were observed in our chronic study with respect to soluble or deposited Aβ levels in animals assessed 7days after the final weekly dose of rHDL, suggesting that beneficial effects diminish as rHDL is cleared from the body. Further, rHDL-treated animals showed no change in amyloid burden, cerebrospinal fluid (CSF) Aβ levels, neuroinflammation, or endothelial activation in the chronic study, suggesting that the pathology-modifying effects of rHDL may indeed be acute and may be specific to the soluble Aβ pool. That systemic administration of rHDL can acutely modify brain Aβ levels provides support for further investigation of the therapeutic potential of apoA-I-based agents for AD. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock.
Collapse
Affiliation(s)
- Jérôme Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wai Hang Cheng
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Lee
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel D Wright
- Cardiovascular Therapeutics, CSL Limited, Parkville, Australia
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
122
|
Wollam ME, Weinstein AM, Saxton JA, Morrow L, Snitz B, Fowler NR, Suever Erickson BL, Roecklein KA, Erickson KI. Genetic Risk Score Predicts Late-Life Cognitive Impairment. J Aging Res 2015; 2015:267062. [PMID: 26366299 PMCID: PMC4561094 DOI: 10.1155/2015/267062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/18/2015] [Accepted: 07/26/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction. A family history of Alzheimer's disease is a significant risk factor for its onset, but the genetic risk associated with possessing multiple risk alleles is still poorly understood. Methods. In a sample of 95 older adults (Mean age = 75.1, 64.2% female), we constructed a genetic risk score based on the accumulation of risk alleles in BDNF, COMT, and APOE. A neuropsychological evaluation and consensus determined cognitive status (44 nonimpaired, 51 impaired). Logistic regression was performed to determine whether the genetic risk score predicted cognitive impairment above and beyond that associated with each gene. Results. An increased genetic risk score was associated with a nearly 4-fold increased risk of cognitive impairment (OR = 3.824, P = .013) when including the individual gene polymorphisms as covariates in the model. Discussion. A risk score combining multiple genetic influences may be more useful in predicting late-life cognitive impairment than individual polymorphisms.
Collapse
Affiliation(s)
- Mariegold E. Wollam
- Department of Psychology, University of Pittsburgh, Sennott Square, 3rd Floor, 210 South Bouquet Street, Pittsburgh, PA 15260, USA
| | - Andrea M. Weinstein
- Department of Psychology, University of Pittsburgh, Sennott Square, 3rd Floor, 210 South Bouquet Street, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA 15213, USA
| | - Judith A. Saxton
- Department of Neurology, University of Pittsburgh, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Lisa Morrow
- Department of Psychiatry, University of Pittsburgh, Thomas Detre Hall, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Beth Snitz
- Department of Neurology, University of Pittsburgh, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Nicole R. Fowler
- Division of General Internal Medicine and Geriatrics, Indiana University, Fifth Third Faculty Building, 720 Eskenazi Avenue, Indianapolis, IN 46202, USA
| | - Barbara L. Suever Erickson
- Department of Psychology, University of Pittsburgh, Sennott Square, 3rd Floor, 210 South Bouquet Street, Pittsburgh, PA 15260, USA
| | - Kathryn A. Roecklein
- Department of Psychology, University of Pittsburgh, Sennott Square, 3rd Floor, 210 South Bouquet Street, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA 15213, USA
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Sennott Square, 3rd Floor, 210 South Bouquet Street, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA 15213, USA
| |
Collapse
|
123
|
Abstract
Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.
Collapse
Affiliation(s)
- Juan Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Qiang Liu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, and School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
124
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
125
|
Lipids in Amyloid-β Processing, Aggregation, and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:67-94. [PMID: 26149926 DOI: 10.1007/978-3-319-17344-3_3] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.
Collapse
|
126
|
Salem N, Vandal M, Calon F. The benefit of docosahexaenoic acid for the adult brain in aging and dementia. Prostaglandins Leukot Essent Fatty Acids 2015; 92:15-22. [PMID: 25457546 DOI: 10.1016/j.plefa.2014.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/08/2014] [Indexed: 01/08/2023]
Abstract
A brief overview of the evidence for omega-3 fatty acids and, in particular, of docosahexaenoic acid (DHA), involvement in cognition and in dementia is given. Two studies are presented in this regard in which the key intervention is a DHA supplement. The fist, the MIDAS Study demonstrated that DHA can be of benefit for episodic memory in healthy adults with a mild memory complaint. The second, the ADCS AD trial found no benefit of DHA in the primary outcomes but found an intriguing benefit for cognitive score in ApoE4 negative allele patients. This leads to a consideration of the mechanisms of action and role of ApoE and its modulation by DHA. Given the fundamental role of ApoE in cellular lipid transport and metabolism in the brain and periphery, it is no surprise that ApoE affects n-3 PUFA brain function as well. It remains to be seen to what extent ApoE4 deleterious effect in AD is associated with n-3 PUFA-related cellular mechanisms in the brain and, more specifically, whether ApoE4 directly impairs the transport of DHA into the brain, as has been suggested.
