101
|
Barella L, Muller PY, Schlachter M, Hunziker W, Stöcklin E, Spitzer V, Meier N, de Pascual-Teresa S, Minihane AM, Rimbach G. Identification of hepatic molecular mechanisms of action of alpha-tocopherol using global gene expression profile analysis in rats. Biochim Biophys Acta Mol Basis Dis 2004; 1689:66-74. [PMID: 15158915 DOI: 10.1016/j.bbadis.2004.02.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 01/20/2004] [Accepted: 02/04/2004] [Indexed: 12/31/2022]
Abstract
The recent discovery that vitamin E (VE) regulates gene activity at the transcriptional level indicates that VE may exert part of its biological effects by mechanisms which may be independent of its well-recognised antioxidant function. The objective of this study was the identification of hepatic vitamin E-sensitive genes and examination of the effects of VE on their corresponding biological endpoints. Two groups of male rats were randomly assigned to either a VE-sufficient diet or to a control diet deficient in VE for 290 days. High-density oligonucleotide microarrays comprising over 7000 genes were used to assess the transcriptional response of the liver. Differential gene expression was monitored over a period of 9 months, at four different time-points, and rats were individually profiled. This experimental strategy identified several VE-sensitive genes, which were chronically altered by dietary VE. VE supplementation down-regulated scavenger receptor CD36, coagulation factor IX and 5-alpha-steroid reductase type 1 mRNA levels while hepatic gamma glutamyl-cysteinyl synthetase was significantly up-regulated. Measurement of the corresponding biological endpoints such as activated partial thromboplastin time, plasma dihydrotestosterone and hepatic glutathione substantiated the gene chip data which indicated that dietary VE plays an important role in a range of metabolic processes within the liver.
Collapse
Affiliation(s)
- Luca Barella
- DSM Nutritional Products (registered as Roche Vitamins Ltd), Human Nutrition and Health, P O Box 3255, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Hughes RI, Aitman TJ. Genetics of the metabolic syndrome and implications for therapy. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2003.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
103
|
Jin S, Mathis AS, Gioia K, Minko T, Friedman GS, Rosenblatt J, Peng F, Serur DS, Knipp GT. EFFECT OF TACROLIMUS ON THE EXPRESSION OF MACROPHAGE SCAVENGER AND NUCLEAR HORMONE RECEPTORS IN THP-1–DERIVED HUMAN MACROPHAGES. Transplantation 2004; 77:1281-7. [PMID: 15114099 DOI: 10.1097/01.tp.0000120950.16995.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Data indicate that tacrolimus and cyclosporine A (CsA) differentially affect the risk of atherosclerosis. The results of our recent in vitro studies of clinically relevant CsA concentrations demonstrated the modulation of macrophage scavenger receptors (MSRs) involved in atherogenesis. This work evaluated the effects of clinically relevant tacrolimus concentrations on the expression of the MSR genes CD36 and CD68, SR-A and SR-BII, lectin-like oxidized low-density lipoprotein receptor-1, the nuclear hormone receptors peroxisome proliferator-activated receptor (PPAR)gamma and liver-X-receptor-alpha, and the cholesterol efflux pump ABCA1 in the in vitro human THP-1 macrophage model. METHODS The cells were cultured and differentiated into macrophages. Macrophages were treated with the tacrolimus to assess gene expression in a time-dependent (1, 2, 4, 8, and 24 hr) and dose-dependent (concentrations [micrograms/liter] corresponding to the trough [15], peak [30], and 4 x peak [120]) manner using reverse-transcriptase polymerase chain reactions. The gene expression levels of interest were normalized to GAPDH expression in each sample to provide semiquantitative reverse-transcriptase polymerase chain reaction results. Additional immunoblotting studies demonstrated protein expression of CD36, PPARgamma, and ABCA1. RESULTS.: The gene expression of CD36, SR-BII, and lectin-like oxidized low-density lipoprotein receptor-1 were down-regulated, and ABCA1 was up-regulated. CD68, SR-AI, liver-X-receptor-alpha, and PPARgamma were regulated in a dose-dependent manner. Protein expression of CD36 was down-regulated, and PPARgamma and ABCA1 were relatively unchanged. CONCLUSIONS Tacrolimus seems to regulate MSRs, nuclear hormone receptors, and ABCA1 in THP-1 macrophages. These results differ from previous findings with CsA and may provide insight into the mechanisms of posttransplant atherosclerosis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP-Binding Cassette Transporters/genetics
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/genetics
- Arteriosclerosis/etiology
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- CD36 Antigens/genetics
- Cell Line
- Cyclosporine/adverse effects
- Cyclosporine/pharmacology
- Gene Expression/drug effects
- Humans
- Immunosuppressive Agents/adverse effects
- Immunosuppressive Agents/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Immunologic/genetics
- Receptors, LDL/genetics
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Tacrolimus/adverse effects
- Tacrolimus/pharmacology
Collapse
Affiliation(s)
- Song Jin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Kuang M, Febbraio M, Wagg C, Lopaschuk GD, Dyck JRB. Fatty Acid Translocase/CD36 Deficiency Does Not Energetically or Functionally Compromise Hearts Before or After Ischemia. Circulation 2004; 109:1550-7. [PMID: 15023869 DOI: 10.1161/01.cir.0000121730.41801.12] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Evidence from humans suggests that fatty acid translocase (FAT)/CD36 deficiency can lead to functionally and/or energetically compromised hearts, but the data are equivocal, and the subject remains controversial. In this report we assessed the contribution of FAT/CD36 to overall fatty acid oxidation rates in the intact heart and determined the effect of FAT/CD36 on energy metabolism during reperfusion of ischemic hearts.
Methods and Results—
Isolated working hearts from wild-type and FAT/CD36-knockout (KO) mice were perfused with Krebs-Henseleit solution containing 0.4 or 1.2 mmol/L [U-
3
H]palmitate, 5 mmol/L [U-
14
C]glucose, 2.5 mmol/L calcium, and 100 μU/mL insulin at a preload pressure of 11.5 mm Hg and afterload pressure of 50 mm Hg. Hearts were aerobically perfused for 30 minutes or aerobically perfused for 30 minutes, followed by 18 minutes of global no-flow ischemia and 40 minutes of aerobic reperfusion. Rates of fatty acid oxidation in FAT/CD36-KO hearts were significantly lower than in wild-type hearts at both concentrations of palmitate (0.4 or 1.2 mmol/L). In addition, hearts from FAT/CD36-KO mice displayed a compensatory increase in glucose oxidation rates. On aerobic reperfusion after ischemia, cardiac work of FAT/CD36-KO hearts recovered to the same extent as wild-type hearts.
