101
|
Kim JA, Lee JK, Lee SY. Serum trace elements during treatment in pancreatic cancer patients and their associations with cancer prognosis. Clin Nutr 2024; 43:1459-1472. [PMID: 38714150 DOI: 10.1016/j.clnu.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND & AIMS In this study, we assessed serum trace element concentrations in patients with pancreatic cancer and compared the results to those of healthy controls and patients with chronic pancreatitis. We evaluated the association between trace element concentrations during cancer treatment and the risk of cancer progression and mortality in pancreatic cancer patients. METHODS A retrospective cohort study was conducted at a tertiary center in Korea. Serum trace element concentrations of cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) were measured at diagnosis using an inductively coupled plasma-mass spectrometry in 124 patients with pancreatic cancer, 50 patients with chronic pancreatitis, and 120 healthy controls. Trace elements were measured after a median of 282.5 (95% confidence interval [CI], 224.0-326.5) days from treatment initiation to assess changes in trace element concentrations during treatment. RESULTS Serum Co concentrations were significantly higher in patients with chronic pancreatitis and pancreatic cancer compared to healthy controls, while serum Se concentrations were significantly lower. During treatment, serum concentrations of Cu, Se, and Zn significantly decreased in patients with pancreatic cancer. During the follow-up (median 152.5; 95% CI, 142.8-160.0 months), 85.5% of patients experienced progression or relapse, and 84.7% of patients died. Patients with decreased Se and Zn concentrations during treatment had a higher mortality (hazard ratio [HR], 2.10; 95% CI, 1.31-3.38; P = 0.0020 for Se; HR, 1.72; 95% CI, 1.06-2.79; P = 0.0269 for Zn) compared to those with unchanged or increased trace element concentrations during treatment. Patients with a greater reduction in Zn concentrations during treatment had a higher mortality than those with a smaller reduction (HR, 1.59; 95% CI, 1.01-2.52; P = 0.0483). Patients whose Zn status changed from normal to deficient during treatment had an increased mortality (HR, 1.76; 95% CI, 1.16-2.67, P = 0.0084). Patients with multiple (≥2) trace element deficiencies after treatment had poorer outcomes than those with no or single trace element deficiency. CONCLUSIONS This study revealed that decreases in Se and Zn concentrations during cancer treatment were associated with adverse outcomes in terms of cancer progression and mortality in patients with pancreatic cancer. Further prospective investigations are recommended.
Collapse
Affiliation(s)
- Jee Ah Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea; Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, South Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| |
Collapse
|
102
|
Mashayekhi-Sardoo H, Rezaee R, Riahi-Zanjani B, Karimi G. Alleviation of microcystin-leucine arginine -induced hepatotoxicity: An updated overview. Toxicon 2024; 243:107715. [PMID: 38636613 DOI: 10.1016/j.toxicon.2024.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Contamination of surface waters is a major health threat for all living creatures. Some types of blue-green algae that naturally occur in fresh water, are able to produce various toxins, like Microcystins (MCs). Microcystin-leucine arginine (MC-LR) produced by Microcystis aeruginosa is the most toxic and abundant isoforms of MCs, and it causes hepatotoxicity. The present article reviews preclinical experiments examined different treatments, including herbal derivatives, dietary supplements and drugs against MC-LR hepatotoxicity. METHODS We searched scientific databases Web of Science, Embase, Medline (PubMed), Scopus, and Google Scholar using relevant keywords to find suitable studies until November 2023. RESULTS MC-LR through Organic anion transporting polypeptide superfamily transporters (OATPs) penetrates and accumulates in hepatocytes, and it inhibits protein phosphatases (PP1 and PP2A). Consequently, MC-LR disturbs many signaling pathways and induces oxidative stress thus damages cellular macromolecules. Some protective agents, especially plants rich in flavonoids, and natural supplements, as well as chemoprotectants were shown to diminish MC-LR hepatotoxicity. CONCLUSION The reviewed agents through blocking the OATP transporters (nontoxic nostocyclopeptide-M1, captopril, and naringin), then inhibition of MC-LR uptake (naringin, rifampin, cyclosporin-A, silymarin and captopril), and finally at restoration of PPAse activity (silybin, quercetin, morin, naringin, rifampin, captopril, azo dyes) exert hepatoprotective effect against MC-LR.
Collapse
Affiliation(s)
- Habibeh Mashayekhi-Sardoo
- Bio Environmental Health Hazard Research Center, Jiroft University of Medical Sciences, Jiroft, Iran; Jiroft University of Medical Sciences, Jiroft, Iran.
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
103
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
104
|
Białowąs W, Blicharska E, Drabik K. Biofortification of Plant- and Animal-Based Foods in Limiting the Problem of Microelement Deficiencies-A Narrative Review. Nutrients 2024; 16:1481. [PMID: 38794719 PMCID: PMC11124325 DOI: 10.3390/nu16101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.
Collapse
Affiliation(s)
- Wojciech Białowąs
- Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdyscyplinary Applications of Ion Chromatography, Faculty of Biomedicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Kamil Drabik
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
105
|
Tu X, Wu N, Wan Y, Gan J, Liu Z, Song L. Association of dietary selenium intake and all-cause mortality of Parkinson's disease and its interaction with blood cadmium level: a retrospective cohort study. BMC Geriatr 2024; 24:415. [PMID: 38730347 PMCID: PMC11088170 DOI: 10.1186/s12877-024-05000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a slowly progressive neurodegenerating disease that may eventually lead to disabling condition and pose a threat to the health of aging populations. This study aimed to explore the association of two potential risk factors, selenium and cadmium, with the prognosis of Parkinson's disease as well as their interaction effect. METHODS Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2006 to 2015-2016 and National Death Index (NDI). Participants were classified as Parkinson's patients by self-reported anti-Parkinson medications usage. Cox regression models and restricted cubic spline models were applied to evaluate the association between PD mortality and selenium intake level as well as blood cadmium level. Subgroup analysis was also conducted to explore the interaction between them. RESULTS A total of 184 individuals were included. In full adjusted cox regression model (adjusted for age, gender, race, hypertension, pesticide exposure, smoking status and caffeine intake), compared with participants with low selenium intake, those with normal selenium intake level were significantly associated with less risk of death (95%CI: 0.18-0.76, P = 0.005) while no significant association was found between low selenium intake group and high selenium group (95%CI: 0.16-1.20, P = 0.112). Restricted cubic spline model indicated a nonlinear relationship between selenium intake and PD mortality (P for nonlinearity = 0.050). The association between PD mortality and blood cadmium level was not significant (95%CI: 0.19-5.57, P = 0.112). However, the interaction term of selenium intake and blood cadmium showed significance in the cox model (P for interaction = 0.048). Subgroup analysis showed that the significant protective effect of selenium intake existed in populations with high blood cadmium but not in populations with low blood cadmium. CONCLUSION Moderate increase of selenium intake had a protective effect on PD mortality especially in high blood cadmium populations.
Collapse
Affiliation(s)
- Xinyu Tu
- School of Medicine, Shanghai Jiao Tong University, No.227 Chongqing Rd (S), Shanghai, China
| | - Na Wu
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China
| | - Ying Wan
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China
| | - Jing Gan
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China
| | - Zhenguo Liu
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China.
| | - Lu Song
- Department of neurology, Xinhua Hospital, Shanghai Jiao tong University School of Medicine, No.1665 Kongjiang Rd, Shanghai, China.
| |
Collapse
|
106
|
Haas M, Brandl B, Schinhammer L, Skurk T. Individualized Supplementation of Immunoactive Micronutrients and Severity of Upper Respiratory Infection Symptoms-A Randomized Intervention Study. Nutrients 2024; 16:1400. [PMID: 38794638 PMCID: PMC11123851 DOI: 10.3390/nu16101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Certain micronutrients exhibit immunomodulatory effects. However, no intervention has yet investigated the effect of individualized supplementation on the severity of upper respiratory tract infections (URIs). Therefore, we investigated whether a personalized supplementation moderates the incidence and severity of URI. Selenium, zinc, and vitamin D were measured in dried blood spots from 59 healthy participants. Accordingly, a personalized supplement was provided with or without the respective micronutrients. We used WURSS-21 questionnaires to assess the disease status. The blood values converged during the intervention and micronutrients no longer differed between treated and untreated volunteers at the end of the intervention period. The incidence and severity of the illness did not significantly differ between the groups. However, when analyzing the WURSS-21 scores by the intention to treat, the initially randomized treatment arm revealed a significantly higher score than the placebo arm. Upon acute administration, individualized combinations of selenium, zinc and vitamin D do not reduce the number, or contribute to a milder course of URIs. Therefore, supplementation in acute infectious situations seems questionable. Further studies must address the habitual diet in more detail, to better understand the impact of individual micronutrient status on the prevention of URI.
Collapse
Affiliation(s)
- Melanie Haas
- ZIEL–Institute for Food and Health, Core Facility Human Studies, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Beate Brandl
- ZIEL–Institute for Food and Health, Core Facility Human Studies, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Laura Schinhammer
- ZIEL–Institute for Food and Health, Core Facility Human Studies, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Thomas Skurk
- ZIEL–Institute for Food and Health, Core Facility Human Studies, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
- School of Medicine and Health, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| |
Collapse
|
107
|
Mohr P, Hanna C, Powell A, Penman S, Blum K, Sharafshah A, Lewandrowski KU, Badgaiyan RD, Bowirrat A, Pinhasov A, Thanos PK. Selenoprotein P in a Rodent Model of Exercise; Theorizing Its Interaction with Brain Reward Dysregulation, Addictive Behavior, and Aging. J Pers Med 2024; 14:489. [PMID: 38793071 PMCID: PMC11122084 DOI: 10.3390/jpm14050489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Exercise promotes health and wellness, including its operation as a protective factor against a variety of psychological, neurological, and chronic diseases. Selenium and its biomarker, selenoprotein P (SEPP1), have been implicated in health, including cancer prevention, neurological function, and dopamine signaling. SEPP1 blood serum levels were compared with a one-way ANOVA between sedentary (SED), moderately exercised (MOD) [10 m/min starting at 10 min, increasing to 60 min], and high-intensity interval training (HIIT) exercised rats [30 min in intervals of 2-min followed by a 1-min break, speed progressively increased from 10 to 21 m/min]. HIIT rats showed significantly higher serum SEPP1 concentrations compared to MOD and SED. More specifically, HIIT exercise showed an 84% increase in SEPP1 levels compared to sedentary controls. MOD rats had greater serum SEPP1 concentrations compared to SED, a 33% increase. The results indicated that increased exercise intensity increases SEPP1 levels. Exercise-induced increases in SEPP1 may indicate an adaptive response to the heightened oxidative stress. Previous studies found a significant increase in dopamine D2 receptor (D2R) binding in these same rats, suggesting a potential association between SEPP1 and dopamine signaling during exercise. Modulating antioxidants like SEPP1 through personalized therapies, including exercise, has broad implications for health, disease, and addiction.