Collapse
Affiliation(s)
- Norman Salem
- Nutritional Lipids, DSM Nutritional Products, Columbia, MD, USA.
| | - Milene Vandal
- Center de recherche du center Hospitalier de l׳Université Laval (CHUL), Québec, QC, Canada; Faculté de pharmacie, Université Laval, Quebec, Canada; Institut des Nutraceutiques et des Aliments Fonctionnels, Universite Laval, Quebec, Canada
| | - Frederic Calon
- Center de recherche du center Hospitalier de l׳Université Laval (CHUL), Québec, QC, Canada; Faculté de pharmacie, Université Laval, Quebec, Canada; Institut des Nutraceutiques et des Aliments Fonctionnels, Universite Laval, Quebec, Canada
| |
Collapse
|
127
|
Koldamova R, Fitz NF, Lefterov I. ATP-binding cassette transporter A1: from metabolism to neurodegeneration. Neurobiol Dis 2014; 72 Pt A:13-21. [PMID: 24844148 PMCID: PMC4302328 DOI: 10.1016/j.nbd.2014.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoprotein A-I (apoA-I) and apolipoprotein E (apoE). ABCA1 is an essential regulator of high density lipoproteins (HDL) and reverse cholesterol transport - a role that determines its importance for atherosclerosis. Over the last 10 years studies have provided convincing evidence that ABCA1, via its control of apoE lipidation, also has a role in Alzheimer's disease (AD). A series of reports have revealed a significant impact of ABCA1 on Aβ deposition and clearance in AD model mice, as well as an association of common and rare ABCA1 gene variants with the risk for AD. Since APOE is the major genetic risk factor for late onset AD, the regulation of apoE level or its functionality by ABCA1 may prove significant for AD pathogenesis. ABCA1 is transcriptionally regulated by Liver X Receptors (LXR) and Retinoic X Receptors (RXR) which provides a starting point for drug discovery and development of synthetic LXR and RXR agonists for treatment of metabolic and neurodegenerative disorders. This review summarizes the recent results of research on ABCA1, particularly relevant to atherosclerosis and AD.
Collapse
Affiliation(s)
- Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Nicholas F Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
128
|
Stukas S, Robert J, Lee M, Kulic I, Carr M, Tourigny K, Fan J, Namjoshi D, Lemke K, DeValle N, Chan J, Wilson T, Wilkinson A, Chapanian R, Kizhakkedathu JN, Cirrito JR, Oda MN, Wellington CL. Intravenously injected human apolipoprotein A-I rapidly enters the central nervous system via the choroid plexus. J Am Heart Assoc 2014; 3:e001156. [PMID: 25392541 PMCID: PMC4338702 DOI: 10.1161/jaha.114.001156] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high‐density lipoproteins but that contain apolipoprotein (apo) E rather than apoA‐I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA‐I; however, apoA‐I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA‐I enters the central nervous system is unknown. Methods and Results Steady‐state levels of murine apoA‐I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 μg/mL, respectively, whereas brain tissue apoA‐I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA‐I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose‐dependent manner in the brain. Recombinant, fluorescently tagged human apoA‐I accumulates in the brain for 2 hours, after which it is eliminated with a half‐life of 10.3 hours. In vitro, human apoA‐I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. Conclusions Following intravenous injection, recombinant human apoA‐I rapidly localizes predominantly to the choroid plexus. Because apoA‐I mRNA is undetectable in murine brain, our results suggest that plasma apoA‐I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood–cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood–brain barrier may also contribute to a lesser extent.
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Michael Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Michael Carr
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Katherine Tourigny
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Dhananjay Namjoshi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Kalistyne Lemke
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Nicole DeValle
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Jeniffer Chan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Tammy Wilson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Rafi Chapanian
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.) Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada (R.C., J.N.K.)
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.) Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada (R.C., J.N.K.)
| | - John R Cirrito
- Department of Neurology, Washington University, St. Louis, MO (J.R.C.)
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| |
Collapse
|
129
|
Martín MG, Pfrieger F, Dotti CG. Cholesterol in brain disease: sometimes determinant and frequently implicated. EMBO Rep 2014; 15:1036-52. [PMID: 25223281 DOI: 10.15252/embr.201439225] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell-cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function.