Conclusions—
FAT/CD36-deficient hearts are not energetically or functionally compromised and are not more sensitive to ischemic injury because glucose oxidation can compensate for the loss of fatty acid–derived ATP.
Collapse
Affiliation(s)
- Michael Kuang
- Cardiovascular Research Group, Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
105
|
Abstract
Disturbances in pathways of lipolysis and fatty acid handling are of importance in the aetiology of obesity and type 2 diabetes mellitus. There is evidence that a lowered catecholamine-mediated lipolytic response may play a role in the development and maintenance of increased adipose tissue stores. Increased adipose tissue stores, a disturbed insulin-mediated regulation of lipolysis and subnormal skeletal muscle non-esterified fatty acid (NEFA) uptake under conditions of high lipolytic rate may increase circulating NEFA concentrations, which may promote insulin resistance and cardiovascular complications. In addition, a disturbance of NEFA uptake by adipose tissue postprandially is also a critical determinant of plasma NEFA concentration. Furthermore, evidence is increasing that insulin-resistant muscle is characterised by a lowered ability to oxidise fatty acids. A dysbalance between fatty acid uptake and fatty acid oxidation may in turn be a factor promoting accumulation of lipid intermediates and triacylglycerols within skeletal muscle, which is strongly associated with skeletal muscle insulin resistance. The present review describes the reported disturbances in pathways of lipolysis and skeletal muscle fatty acid handling, and discusses underlying mechanisms and metabolic consequences of these disturbances.
Collapse
Affiliation(s)
- E E Blaak
- Dept of Human Biology, Nutrition Research Centre, Maastricht University, PO Box 6166200, MD Maastricht, The Netherlands.
| |
Collapse
|
106
|
Affiliation(s)
- Paul Nestel
- Baker Heart Research Institute (Wynn Domain), PO Box 6492 St Kilda Rd Central, Melbourne 8008, Australia.
| |
Collapse
|
107
|
Min Y, Ghebremeskel K, Lowy C, Thomas B, Crawford MA. Adverse effect of obesity on red cell membrane arachidonic and docosahexaenoic acids in gestational diabetes. Diabetologia 2004; 47:75-81. [PMID: 14634727 DOI: 10.1007/s00125-003-1275-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 09/29/2003] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Gestational diabetes is a metabolic disorder affecting 2-5% of women and is a predictor of obesity, Type 2 diabetes mellitus and cardiovascular disease. Insulin resistance, a characteristic of gestational diabetes and obesity, is correlated with the fatty acids profile of the red cell and skeletal muscle membranes. We investigated the plasma and red cell fatty acid status of gestational diabetes. The effect of obesity on membrane fatty acids was also examined. METHODS Fasting blood obtained at diagnosis was analysed for the fatty acids in plasma choline phosphoglycerides and red cell choline and ethanolamine phosphoglycerides. RESULTS There were reductions in arachidonic acid (controls 10.74+/-2.35 vs gestational diabetes 8.35+/-3.49, p<0.01) and docosahexaenoic acid (controls 6.31+/-2.67 vs gestational diabetes 3.25+/-2.00, p<0.0001) in the red cell choline phosphoglycerides in gestational diabetes. A similar pattern was found in the ethanolamine phosphoglycerides. Moreover, the arachidonic and docosahexaenoic acids depletion in the red cell choline phosphoglycerides was much greater in overweight/obese gestational diabetes (arachidonic acid=7.49+/-3.37, docosahexaenoic acid=2.98+/-2.18, p<0.01) compared with lean gestational diabetes (arachidonic acid=10.03+/-2.74, docosahexaenoic acid=4.18+/-1.42). CONCLUSION/INTERPRETATION Apparently normal plasma choline phosphoglycerides fatty acids profile in the gestational diabetic women suggested that membrane lipid abnormality is associated specifically with perturbation in the membrane. The fact that the lipid abnormality is more pronounced in the outer leaflet of the membrane where most of receptor binding and enzyme activities take place might provide an explanation for the increased insulin resistance in gestational diabetes and obesity.
Collapse
Affiliation(s)
- Y Min
- Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, 166-220 Holloway Road, N7 8DB London, UK.
| | | | | | | | | |
Collapse
|
108
|
Abstract
The simultaneous presence of various cardiovascular risk factors in the same individual is not rare, even in the pediatric age group. The clustering of risk factors can be termed insulin resistance syndrome (IRS) because of the putative central role of tissue insulin insensitivity in the background of the inter-related metabolic disturbances. Fasting hyperinsulinemia, impaired glucose tolerance, dyslipidemia, and hypertension are considered to represent the basic abnormalities of IRS. The most prevalent related disturbances are increased plasma levels of plasminogen activator inhibitor-1, fibrinogen, uric acid, homocysteine, and C-reactive protein, as well as visceral adiposity, microalbuminuria, disturbed essential fatty acid metabolism, low availability of lipid-soluble antioxidant vitamins, and enhanced expression of tumor necrosis factor-alpha in adipose tissues. Certain genetic abnormalities have been associated with IRS, but explain only a small part of the variability in insulin resistance. The exact prevalence of IRS in children remains to be defined; it was found to be 9% in one survey among children with obesity seeking medical attention. Modification of lifestyle, i.e. reduction of energy intake and enhancement of physical activity, are unquestionable prerequisites for long-term success in the management of IRS. In at least two randomized controlled studies, metformin proved to be clinically effective in increasing insulin sensitivity in hyperinsulinemic, nondiabetic adolescents. Thiazolidinediones have been successfully tested for the treatment of insulin resistance in adults, but not in children as yet. Prevention of the development of IRS in children is obviously of great significance for the health status of the community. However, the efficacy of various preventive approaches should be investigated further in carefully designed controlled trials.