Collapse
Affiliation(s)
- Patrick Mohr
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht 8813833435, Iran
| | - Kai-Uwe Lewandrowski
- Department of Orthopaedics, Universitaria Sanitas, Fundación, Bogotá P.O. Box 011, Colombia
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Psychology, University at Buffalo, Buffalo, NY 14260-4110, USA
| |
Collapse
|
108
|
Liu Y, Zhao J, Tian X, Yuan Y, Ni R, Zhao W, Liu Y, Xia C, Wang Z, Wang J. Stratum affects the distribution of soil selenium bioavailability by modulating the soil physicochemical properties: A case study in a Se-enriched area, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120838. [PMID: 38608576 DOI: 10.1016/j.jenvman.2024.120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The soil selenium (Se) content and bioavailability are important for human health. In this regard, knowing the factors driving the concentration of total Se and bioavailable Se in soils is essential to map Se, enhance foodstuffs' Se content, and improve the Se nutritional status of humans. In this study, total Se and Se bioavailability (i.e., phosphate extracted Se) in surface soils (0-20 cm) developed on different strata were analyzed in a Se-enriched region of Southwest China. Furthermore, the interaction between the stratum and soil properties was assessed and how did the stratum effect on the concentration and spatial distribution of Se bioavailability in soils was investigated. Results showed that the median concentration of total Se in soils was 0.308 mg/kg, which is higher than China's soil background. The mean proportion of phosphate extracted Se in total Se was 12.2 %. The values of total Se, phosphate extracted Se, and soil organic matter (SOM) in soils increased with the increasing stratum age. In contrast, the coefficient of weathering and eluviation (BA) values decreased. The analysis of statistics and Geodetector revealed that the SOM, stratum, and BA were the dominant controlling factors for the contents and distributions of soil total Se and phosphate extracted Se. This study provided strong evidence that the soil properties that affected the total Se and Se bioavailability were modulated by the local geological background, and had important practical implications for addressing Se malnutrition and developing the Se-rich resource in the study region and similar geological settings in different parts of the globe.
Collapse
Affiliation(s)
- Yonglin Liu
- School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
| | - Jiayu Zhao
- School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
| | - Xinglei Tian
- Shandong Institute of Geological Sciences, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Jinan 250013, China.
| | - Yuyang Yuan
- Zunyi Normal University, Zunyi 563006, China
| | - Runxiang Ni
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Wei Zhao
- Shandong Institute of Geological Sciences, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Jinan 250013, China
| | - Yi Liu
- School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
| | - Chuanbo Xia
- Shandong Institute of Geological Sciences, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Jinan 250013, China
| | - Zhiming Wang
- Shandong Institute of Geological Sciences, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Jinan 250013, China
| | - Jingyun Wang
- Shandong Institute of Geological Sciences, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization, Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Jinan 250013, China
| |
Collapse
|
109
|
Xianyu B, Pan S, Gao S, Xu H, Li T. Selenium-Containing Nanocomplexes Achieve Dual Immune Checkpoint Blockade for NK Cell Reinvigoration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306225. [PMID: 38072799 DOI: 10.1002/smll.202306225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Indexed: 05/12/2024]
Abstract
The blockade of immune checkpoints has emerged as a promising strategy for cancer immunotherapy. However, most of the current approaches focus on T cells, leaving natural killer (NK) cell-mediated therapeutic strategies rarely explored. Here, a selenium-containing nanocomplex is developed that acts as a dual immune checkpoint inhibitor to reinvigorate NK cell-based cancer immunotherapy. The Se nanocomplex can deliver and release siRNA that targets programmed death ligand-1 (PD-L1) in tumor cells, thereby silencing the checkpoint receptor PD-L1. The intracellular reactive oxygen species generated by porphyrin derivatives in the nanocomplexes can oxidize the diselenide bond into seleninic acid, which blocks the expression of another checkpoint receptor, human leukocyte antigen E. The blockade of dual immune checkpoints shows synergistic effects on promoting NK cell-mediated antitumoral activity. This study provides a new strategy to reinvigorate NK cell immunity for the development of combined cancer immunotherapy.
Collapse
Affiliation(s)
- Banruo Xianyu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shiqian Gao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyu Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
110
|
Wang Z, Xiao T, Qi G. The moderating effect of dietary selenium intake on the risk of infertility-associated depressive symptoms in female. J Obstet Gynaecol Res 2024; 50:899-908. [PMID: 38423990 DOI: 10.1111/jog.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
AIM To analyze the associations between infertility or dietary selenium intake and depressive symptoms as well as the role of selenium intake on the association between infertility and depressive symptoms in women. METHODS This study retrieved the data of 4949 women from National Health and Nutrition Examination Survey (NHANES) database. Univariable and multivariable weighted logistic regression analyses were applied to assess the associations of selenium intake or infertility with the risk of depressive symptoms as well as the regulation of selenium intake on the risk of depressive symptoms related to infertility. RESULTS The elevated risk of depressive symptoms was found in participants with infertility (odds ratio [OR] = 1.54, 95% confidence interval [CI]: 1.11-2.15). The risk of depressive symptoms was reduced in women with selenium intake ≥55 μg (OR = 0.64, 95%CI: 0.46-0.90). Compared with women without infertility who had selenium intake <55 μg, those with infertility and had selenium intake <55 μg were associated with elevated risk of depressive symptoms after adjusting for confounding factors (OR = 2.01, 95%CI: 1.03-3.90). The risk of depressive symptoms was not significantly increased in women with infertility who had selenium intake ≥55 μg in comparison with subjects without infertility who had selenium intake ≥55 μg (p > 0.05). CONCLUSION Selenium intake regulated the association between infertility and depressive symptoms.
Collapse
Affiliation(s)
- Zhuran Wang
- Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Traditional Chinese Medicine, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Guangzhou, China
| | - Ting Xiao
- Department of Traditional Chinese Medicine, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Guangzhou, China
| | - Guanglan Qi
- Department of Traditional Chinese Medicine, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Guangzhou, China
| |
Collapse
|
111
|
Buonfiglio F, Ponto KA, Pfeiffer N, Kahaly GJ, Gericke A. Redox mechanisms in autoimmune thyroid eye disease. Autoimmun Rev 2024; 23:103534. [PMID: 38527685 DOI: 10.1016/j.autrev.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Thyroid eye disease (TED) is an autoimmune condition affecting the orbit and the eye with its adnexa, often occurring as an extrathyroidal complication of Graves' disease (GD). Orbital inflammatory infiltration and the stimulation of orbital fibroblasts, triggering de novo adipogenesis, an overproduction of hyaluronan, myofibroblast differentiation, and eventual tissue fibrosis are hallmarks of the disease. Notably, several redox signaling pathways have been shown to intensify inflammation and to promote adipogenesis, myofibroblast differentiation, and fibrogenesis by upregulating potent cytokines, such as interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β. While existing treatment options can manage symptoms and potentially halt disease progression, they come with drawbacks such as relapses, side effects, and chronic adverse effects on the optic nerve. Currently, several studies shed light on the pathogenetic contributions of emerging factors within immunological cascades and chronic oxidative stress. This review article provides an overview on the latest advancements in understanding the pathophysiology of TED, with a special focus of the interplay between oxidative stress, immunological mechanisms and environmental factors. Furthermore, cutting-edge therapeutic approaches targeting redox mechanisms will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Katharina A Ponto
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - George J Kahaly
- Medicine I (GJK), University Medical Center of the Johannes Gutenberg- University, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
112
|
Zhu XF, Hu YQ, Dai ZC, Li XJ, Zhang J. Associations between trans fatty acids and systemic immune-inflammation index: a cross-sectional study. Lipids Health Dis 2024; 23:122. [PMID: 38678208 PMCID: PMC11055356 DOI: 10.1186/s12944-024-02109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated that trans fatty acids (TFAs) intake was linked to an increased risk of chronic diseases. As a novel systemic inflammatory biomarker, the clinical value and efficacy of the systemic immune-inflammation index (SII) have been widely explored. However, the association between TFAs and SII is still unclear. Therefore, the study aims to investigate the connection between TFAs and SII in US adults. METHODS The study retrieved data from the National Health and Nutrition Examination Survey (NHANES) for the years 1999-2000 and 2009-2010. Following the exclusion of ineligible participants, the study encompassed a total of 3047 individuals. The research employed a multivariate linear regression model to investigate the connection between circulating TFAs and SII. Furthermore, the restricted cubic spline (RCS) model was utilized to evaluate the potential nonlinear association. Subgroup analysis was also conducted to investigate the latent interactive factors. RESULTS In this investigation, participants exhibited a mean age of 47.40 years, with 53.91% of them being female. Utilizing a multivariate linear regression model, the independent positive associations between the log2-transformed palmitelaidic acid, the log2 transformed-vaccenic acid, the log2-transformed elaidic acid, the log2-transformed linolelaidic acid, and the log2-transformed-total sum of TFAs with the SII (all P < 0.05) were noted. In the RCS analysis, no nonlinear relationship was observed between the log2-transformed palmitelaidic acid, the log2 transformed-vaccenic acid, the log2-transformed elaidic acid, the log2-transformed linolelaidic acid, the log2-transformed-total sum of TFAs and the SII (all P for nonlinear > 0.05). For the stratified analysis, the relationship between the circulating TFAs and the SII differed by the obesity status and the smoking status. CONCLUSIONS A positive association was investigated between three types of TFA, the sum of TFAs, and the SII in the US population. Additional rigorously designed studies are needed to verify the results and explore the potential mechanism.
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- Department of Clinical Medicine, The Nanshan College of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Qi Hu
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhi-Cheng Dai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Xiu-Juan Li
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Zhang
- Second Department of Infectious Disease, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 201100, China.
| |
Collapse
|
113
|
Kleikamp HBC, Palacios PA, Kofoed MVW, Papacharalampos G, Bentien A, Nielsen JL. The Selenoproteome as a Dynamic Response Mechanism to Oxidative Stress in Hydrogenotrophic Methanogenic Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6637-6646. [PMID: 38580315 PMCID: PMC11025550 DOI: 10.1021/acs.est.3c07725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.
