101
|
Sin G, Woodley JM, Gernaey KV. Application of modeling and simulation tools for the evaluation of biocatalytic processes: a future perspective. Biotechnol Prog 2010; 25:1529-38. [PMID: 19768802 DOI: 10.1002/btpr.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Modeling and simulation techniques have for some time been an important feature of biocatalysis research, often applied as a complement to experimental studies. In this short review, we report on the state-of-the-art process and kinetic modeling for biocatalysis with the aim of identifying future research needs. We have particularly focused on four aspects of modeling: (i) the model purpose, (ii) the process model boundary, (iii) the model structure, and (iv) the model identification procedure. First, one finds that most of the existing models describe biocatalyst behavior in terms of enzyme selectivity, mechanism, and reaction kinetics. More recently, work has focused on extending these models to obtain process flowsheet descriptions. Second, biocatalysis models remain at a relatively low level of complexity compared with the trends observed in other engineering disciplines. Hence, there is certainly room for additional development, i.e., detailed mixing and hydrodynamics, more process units (e.g., biorefinery). Third, biocatalysis models have been only partially subjected to formal statistical analysis. In particular, uncertainty analysis is needed to ascertain reliability of the predictions of the process model, which is necessary to make sound engineering decisions (e.g., the optimal process flowsheet, control strategy, etc). In summary, for modeling studies to be more mature and successful, one needs to introduce Good Modeling Practice and that asks for (i) a standardized and systematic guideline for model development, (ii) formal identifiability analysis, and (iii) uncertainty analysis. This will advance the utility of models in biocatalysis for more rigorous application within process design, optimization, and control strategy evaluation.
Collapse
Affiliation(s)
- Gürkan Sin
- Department of Chemical and Biochemical Engineering, Computer Aided Process-Product Engineering Center (CAPEC), Technical University of Denmark, Lyngby, Denmark.
| | | | | |
Collapse
|
102
|
Determining the safety of enzymes used in animal feed. Regul Toxicol Pharmacol 2010; 56:332-42. [DOI: 10.1016/j.yrtph.2009.10.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
|
103
|
Engineering of Bacillus lipase by directed evolution for enhanced thermal stability: effect of isoleucine to threonine mutation at protein surface. Mol Biol Rep 2010; 38:2919-26. [DOI: 10.1007/s11033-010-9954-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 01/15/2010] [Indexed: 11/25/2022]
|
104
|
Yang G, Withers SG. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem 2010; 10:2704-15. [PMID: 19780076 DOI: 10.1002/cbic.200900384] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Directed enzyme evolution has proven to be a powerful tool for improving a range of properties of enzymes through consecutive rounds of diversification and selection. However, its success depends heavily on the efficiency of the screening strategy employed. Fluorescence-activated cell sorting (FACS) has recently emerged as a powerful tool for screening enzyme libraries due to its high sensitivity and its ability to analyze as many as 10(8) mutants per day. Applications of FACS screening have allowed the isolation of enzyme variants with significantly improved activities, altered substrate specificities, or even novel functions. This review discusses FACS-based screening for enzymatic activity and its potential application for the directed evolution of enzymes, ribozymes, and catalytic antibodies.