Collapse
Affiliation(s)
- Mauricio G Martín
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Frank Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, Strasbourg, France
| | - Carlos G Dotti
- Centro Biología Molecular 'Severo Ochoa' CSIC-UAM, Madrid, Spain
| |
Collapse
|
130
|
Lipids in the nervous system: from biochemistry and molecular biology to patho-physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:51-60. [PMID: 25150974 DOI: 10.1016/j.bbalip.2014.08.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 12/16/2022]
Abstract
Lipids in the nervous system accomplish a great number of key functions, from synaptogenesis to impulse conduction, and more. Most of the lipids of the nervous system are localized in myelin sheaths. It has long been known that myelin structure and brain homeostasis rely on specific lipid-protein interactions and on specific cell-to-cell signaling. In more recent years, the growing advances in large-scale technologies and genetically modified animal models have provided valuable insights into the role of lipids in the nervous system. Key findings recently emerged in these areas are here summarized. In addition, we briefly discuss how this new knowledge can open novel approaches for the treatment of diseases associated with alteration of lipid metabolism/homeostasis in the nervous system. This article is part of a Special Issue entitled Linking transcription to physiology in lipidomics.
Collapse
|
131
|
Hottman DA, Chernick D, Cheng S, Wang Z, Li L. HDL and cognition in neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:22-36. [PMID: 25131449 DOI: 10.1016/j.nbd.2014.07.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022] Open
Abstract
High-density lipoproteins (HDLs) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function.
Collapse
Affiliation(s)
- David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhe Wang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
132
|
Zhou C, Chen J, Zhang X, Costa LG, Guizzetti M. Prenatal Ethanol Exposure Up-Regulates the Cholesterol Transporters ATP-Binding Cassette A1 and G1 and Reduces Cholesterol Levels in the Developing Rat Brain. Alcohol Alcohol 2014; 49:626-34. [PMID: 25081040 DOI: 10.1093/alcalc/agu049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 06/17/2014] [Indexed: 01/24/2023] Open
Abstract
AIMS Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. METHODS Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. RESULTS Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. CONCLUSION Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels.
Collapse
Affiliation(s)
- Chunyan Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jing Chen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Xiaolu Zhang
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA Department of Neuroscience, University of Parma, Parma, Italy
| | - Marina Guizzetti
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
133
|
Ali-Rahmani F, Schengrund CL, Connor JR. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease. Front Pharmacol 2014; 5:165. [PMID: 25071582 PMCID: PMC4086322 DOI: 10.3389/fphar.2014.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Cara-Lynne Schengrund
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - James R. Connor
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
134
|
Villeneuve S, Brisson D, Marchant NL, Gaudet D. The potential applications of Apolipoprotein E in personalized medicine. Front Aging Neurosci 2014; 6:154. [PMID: 25071563 PMCID: PMC4085650 DOI: 10.3389/fnagi.2014.00154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/18/2014] [Indexed: 01/25/2023] Open
Abstract
Personalized medicine uses various individual characteristics to guide medical decisions. Apolipoprotein (ApoE), the most studied polymorphism in humans, has been associated with several diseases. The purpose of this review is to elucidate the potential role of ApoE polymorphisms in personalized medicine, with a specific focus on neurodegenerative diseases, by giving an overview of its influence on disease risk assessment, diagnosis, prognosis, and therapy. This review is not a systematic inventory of the literature, but rather a summary and discussion of novel, influential and promising works in the field of ApoE research that could be valuable for personalized medicine. Empirical evidence suggests that ApoE genotype informs pre-symptomatic risk for a wide variety of diseases, is valuable for the diagnosis of type III dysbetalipoproteinemia, increases risk of dementia in neurodegenerative diseases, and is associated with a poor prognosis following acute brain damage. ApoE status appears to influence the efficacy of certain drugs, outcome of clinical trials, and might also give insight into disease prevention. Assessing ApoE genotype might therefore help to guide medical decisions in clinical practice.