Collapse
Affiliation(s)
- Hugo B. C. Kleikamp
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Paola A. Palacios
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Michael V. W. Kofoed
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Georgios Papacharalampos
- Department
of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus, Denmark
| | - Anders Bentien
- Department
of Biological and Chemical Engineering, Aarhus University, Åbogade 40, 8200 Aarhus, Denmark
| | - Jeppe L. Nielsen
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
114
|
Balasco Serrão VH, Minari K, Pereira HD, Thiemann OH. Bacterial selenocysteine synthase structure revealed by single-particle cryoEM. Curr Res Struct Biol 2024; 7:100143. [PMID: 38681238 PMCID: PMC11047290 DOI: 10.1016/j.crstbi.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
The 21st amino acid, selenocysteine (Sec), is synthesized on its dedicated transfer RNA (tRNASec). In bacteria, Sec is synthesized from Ser-tRNA[Ser]Sec by Selenocysteine Synthase (SelA), which is a pivotal enzyme in the biosynthesis of Sec. The structural characterization of bacterial SelA is of paramount importance to decipher its catalytic mechanism and its role in the regulation of the Sec-synthesis pathway. Here, we present a comprehensive single-particle cryo-electron microscopy (SPA cryoEM) structure of the bacterial SelA with an overall resolution of 2.69 Å. Using recombinant Escherichia coli SelA, we purified and prepared samples for single-particle cryoEM. The structural insights from SelA, combined with previous in vivo and in vitro knowledge, underscore the indispensable role of decamerization in SelA's function. Moreover, our structural analysis corroborates previous results that show that SelA adopts a pentamer of dimers configuration, and the active site architecture, substrate binding pocket, and key K295 catalytic residue are identified and described in detail. The differences in protein architecture and substrate coordination between the bacterial enzyme and its counterparts offer compelling structural evidence supporting the independent molecular evolution of the bacterial and archaea/eukarya Ser-Sec biosynthesis present in the natural world.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Biomolecular Cryoelectron Microscopy Facility, University of California - Santa Cruz, Santa Cruz, CA, 95064, United States
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, CA, 95064, United States
| | - Karine Minari
- Biomolecular Engineering Department, Jack Baskin School of Engineering, University of California - Santa Cruz, Santa Cruz, CA, 95064, United States
| | - Humberto D'Muniz Pereira
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP, CEP 13566-590, Brazil
| | - Otavio Henrique Thiemann
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP, CEP 13566-590, Brazil
| |
Collapse
|
115
|
Aryafar M, Mahdavi M, Shahzadi H, Ranjbar YR, Sohouli MH, Afzal S, Tehrani AN, Fotros D, Daftari G. Association between dietary selenium and zinc intake and risk of dilated cardiomyopathy in children: a case-control study. BMC Pediatr 2024; 24:251. [PMID: 38605385 PMCID: PMC11010394 DOI: 10.1186/s12887-024-04706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCMP) is characterized by the enlargement and weakening of the heart and is a major cause of heart failure in children. Infection and nutritional deficiencies are culprits for DCMP. Zinc is an important nutrient for human health due to its anti-oxidant effect that protects cell against oxidative damage. This case-control study aimed to investigate the relationship between dietary intake of zinc and selenium and the risk of DCMP in pediatric patients. METHODS A total of 36 DCMP patients and 72 matched controls were recruited, and their dietary intakes were assessed via a validated food frequency questionnaire. We used chi-square and sample T-test for qualitative and quantitative variables, respectively. Logistic regression analysis was applied to assess the relationship between selenium and zinc intake with the risk of DCMP. RESULTS After fully adjusting for confounding factors, analyses showed that selenium (OR = 0.19, CI = 0.057-0.069, P trend < 0.011) and zinc (OR = 0.12, CI = 0.035-0.046, P trend < 0.002) intake were strongly associated with 81% and 88% lower risk of pediatric DCMP, respectively. CONCLUSIONS This study highlights the protective role of adequate dietary intake of selenium and zinc in decreasing the risk of DCMP in children. Malnutrition may exacerbate the condition and addressing these micronutrient deficiencies may improve the cardiac function. Further studies are recommended to detect the underlying mechanisms and dietary recommendations for DCMP prevention.
Collapse
Affiliation(s)
- Maryam Aryafar
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences Tehran, Tehran, Iran
| | - Mohammad Mahdavi
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences Tehran, Tehran, Iran
| | - Hossein Shahzadi
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences Tehran, Tehran, Iran
| | - Yeganeh Rajabpour Ranjbar
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Research Institute, National Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sina Afzal
- Department of Orthopedic and Trauma Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Neshatbini Tehrani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Research Institute, National Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Daftari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Keshavarz Boulevard, Tehran, Iran.
| |
Collapse
|
116
|
Zamani B, Taghvaee F, Akbari H, Mohtashamian A, Sharifi N. Effects of Selenium Supplementation on the Indices of Disease Activity, Inflammation and Oxidative Stress in Patients with Rheumatoid Arthritis: a Randomized Clinical Trial. Biol Trace Elem Res 2024; 202:1457-1467. [PMID: 37477848 DOI: 10.1007/s12011-023-03782-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
The aim of study was to evaluate the effect of selenium supplementation on disease activity, inflammation, and oxidative stress in patients with rheumatoid arthritis (RA). This study was a randomized double-blind placebo-controlled trial on 59 patients with RA. Participants were randomly divided to receive 200 μg/day of selenium or a placebo for 12 weeks. The disease activity score (DAS.CRP and DAS.ESR), erythrocyte sedimentation rate (ESR), serum levels of C-reactive protein (CRP), fasting blood glucose, lipids, antibodies to cyclic citrullinated protein (anti-CCP), nitric oxide, glutathione, and total antioxidant capacity were assessed. The mean of DAS.CRP and DAS.ESR decreased significantly within both study groups after the intervention. However, the between-group comparisons revealed no significant differences. The CRP levels decreased significantly in the selenium group, and this decrease was near the significance level compared to the placebo (P = 0.05). However, after adjusting for baseline values, the observed difference between groups did not remain significant. In addition, the values of ESR and anti-CCP decreased significantly within the selenium group. Although, between-group comparison did not statistically significant, the change in ESR and anti-CCP in the selenium group was small clinically relevant compared to the placebo [the effect size (95% CI) for ESR: 0.38 (- 0.14, 0.89), and for anti-CCP: 0.32 (- 0.2, 0.83)]. Our study showed that selenium caused a small clinically relevant improvement in some RA biomarkers such as ESR and anti-CCP. Future studies that evaluate the effects of novel forms of supplements such as selenium nanoparticles on the clinical symptoms and biomarkers of RA are suggested. Trial Registration: At www.irct.ir as IRCT20190924044869N1 on 2020-06-14.
Collapse
Affiliation(s)
- Batool Zamani
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Taghvaee
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Akbari
- Department of Epidemiology and Biostatistics, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Abbas Mohtashamian
- Student Research Committee, Department of Nutrition, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Basic Science Research Institute, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
117
|
Heimfarth L, Dos Santos KS, Monteiro BS, de Souza Oliveira AK, Coutinho HDM, Menezes IRA, Dos Santos MRV, de Souza Araújo AA, Picot L, de Oliveira Júnior RG, Grougnet R, de Souza Siqueira Quintans J, Quintans-Júnior LJ. The protective effects of naringenin, a citrus flavonoid, non-complexed or complexed with hydroxypropyl-β-cyclodextrin against multiorgan damage caused by neonatal endotoxemia. Int J Biol Macromol 2024; 264:130500. [PMID: 38428770 DOI: 10.1016/j.ijbiomac.2024.130500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-β-cyclodextrin (HPβCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPβCD was able to increase the animal survival rate. CONCLUSION NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.
Collapse
Affiliation(s)
- Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Katielen Silvana Dos Santos
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Anne Karoline de Souza Oliveira
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | | | - Irwin R A Menezes
- Universidade Regional do Cariri - URCA, Departmento de Química Biológica, Crato, CE, Brazil
| | | | | | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France
| | - Raimundo Gonçalves de Oliveira Júnior
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France; CiTCoM UMR 8038 CNRS, Faculté Pharmacie, Université Paris Cité, 75006, Paris, France
| | - Raphaël Grougnet
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Jullyana de Souza Siqueira Quintans
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| | - Lucindo José Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| |
Collapse
|
118
|
Milovanovic I, Chillon TS, Hackler J, Schomburg L, Goessler W, Lajin B. Comparative investigation of selenium-enriched Pleurotus ostreatus and Ganoderma lucidum as natural sources of selenium supplementation. Food Chem 2024; 437:137842. [PMID: 37956581 DOI: 10.1016/j.foodchem.2023.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Selenium (Se) is an essential trace element for human health, but its nutritional supply is insufficient in large parts of the world. Mushrooms can be enriched in selenium and can serve as alternative and natural source of selenium supplementation. In the present study, two common mushroom species (Pleurotus ostreatus and Ganoderma lucidum), were enriched with two selenium compounds (selenite and selenate) to test their suitability as natural sources of selenium supplementation. Sharp differences in the the metabolic patterns of the fortified selenium were observed. Selenium was effectively metabolized in P. ostreatus but remained in inorganic form in G. lucidum. However, mushrooms extracts were effective in enhancing selenoprotein expression in cell lines. The present study highlights the importance of employing selenium speciation analysis with an element-selective technique to examine the metabolic products following mushroom fortification for nutritional purposes due to the different toxicological profile and bioavailability of different selenium biotransformation products.
Collapse
Affiliation(s)
- Ivan Milovanovic
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Thilo Samson Chillon
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Julian Hackler
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Walter Goessler
- University of Graz, Institute of Chemistry - Analytical Chemistry for Health and Environment, Universitätsplatz 1/1, 8010 Graz, Austria
| | - Bassam Lajin
- University of Graz, Institute of Chemistry - Analytical Chemistry for Health and Environment, Universitätsplatz 1/1, 8010 Graz, Austria; University of Graz, Institute of Chemistry - ChromICP, Universitätsplatz 1/1, 8010 Graz, Austria
| |
Collapse
|
119
|
Renaud D, Höller A, Michel M. Potential Drug-Nutrient Interactions of 45 Vitamins, Minerals, Trace Elements, and Associated Dietary Compounds with Acetylsalicylic Acid and Warfarin-A Review of the Literature. Nutrients 2024; 16:950. [PMID: 38612984 PMCID: PMC11013948 DOI: 10.3390/nu16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In cardiology, acetylsalicylic acid (ASA) and warfarin are among the most commonly used prophylactic therapies against thromboembolic events. Drug-drug interactions are generally well-known. Less known are the drug-nutrient interactions (DNIs), impeding drug absorption and altering micronutritional status. ASA and warfarin might influence the micronutritional status of patients through different mechanisms such as binding or modification of binding properties of ligands, absorption, transport, cellular use or concentration, or excretion. Our article reviews the drug-nutrient interactions that alter micronutritional status. Some of these mechanisms could be investigated with the aim to potentiate the drug effects. DNIs are seen occasionally in ASA and warfarin and could be managed through simple strategies such as risk stratification of DNIs on an individual patient basis; micronutritional status assessment as part of the medical history; extensive use of the drug-interaction probability scale to reference little-known interactions, and application of a personal, predictive, and preventive medical model using omics.