Collapse
Affiliation(s)
- Tamás Decsi
- Department of Paediatrics, University of Pécs, Pécs, Hungary.
| | | |
Collapse
|
109
|
Eto M, Yoshikawa H, Fujimura H, Naba I, Sumi-Akamaru H, Takayasu S, Itabe H, Sakoda S. The role of CD36 in peripheral nerve remyelination after crush injury. Eur J Neurosci 2003; 17:2659-66. [PMID: 12823473 DOI: 10.1046/j.1460-9568.2003.02711.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously demonstrated that the deficiency of class A macrophage scavenger receptor type I/II was involved in the delayed phagocytosis of degraded myelin by macrophages in class A macrophage scavenger receptor type I/II knockout mice after crush injury of the sciatic nerve [Naba et al. (2000) Exp. Neurol., 166, 83-89]. In order to elucidate the role of CD36, one of the scavenger receptors, here we inflicted crush injury to the sciatic nerves of CD36 knockout mice and investigated the remyelination after crush injury in comparison with that of class A macrophage scavenger receptor type I/II knockout mice. Although we previously reported a lot of onion-bulbs in class A macrophage scavenger receptor type I/II knockout mice at 3 weeks, the number of onion-bulbs was limited both in CD36 knockout mice and wild-type mice. In the morphometry, the remyelination was seriously delayed, and the infiltrating macrophages into the nerve fascicles were quite frequent in CD36 knockout mice compared with wild-type mice at 3 and 6 weeks postinjury. The immunohistochemistry with the monoclonal antibody reacted with oxidized phosphatidylcholine and oil red O staining were positive in wild-type mice, but were negative in CD36 knockout mice, suggesting that the oxidation of phosphatidylcholine and the generation of neutral lipids in macrophages were disturbed in CD36 knockout mice. We hypothesize that the delayed phagocytosis by macrophages and the defect in reuse of lipids from degraded myelin are related to seriously delayed remyelination and a small number of onion-bulbs in CD36 knockout mice.
Collapse
Affiliation(s)
- Masaki Eto
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Kuwasako T, Hirano KI, Sakai N, Ishigami M, Hiraoka H, Yakub MJ, Yamauchi-Takihara K, Yamashita S, Matsuzawa Y. Lipoprotein abnormalities in human genetic CD36 deficiency associated with insulin resistance and abnormal fatty acid metabolism. Diabetes Care 2003; 26:1647-8. [PMID: 12716848 DOI: 10.2337/diacare.26.5.1647-a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
111
|
Abstract
Type 2 diabetes is characterized by increased plasma triglyceride levels and a fourfold increase in ischemic heart disease, but the mechanism is unclear. CD36 is a receptor/transporter that binds fatty acids of lipoproteins. CD36 deficiency has been linked with insulin resistance. There is strong evidence of in vivo interaction between platelets and atherogenic lipoproteins suggesting that atherogenic triglyceride-rich lipoproteins, such as VLDL, that are increased in diabetic dyslipidemia are important in this process. This study demonstrates that VLDL binds to the platelet receptor CD36, enhances platelet thromboxane A2 production, and causes increased collagen-mediated platelet aggregation. VLDL enhanced collagen-induced platelet aggregation by 1) shortening the time taken for aggregation to begin (lag time) to 70% of control (P = 0.001); 2) increasing maximum aggregation to 170% of control (P = 0.008); and 3) increasing thromboxane production to 3,318% of control (P = 0.004), where control represents platelets stimulated with collagen (100%). A monoclonal antibody against CD36 attenuated VLDL-enhanced collagen-induced platelet aggregation by 1) inhibiting binding of VLDL to platelets by 75% (P = 0.041); 2) lengthening lag time to 190% (P < 0.001); and 3) decreasing thromboxane production to 8% of control (P < 0.001). In support of this finding, platelets from Cd36-deficient rats showed no increase in aggregation, thromboxane production, and VLDL binding in contrast to platelets from rats expressing CD36. These data suggest that platelet Cd36 has a key role in VLDL-induced collagen-mediated platelet aggregation, possibly contributing to atherothrombosis associated with increased VLDL levels.
Collapse
Affiliation(s)
- Nicola A Englyst
- Endocrinology and Metabolism Unit, University of Southampton, Southhampton General Hospital, Tremona Road, Southampton SO16 6YD, U.K
| | | | | | | | | |
Collapse
|
112
|
|
113
|
Abstract
OBJECTIVE CD36 has been proposed as a fatty acid translocase and a receptor for HDL and oxidized LDL. The association between CD36 deficiency and insulin resistance remains controversial. We investigated glucose and lipid metabolism in human CD36 deficiency. RESEARCH DESIGN AND METHODS A total of 61 type I CD36-deficient patients and 25 control subjects were examined. Diabetes was defined as fasting glucose level > or =7 mmol/l or use of hypoglycemic agents. A homeostasis model assessment (HOMA) index was evaluated in patients without diabetes. Insulin resistance was defined as a HOMA index > or =1.73 (sensitivity 64.3%, specificity 78.9%; J Japan Diab Soc, 2000). RESULTS Diabetes was identified in 12 (20%) of the 61 CD36-deficient patients. Fasting glucose, HbA(1c), and total cholesterol levels in the diabetic CD36-deficient patients were significantly higher than in the control subjects and the nondiabetic CD36-deficient patients. Regardless of diabetes, HDL cholesterol concentrations in the CD36-deficient patients were significantly higher than in the control subjects. The nondiabetic CD36-deficient patients had higher triglyceride concentrations than the control subjects, and triglyceride concentrations were higher in the diabetic CD36-deficient patients than in the nondiabetic CD36-deficient patients. The prevalence of insulin resistance in the nondiabetic CD36-deficient patients was similar to that in the control subjects. CONCLUSIONS Human CD36 deficiency is not necessarily responsible for insulin resistance. Lipid abnormalities in CD36 deficiency may partly depend on the presence of diabetes, and increased levels of triglyceride and HDL cholesterol may be due to impaired binding of fatty acids and HDL to CD36 and subsequent clearance.
Collapse
Affiliation(s)
- Masato Furuhashi
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Japan.