Collapse
Affiliation(s)
- Sylvia Villeneuve
- Department of Medicine, ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Université de Montréal Chicoutimi, QC, Canada ; Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
| | - Diane Brisson
- Department of Medicine, ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Université de Montréal Chicoutimi, QC, Canada
| | - Natalie L Marchant
- Department of Old Age Psychiatry, Institute of Psychiatry, King's College London London, UK
| | - Daniel Gaudet
- Department of Medicine, ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Université de Montréal Chicoutimi, QC, Canada
| |
Collapse
|
135
|
Cerebrospinal fluid apolipoprotein E and phospholipid transfer protein activity are reduced in multiple sclerosis; relationships with the brain MRI and CSF lipid variables. Mult Scler Relat Disord 2014; 3:533-541. [PMID: 24955324 DOI: 10.1016/j.msard.2014.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Apolipoprotein E (apoE), phospholipid transfer protein (PLTP) activity, lipids, total tau and beta amyloid 1-42 (Aβ42) were measured in cerebrospinal fluid (CSF) from controls (n=38) and multiple sclerosis (MS) patients (n=91). ApoE and PLTP activity were significantly reduced in MS compared to non-inflammatory disease controls (NINDC; p<0.05). In NINDC and MS, apoE correlated with PLTP activity (rs=0.399 and 0.591, respectively), Aβ42 (rs= 0.609 and 0.483, respectively), and total tau (rs=0.748 and 0.380, respectively; all p<0.05). CSF apoE and PLTP significantly contributed to the variance of the normalized brain volume (NBV) and T2 lesion volume in MS (p<0.001 and p<0.05, respectively). ApoE correlated with CSF cholesterol and 24-hydroxycholesterol in all groups; PLTP activity correlated with CSF cholesterol in controls (p<0.05).
Collapse
|
136
|
Bhavnani BR, Stanczyk FZ. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action. J Steroid Biochem Mol Biol 2014; 142:16-29. [PMID: 24176763 DOI: 10.1016/j.jsbmb.2013.10.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022]
Abstract
Oral conjugated equine estrogens (CEE) are the most used estrogen formulation for postmenopausal hormone therapy either alone or in combination with a progestin. CEE is most commonly used for the management of early menopausal symptoms such as hot flashes, vaginitis, insomnia, and mood disturbances. Additionally, if used at the start of the menopausal phase (age 50-59 years), CEE prevents osteoporosis and may in some women reduce the risk of cardiovascular disease (CVD) and Alzheimer's disease (AD). There appears to be a common mechanism through which estrogens can protect against CVD and AD. CEE is a natural formulation of an extract prepared from pregnant mares' urine. The product monogram lists the presence of only 10 estrogens consisting of the classical estrogens, estrone and 17β-estradiol, and a group of unique ring B unsaturated estrogens such as equilin and equilenin. The ring B unsaturated estrogens are formed by an alternate steroidogenic pathway in which cholesterol is not an obligatory intermediate. Both the route of administration and structure of these estrogens play a role in the overall pharmacology of CEE. In contrast to 17β-estradiol, ring B unsaturated estrogens express their biological effects mainly mediated by the estrogen receptor β and not the estrogen receptor α. All estrogen components of CEE are antioxidants, and some ring B unsaturated estrogens have several fold greater antioxidant activity than estrone and 17β-estradiol. The cardioprotective and neuroprotective effects of CEE appear to be, to some extent, due to its ability to prevent the formation of oxidized LDL and HDL, and by inhibiting or modulating some of the key proteases involved in programmed cell death (apoptosis) induced by the excess neurotransmitter glutamate and other neurotoxins. Selective combinations of ring B unsaturated estrogens have the potential of being developed as novel therapeutic agents for the prevention of cardiovascular disease and Alzheimer's disease in both aging women and men. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- Bhagu R Bhavnani
- Department of Obstetrics and Gynecology, University of Toronto and The Keenan Research Center of Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.
| | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States; Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States
| |
Collapse
|
137
|
Stukas S, Freeman L, Lee M, Wilkinson A, Ossoli A, Vaisman B, Demosky S, Chan J, Hirsch-Reinshagen V, Remaley AT, Wellington CL. LCAT deficiency does not impair amyloid metabolism in APP/PS1 mice. J Lipid Res 2014; 55:1721-9. [PMID: 24950691 DOI: 10.1194/jlr.m049940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Indexed: 12/31/2022] Open
Abstract
A key step in plasma HDL maturation from discoidal to spherical particles is the esterification of cholesterol to cholesteryl ester, which is catalyzed by LCAT. HDL-like lipoproteins in cerebrospinal fluid (CSF) are also spherical, whereas nascent lipoprotein particles secreted from astrocytes are discoidal, suggesting that LCAT may play a similar role in the CNS. In plasma, apoA-I is the main LCAT activator, while in the CNS, it is believed to be apoE. apoE is directly involved in the pathological progression of Alzheimer's disease, including facilitating β-amyloid (Aβ) clearance from the brain, a function that requires its lipidation by ABCA1. However, whether apoE particle maturation by LCAT is also required for Aβ clearance is unknown. Here we characterized the impact of LCAT deficiency on CNS lipoprotein metabolism and amyloid pathology. Deletion of LCAT from APP/PS1 mice resulted in a pronounced decrease of apoA-I in plasma that was paralleled by decreased apoA-I levels in CSF and brain tissue, whereas apoE levels were unaffected. Furthermore, LCAT deficiency did not increase Aβ or amyloid in APP/PS1 LCAT(-/-) mice. Finally, LCAT expression and plasma activity were unaffected by age or the onset of Alzheimer's-like pathology in APP/PS1 mice. Taken together, these results suggest that apoE-containing discoidal HDLs do not require LCAT-dependent maturation to mediate efficient Aβ clearance.