Collapse
Affiliation(s)
- David Renaud
- DIU MAPS, Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- DIU MAPS, Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Alexander Höller
- Department of Nutrition and Dietetics, University Hospital Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
120
|
Li X, Li Y, Wang X, Zhang R, Xue J, Ding Y, Chu X, Su J. Preparation, Characterization, and Bioactivities of Polysaccharide-Nano-Selenium and Selenized Polysaccharides from Acanthopanax senticosus. Molecules 2024; 29:1418. [PMID: 38611698 PMCID: PMC11012449 DOI: 10.3390/molecules29071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Acanthopanax senticosus polysaccharide-nano-selenium (ASPS-SENPS) and A. selenopanax selenized polysaccharides (Se-ASPS) were synthesized, and their characterization and biological properties were compared. The acid extraction method was used to extract the polysaccharides of A. selenopanax, followed by decolorization using the hydrogen peroxide method and deproteinization based on the Sevage method, and the purification of A. senticosus polysaccharides (ASPS) was carried out using the cellulose DEAE-52 ion column layer analysis method. An A. senticosus polysaccharide-nano-selenium complex was synthesized by a chemical reduction method using ASPS as dispersants. The selenization of polysaccharides from A. selenopanax was carried out using the HNO3-Na2SeO3 method. The chemical compositions, scanning electron microscopy images, infrared spectra, and antioxidant properties of ASPS-SENPS and Se-ASPS were studied, and they were also subjected to thermogravimetric analysis. The results indicated that the optimal conditions for the synthesis of ASPS-SENPS include the following: when ASPS accounts for 10%, the ratio of ascorbic acid and sodium selenium should be 4:1, the response time should be 4 h, and the reaction temperature should be 50 °C. The most favorable conditions for the synthesis of Se-ASPS were as follows: m (Na2SeO3):m (ASPS) = 4:5, response temperature = 50 °C, and response time = 11.0 h. In the in vitro antioxidant assay, when the mass concentration of Se-ASPS and ASPS-SENPS was 5 mg/mL, the removal rates for DPPH free radicals were 88.44 ± 2.83% and 98.89 ± 3.57%, respectively, and the removal rates for ABTS free radicals were 90.11 ± 3.43% and 98.99 ± 1.73%, respectively, stronger than those for ASPS. The current study compares the physiological and bioactivity effects of ASPS-SENPS and Se-ASPS, providing a basis for future studies on polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuling Chu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China; (X.L.); (Y.L.); (X.W.); (R.Z.); (J.X.); (Y.D.)
| | - Jianqing Su
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng 252000, China; (X.L.); (Y.L.); (X.W.); (R.Z.); (J.X.); (Y.D.)
| |
Collapse
|
121
|
Liu Y, Qin X, Chen T, Chen M, Wu L, He B. Exploring the interactions between metabolic dysfunction-associated fatty liver disease and micronutrients: from molecular mechanisms to clinical applications. Front Nutr 2024; 11:1344924. [PMID: 38549744 PMCID: PMC10973017 DOI: 10.3389/fnut.2024.1344924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) has emerged as a significant global health concern, representing a major cause of liver disease worldwide. This condition spans a spectrum of histopathologic stages, beginning with simple fatty liver (MAFL), characterized by over 5% fat accumulation, and advancing to metabolic (dysfunction)-associated steatohepatitis, potentially leading to hepatocellular carcinoma. Despite extensive research, there remains a substantial gap in effective therapeutic interventions. This condition's progression is closely tied to micronutrient levels, crucial for biological functions like antioxidant activities and immune efficiency. The levels of these micronutrients exhibit considerable variability among individuals with MAFLD. Moreover, the extent of deficiency in these nutrients can vary significantly throughout the different stages of MAFLD, with disease progression potentially exacerbating these deficiencies. This review focuses on the role of micronutrients, particularly vitamins A, D, E, and minerals like iron, copper, selenium, and zinc, in MAFLD's pathophysiology. It highlights how alterations in the homeostasis of these micronutrients are intricately linked to the pathophysiological processes of MAFLD. Concurrently, this review endeavors to harness the existing evidence to propose novel therapeutic strategies targeting these vitamins and minerals in MAFLD management and offers new insights into disease mechanisms and treatment opportunities in MAFLD.
Collapse
Affiliation(s)
- Yuan Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Tianzhu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Mengyao Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
122
|
Sahoo DK, Wong D, Patani A, Paital B, Yadav VK, Patel A, Jergens AE. Exploring the role of antioxidants in sepsis-associated oxidative stress: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1348713. [PMID: 38510969 PMCID: PMC10952105 DOI: 10.3389/fcimb.2024.1348713] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sepsis is a potentially fatal condition characterized by organ dysfunction caused by an imbalanced immune response to infection. Although an increased inflammatory response significantly contributes to the pathogenesis of sepsis, several molecular mechanisms underlying the progression of sepsis are associated with increased cellular reactive oxygen species (ROS) generation and exhausted antioxidant pathways. This review article provides a comprehensive overview of the involvement of ROS in the pathophysiology of sepsis and the potential application of antioxidants with antimicrobial properties as an adjunct to primary therapies (fluid and antibiotic therapies) against sepsis. This article delves into the advantages and disadvantages associated with the utilization of antioxidants in the therapeutic approach to sepsis, which has been explored in a variety of animal models and clinical trials. While the application of antioxidants has been suggested as a potential therapy to suppress the immune response in cases where an intensified inflammatory reaction occurs, the use of multiple antioxidant agents can be beneficial as they can act additively or synergistically on different pathways, thereby enhancing the antioxidant defense. Furthermore, the utilization of immunoadjuvant therapy, specifically in septic patients displaying immunosuppressive tendencies, represents a promising advancement in sepsis therapy.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Gujarat, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
123
|
Angelone T, Rocca C, Lionetti V, Penna C, Pagliaro P. Expanding the Frontiers of Guardian Antioxidant Selenoproteins in Cardiovascular Pathophysiology. Antioxid Redox Signal 2024; 40:369-432. [PMID: 38299513 DOI: 10.1089/ars.2023.0285] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Physiological levels of reactive oxygen and nitrogen species (ROS/RNS) function as fundamental messengers for many cellular and developmental processes in the cardiovascular system. ROS/RNS involved in cardiac redox-signaling originate from diverse sources, and their levels are tightly controlled by key endogenous antioxidant systems that counteract their accumulation. However, dysregulated redox-stress resulting from inefficient removal of ROS/RNS leads to inflammation, mitochondrial dysfunction, and cell death, contributing to the development and progression of cardiovascular disease (CVD). Recent Advances: Basic and clinical studies demonstrate the critical role of selenium (Se) and selenoproteins (unique proteins that incorporate Se into their active site in the form of the 21st proteinogenic amino acid selenocysteine [Sec]), including glutathione peroxidase and thioredoxin reductase, in cardiovascular redox homeostasis, representing a first-line enzymatic antioxidant defense of the heart. Increasing attention has been paid to emerging selenoproteins in the endoplasmic reticulum (ER) (i.e., a multifunctional intracellular organelle whose disruption triggers cardiac inflammation and oxidative stress, leading to multiple CVD), which are crucially involved in redox balance, antioxidant activity, and calcium and ER homeostasis. Critical Issues: This review focuses on endogenous antioxidant strategies with therapeutic potential, particularly selenoproteins, which are very promising but deserve more detailed and clinical studies. Future Directions: The importance of selective selenoproteins in embryonic development and the consequences of their mutations and inborn errors highlight the need to improve knowledge of their biological function in myocardial redox signaling. This could facilitate the development of personalized approaches for the diagnosis, prevention, and treatment of CVD. Antioxid. Redox Signal. 40, 369-432.
Collapse
Affiliation(s)
- Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Rende, Italy
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
- UOSVD Anesthesiology and Intensive Care Medicine, Fondazione Toscana "Gabriele Monasterio," Pisa, Italy
| | - Claudia Penna
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Pasquale Pagliaro
- National Institute of Cardiovascular Research (INRC), Bologna, Italy
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
124
|
Slim MA, Turgman O, van Vught LA, van der Poll T, Wiersinga WJ. Non-conventional immunomodulation in the management of sepsis. Eur J Intern Med 2024; 121:9-16. [PMID: 37919123 DOI: 10.1016/j.ejim.2023.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Sepsis remains a critical global health issue, demanding novel therapeutic strategies. Traditional immunomodulation treatments such as corticosteroids, specific modifiers of cytokines, complement or coagulation, growth factors or immunoglobulins, have so far fallen short. Meanwhile the number of studies investigating non-conventional immunomodulatory strategies is expanding. This review provides an overview of adjunctive treatments with herbal-based medicine, immunonutrition, vasopressors, sedative treatments and targeted temperature management, used to modulate the immune response in patients with sepsis. Herbal-based medicine, notably within traditional Chinese medicine, shows promise. Xuebijing injection and Shenfu injection exhibit anti-inflammatory and immune-modulatory effects, and the potential to lower 28-day mortality in sepsis. Selenium supplementation has been reported to reduce the occurrence of ventilator-associated pneumonia among sepsis patients, but study results are conflicting. Likewise, the immune-suppressive effects of omega-3 fatty acids have been associated with improved clinical outcomes in sepsis. The immunomodulating properties of supportive treatments also gain interest. Vasopressors like norepinephrine exhibit dual dosage-dependent roles, potentially promoting both pro- and anti-inflammatory effects. Dexmedetomidine, a sedative, demonstrates anti-inflammatory properties, reducing sepsis mortality rates in some studies. Temperature management, particularly maintaining higher body temperature, has also been associated with improved outcomes in small scale human trials. In conclusion, emerging non-conventional immunomodulatory approaches, including herbal medicine, immunonutrition, and targeted supportive therapies, hold potential for sepsis treatment, but their possible implementation into everyday clinical practice necessitates further research and stringent clinical validation in different settings.
Collapse
Affiliation(s)
- M A Slim
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Intensive Care, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| | - O Turgman
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - L A van Vught
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Intensive Care, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - T van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - W J Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
125
|
Wang G, Jiang Z, Song Y, Xing Y, He S, Boomi P. Gut microbiota contribution to selenium deficiency-induced gut-liver inflammation. Biofactors 2024; 50:311-325. [PMID: 37676478 DOI: 10.1002/biof.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023]
Abstract
There is limited knowledge about the factors that drive gut-liver axis changes after selenium (Se) deficiency-induced gut or liver injuries. Thus, we tested Se deficiency in mice to determine its effects on intestinal bacterial balance and whether it induced liver injury. Serum Se concentration, lipopolysaccharide (LPS) level, and liver injury biomarkers were tested using a biochemical method, while pathological changes in the liver and jejunum were observed via hematoxylin and eosin stain, and a fluorescence spectrophotometer was used to evaluate intestinal permeability. Tight junction (TJ)-related and toll-like receptor (TLR) signaling-related pathway genes and proteins were tested using quantitative polymerase chain reaction, western blotting, immunohistochemistry, and 16S ribosomal ribonucleic acid gene-targeted sequencing of jejunum microorganisms. Se deficiency significantly decreased glutathione peroxidase activity and disrupted the intestinal flora, with the most significant effect being a decrease in Lactobacillus reuteri. The expression of TJ-related genes and proteins decreased significantly with increased treatment time, whereas supplementation with Se, fecal microbiota transplantation, or L. reuteri reversed these decreases. Signs of liver injury and LPS content were significantly increased after intestinal flora imbalance or jejunum injury, and the levels of TLR signaling-related genes were significantly increased. The results indicated that Se deficiency disrupted the microbiota balance, decreased the expression of intestinal TJ factors, and increased intestinal permeability. By contrast, LPS increased due to a bacterial imbalance, which may induce inflammatory liver injury via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Guodong Wang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Zhihui Jiang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Yuwei Song
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Yueteng Xing
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - Simin He
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, China
| | - P Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
126
|
Thakur GK, Shankar H, Arora TK, Kulkarni B. Role of mineral nutrients other than iron in pregnancy: under recognized opportunities to improve maternal/fetal outcomes: a literature review. Arch Gynecol Obstet 2024; 309:895-905. [PMID: 37698602 DOI: 10.1007/s00404-023-07183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Anemia during pregnancy is an important global health concern, affecting 40% of women worldwide, and iron deficiency shares a significant proportion of the burden. From conception to birth, pregnancy is a period when women undergo metabolic and physiological changes. The nutritional needs are higher during pregnancy; thus, adequate nutrition is essential to maintain fetal growth and development. However, adverse effects due to deficiency in nutrition during pregnancy can result in maternal, fetal and neonatal complications. Despite the multifactorial etiology of anemia, iron deficiency is assumed as the primary cause of anemia during pregnancy and hence, mitigation strategy pivots around it for anemia management. Therefore, excluding other contributors, a single-micronutrient approach with iron supplements remains a myopic approach and this can exacerbate iron deficiency anemia. Micronutrient deficiencies are of particular concern as they may pose a silent threat to the survival and well-being of reproductive-age women and their infants. AIM Micronutrients, especially trace minerals, play a myriad of roles in pregnancy, and the lack of each one causes adverse complications to both the mother and the fetus. In this review paper, we attempt to piece together available information regarding the adverse effects of abnormal trace mineral levels along with iron deficiency on the mother and the fetus. METHOD A non-systematic literature search in PubMed, Google Scholar, and the Cochrane databases, for publications on minerals and vitamins during pregnancy and the possible influence of supplements on pregnancy outcomes. CONCLUSION Micronutrient deficiency exacerbates the pregnancy-induced anemia and other adverse birth outcomes. Micronutrient supplementation during pregnancy can combat anemia as well as reduce a number of adverse pregnancy outcomes in a comprehensive manner.