| | | | | | | |
Collapse
|
114
|
Niskanen L, Lindi V, Erkkilä A, Sivenius K, Luoma J, Ylä-Herttuala S, Laakso M, Uusitupa MIJ. Association of the PRO12ALA polymorphism of the PPAR-gamma2 gene with oxidized low-density lipoprotein and cardiolipin autoantibodies in nondiabetic and type 2 diabetic subjects. Metabolism 2003; 52:213-7. [PMID: 12601635 DOI: 10.1053/meta.2003.50039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a key component in adipocyte differentiation and fat-specific gene expression and may modulate macrophage functions, like proinflammatory activities, and stimulate oxidized low-density lipoprotein (ox-LDL) uptake. We hypothesized that the Pro12Ala polymorphism of the PPAR-gamma2 gene may affect the immune response to ox-LDL. Therefore, we investigated the association of the Pro12Ala polymorphism of the PPAR-gamma2 gene with ox-LDL autoantibodies, as well anticardiolipin antibodies, in a 10-year prospective study. The Pro12Ala polymorphism was genotyped in 119 nondiabetic subjects (age, 45 to 64 years; body mass index [BMI], 19 to 46 kg/m(2)) and 70 type 2 diabetic patients (age, 45 to 65 years; BMI, 19 to 46 kg/m(2)) by the polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) method. Ox-LDL autoantibodies and anticardiolipin antibodies were determined at baseline and after 10 years of follow-up. At baseline, the Pro12Ala polymorphism was not associated with ox-LDL autoantibodies in nondiabetic subjects, whereas type 2 diabetic patients having the Pro12Ala or the Ala12Ala genotypes tended to have higher levels of ox-LDL autoantibodies than did type 2 diabetic patients with the Pro12Pro genotype. At the 10-year follow-up, diabetic subjects having the Ala12 allele had higher ox-LDL autoantibody levels than did diabetic subjects with the Pro12Pro genotype (P =.043 after adjustment for age, gender, BMI, and hemoglobin A(1c) [HbA(1c)] at 5 years). In nondiabetic subjects and regarding anticardiolipin antibodies, no such relationship was observed. We conclude that the Pro12Ala polymorphism of the PPAR-gamma2 gene was associated with increased ox-LDL autoantibodies in type 2 diabetic subjects. Genotype may therefore modulate the oxidative modification of LDL in hyperglycemic milieu.
Collapse
Affiliation(s)
- L Niskanen
- Department of Clinical Nutrition, and the A.I. Virtanen Institute of Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Seda O, Kazdova L, Krenova D, Kren V. Rosiglitazone fails to improve hypertriglyceridemia and glucose tolerance in CD36-deficient BN.SHR4 congenic rat strain. Physiol Genomics 2003; 12:73-8. [PMID: 12429866 DOI: 10.1152/physiolgenomics.00113.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The favorable metabolic effects of thiazolidinediones are supposedly related to the peroxisome proliferator-activated receptor-gamma (PPARgamma)-driven changes in lipid metabolism, particularly in free fatty acid (FFA) trafficking. The fatty acid translocase CD36 is one of the proposed PPARgamma targets to mediate this action. We assessed the effect of rosiglitazone (RSG, Avandia) administration in two inbred rat strains, BN/Cub and BN.SHR4 congenic strain, differing in 10 cM proximal segment of chromosome 4. Rats were fed high-sucrose diet with or without RSG for 1 wk. In BN.SHR4, which carries defective Cd36 allele of SHR origin, RSG failed to improve glucose tolerance (assessed by the oral glucose tolerance test), did not lower triglyceridemia, nor induced increases in epididymal and retroperitoneal adipose tissue weights and adipose tissue glucose utilization, effects observed in BN/Cub. On the other hand, the RSG-treated BN.SHR4 showed lower concentrations of FFA and substantial increase in glycogen synthesis and glucose oxidation in skeletal muscle. Altogether, these results support involvement of CD36 in RSG action, suggesting this pharmacogenetic interaction may be of particular importance in CD36-deficient humans.
Collapse
Affiliation(s)
- Ondrej Seda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
116
|
Pravenec M, Wallace C, Aitman TJ, Kurtz TW. Gene expression profiling in hypertension research: a critical perspective. Hypertension 2003; 41:3-8. [PMID: 12511522 DOI: 10.1161/01.hyp.0000050927.96979.41] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent advances in molecular biology and technology have made it possible to monitor the expression levels of virtually all genes simultaneously. As the tools for gene expression profiling have become more widely available, the number of investigators applying this technology in hypertension research, as in other fields of biomedical research, has grown rapidly. At the same time, numerous articles have been published that discuss the technical aspects of gene profiling and its promise for advancing research on the pathogenesis and treatment of multiple clinical disorders. However, much of the research carried out with gene expression profiling has been of a correlational or descriptive nature, and the true value of this technology is unclear. Despite the initial wave of enthusiasm for gene expression profiling, its actual utility for studying multifactorial disorders like hypertension remains to be established. In this review, we offer a critical perspective on the use of gene expression profiling in hypertension research and discuss some emerging strategies for taking this technology beyond the limits of correlational and descriptive studies.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences and The Center for Integrated Genomics, Prague, Czech Republic
| | | | | | | |
Collapse
|
117
|
Qi N, Kazdova L, Zidek V, Landa V, Kren V, Pershadsingh HA, Lezin ES, Abumrad NA, Pravenec M, Kurtz TW. Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. J Biol Chem 2002; 277:48501-7. [PMID: 12384507 DOI: 10.1074/jbc.m206655200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pioglitazone, like other thiazolidinediones, is an insulin-sensitizing agent that activates the peroxisome proliferator-activated receptor gamma and influences the expression of multiple genes involved in carbohydrate and lipid metabolism. However, it is unknown which of these many target genes play primary roles in determining the antidiabetic and hypolipidemic effects of thiazolidinediones. To specifically investigate the role of the Cd36 fatty acid transporter gene in the insulin-sensitizing actions of thiazolidinediones, we studied the metabolic effects of pioglitazone in spontaneously hypertensive rats (SHR) that harbor a deletion mutation in Cd36 in comparison to congenic and transgenic strains of SHR that express wild-type Cd36. In congenic and transgenic SHR with wild-type Cd36, administration of pioglitazone was associated with significantly lower circulating levels of fatty acids, triglycerides, and insulin as well as lower hepatic triglyceride levels and epididymal fat pad weights than in SHR harboring mutant Cd36. Additionally, insulin-stimulated glucose oxidation in isolated soleus muscle was significantly augmented in pioglitazone-fed rats with wild-type Cd36 versus those with mutant Cd36. The Cd36 genotype had no effect on pioglitazone-induced changes in blood pressure. These findings provide direct pharmacogenetic evidence that in the SHR model, Cd36 is a key determinant of the insulin-sensitizing actions of a thiazolidinedione ligand of peroxisome proliferator-activated receptor gamma.
Collapse
Affiliation(s)
- Nianning Qi
- Department of Laboratory Medicine, University of California, San Francisco, 94143, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
Long-chain fatty acids are an important constituent of the diet and they contribute to a multitude of cellular pathways and functions. Uptake of long-chain fatty acids across plasma membranes is the first step in fatty acid utilization, and recent evidence supports an important regulatory role for this process. Although uptake of fatty acids involves two components, passive diffusion through the lipid bilayer and protein-facilitated transfer, the latter component appears to play the major role in mediating uptake by key tissues. Identification of several proteins as fatty acid transporters, and emerging evidence from genetically altered animal models for some of these proteins, has contributed significant insight towards understanding the limiting role of transport in the regulation of fatty acid utilization. We are also beginning to better appreciate how disturbances in fatty acid utilization influence general metabolism and contribute to metabolic pathology.