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Lita Freeman
- National Institutes of Health, Bethesda, MD 20892-1508
| | - Michael Lee
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Alice Ossoli
- National Institutes of Health, Bethesda, MD 20892-1508
| | - Boris Vaisman
- National Institutes of Health, Bethesda, MD 20892-1508
| | | | - Jeniffer Chan
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Veronica Hirsch-Reinshagen
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
138
|
Ngounou Wetie AG, Wormwood K, Thome J, Dudley E, Taurines R, Gerlach M, Woods AG, Darie CC. A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis 2014; 35:2046-54. [DOI: 10.1002/elps.201300370] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 02/20/2014] [Accepted: 03/19/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Armand G. Ngounou Wetie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Kelly Wormwood
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Johannes Thome
- Department of Psychiatry; University of Rostock; Rostock Germany
- College of Medicine; Swansea University; Swansea UK
| | | | - Regina Taurines
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy; University of Würzburg; Germany
| | - Manfred Gerlach
- Department of Child and Adolescent Psychiatry; Psychosomatics and Psychotherapy; University of Würzburg; Germany
| | - Alisa G. Woods
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| | - Costel C. Darie
- Department of Chemistry and Biomolecular Science; Biochemistry and Proteomics Group; Clarkson University; Potsdam NY USA
| |
Collapse
|
139
|
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners? Neuron 2014; 81:740-54. [PMID: 24559670 DOI: 10.1016/j.neuron.2014.01.045] [Citation(s) in RCA: 459] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 12/26/2022]
Abstract
Among the three human apolipoprotein E (apoE) isoforms, apoE4 increases the risk of Alzheimer's disease (AD). While transporting cholesterol is a primary function, apoE also regulates amyloid-β (Aβ) metabolism, aggregation, and deposition. Although earlier work suggests that different affinities of apoE isoforms to Aβ might account for their effects on Aβ clearance, recent studies indicate that apoE also competes with Aβ for cellular uptake through apoE receptors. Thus, several factors probably determine the variable effects apoE has on Aβ. In this Review, we examine biochemical, structural, and functional studies and propose testable models that address the complex mechanisms underlying apoE-Aβ interaction and how apoE4 may increase AD risk and also serve as a target pathway for therapy.
Collapse
Affiliation(s)
- Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen 361005, China
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
140
|
La Marca V, Spagnuolo MS, Cigliano L, Marasco D, Abrescia P. The enzyme lecithin-cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on SH-SY5Y cells. J Neurochem 2014; 130:97-108. [DOI: 10.1111/jnc.12713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Valeria La Marca
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
| | - Maria Stefania Spagnuolo
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo; Consiglio Nazionale delle Ricerche; Napoli Italia
| | - Luisa Cigliano
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
| | - Daniela Marasco
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
- Dipartimento di Farmacia; Università di Napoli Federico II; Napoli Italia
| | - Paolo Abrescia
- Dipartimento di Biologia; Università di Napoli Federico II; Napoli Italia
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi; Napoli Italia
| |
Collapse
|
141
|
Abstract
Cerebrovascular dysfunction significantly contributes to the clinical presentation and pathoetiology of Alzheimer's disease (AD). Deposition and aggregation of β-amyloid (Aβ) within vascular smooth muscle cells leads to inflammation, oxidative stress, impaired vasorelaxation, and disruption of blood-brain barrier integrity. Midlife vascular risk factors, such as hypertension, cardiovascular disease, diabetes, and dyslipidemia, increase the relative risk for AD. These comorbidities are all characterized by low and/or dysfunctional high-density lipoproteins (HDL), which itself is a risk factor for AD. HDL performs a wide variety of critical functions in the periphery and CNS. In addition to lipid transport, HDL regulates vascular health via mediating vasorelaxation, inflammation, and oxidative stress and promotes endothelial cell survival and integrity. Here, we summarize clinical and preclinical data examining the involvement of HDL, originating from the circulation and from within the CNS, on AD and hypothesize potential synergistic actions between the two lipoprotein pools.