Collapse
Affiliation(s)
- Gaurav Kr Thakur
- RBMCH Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Hari Shankar
- Central Procurement Cell, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India.
| | - Taruna K Arora
- RBMCH Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India.
| | - Bharati Kulkarni
- RBMCH Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
127
|
Amirkhizi F, Taghizadeh M, Khalese-Ranjbar B, Hamedi-Shahraki S, Asghari S. Association of Serum Selenium and Selenoprotein P with Oxidative Stress Biomarkers in Patients with Polycystic Ovary Syndrome. Biol Trace Elem Res 2024; 202:947-954. [PMID: 37391553 DOI: 10.1007/s12011-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age which is characterized by various reproductive and metabolic disorders. Oxidative stress (OS) is now recognized to be involved in the pathogenesis of PCOS which could be targeted in the management of PCOS-related complications. Selenium (Se), as an antioxidant trace element, has been shown to decrease in PCOS patients. This study aimed to investigate the relationship between the Se and selenoprotein P (SELENOP) levels with OS markers in women with PCOS. In this cross-sectional study, 125 females aged 18-45 years diagnosed with PCOS were included. Demographic, clinical, and lifestyle information of participants were obtained using the relevant questionnaires. Fasting blood samples were collected to measure biochemical parameters. Serum levels of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase activities as well as anthropometric measurements were assessed across tertiles of serum concentrations of Se and SELENOP. Higher serum levels of Se were associated with higher serum TAC levels (β=0.42, P<0.001) and erythrocytes GPx activity (β=0.28, P=0.002) as well as with lower serum TBARS levels (β= -0.26, P=0.003). Similarly, higher serum levels of SELENOP were associated with higher TAC (β=0.32, P<0.001) and erythrocyte GPx activity (β=0.30, P=0.001). SELENOP also showed an inverse association with serum levels of TBARS (β= -0.40, P<0.001). Nevertheless, erythrocytes SOD and CAT activities showed no significant relationships with serum Se and SELENOP concentrations (all P>0.05). The present study found that serum Se and SELENOP levels were inversely associated with TBARS levels and positively associated with TAC levels and erythrocytes GPx activity.
Collapse
Affiliation(s)
- Farshad Amirkhizi
- Department of Nutrition, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdiyeh Taghizadeh
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Banafshe Khalese-Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Hamedi-Shahraki
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Somayyeh Asghari
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
128
|
Bozack AK, Rifas-Shiman SL, Baccarelli AA, Wright RO, Gold DR, Oken E, Hivert MF, Cardenas A. Associations of prenatal one-carbon metabolism nutrients and metals with epigenetic aging biomarkers at birth and in childhood in a US cohort. Aging (Albany NY) 2024; 16:3107-3136. [PMID: 38412256 PMCID: PMC10929819 DOI: 10.18632/aging.205602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Epigenetic gestational age acceleration (EGAA) at birth and epigenetic age acceleration (EAA) in childhood may be biomarkers of the intrauterine environment. We investigated the extent to which first-trimester folate, B12, 5 essential, and 7 non-essential metals in maternal circulation are associated with EGAA and EAA in early life. Bohlin EGAA and Horvath pan-tissue and skin and blood EAA were calculated using DNA methylation measured in cord blood (N=351) and mid-childhood blood (N=326; median age = 7.7 years) in the Project Viva pre-birth cohort. A one standard deviation increase in individual essential metals (copper, manganese, and zinc) was associated with 0.94-1.2 weeks lower Horvath EAA at birth, and patterns of exposures identified by exploratory factor analysis suggested that a common source of essential metals was associated with Horvath EAA. We also observed evidence nonlinear associations of zinc with Bohlin EGAA, magnesium and lead with Horvath EAA, and cesium with skin and blood EAA at birth. Overall, associations at birth did not persist in mid-childhood; however, arsenic was associated with greater EAA at birth and in childhood. Prenatal metals, including essential metals and arsenic, are associated with epigenetic aging in early life, which might be associated with future health.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY 10032, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health and Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
129
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. Antioxidant Metabolism Pathways in Vitamins, Polyphenols, and Selenium: Parallels and Divergences. Int J Mol Sci 2024; 25:2600. [PMID: 38473850 DOI: 10.3390/ijms25052600] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Free radicals (FRs) are unstable molecules that cause reactive stress (RS), an imbalance between reactive oxygen and nitrogen species in the body and its ability to neutralize them. These species are generated by both internal and external factors and can damage cellular lipids, proteins, and DNA. Antioxidants prevent or slow down the oxidation process by interrupting the transfer of electrons between substances and reactive agents. This is particularly important at the cellular level because oxidation reactions lead to the formation of FR and contribute to various diseases. As we age, RS accumulates and leads to organ dysfunction and age-related disorders. Polyphenols; vitamins A, C, and E; and selenoproteins possess antioxidant properties and may have a role in preventing and treating certain human diseases associated with RS. In this review, we explore the current evidence on the potential benefits of dietary supplementation and investigate the intricate connection between SIRT1, a crucial regulator of aging and longevity; the transcription factor NRF2; and polyphenols, vitamins, and selenium. Finally, we discuss the positive effects of antioxidant molecules, such as reducing RS, and their potential in slowing down several diseases.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
130
|
Abdelbaky SA, Zaky ZM, Yahia D, Kotob MH, Ali MA, Aufy M, Sayed AEDH. Impact of Chlorella vulgaris Bioremediation and Selenium on Genotoxicity, Nephrotoxicity and Oxidative/Antioxidant Imbalance Induced by Polystyrene Nanoplastics in African Catfish (Clarias gariepinus). FISHES 2024; 9:76. [DOI: 10.3390/fishes9020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Contamination of the environment with nano- and microplastic particles exerts a threatening impact on the aquatic ecosystems and sustainable catfish aquaculture. The presence of nanoplastics has been found to have a detrimental impact on both aquatic and terrestrial ecosystems. The present study examines the effect of polystyrene nanoplastics (PS NPs) on the DNA, erythrocytes, oxidative status and renal histology of catfish, in addition to the potential protective effects of Chlorella vulgaris bioremediation and selenium to hinder this effect. Six equal groups of fish were used as follows: Group 1 served as a control group and received water free from PS NPs; Group 2 was exposed to PS NPs at a concentration of 5 mg/L; Group 3 was exposed to PS NPs (5 mg/L) + selenium (1 mg/kg diet); Group 4 was exposed to PS NPs (5 mg/L) + C. vulgaris (25 g/kg diet); Group 5 was supplemented with C. vulgaris (25 g/kg diet); and Group 6 was supplemented with selenium (1 mg/kg diet). The exposure period was 30 days. The results indicated that PS NPs induced oxidative stress by significantly elevating malondialdehyde activities and slightly reducing antioxidant biomarkers, resulting in DNA damage, increased frequency of micronuclei, erythrocyte alterations, and numerous histopathological alterations in kidney tissue. Selenium and C. vulgaris significantly ameliorated the oxidative/antioxidant status, reducing DNA damage, micronucleus frequency, erythrocyte alterations, and improving the morphology of kidney tissue. Nevertheless, further research is needed for a profound understanding of the mechanism behind the toxicity of nano-microplatics in aquatic systems.
Collapse
Affiliation(s)
- Shimaa A. Abdelbaky
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Zakaria M. Zaky
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Mohamed H. Kotob
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Mohammed A. Ali
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
131
|
Himoto T, Masaki T. Current Trends on the Involvement of Zinc, Copper, and Selenium in the Process of Hepatocarcinogenesis. Nutrients 2024; 16:472. [PMID: 38398797 PMCID: PMC10892613 DOI: 10.3390/nu16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Numerous nutritional factors increase the risk of hepatocellular carcinoma (HCC) development. The dysregulation of zinc, copper, and selenium homeostasis is associated with the occurrence of HCC. The impairment of the homeostasis of these essential trace elements results in oxidative stress, DNA damage, cell cycle progression, and angiogenesis, finally leading to hepatocarcinogenesis. These essential trace elements can affect the microenvironment in HCC. The carrier proteins for zinc and copper and selenium-containing enzymes play important roles in the prevention or progression of HCC. These trace elements enhance or alleviate the chemosensitivity of anticancer agents in patients with HCC. The zinc, copper, or selenium may affect the homeostasis of other trace elements with each other. Novel types of cell death including ferropotosis and cupropotosis are also associated with hepatocarcinogenesis. Therapeutic strategies for HCC that target these carrier proteins for zinc and copper or selenium-containing enzymes have been developed in in vitro and in vivo studies. The use of zinc-, copper- or selenium-nanoparticles has been considered as novel therapeutic agents for HCC. These results indicate that zinc, copper, and selenium may become promising therapeutic targets in patients with HCC. The clinical application of these agents is an urgent unmet requirement. This review article highlights the correlation between the dysregulation of the homeostasis of these essential trace elements and the development of HCC and summarizes the current trends on the roles of these essential trace elements in the pathogenesis of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-cho, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho 761-0793, Kagawa, Japan
| |
Collapse
|
132
|
Huang Z, Meng S, Huang J, Zhou W, Song X, Hao P, Tang P, Cao Y, Zhang F, Li H, Tang Y, Sun B. Transcriptome Analysis Reveals the Mechanism of Exogenous Selenium in Alleviating Cadmium Stress in Purple Flowering Stalks ( Brassica campestris var. purpuraria). Int J Mol Sci 2024; 25:1800. [PMID: 38339079 PMCID: PMC10855379 DOI: 10.3390/ijms25031800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| |
Collapse
|
133
|
Schöttker B, Holleczek B, Hybsier S, Köhrle J, Schomburg L, Brenner H. Strong associations of serum selenoprotein P with all-cause mortality and mortality due to cancer, cardiovascular, respiratory and gastrointestinal diseases in older German adults. Eur J Epidemiol 2024; 39:121-136. [PMID: 38198038 PMCID: PMC10904445 DOI: 10.1007/s10654-023-01091-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Selenium is an essential trace mineral. The main function of selenoprotein P (SELENOP) is to transport selenium but it has also been ascribed anti-oxidative effects. METHODS To assess the association of repeated measurements of serum SELENOP concentration with all-cause and cause-specific mortality serum SELENOP was measured at baseline and 5-year follow-up in 7,186 and 4,164 participants of the ESTHER study, a German population-based cohort aged 50-74 years at baseline. RESULTS During 17.3 years of follow-up, 2,126 study participants (30%) died. The relationship of serum SELENOP concentration with all-cause mortality was L-shaped, with mortality being significantly higher at SELENOP concentrations < 4.1 mg/L, which is near the bottom tertile's cut-off (4.2 mg/L). All-cause mortality of participants in the bottom SELENOP tertile was significantly increased compared to subjects in the top tertile (hazard ratio [95% confidence interval]: 1.35 [1.21-1.50]). SELENOP in the bottom tertile was further associated with increased cardiovascular mortality (1.24 [1.04-1.49]), cancer mortality (1.31 [1.09-1.58]), respiratory disease mortality (2.06 [1.28-3.32]) and gastrointestinal disease mortality (2.04 [1.25-3.32]). The excess risk of all-cause mortality for those in the bottom SELENOP tertile was more than twice as strong in men as in women (interaction of SELENOP and sex; p = 0.008). CONCLUSIONS In this large cohort study, serum SELENOP concentration was inversely associated with all-cause and cause-specific mortality. Consistent inverse associations with multiple mortality outcomes might be explained by an impaired selenium transport and selenium deficiency in multiple organs. Trials testing the efficacy of selenium supplements in subjects with low baseline SELENOP concentration are needed. TRIAL REGISTRATION Retrospectively registered in the German Clinical Trials Register on Feb 14, 2018 (ID: DRKS00014028).