Collapse
Affiliation(s)
- Tahar Hajri
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, 11794-8661, USA.
| | | |
Collapse
|
119
|
Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, Finton PJ, Shan L, Gugiu B, Fox PL, Hoff HF, Salomon RG, Hazen SL. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem 2002; 277:38503-16. [PMID: 12105195 DOI: 10.1074/jbc.m203318200] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The macrophage scavenger receptor CD36 plays an important role in the uptake of oxidized forms of low density lipoprotein (LDL) and contributes to lesion development in murine models of atherosclerosis. However, the structural basis of CD36 lipoprotein ligand recognition is unknown. We now identify a novel class of oxidized phospholipids that serve as high affinity ligands for CD36 and mediate recognition of oxidized forms of LDL by CD36 on macrophages. Small unilamellar vesicles of homogeneous phosphatidylcholine (PC) molecular species were oxidized by the myeloperoxidase (MPO)-H(2)O(2)-NO(2)(-) system, and products were separated by sequential LC/ESI/MS/MS. In parallel, fractions were tested for their ability to bind to CD36. Four major structurally related phospholipids with CD36 binding activity were identified from oxidized 1-palmitoyl-2-arachidonyl-PC, and four corresponding structural analogs with CD36 binding activity were identified from oxidized 1-palmitoyl-2-linoleoyl-PC. Each was then synthetically prepared, its structure confirmed by multinuclear NMR and high resolution mass spectrometry, and shown to possess identical CD36 binding activity and LC/ESI/MS/MS characteristics in both native and derivatized forms. Based upon the structures of the active compounds identified, and structure-function studies with a variety of synthetic analogs, we conclude that the structural characteristics required for high affinity binding of oxidized PC species to CD36 are a phospholipid with an sn-2 acyl group that incorporates a terminal gamma-hydroxy(or oxo)-alpha,beta-unsaturated carbonyl (oxPC(CD36)). LC/ESI/MS/MS studies demonstrate that oxPC(CD36) are formed during LDL oxidation by multiple distinct pathways. Formation of this novel class of oxidized PC species contributes to CD36-mediated recognition of LDL oxidized by MPO and other biologically relevant mechanisms. The present results offer structural insights into the molecular patterns recognized by the scavenger receptor CD36 and provide a platform for the development of potential therapeutic inhibitory agents.
Collapse
Affiliation(s)
- Eugene A Podrez
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, Finton PJ, Shan L, Febbraio M, Hajjar DP, Silverstein RL, Hoff HF, Salomon RG, Hazen SL. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 2002; 277:38517-23. [PMID: 12145296 DOI: 10.1074/jbc.m205924200] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The macrophage scavenger receptor CD36 plays an important role in binding and uptake of oxidized forms of low-density lipoprotein (LDL), foam cell formation, and lesion development during atherosclerosis. The structural basis of CD36-lipoprotein ligand recognition is an area of intense interest. In a companion article we reported the characterization of a structurally conserved family of oxidized choline glycerophospholipids (oxPC(CD36)) that serve as novel high affinity ligands for cells stably transfected with CD36, mediating recognition of multiple oxidized forms of LDL (Podrez, E. A., Poliakov, E., Shen, Z., Zhang, R., Deng, Y., Sun, M., Finton, P., Shan, L., Gugiu, B., Fox, P. L., Hoff, H. F., Salomon, R. G., and Hazen, S. L. (July 8, 2002) J. Biol. Chem. 277, 10.1074/jbc.M203318200). Here we use macrophages from wild-type and CD36 null mice to demonstrate that CD36 is the major receptor on macrophages mediating recognition of oxPC(CD36) species when presented (+/- plasma) in pure form, within PC bilayers in small unilamellar vesicles, and within liposomes generated from lipid extracts of native LDL. We also show that oxPC(CD36) promote CD36-dependent recognition when present at only a few molecules per particle, resulting in macrophage binding, uptake, metabolism, cholesterol accumulation, and foam cell formation. Finally, using high performance liquid chromatography with on-line electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS), we demonstrate that oxPC(CD36) are generated in vivo and are enriched in atherosclerotic lesions. Collectively, our data suggest that formation of this novel family of oxidized phospholipids participates in CD36-mediated recognition of oxidized lipoproteins and foam cell formation in vivo.
Collapse
Affiliation(s)
- Eugene A Podrez
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Kintaka T, Tanaka T, Imai M, Adachi I, Narabayashi I, Kitaura Y. CD36 genotype and long-chain fatty acid uptake in the heart. Circ J 2002; 66:819-25. [PMID: 12224819 DOI: 10.1253/circj.66.819] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homozygous or compound heterozygous mutation of the CD36 gene (CD36-/-) in humans results in severe defects of the uptake of long-chain fatty acids (LCFAs) in the heart. Because the effect of a single mutation of this gene (CD36+/-) on the LCFA uptake is not known, it was evaluated in 29 subjects with the CD36 wild-type gene (WT) (6 healthy subjects, 10 patients with heart disease), CD36+/- (4 healthy subjects, 5 patients) and CD36-/- (4 patients). The CD36 genotype was identified in the coding region of genomic DNA, and the expression of CD36 protein was examined by flow cytometry after staining with monoclonal anti-CD36 antibody. The LCFA uptake in the heart was assessed as the radioactivity accumulation ratio of heart to mediastinum after intravenous administration of iodine-123 15-(p-iodophenyl)-3-R, S-methylpentadecanoic acid (H/M ratio). The H/M ratios in WT, CD36+/- and CD36-/- were 2.28 +/- 0.10, 1.90 +/- 0.06 and 1.40 +/- 0.11, respectively (p < 0.0001, among groups). The H/M ratio between healthy subjects and patients with heart disease for WT and CD36+/- did not differ significantly (ie, those of WT and CD36+/- in healthy subjects and patients were 2.29 +/- 0.08 vs 2.27 +/- 0.12 and 1.90+/- 0.07 vs 1.89 +/- 0.05, respectively). Not only CD36-/- but also CD36+/- resulted in a significant reduction of the LCFA uptake in the heart independent of heart disease, suggesting genotype dependency and that CD36 might be a fundamental determinant of myocardial LCFA uptake.