Collapse
|
142
|
Guizzetti M, Zhang X, Goeke C, Gavin DP. Glia and neurodevelopment: focus on fetal alcohol spectrum disorders. Front Pediatr 2014; 2:123. [PMID: 25426477 PMCID: PMC4227495 DOI: 10.3389/fped.2014.00123] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/24/2014] [Indexed: 12/03/2022] Open
Abstract
During the last 20 years, new and exciting roles for glial cells in brain development have been described. Moreover, several recent studies implicated glial cells in the pathogenesis of neurodevelopmental disorders including Down syndrome, Fragile X syndrome, Rett Syndrome, Autism Spectrum Disorders, and Fetal Alcohol Spectrum Disorders (FASD). Abnormalities in glial cell development and proliferation and increased glial cell apoptosis contribute to the adverse effects of ethanol on the developing brain and it is becoming apparent that the effects of fetal alcohol are due, at least in part, to effects on glial cells affecting their ability to modulate neuronal development and function. The three major classes of glial cells, astrocytes, oligodendrocytes, and microglia as well as their precursors are affected by ethanol during brain development. Alterations in glial cell functions by ethanol dramatically affect neuronal development, survival, and function and ultimately impair the development of the proper brain architecture and connectivity. For instance, ethanol inhibits astrocyte-mediated neuritogenesis and oligodendrocyte development, survival and myelination; furthermore, ethanol induces microglia activation and oxidative stress leading to the exacerbation of ethanol-induced neuronal cell death. This review article describes the most significant recent findings pertaining the effects of ethanol on glial cells and their significance in the pathophysiology of FASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA ; Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, WA , USA
| | - Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - Calla Goeke
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - David P Gavin
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| |
Collapse
|
143
|
LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 2013; 34:9171-82. [DOI: 10.1016/j.biomaterials.2013.08.039] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023]
|
144
|
Mevalonate kinase deficiency and neuroinflammation: balance between apoptosis and pyroptosis. Int J Mol Sci 2013; 14:23274-88. [PMID: 24287904 PMCID: PMC3876043 DOI: 10.3390/ijms141223274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Mevalonic aciduria, a rare autosomal recessive disease, represents the most severe form of the periodic fever, known as Mevalonate Kinase Deficiency. This disease is caused by the mutation of the MVK gene, which codes for the enzyme mevalonate kinase, along the cholesterol pathway. Mevalonic aciduria patients show recurrent fever episodes with associated inflammatory symptoms, severe neurologic impairments, or death, in early childhood. The typical neurodegeneration occurring in mevalonic aciduria is linked both to the intrinsic apoptosis pathway (caspase-3 and -9), which is triggered by mitochondrial damage, and to pyroptosis (caspase-1). These cell death mechanisms seem to be also related to the assembly of the inflammasome, which may, in turn, activate pro-inflammatory cytokines and chemokines. Thus, this particular molecular platform may play a crucial role in neuroinflammation mechanisms. Nowadays, a specific therapy is still lacking and the pathogenic mechanisms involving neuroinflammation and neuronal dysfunction have not yet been completely understood, making mevalonic aciduria an orphan drug disease. This review aims to analyze the relationship among neuroinflammation, mitochondrial damage, programmed cell death, and neurodegeneration. Targeting inflammation and degeneration in the central nervous system might help identify promising treatment approaches for mevalonic aciduria or other diseases in which these mechanisms are involved.
Collapse
|
145
|
Gong H, Dong W, Rostad SW, Marcovina SM, Albers JJ, Brunzell JD, Vuletic S. Lipoprotein lipase (LPL) is associated with neurite pathology and its levels are markedly reduced in the dentate gyrus of Alzheimer's disease brains. J Histochem Cytochem 2013; 61:857-68. [PMID: 24004859 PMCID: PMC3840745 DOI: 10.1369/0022155413505601] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Lipoprotein lipase (LPL) is involved in regulation of fatty acid metabolism, and facilitates cellular uptake of lipoproteins, lipids and lipid-soluble vitamins. We evaluated LPL distribution in healthy and Alzheimer’s disease (AD) brain tissue and its relative levels in cerebrospinal fluid. LPL immunostaining is widely present in different neuronal subgroups, microglia, astrocytes and oligodendroglia throughout cerebrum, cerebellum and spinal cord. LPL immunoreactivity is also present in leptomeninges, small blood vessels, choroid plexus and ependymal cells, Schwann cells associated with cranial nerves, and in anterior and posterior pituitary. In vitro studies have shown presence of secreted LPL in conditioned media of human cortical neuronal cell line (HCN2) and neuroblastoma cells (SK-N-SH), but not in media of cultured primary human astrocytes. LPL was present in cytoplasmic and nuclear fractions of neuronal cells and astrocytes in vitro. LPL immunoreactivity strongly associates with AD-related pathology, staining diffuse plaques, dystrophic and swollen neurites, possible Hirano bodies and activated glial cells. We observed no staining associated with neurofibrillary tangles or granulovacuolar degeneration. Granule cells of the dentate gyrus and the associated synaptic network showed significantly reduced staining in AD compared to control tissue. LPL was also reduced in AD CSF samples relative to those in controls.