Collapse
Affiliation(s)
- Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| | - Bernd Holleczek
- Saarland Cancer Registry, Neugeländstraße 9, 66117, Saarbrücken, Germany
| | - Sandra Hybsier
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115, Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115, Berlin, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
134
|
Yang H, Mo A, Yi L, Wang J, He X, Yuan Y. Selenium attenuated food borne cadmium-induced intestinal inflammation in red swamp crayfish (Procambarus clarkii) via regulating PI3K/Akt/NF-κB pathway. CHEMOSPHERE 2024; 349:140814. [PMID: 38040256 DOI: 10.1016/j.chemosphere.2023.140814] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Selenium (Se), an indispensable micronutrient for living organisms, has been extensively studied for its heavy metal-detoxifying properties in diverse biological systems and tissues. Nevertheless, it is not entirely certain whether Se can effectively protect against Cadmium (Cd)-induced gut inflammation, especially in aquatic animals. In this study, we employed various approaches, including transcriptome profiling, histological examinations, assessment of antioxidant enzyme activities, and analysis of gut microbiota composition to investigate the effects on crayfish growth and intestinal health after exposure to dietary Cd (15 mg kg-1 diet) and Se (15 mg kg-1 diet) individually or in combination for 8 weeks. The results revealed that dietary Cd exposure resulted in reduced body weight and survival rates, along with an increased occurrence of intestinal inflammation. Nevertheless, Se supplementation proved effective in mitigating the adverse effects of Cd on growth and gut health. Se exhibited a remarkable ability to counteract the disruption of gut antioxidant abilities induced by dietary Cd, as evidenced by the observed increases in ROS and MDA contents, decrease in GSH levels, and inhibition of antioxidative enzyme activities. At the concentration of 6 mg kg-1 in the diet, Se was found beneficial for maintaining gut microbiota richness and diversity. Among them, Flavobacterium, Thermomonas, and Chloronema displayed a weak negative correlation with the rate of gut inflammation. Meanwhile, the levels of short chain fatty acids (SCFAs), including acetic acid (AA) and butanoic acid (BA), showed a significant increase in the Se-Cd group compared to the Cd-only group. Furthermore, transcriptome analysis exhibited significant responses of the PI3K/Akt and NF-κB pathways following crayfish exposure to dietary Se and Cd, either separately or in combination. In short, this study provides a new evidence regarding the molecular mechanisms through which Se could regulate the PI3K/Akt and NF-κB pathways, either directly or indirectly via ROS and SCFAs, thereby alleviating Cd-induced gut inflammation in crayfish.
Collapse
Affiliation(s)
- Huijun Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Aijie Mo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Linyuan Yi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jianghua Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang He
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan, 430070, China; National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
135
|
Castel T, Léon K, Gandubert C, Gueguen B, Amérand A, Guernec A, Théron M, Pichavant-Rafini K. Comparison of Sodium Selenite and Selenium-Enriched Spirulina Supplementation Effects After Selenium Deficiency on Growth, Tissue Selenium Concentrations, Antioxidant Activities, and Selenoprotein Expression in Rats. Biol Trace Elem Res 2024; 202:685-700. [PMID: 37202582 DOI: 10.1007/s12011-023-03705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Selenium contributes to physiological functions through its incorporation into selenoproteins. It is involved in oxidative stress defense. A selenium deficiency results in the onset or aggravation of pathologies. Following a deficiency, the repletion of selenium leads to a selenoprotein expression hierarchy misunderstood. Moreover, spirulina, a microalga, exhibits antioxidant properties and can be enriched in selenium.. Our objective was to determine the effects of a sodium selenite or selenium-enriched spirulina supplementation. Thirty-two female Wistar rats were fed for 12 weeks with a selenium-deficient diet. After 8 weeks, rats were divided into 4 groups and were fed with water, sodium selenite (20 μg Se/kg body weight), spirulina (3 g/kg bw), or selenium-enriched spirulina (20 μg Se/kg bw + 3 g spirulina/kg bw). Another group of 8 rats was fed with normal diet during 12 weeks. Selenium concentration and antioxidant enzyme activities were measured in plasma, urine, liver, brain, kidney, heart, and soleus. Expression of GPx (1, 3), Sel (P, S, T, W), SEPHS2, TrxR1, ApoER2, and megalin were quantified in liver, kidney, brain, and heart. We showed that a selenium deficiency leads to a growth delay, reversed by selenium supplementation despite a minor loss of weight in week 12 for SS rats. All tissues displayed a decrease in selenium concentration following deficiency. The brain seemed protected. We demonstrated a hierarchy in selenium distribution and selenoprotein expression. A supplementation of sodium selenite improved GPx activities and selenoprotein expression while a selenium-enriched spirulina was more effective to restore selenium concentration especially in the liver, kidney, and soleus.
Collapse
Affiliation(s)
- T Castel
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France.
| | - K Léon
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - C Gandubert
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - B Gueguen
- CNRS, Univ Brest, UMS 3113, F-29280, Plouzané, France
- CNRS, Univ Brest, UMR 6538 Laboratoire Géosciences Océan, F-29280, Plouzané, France
| | - A Amérand
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - A Guernec
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - M Théron
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| | - K Pichavant-Rafini
- Université de Brest, EA 4324 ORPHY, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, F-29200, Brest, France
| |
Collapse
|
136
|
Hu T, Shi Z, Sun Y, Hu F, Rong Y, Wang J, Wang L, Xu W, Zhang F, Zhang WZ. SEPHS1 attenuates intervertebral disc degeneration by delaying nucleus pulposus cell senescence through the Hippo-Yap/Taz pathway. Am J Physiol Cell Physiol 2024; 326:C386-C399. [PMID: 38105759 DOI: 10.1152/ajpcell.00571.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Nucleus pulposus cell (NPC) senescence is a major cause of intervertebral disc degeneration (IVDD). Oxidative stress and reactive oxygen species (ROS) play critical roles in regulating cell senescence. Selenophosphate synthetase 1 (SEPHS1) was reported to play an important role in mitigating oxidative stress in an osteoarthritis (OA) model by reducing the production of ROS, thereby, delaying the occurrence and development of osteoarthritis. In this study, we explored the, hitherto unknown, role of SEPHS1 in IVDD in vitro and in vivo using an interleukin-1β (IL-1β)-induced NPC senescence model and a rat needle puncture IVDD model, respectively. SEPHS1 delayed NPC senescence in vitro by reducing ROS production. Age-related dysfunction was also ameliorated by the overexpression of SEPHS1 and inhibition of the Hippo-Yap/Taz signaling pathway. In vivo experiments revealed that the overexpression of SEPHS1 and inhibition of Hippo-Yap/Taz alleviated IVDD in rats. Moreover, a selenium (Se)-deficient diet and lack of SEPHS1 synergistically aggravated IVDD progression. Taken together, our results demonstrate that SEPHS1 plays a significant role in NPC senescence. Overexpression of SEPHS1 and inhibition of Hippo-Yap/Taz can delay NPC senescence, restore the balance of extracellular matrix metabolism, and attenuate IVDD. SEPHS1 could be a promising therapeutic target for IVDD.NEW & NOTEWORTHY Selenophosphate synthetase 1 (SEPHS1) deficiency leads to an increase in reactive oxygen species levels and in the subsequent activation of the Hippo-Yap/Taz signaling pathway. In the rat model of intervertebral disc degeneration (IVDD), overexpression of SEPHS1 and inhibition of Hippo-YAP/Taz mitigated the progression of disc degeneration indicating the involvement of SEPHS1 in IVDD. SEPHS1 is a promising therapeutic target for IVDD.
Collapse
Affiliation(s)
- Tao Hu
- Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, People's Republic of China
- Division of Life Sciences and Medicine, Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhongming Shi
- Division of Life Sciences and Medicine, Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yongjin Sun
- Division of Life Sciences and Medicine, Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, People's Republic of China
| | - Feng Hu
- Department of Orthopedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yuluo Rong
- Division of Life Sciences and Medicine, Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jia Wang
- Division of Life Sciences and Medicine, Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, People's Republic of China
| | - Liang Wang
- Division of Life Sciences and Medicine, Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wenbin Xu
- Division of Life Sciences and Medicine, Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, People's Republic of China
| | - Feng Zhang
- Division of Life Sciences and Medicine, Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wen-Zhi Zhang
- Department of Orthopedics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
137
|
Wang Q, Huang S, Huang Q, Yu Y, Li H, Wan Y. Absorption and Biotransformation of Selenomethionine and Selenomethionine-Oxide by Wheat Seedlings ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:380. [PMID: 38337913 PMCID: PMC10857051 DOI: 10.3390/plants13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
An in-depth understanding of Se uptake and metabolism in plants is necessary for developing Se biofortification strategies. Thus, hydroponic experiments were conducted to investigate the associated processes and mechanisms of organic Se (selenomethionine (SeMet) and selenomethionine-oxide (SeOMet)) uptake, translocation, transformation and their interaction in wheat, in comparison to inorganic Se. The results showed that Se uptake by the roots and the root-to-shoot translocation factor under the SeMet treatment were higher than those under the selenite, selenate and SeOMet treatments. The uptake and translocation of SeMet were higher than those of SeOMet within 72 h, although the differences gradually narrowed with time. The uptake of SeMet and SeOMet was also sensitive to the aquaporin inhibitor: AgNO3 addition resulted in 99.5% and 99.9% inhibitions of Se in the root in the SeMet and SeOMet treatments, respectively. Once absorbed by the root, they rapidly assimilated to other Se forms, and SeMet and Se-methyl-selenocysteine (MeSeCys) were the dominant species in SeMet- and SeOMet-treated plants, while notably, an unidentified Se form was also found in the root and xylem sap under the SeMet treatment. In addition, within 16 h, SeOMet inhibited the uptake and translocation of SeMet, while the inhibition was weakened with longer treatment time. Taken together, the present study provides new insights for the uptake and transformation processes of organic Se within plants.