Collapse
Affiliation(s)
- Taigo Kintaka
- Department of Internal Medicine, Osaka Medical College,Takatsuki, Japan
| | | | | | | | | | | |
Collapse
|
122
|
Vallvé JC, Uliaque K, Girona J, Cabré A, Ribalta J, Heras M, Masana L. Unsaturated fatty acids and their oxidation products stimulate CD36 gene expression in human macrophages. Atherosclerosis 2002; 164:45-56. [PMID: 12119192 DOI: 10.1016/s0021-9150(02)00046-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fatty acids (FA) have been implicated in the control of expression of several atherosclerosis-related genes. Similarly, the CD36 receptor has recently been shown to play an important role in atherosclerosis and other pathologies. The aim of the present study was to evaluate the direct effect of FA and their oxidation products (aldehydes), on the expression of CD36 in both THP-1 macrophages and human monocyte-derived macrophages (HMDM). The FA tested included the saturated FA (SFA) lauric, myristic, palmitic and stearic acid; the monounsaturated FA oleic acid; and the unsaturated FA (UFA) linoleic, arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Aldehydes used were malondialdehyde (MDA), hexanal, 2,4-decadienal (DDE) and 4-hydroxynonenal (HNE). CD36 expression was measured by RT-PCR, Western blot and immunofluorescence. Incubation of THP-1 macrophages for 24 h with non-cytotoxic concentrations of UFA significantly increased CD36 mRNA expression. By contrast, exposure of THP-1 macrophages to SFA did not affect the levels of CD36 mRNA. Among all UFAs tested, EPA and DHA were the strongest inducers of CD36 mRNA levels, followed by oleic and linoleic acid. Incubation of HMDM with either oleic or linoleic acid significantly increased steady-state CD36 mRNA in a dose-dependent manner. Consistent with the increase of CD36 mRNA expression, incubation of THP-1 macrophages with oleic and linoleic acid for 24 h markedly increased CD36 protein expression. Treatment of THP-1 macrophages with MDA or hexanal for 24 h significantly increased CD36 mRNA expression in a dose dependent manner. In contrast, DDE and HNE significantly decreased this parameter. The data provide evidence for a direct regulatory effect of UFA on CD36 gene expression and support a role for aldehydes in the regulation of CD36 expression by FA.
Collapse
Affiliation(s)
- Joan-Carles Vallvé
- Unitat de Recerca de Lípids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Catalonia, Reus, Spain.
| | | | | | | | | | | | | |
Collapse
|
123
|
Martens FMAC, Visseren FLJ, Lemay J, de Koning EJP, Rabelink TJ. Metabolic and additional vascular effects of thiazolidinediones. Drugs 2002; 62:1463-80. [PMID: 12093315 DOI: 10.2165/00003495-200262100-00004] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Several cardiovascular risk factors (dyslipidaemia, hypertension, glucose intolerance, hypercoagulability, obesity, hyperinsulinaemia and low-grade inflammation) cluster in the insulin resistance syndrome. Treatment of these individual risk factors reduces cardiovascular complications. However, targeting the underlying pathophysiological mechanisms of the insulin resistance syndrome is a more rational treatment strategy to further improve cardiovascular outcome. Our understanding of the so-called cardiovascular dysmetabolic syndrome has been improved by the discovery of nuclear peroxisome proliferator-activated receptors (PPARs). PPARs are ligand-activated transcription factors belonging to the nuclear receptor superfamily. As transcription factors, PPARs regulate the expression of numerous genes and affect glycaemic control, lipid metabolism, vascular tone and inflammation. Activation of the subtype PPAR-gamma improves insulin sensitivity. Expression of PPAR-gamma is present in several cell types involved in the process of atherosclerosis. Thus, modulation of PPAR-gamma activity is an interesting therapeutic approach to reduce cardiovascular events. Thiazolidinediones are PPAR-gamma agonists and constitute a new class of pharmacological agents for the treatment of type 2 (non-insulin-dependent) diabetes mellitus. Two such compounds are currently available for clinical use: rosiglitazone and pioglitazone. Thiazolidinediones improve insulin sensitivity and glycaemic control in patients with type 2 diabetes. In addition, improvement in endothelial function, a decrease in inflammatory conditions, a decrease in plasma levels of free fatty acids and lower blood pressure have been observed, which may have important beneficial effects on the vasculature. Several questions remain to be answered about PPAR-gamma agonists, particularly with respect to the role of PPAR-gamma in vascular pathophysiology. More needs to be known about the adverse effects of thiazolidinediones, such as hepatotoxicity, increased low-density lipoprotein cholesterol levels and increased oedema. The paradox of adipocyte differentiation with weight gain concurring with the insulin-sensitising effect of thiazolidinediones is not completely understood. The decrease in blood pressure induced by thiazolidinedione treatment seems incompatible with an increase in the plasma volume, and the discrepancy between the stimulation of the expression of CD36 and the antiatherogenic effects of the thiazolidinediones also needs further explanation. Long-term clinical trials of thiazolidinediones with cardiovascular endpoints are currently in progress. In conclusion, studying the effects of thiazolidinediones may shed more light on the mechanisms involved in the insulin resistance syndrome. Furthermore, thiazolidinediones could have specific, direct effects on processes involved in the development of vascular abnormalities.
Collapse
Affiliation(s)
- Fabrice M A C Martens
- Department of Internal Medicine, Section of Vascular Medicine and Diabetology, University Medical Center Utrecht, Room F.02.126, Heidelberglaan 100, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
124
|
Imai M, Tanaka T, Kintaka T, Ikemoto T, Shimizu A, Kitaura Y. Genomic heterogeneity of type II CD36 deficiency. Clin Chim Acta 2002; 321:97-106. [PMID: 12031598 DOI: 10.1016/s0009-8981(02)00102-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND CD36 deficiency has been classified in two types, i.e., type I and type II CD36 deficiency. Possible pathological involvement of CD36 deficiency has been suggested in humans, but is still confounding. Homozygous or compound heterozygous mutations (CD36(-/-)) were demonstrated in type I CD36 deficiency, while the genomic or molecular background of type II CD36 deficiency is still unclear, which may bring confounding interpretations of the cause-and-effect events in human CD36 deficiency. In this study, we analyzed the genotype and frequency of type II CD36 deficiency in Japanese populations, and its hereditary pattern in three families. METHODS Genotypes and protein expression levels of CD36 were examined in 238 Japanese subjects. Genotype was analyzed in the coding region of the CD36 gene. The expression level of CD36 protein was analyzed by flow cytometry after staining with monoclonal anti-CD36 antibody and assessed as mean fluorescence intensity (MFI). RESULTS Among 238 subjects, subjects for wild-type gene (WT), a single mutation (CD36(+/-)), and CD36(-/-) were 141, 44 and 53, respectively. Monocyte MFI (mean+/-SD) in subjects for WT, CD36(+/-), and CD36(-/-) were 35.7+/-8.5, 15.2+/-3.4, and 0.4+/-0.3, respectively (P<0.0001, between groups). Those of platelets in subjects for WT, CD36(+/-), and CD36(-/-) were 27.1+/-10.6, 11.5+/-6.3, and 0.5+/-0.3, respectively (P<0.0001, between groups). Subjects of both WT and CD36(+/-) were observed in type II CD36 deficiency. Monocyte and platelet MFI in family members of type II CD36 deficiency and 218 unrelated Japanese suggested that the expression level of CD36 protein in monocytes was directly dependent on genotypes. On the other hand, those in platelets were affected by additional heritable factor(s) in addition to the coding region genotype. CONCLUSIONS MFI in monocytes showed a strong gene-dosage-dependency. On the other hand, MFI in platelets was affected by heritable factor(s) in addition to the coding region genotype, which resulted in heterogeneity of type II CD36 deficiency.