Collapse
Affiliation(s)
- Huilin Gong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, WA (HG, WD, SMM, JJA, SV)
| | | | | | | | | | | | | |
Collapse
|
146
|
Chu HL, Cheng TM, Chen HW, Chou FH, Chang YC, Lin HY, Liu SY, Liang YC, Hsu MH, Wu DS, Li HY, Ho LP, Wu PC, Chen FR, Chen GS, Shieh DB, Chang CS, Su CH, Yao Z, Chang CC. Synthesis of apolipoprotein B lipoparticles to deliver hydrophobic/amphiphilic materials. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7509-16. [PMID: 23834261 PMCID: PMC3744920 DOI: 10.1021/am401808e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 05/23/2023]
Abstract
To develop a drug delivery system (DDS), it is critical to address challenging tasks such as the delivery of hydrophobic and amphiphilic compounds, cell uptake, and the metabolic fate of the drug delivery carrier. Low-density lipoprotein (LDL) has been acknowledged as the human serum transporter of natively abundant lipoparticles such as cholesterol, triacylglycerides, and lipids. Apolipoprotein B (apo B) is the only protein contained in LDL, and possesses a binding moiety for the LDL receptor that can be internalized and degraded naturally by the cell. Therefore, synthetic/reconstituting apoB lipoparticle (rABL) could be an excellent delivery carrier for hydrophobic or amphiphilic materials. Here, we synthesized rABL in vitro, using full-length apoB through a five-step solvent exchange method, and addressed its potential as a DDS. Our rABL exhibited good biocompatibility when evaluated with cytotoxicity and cell metabolic response assays, and was stable during storage in phosphate-buffered saline at 4 °C for several months. Furthermore, hydrophobic superparamagnetic iron oxide nanoparticles (SPIONPs) and the anticancer drug M4N (tetra-O-methyl nordihydroguaiaretic acid), used as an imaging enhancer and lipophilic drug model, respectively, were incorporated into the rABL, leading to the formation of SPIONPs- and M4N- containing rABL (SPIO@rABL and M4N@rABL, respectively). Fourier transform infrared spectroscopy suggested that rABL has a similar composition to that of LDL, and successfully incorporated SPIONPs or M4N. SPIO@rABL presented significant hepatic contrast enhancement in T2-weighted magnetic resonance imaging in BALB/c mice, suggesting its potential application as a medical imaging contrast agent. M4N@rABL could reduce the viability of the cancer cell line A549. Interestingly, we developed solution-phase high-resolution transmission electron microscopy to observe both LDL and SPIO@rABL in the liquid state. In summary, our LDL-based DDS, rABL, has significant potential as a novel DDS for hydrophobic and amphiphilic materials, with good cell internalization properties and metabolicity.