Collapse
Affiliation(s)
- Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Siyu Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Qingqing Huang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China;
| | - Yao Yu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Q.W.); (S.H.); (H.L.)
| |
Collapse
|
138
|
Yazdanpanah MH, Sharafkhah M, Poustchi H, Etemadi A, Sheikh M, Kamangar F, Pourshams A, Boffetta P, Dawsey SM, Abnet CC, Malekzadeh R, Hashemian M. Mineral Intake and Cardiovascular Disease, Cancer, and All-Cause Mortality: Findings from the Golestan Cohort Study. Nutrients 2024; 16:344. [PMID: 38337629 PMCID: PMC10857363 DOI: 10.3390/nu16030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Associations between mineral intake and mortality in non-Western countries have not been studied adequately. This study evaluated these associations in the Golestan Cohort Study, featuring a Middle Eastern population. The mineral intake was estimated from the baseline food frequency questionnaire, adjusted by using the nutrient density method, and divided into quintiles. We used Cox proportional hazards models to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the mortality. We analyzed 41,863 subjects with a mean age of 51.46 ± 8.73 years at the baseline. During 578,694 person-years of follow-up (median: 14.1 Years), 7217 deaths were recorded. Dietary calcium intake was inversely associated with the all-cause mortality (HRQ5 vs. Q1 = 0.91, 95%CI = 0.85-0.99). We observed significant associations between calcium (HRQ5 vs. Q1 = 0.82, 95% CI = 0.73-0.93), copper (HRQ5 vs. Q1 = 1.11, 95% CI = 0.99-1.26), and selenium intake (HRQ5 vs. Q1 = 1.14, 95% CI = 1.01-1.29) and CVD mortality. Dietary phosphorus (HRQ5 vs. Q1 = 0.81, 95%CI = 0.69-0.96) and copper intake (HRQ5 vs. Q1 = 0.84, 95%CI = 0.71-0.99) were inversely associated with cancer mortality. In this study within a Middle Eastern population, a higher dietary intake of calcium exhibited an inverse association with all-cause mortality. Furthermore, nuanced associations were observed in the cause-specific mortality, suggesting potential avenues for dietary interventions and emphasizing the importance of considering dietary factors in public health strategies.
Collapse
Affiliation(s)
- Mohammad Hosein Yazdanpanah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1461884513, Iran; (M.H.Y.); (M.S.); (H.P.); (A.P.)
| | - Maryam Sharafkhah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1461884513, Iran; (M.H.Y.); (M.S.); (H.P.); (A.P.)
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1461884513, Iran; (M.H.Y.); (M.S.); (H.P.); (A.P.)
| | - Arash Etemadi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.E.); (S.M.D.); (C.C.A.)
| | - Mahdi Sheikh
- Genomic Epidemiology Branch, International Agency for Research on Cancer, 69366 Lyon, France;
| | - Farin Kamangar
- Department of Biology, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA;
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1461884513, Iran; (M.H.Y.); (M.S.); (H.P.); (A.P.)
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA;
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sanford M. Dawsey
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.E.); (S.M.D.); (C.C.A.)
| | - Christian C. Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (A.E.); (S.M.D.); (C.C.A.)
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | - Maryam Hashemian
- Epidemiology and Community Health Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
139
|
Jia C, Xiang Z, Zhang P, Liu L, Zhu X, Yu R, Liu Z, Wang S, Liu K, Wang Z, Vasilev K, Zhou S, Geng Z, Liu X, Zhao Y, Gao Y, Cheng L, Li Y. Selenium-SelK-GPX4 axis protects nucleus pulposus cells against mechanical overloading-induced ferroptosis and attenuates senescence of intervertebral disc. Cell Mol Life Sci 2024; 81:49. [PMID: 38252317 PMCID: PMC10803455 DOI: 10.1007/s00018-023-05067-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Intervertebral disc degeneration (IVDD) is one of the most prevalent spinal degenerative disorders and imposes places heavy medical and economic burdens on individuals and society. Mechanical overloading applied to the intervertebral disc (IVD) has been widely recognized as an important cause of IVDD. Mechanical overloading-induced chondrocyte ferroptosis was reported, but the potential association between ferroptosis and mechanical overloading remains to be illustrated in nucleus pulposus (NP) cells. In this study, we discovered that excessive mechanical loading induced ferroptosis and endoplasmic reticulum (ER) stress, which were detected by mitochondria and associated markers, by increasing the intracellular free Ca2+ level through the Piezo1 ion channel localized on the plasma membrane and ER membrane in NP cells. Besides, we proposed that intracellular free Ca2+ level elevation and the activation of ER stress are positive feedback processes that promote each other, consistent with the results that the level of ER stress in coccygeal discs of aged Piezo1-CKO mice were significantly lower than that of aged WT mice. Then, we confirmed that selenium supplementation decreased intracellular free Ca2+ level by mitigating ER stress through upregulating Selenoprotein K (SelK) expression. Besides, ferroptosis caused by the impaired production and function of Glutathione peroxidase 4 (GPX4) due to mechanical overloading-induced calcium overload could be improved by selenium supplementation through Se-GPX4 axis and Se-SelK axis in vivo and in vitro, eventually presenting the stabilization of the extracellular matrix (ECM). Our findings reveal the important role of ferroptosis in mechanical overloading-induced IVDD, and selenium supplementation promotes significance to attenuate ferroptosis and thus alleviates IVDD, which might provide insights into potential therapeutic interventions for IVDD.
Collapse
Affiliation(s)
- Chunwang Jia
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ziqian Xiang
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Pengfei Zhang
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Long Liu
- Department of Pathology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xuetao Zhu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Ruixuan Yu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zhicheng Liu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shaoyi Wang
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Kaiwen Liu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Zihao Wang
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, SA, 5095, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ziwen Geng
- Qilu Institute of Technology, Jinan, 250200, Shandong, People's Republic of China
| | - Xinyu Liu
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yunpeng Zhao
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Yuan Gao
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Lei Cheng
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Yuhua Li
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
140
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
141
|
Li H, Dong J, Cui L, Liu K, Guo L, Li J, Wang H. The effect and mechanism of selenium supplementation on the proliferation capacity of bovine endometrial epithelial cells exposed to lipopolysaccharide in vitro under high cortisol background. J Anim Sci 2024; 102:skae021. [PMID: 38289713 PMCID: PMC10889726 DOI: 10.1093/jas/skae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3β (GSK-3β) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of β-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
142
|
Pan R, Zhao J, Yao J, Gao Y, Liao L. Selenomethionine Suppress the Progression of Poorly Differentiated Thyroid Cancer via LncRNA NONMMUT014201/miR-6963-5p/Srprb Pathway. Comb Chem High Throughput Screen 2024; 27:2419-2432. [PMID: 38173060 DOI: 10.2174/0113862073286006231228070738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Poorly differentiated thyroid cancer (PDTC) is a special type of thyroid cancer that threatens the life of the patients. Unfortunately, there are no effective treatments for PDTC right now, so it is urgent to search for new efficacious drugs. This experiment was designed to elucidate the effects of selenomethionine (SeMet) on PDTC in vitro and vivo. METHODS A xenograft animal model was used to assay the volume and weight of PDTC. LncRNA NOMMMUT014201 expression was detected by fluorescence in situ hybridization and Real-time quantitative PCR (qRT-PCR). In vitro experiments were carried on in WRO cells. The Cell Counting Kit-8 assay was performed to test the effect of SeMet on the proliferation of cells. And the migration and invasion of WRO cells by the wound-healing assay, Transwell migration and invasion assays. The cell apoptosis was measured by flow cytometry. In addition, genes related to proliferation, migration, invasion and apoptosis were detected through qRT-PCR and Western Blot. RESULTS SeMet inhibited the proliferation, migration and invasion and promoted the apoptosis of WRO cells in a dose-dependent manner. Then vivo, SeMet significantly suppressed the volume and weight of PDTC. And SeMet downregulated the expressions of Ki67, PCNA, MMP2, MMP9 and BCL2, but upregulated that of BAX and Cleaved-Caspase 3. Moreover, SeMet upregulated the level of LncRNA NOMMMUT014201 both vivo and in vitro. In addition, repression of LncRNA NOMMMUT014201 removed the inhibition effect of SeMet on WRO cell growth significantly (p<0.05). Further investigation showed that LncRNA NOMMMUT014201 downregulated the expression of miR-6963-5p in PDTC cells, but miR-6963-5p inhibited the level of Srprb. In addition, sh-LncRNA NOMMMUT014201 enhanced the proliferation, migration and invasion but inhibited the apoptosis of WRO cells. However, inhibited miR-6963-5p or overexpressed Srprb relieved the effects of sh-LncRNA NOMMMUT014201on WRO cells. CONCLUSION Collectively, SeMet inhibits the growth of PDTC in a dose-dependent manner through LncRNA NONMMUT014201/miR-6963-5p/Srprb signal pathway, thus suggesting that SeMet might be a potential drug for PDTC treatment.