Collapse
Affiliation(s)
- Makoto Imai
- Third Division, Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | | | | | | | | | | |
Collapse
|
125
|
Hajri T, Han XX, Bonen A, Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 2002. [DOI: 10.1172/jci0214596] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
126
|
Hajri T, Han XX, Bonen A, Abumrad NA. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 2002; 109:1381-9. [PMID: 12021254 PMCID: PMC150975 DOI: 10.1172/jci14596] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Deficiency of the membrane protein FAT/CD36 causes a marked defect in fatty acid uptake by various tissues and is genetically linked to insulin resistance in rats and humans. Here, we examined insulin responsiveness of CD36-/- mice. When fed a diet high in complex carbohydrates and low (5%) in fat, these animals cleared glucose faster than the wild-type. In vivo, uptake of 2-fluorodeoxyglucose by muscle was increased severalfold, and in vitro, insulin responsiveness of glycogenesis by the soleus was enhanced. Null mice had lower glycogen levels in muscle and liver, lower muscle triglyceride levels, and increased liver triglyceride content--all findings consistent with increased insulin-sensitivity. However, when the chow diet was switched to one high in fructose, CD36-/- mice but not wild-type mice developed marked glucose intolerance, hyperinsulinemia, and decreased muscle glucose uptake. High-fat diets impaired glucose tolerance equally in both groups, although CD36 deficiency helped moderate insulin-responsive muscle glucose oxidation. In conclusion, CD36 deficiency enhances insulin responsiveness on a high-starch, low-fat diet. It predisposes to insulin resistance induced by high fructose and partially protects from that induced by high-fat diets. In humans, CD36 deficiency may be an important factor in the metabolic adaptation to diet and in susceptibility to some forms of diet-induced pathology.
Collapse
Affiliation(s)
- Tahar Hajri
- Department of Physiology and Biophysics, State University of New York at Stony Brook, New York 11794-8661, USA
| | | | | | | |
Collapse
|
127
|
Sato O, Kuriki C, Fukui Y, Motojima K. Dual promoter structure of mouse and human fatty acid translocase/CD36 genes and unique transcriptional activation by peroxisome proliferator-activated receptor alpha and gamma ligands. J Biol Chem 2002; 277:15703-11. [PMID: 11867619 DOI: 10.1074/jbc.m110158200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid translocase (FAT)/CD36 is a glycoprotein involved in multiple membrane functions including uptake of long-chain fatty acids and oxidized low density lipoprotein. In mice, expression of the gene is regulated by peroxisome proliferator-activated receptor (PPAR) alpha in the liver and by PPAR gamma in the adipose tissues (Motojima, K., Passilly, P. P., Peters, J. M., Gonzalez, F. J., and Latruffe, N. (1998) J. Biol. Chem. 273, 16710-16714). However, the time course of PPAR alpha ligand-induced expression of FAT/CD36 in the liver, and also in the cultured hepatoma cells, is significantly slower than those of other PPAR alpha target genes. To study the molecular mechanism of the slow transcriptional activation of the gene by a PPAR ligand, we first cloned the 5' ends of the mRNA and then the mouse gene promoter region from a genomic bacterial artificial chromosome library. Sequencing analyses showed that transcription of the gene starts at two initiation sites 16 kb apart and splicing occurs alternatively, producing at least three mRNA species with different 5'-noncoding regions. The PPAR alpha ligand-responsive promoter in the liver was identified as the new upstream promoter where we found several possible binding sites for lipid metabolism-related transcriptional factors but not for PPAR. Neither promoter responded to a PPAR alpha ligand in the in vitro or in vivo reporter assays using cultured hepatoma cells and the liver of living mice. We also have cloned the human FAT/CD36 gene from a bacterial artificial chromosome library and identified a new independent promoter that is located 13 kb upstream of the previously reported promoter. Only the upstream promoter responded to PPAR alpha and PPAR gamma ligands in a cell type-specific manner. The absence of PPRE in the responding upstream promoter region, the delayed activation by the ligand, and the results of the reporter assays all suggested that transcriptional activation of the FAT/CD36 gene by PPAR ligands is indirectly dependent on PPAR.
Collapse
Affiliation(s)
- Osamu Sato
- Department of Biochemistry, School of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510 Japan
| | | | | | | |
Collapse
|
128
|
Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002; 23:201-29. [PMID: 11943743 DOI: 10.1210/edrv.23.2.0461] [Citation(s) in RCA: 744] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The primary genetic, environmental, and metabolic factors responsible for causing insulin resistance and pancreatic beta-cell failure and the precise sequence of events leading to the development of type 2 diabetes are not yet fully understood. Abnormalities of triglyceride storage and lipolysis in insulin-sensitive tissues are an early manifestation of conditions characterized by insulin resistance and are detectable before the development of postprandial or fasting hyperglycemia. Increased free fatty acid (FFA) flux from adipose tissue to nonadipose tissue, resulting from abnormalities of fat metabolism, participates in and amplifies many of the fundamental metabolic derangements that are characteristic of the insulin resistance syndrome and type 2 diabetes. It is also likely to play an important role in the progression from normal glucose tolerance to fasting hyperglycemia and conversion to frank type 2 diabetes in insulin resistant individuals. Adverse metabolic consequences of increased FFA flux, to be discussed in this review, are extremely wide ranging and include, but are not limited to: 1) dyslipidemia and hepatic steatosis, 2) impaired glucose metabolism and insulin sensitivity in muscle and liver, 3) diminished insulin clearance, aggravating peripheral tissue hyperinsulinemia, and 4) impaired pancreatic beta-cell function. The precise biochemical mechanisms whereby fatty acids and cytosolic triglycerides exert their effects remain poorly understood. Recent studies, however, suggest that the sequence of events may be the following: in states of positive net energy balance, triglyceride accumulation in "fat-buffering" adipose tissue is limited by the development of adipose tissue insulin resistance. This results in diversion of energy substrates to nonadipose tissue, which in turn leads to a complex array of metabolic abnormalities characteristic of insulin-resistant states and type 2 diabetes. Recent evidence suggests that some of the biochemical mechanisms whereby glucose and fat exert adverse effects in insulin-sensitive and insulin-producing tissues are shared, thus implicating a diabetogenic role for energy excess as a whole. Although there is now evidence that weight loss through reduction of caloric intake and increase in physical activity can prevent the development of diabetes, it remains an open question as to whether specific modulation of fat metabolism will result in improvement in some or all of the above metabolic derangements or will prevent progression from insulin resistance syndrome to type 2 diabetes.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, Division of Endocrinology, University of Toronto, Canada M5G 2C4.