Collapse
Affiliation(s)
- Hsueh-Liang Chu
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Tsai-Mu Cheng
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
- Graduate Institute of Translational
Medicine, College of Medicine and Technology, Taipei
Medical University, Taipei 11031, Taiwan
| | - Hung-Wei Chen
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Fu-Hsuan Chou
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
- Department of Materials Science
and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Chuan Chang
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Hsin-Yu Lin
- Department
of Engineering and System Science and Nuclear Science and Technology Development
Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shih-Yi Liu
- Department
of Engineering and System Science and Nuclear Science and Technology Development
Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chuan Liang
- Agricultural
Biotechnology Research Center and Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Ming-Hua Hsu
- Department
of Engineering and System Science and Nuclear Science and Technology Development
Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Dian-Shyeu Wu
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Hsing-Yuan Li
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Li-Ping Ho
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Ping-Ching Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Fu-Rong Chen
- Department
of Engineering and System Science and Nuclear Science and Technology Development
Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Gong-Shen Chen
- Department of Hematology, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Dar-Bin Shieh
- Institute of Oral Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chia-Seng Chang
- Agricultural
Biotechnology Research Center and Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Chia-Hao Su
- Center for Translational Research
in Biomedical Sciences, Kaohsiung Chang Gung Memorial
Hospital, Kaohsiung 83342, Taiwan
| | - Zemin Yao
- Department of Biochemistry,
Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Chia-Ching Chang
- Department
of Biological Science
and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
- Agricultural
Biotechnology Research Center and Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
- E-mail: . Tel: 886-3-5731633. Fax: 886-3-5733259
| |
Collapse
|
147
|
Suesca E, Alejo JL, Bolaños NI, Ocampo J, Leidy C, González JM. Sulfocerebrosides upregulate liposome uptake in human astrocytes without inducing a proinflammatory response. Cytometry A 2013; 83:627-35. [DOI: 10.1002/cyto.a.22305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/17/2013] [Accepted: 04/12/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Elizabeth Suesca
- Grupo de Biofísica; Departamento de Física; Universidad de los Andes; Bogotá; Colombia
| | - Jose Luis Alejo
- Grupo de Biofísica; Departamento de Física; Universidad de los Andes; Bogotá; Colombia
| | - Natalia I. Bolaños
- Grupo de Ciencias Básicas Médicas; Facultad de Medicina; Universidad de los Andes; Bogotá; Colombia
| | - Jackson Ocampo
- Grupo de Biofísica; Departamento de Física; Universidad de los Andes; Bogotá; Colombia
| | - Chad Leidy
- Grupo de Biofísica; Departamento de Física; Universidad de los Andes; Bogotá; Colombia
| | - John M. González
- Grupo de Ciencias Básicas Médicas; Facultad de Medicina; Universidad de los Andes; Bogotá; Colombia
| |
Collapse
|
148
|
Rembach A, Ryan TM, Roberts BR, Doecke JD, Wilson WJ, Watt AD, Barnham KJ, Masters CL. Progress towards a consensus on biomarkers for Alzheimer’s disease: a review of peripheral analytes. Biomark Med 2013; 7:641-62. [DOI: 10.2217/bmm.13.59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population and attempts to develop therapies have been unsuccessful because there is no means to target an effective therapeutic window. CNS biomarkers are insightful but impractical for high-throughput population-based screening. Therefore, a peripheral, blood-based biomarker for AD would significantly improve early diagnosis, potentially enable presymptomatic detection and facilitate effective targeting of disease-modifying treatments. The various constituents of blood, including plasma, platelets and cellular fractions, are now being systematically explored as a pool of putative peripheral biomarkers for AD. In this review we cover some less known peripheral biomarkers and highlight the latest developments for their clinical application.
Collapse
Affiliation(s)
- Alan Rembach
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia.
| | - Tim M Ryan
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Blaine R Roberts
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - James D Doecke
- The Australian e-Health Research Centre, Herston, Queensland, 4029, Australia
- CSIRO Preventative Health National Research Flagship, North Ryde, New South Wales, 2113, Australia
| | - William J Wilson
- CSIRO Preventative Health National Research Flagship, North Ryde, New South Wales, 2113, Australia
| | - Andrew D Watt
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Kevin J Barnham
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Colin L Masters
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| |
Collapse
|
149
|
Lee JD, Lin YH, Hsu HL, Huang YC, Wu CY, Ryu SJ, Lee M, Huang YC, Hsiao MC, Chang YJ, Chang CH, Lee TH. Genetic polymorphisms of low density lipoprotein receptor can modify stroke presentation. Neurol Res 2013; 32:535-40. [DOI: 10.1179/174313209x455682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
150
|
Proteolytic cleavage of apolipoprotein E4 as the keystone for the heightened risk associated with Alzheimer's disease. Int J Mol Sci 2013; 14:14908-22. [PMID: 23867607 PMCID: PMC3742279 DOI: 10.3390/ijms140714908] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 06/26/2013] [Accepted: 07/12/2013] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by microscopic lesions consisting of beta-amyloid plaques and neurofibrillary tangles (NFTs). The majority of cases are defined as sporadic and are likely caused by a combination of both genetic and environmental factors. Of the genetic risk factors identified, the 34 kDa protein, apolipoprotein (apo) E4, is of significant importance as APOE4 carriers account for 65%–80% of all AD cases. Although apoE4 plays a normal role in lipoprotein transport, how it contributes to AD pathogenesis is currently unknown. One potential mechanism by which apoE4 contributes to disease risk is its propensity to undergo proteolytic cleavage generating N- and C-terminal fragments. The purpose of this review will be to examine the mechanisms by which apoE4 contributes to AD pathogenesis focusing on the potential loss or gain of function that may occur following cleavage of the full-length protein. In this context, a discussion of whether targeting apoE4 therapeutically is a rationale approach to treating this disease will be assessed.
Collapse
|