Collapse
Affiliation(s)
- Rongfang Pan
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Ji-nan 250014, China
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, Shandong, China
| | - Jinming Yao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, Shandong, China
| | - Yanyan Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Lin Liao
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Ji-nan 250014, China
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, 250014, Shandong, China
| |
Collapse
|
143
|
Hasani M, Monfared V, Aleebrahim-Dehkordi E, Jafari A, Agh F, Khazdouz M, Vahid F, Vafa M. The Effect of Selenium, Zinc, and their Combined Supplementation on Cardiometabolic Biomarkers-comparing their Effects in the Energy Restriction and High-fat Diet Methods in Obese Rats. Curr Mol Med 2024; 24:1307-1315. [PMID: 38258780 DOI: 10.2174/0115665240268180231113045836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 01/24/2024]
Abstract
INTRODUCTION The fat distribution in the body determines the risk of cardiometabolic problems such as heart disease and diabetes. Some dietary supplements, such as selenium and zinc, possess lipolytic and anti-angiogenic functions, which may be a useful strategy in reducing the risk of cardiometabolic complications. This study evaluated the effect of zinc (Zn), selenium (Se), and their combined supplementation on cardiometabolic risk factors in male Wistar rats in two nutritional models, including caloric restriction (CR) and high-fat diet (HFD). METHODS AND MATERIALS The 48 male Wistar rats were divided into three diet groups (HFD and CR and normal diet (ND)). The HFD group was subdivided into four groups (N=8 rats in each group) that received (HFD+Se), (HFD+Zn), (HFD+Zn+Se), and HFD alone as the control group, respectively. After 8 weeks of intervention, biochemical tests were performed on serum levels, including measurement of lipid profile (triglyceride, Cholesterol, LDL and HDL) and glycemic indices (fasting blood sugar, insulin and insulin sensitivity markers). RESULTS The results showed that supplementation significantly improved the lipid profile (P <0.001). A comparison of glucose homeostasis indices in the study groups also showed a significant difference. The serum level of glucose was higher in the HFD group than in the intervention groups (P <0.001). Also, the rate of improvement of lipid profile and glycemic indexes in the group receiving the combination of two supplements showed a better trend than those receiving zinc and selenium alone. However, the values were statistically significant only for glucose homeostasis indices (P <0.001). CONCLUSION Although obesity is a multifactorial condition, controlling other risk factors, zinc and selenium and their combined supplementation can lead to promising solutions for the treatment of obesity-induced glucose and lipid homeostasis disorders.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Monfared
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Aleebrahim-Dehkordi
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Jafari
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fahimeh Agh
- Saveh University of Medical Sciences, Saveh, Iran
| | - Maryam Khazdouz
- Growth and Development Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Luxembourg
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
144
|
Cengiz Mat O, Alisan Suna P, Baran M, Ceyhan A, Yay A. Studies on the ameliorative potential of dietary supplemented different dose of selenium on doxorubicin-induced ovarian damage in rat. J Biochem Mol Toxicol 2024; 38:e23522. [PMID: 37650874 DOI: 10.1002/jbt.23522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/23/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Doxorubicin (Dox) may induce loss of follicles, resulting in the depletion of ovarian reserve and consequent premature ovarian failure. Selenium (Se) is an oligoelement with fundamental biological features and is among the most common chemical inhibitor compounds. The present study describes the curative effects of dietary supplementation with different Se doses on Dox-induced ovarian damage in rats. In this study, 64 adult female Wistar rats were randomly separated into eight groups: Control group, Dox group (5 mg/kg intraperitoneal [i.p.]), low-dose Se (0.5 mg/kg i.p.), middle dose Se (1 mg/kg i.p.), high dose (Se 2 mg/kg i.p.), Dox + low-dose Se group (0.5 mg/kg i.p.), Dox + middle dose Se (1 mg/kg i.p.), and Dox + high-dose Se group (2 mg/kg i.p.). After the experiment, ovarian follicles were counted, and Antimüllerian hormone, interleukin 1 beta, tumor necrosis factor alpha, and caspase-3 expression were determined. Levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase were biochemically measured in ovarian tissue. Dox caused ovarian injury, as evidenced by significant changes in ovarian markers, histological abnormalities, and the debilitation of antioxidant defense mechanisms. Furthermore, Dox therapy significantly changed the expression of inflammatory and apoptotic markers. Dox + 1 mg Se with various saturations was studied, and this study demonstrated both histopathological and follicular reserve and more protective features. 1 mg Se pretreatment improved Dox-induced ovarian toxicity through alleviating the antioxidant mechanism, decreasing inflammation and apoptosis, and restoring ovarian architecture. As a result, our findings indicate that 1 mg Se is a promising therapeutic agent for the prevention of ovarian damage associated with Dox.
Collapse
Affiliation(s)
- Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Pinar Alisan Suna
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Munevver Baran
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayse Ceyhan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Tokat Gaziosmanpaşa University Vocational School of Health Services, Tokat, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
145
|
Liu M, Yang Y, Huang JW, Dai L, Zheng Y, Cheng S, He H, Chen CC, Guo RT. Structural insights into a novel nonheme iron-dependent oxygenase in selenoneine biosynthesis. Int J Biol Macromol 2024; 256:128428. [PMID: 38013086 DOI: 10.1016/j.ijbiomac.2023.128428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Selenoneine (SEN) is a natural histidine derivative with radical-scavenging activity and shows higher antioxidant potential than its sulfur-containing isolog ergothioneine (EGT). Recently, the SEN biosynthetic pathway in Variovorax paradoxus was reported. Resembling EGT biosynthesis, the committed step of SEN synthesis is catalyzed by a nonheme Fe-dependent oxygenase termed SenA. This enzyme catalyzes oxidative carbon‑selenium (C-Se) bond formation to conjugate N-α-trimethyl histidine (TMH) and selenosugar to yield selenoxide; the process parallels the EGT biosynthetic route, in which sulfoxide synthases known as EgtB members catalyze the conjugation of TMH and cysteine or γ-glutamylcysteine to afford sulfoxides. Here, we report the crystal structures of SenA and its complex with TMH and thioglucose (SGlc), an analog of selenoglucose (SeGlc) at high resolution. The overall structure of SenA adopts the archetypical fold of EgtB, which comprises a DinB-like domain and an FGE-like domain. While the TMH-binding site is highly conserved to that of EgtB, a various substrate-enzyme interaction network in the selenosugar-binding site of SenA features a number of water-mediated hydrogen bonds. The obtained structural information is beneficial for understanding the mechanism of SenA-mediated C-Se bond formation.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yingyu Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shujing Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hailin He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China; Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
146
|
Algieri C, Oppedisano F, Trombetti F, Fabbri M, Palma E, Nesci S. Selenite ameliorates the ATP hydrolysis of mitochondrial F 1F O-ATPase by changing the redox state of thiol groups and impairs the ADP phosphorylation. Free Radic Biol Med 2024; 210:333-343. [PMID: 38056573 DOI: 10.1016/j.freeradbiomed.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Selenite as an inorganic form of selenium can affect the redox state of mitochondria by modifying the thiol groups of cysteines. The F1FO-ATPase has been identified as a mitochondrial target of this compound. Indeed, the bifunctional mechanism of ATP turnover of F1FO-ATPase was differently modified by selenite. The activity of ATP hydrolysis was stimulated, whereas the ADP phosphorylation was inhibited. We ascertain that a possible new protein adduct identified as seleno-dithiol (-S-Se-S-) mercaptoethanol-sensitive caused the activation of F-ATPase activity and the oxidation of free -SH groups in mitochondria. Conversely, the inhibition of ATP synthesis by selenite might be irreversible. The kinetic analysis of the activation mechanism was an uncompetitive mixed type with respect to the ATP substrate. Selenite bound more selectively to the F1FO-ATPase loaded with the substrate by preferentially forming a tertiary (enzyme-ATP-selenite) complex. Otherwise, the selenite was a competitive mixed-type activator with respect to the Mg2+ cofactor. Thus, selenite more specifically bound to the free enzyme forming the complex enzyme-selenite. However, even if the selenite impaired the catalysis of F1FO-ATPase, the mitochondrial permeability transition pore phenomenon was unaffected. Therefore, the reversible energy transduction mechanism of F1FO-ATPase can be oppositely regulated by selenite.
Collapse
Affiliation(s)
- Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Micaela Fabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064, Ozzano Emilia, Italy.
| |
Collapse
|
147
|
Zhang Y, Wang L, He J, Wang H, Xin W, Wang H, Zhang J. Antioxidation and Hepatoprotection of Selenium Mycelium Polysaccharides Against Alcoholic Liver Diseases from the Cultivated Morel Mushroom Morchella esculenta (Ascomycota). Int J Med Mushrooms 2024; 26:55-66. [PMID: 38305262 DOI: 10.1615/intjmedmushrooms.2023051288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The liver was regarded as the most important metabolic and detoxification organ in vivo, and Morchella esculenta had been reported as the admittedly rare edible fungus belonging to Ascomycetes contributing to the abundant bioactivities. The objective of this study aimed to confirm the potential antioxidant activities of selenium mycelium polysaccharides (Se-MIP) from M. esculenta against alcoholic liver diseases (ALD) in mice. The results indicated that a selenium concentration of 25 μg/mL exhibited potential in vitro antioxidant capacities of Se-MIP. The in vivo mice results demonstrated that Se-MIP showed potential anti-ALD effects by improving the antioxidant activities and alleviating the hepatic dysfunctions. The present conclusions suggested that Se-MIP could be used as a candidate on improving ALD and its complications for further clinical investigations.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Li Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Jiaqi He
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Haoze Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Wenqi Xin
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China
| | - Houpeng Wang
- Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| | - Jianjun Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R. China; Shandong Ocean Agricultural Development Co. Ltd., Jining 272600, P.R. China
| |
Collapse
|
148
|
Welham S, Rose P, Kirk C, Coneyworth L, Avery A. Mineral Supplements in Ageing. Subcell Biochem 2024; 107:269-306. [PMID: 39693029 DOI: 10.1007/978-3-031-66768-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With advancing age, achievement of dietary adequacy for all nutrients is increasingly difficult and this is particularly so for minerals. Various factors impede mineral acquisition and absorption including reduced appetite, depressed gastric acid production and dysregulation across a range of signalling pathways in the intestinal mucosa. Minerals are required in sufficient levels since they are critical for the proper functioning of metabolic processes in cells and tissues, including energy metabolism, DNA and protein synthesis, immune function, mobility, and skeletal integrity. When uptake is diminished or loss exceeds absorption, alternative approaches are required to enable individuals to maintain adequate mineral levels. Currently, supplementation has been used effectively in populations for the restoration of levels of some minerals like iron, zinc, and calcium, but these may not be without inherent challenges. Therefore, in this chapter we review the current understanding around the effectiveness of mineral supplementation for the minerals most clinically relevant for the elderly.
Collapse
Affiliation(s)
- Simon Welham
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK.
| | - Peter Rose
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Charlotte Kirk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Lisa Coneyworth
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Amanda Avery
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
149
|
O’Doherty J, Dowley A, Conway E, Sweeney T. Nutritional Strategies to Mitigate Post-Weaning Challenges in Pigs: A Focus on Glucans, Vitamin D, and Selenium. Animals (Basel) 2023; 14:13. [PMID: 38200743 PMCID: PMC10778565 DOI: 10.3390/ani14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This review examines the challenges faced by the pig industry, with a specific focus on improving the health and growth of weaned pigs. It emphasizes the immediate necessity of investigating alternative approaches to managing pig nutrition and health due to restrictions on the use of antibiotics and the prohibition of zinc oxide in weaned pig diets. The weaning phase is identified as a critical stage in piglet development, characterized by stressors that affect their gastrointestinal health, immune responses, and overall physiology. The primary challenge during weaning arises from transitioning piglets from a digestible milk-based diet to a less digestible cereal-based feed, causing nutritional stress. This manifests as reduced feed intake, leading to gastrointestinal disturbances, intestinal inflammation, and adverse effects on intestinal structure and microbiota. To address these challenges and optimize piglet development, various nutritional strategies have been explored. Notably, glucans, particularly β-glucans from fungi, cereals, algae, and yeast, show promise in alleviating weaning-related issues. Furthermore, it is important to highlight the critical roles played by Vitamin D and selenium in piglet nutrition. These essential nutrients can be sourced naturally from enriched mushrooms that are specifically enriched with Vitamin D and selenium, providing a sustainable dietary option. In conclusion, effective nutritional strategies, including glucans, Vitamin D, selenium, and enriched mushrooms, are beneficial for addressing weaning-related challenges.
Collapse
Affiliation(s)
- John O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland; (A.D.); (E.C.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
150
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|