| | | | | | | |
Collapse
|
129
|
Abstract
CD36 is a multispecific membrane glycoprotein that has been postulated to have a variety of functions. Evidence generated in isolated cells and in mice and rat models of altered CD36 expression has indicated an important role for CD36 in membrane transport of long-chain fatty acids. The cumulative data indicate that CD36 facilitates a major fraction of fatty acid uptake by muscle and fat, and that CD36 deficiency is associated with a large (60-80%) defect in fatty acid uptake by those tissues. In humans, polymorphisms in the CD36 gene may underlie defective fatty acid metabolism and some forms of heart disease. Herein we review our current understanding of the transport function and regulation of CD36. The realization that the transport step rate limits cellular fatty acid utilization suggests that abnormalities in CD36 expression or function may impact on susceptibility to certain metabolic diseases such as obesity and insulin resistance.
Collapse
Affiliation(s)
- Azeddine Ibrahimi
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York 11794-8661, USA
| | | |
Collapse
|
130
|
Abstract
BACKGROUND The molecular basis of lipodystrophy, a syndrome associated with HIV antiretroviral (ARV) therapy, remains unknown. OBJECTIVES To examine whether ARV therapy might inhibit the expression of CD36, which is known to play an important role in fatty acid and glucose metabolism, and if this might contribute to the metabolic alterations associated with lipodystrophy. DESIGN The effects of ARV therapy on CD36 levels was examined in vivo in a prospective cohort of individuals treated with ARV therapy and in vitro in assays of human cell lines exposed to ARV drugs. METHODS Monocyte CD36 levels were assessed by flow cytometry at baseline and after 7 days of therapy in five healthy volunteers and 10 treatment-naive HIV-1-infected individuals. ARV therapy included protease inhibitors (ritonavir, nelfinavir or lopinavir/ritonavir). In addition, human cell lines (THP-1 and C32) were assessed for CD36 levels pre and post-ritonavir treatment. RESULTS Three of four healthy controls (one withdrew because of adverse effects) and 6 of 10 HIV-1-infected individuals had a 50 to > 90% decrease in monocyte CD36 levels after 7 days of therapy. One of ten HIV-infected subjects had a 30% decrease, and the remaining individuals had no change or an increase in CD36 levels. CD36 levels decreased significantly in human cell lines treated with ritonavir but not in those treated with zidovudine. CONCLUSIONS ARV therapy resulted in a marked decrease in CD36 in approximately 70% of our participants. Sustained ARV therapy-induced CD36 deficiency may contribute to insulin resistance and other metabolic complications of lipodystrophy.
Collapse
Affiliation(s)
- Lena Serghides
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
131
|
Kajihara S, Hisatomi A, Ogawa Y, Yasutake T, Yoshimura T, Hara T, Mizuta T, Ozaki I, Iwamoto N, Yamamoto K. Association of the Pro90Ser CD36 mutation with elevated free fatty acid concentrations but not with insulin resistance syndrome in Japanese. Clin Chim Acta 2001; 314:125-30. [PMID: 11718687 DOI: 10.1016/s0009-8981(01)00658-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND CD36 deficiency is reportedly an underlying factor about insulin resistance, defective fatty acid metabolism and hypertriglyceridemia in spontaneously hypertensive rat (SHR), and may be involved in the pathogenesis of insulin resistance and hyperlipidemia in humans. METHODS We examined 831 adults undergoing health screening. The majority (780) was Pro90 homozygous for the CD36 gene product, but 51 displayed a CD36 mutation (2 homozygous and 49 heterozygous for Ser90). This is the major mutation site involved in CD36 deficiency in Japanese. RESULTS Among parameters related to insulin resistance, there were no differences in body mass index (BMI), HDL cholesterol, total cholesterol, triglycerides, insulin and insulin resistance index (HOMA IR), or blood pressure between 91 normal subjects (45 male and 46 female) randomly selected from the 780 Pro90 homozygotes and the 51 (29 male and 22 females) CD36-deficient subjects (Ser90 homozygote and Pro90Ser heterozygote). Free fatty acid concentrations, however, were higher in Ser90 CD36 subjects than in Pro90 control subjects. CONCLUSIONS The CD36Pro90Ser mutation is not necessarily related to the insulin resistance syndrome, but is associated with high free fatty acid concentrations in Japanese.
Collapse
Affiliation(s)
- S Kajihara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Poisson JP, Narce M. Lipid metabolism: peroxisome-proliferator-activated receptors and the regulation of genes of lipid metabolism. Curr Opin Lipidol 2001; 12:583-5. [PMID: 11561178 DOI: 10.1097/00041433-200110000-00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
133
|
Affiliation(s)
- T J Aitman
- Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College Genetics and Genomics Research Institute, Hammersmith Hospital, London W12 0NN.
| |
Collapse
|
134
|
Abstract
It is increasingly apparent that the genetic influence on the development and severity of a particular phenotype (e.g. diabetes, hyperlipidemia, hypertension, and coronary heart disease) can be strongly modulated by diet. In turn, the response of the phenotype to dietary intervention is determined by the individual genotype. The reviews in this issue provide striking examples of recent progress related to the molecular basis of nutrient-gene interactions. As our understanding of these interactions improves, we should be better equipped to identify individuals at risk of specific pathologies and make a better assessment of the risk involved. Nutritional support could then be tailored to the individual genotype to favour beneficial phenotypic expression or to suppress that leading to pathology and disease.
Collapse
|
135
|
|
136
|
|
137
|
|