Collapse
Affiliation(s)
- Guangyu Yang
- Centre for High-Throughput Biology (CHiBi) and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. V6T 1Z1, Canada
| | | |
Collapse
|
105
|
Binay B, Shoemark DK, Sessions RB, Clarke AR, Karaguler NG. Increasing the substrate specificity of Bacillus stearothermophillus lactate dehydrogenase by DNA shuffling. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Cedrone F, Niel S, Roca S, Bhatnagar T, Ait-abdelkader N, Torre C, Krumm H, Maichele A, T. Reetz M, C. Baratti J. Directed Evolution of the Epoxide Hydrolase fromAspergillus niger. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/102420310001630137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
107
|
Çakar ZP. Metabolic and evolutionary engineering research in Turkey and beyond. Biotechnol J 2009; 4:992-1002. [DOI: 10.1002/biot.200800332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
108
|
Seifert A, Vomund S, Grohmann K, Kriening S, Urlacher VB, Laschat S, Pleiss J. Rational design of a minimal and highly enriched CYP102A1 mutant library with improved regio-, stereo- and chemoselectivity. Chembiochem 2009; 10:853-61. [PMID: 19222039 DOI: 10.1002/cbic.200800799] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A minimal CYP102A1 mutant library of only 24 variants plus wild type was constructed by combining five hydrophobic amino acids (alanine, valine, phenylalanine, leucine and isoleucine) in two positions. Both positions are located close to the centre of the haem group. The first, position 87, has been shown to mediate substrate specificity and regioselectivity in CYP102A1. The second hotspot, position 328, was predicted to interact with all substrates during oxidation and has previously been identified by systematic analysis of 31 crystal structures and 6300 sequences of cytochrome P450 monooxygenases. By systematically altering the size of the side chains, a broad range of binding site shapes was generated. All variants were functionally expressed in E. coli. The library was screened with four terpene substrates geranylacetone, nerylacetone, (4R)-limonene and (+)-valencene. Only three variants showed no activity towards all four terpenes, while eleven variants demonstrated either a strong shift or improved regio- or stereoselectivity during oxidation of at least one substrate as compared to CYP102A1 wild type.
Collapse
Affiliation(s)
- Alexander Seifert
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
109
|
Carrera J, Rodrigo G, Jaramillo A. Towards the automated engineering of a synthetic genome. MOLECULAR BIOSYSTEMS 2009; 5:733-43. [PMID: 19562112 DOI: 10.1039/b904400k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of the technology to synthesize new genomes and to introduce them into hosts with inactivated wild-type chromosome opens the door to new horizons in synthetic biology. Here it is of outmost importance to harness the ability of using computational design to predict and optimize a synthetic genome before attempting its synthesis. The methodology to computationally design a genome is based on an optimization that computationally mimics genome evolution. The biggest bottleneck lies on the use of an appropriate fitness function. This fitness function, usually cell growth, relies on the ability to quantitatively model the biochemical networks of the cell at the genome scale using parameters inferred from high-throughput data. Computational methods integrating such models in a common multilayer design platform can be used to automatically engineer synthetic genomes under physiological specifications. We describe the current state-of-the-art on automated methods for engineering or re-engineering synthetic genomes. We restrict ourselves to global models of metabolism, transcription and DNA structure. Although we are still far from the de novo computational genome design, it is important to collect all relevant work towards this goal. Finally, we discuss future perspectives about the practicability of an automated methodology for such computational design of synthetic genomes.
Collapse
Affiliation(s)
- Javier Carrera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | | | | |
Collapse
|
110
|
Farsi A, Lodha PH, Skanes JE, Los H, Kalidindi N, Aitken SM. Interconversion of a pair of active-site residues in Escherichia coli cystathionine γ-synthase, E. coli cystathionine β-lyase, and Saccharomyces cerevisiae cystathionine γ-lyase and development of tools for the investigation of their mechanisms and reaction specificity. Biochem Cell Biol 2009; 87:445-57. [DOI: 10.1139/o08-144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystathionine γ-synthase (CGS) and cystathionine β-lyase (CBL), which comprise the transsulfuration pathway of bacteria and plants, and cystathionine γ-lyase (CGL), the second enzyme of the fungal and animal reverse transsulfuration pathway, share ∼30% sequence identity and are almost indistinguishable in overall structure. One difference between the active site of Escherichia coli CBL and those of E. coli CGS and Saccharomyces cerevisiae CGL is the replacement of a pair of aromatic residues, F55 and Y338, of the former by acidic residues in CGS (D45 and E325) and CGL (E48 and E333). A series of interconverting, site-directed mutants of these 2 residues was constructed in CBL (F55D, Y338E, F55D/Y338E), CGS (D45F, E325Y and D45F/E325Y) and CGL (E48A,D and E333A,D,Y) to probe the role of these residues as determinants of reaction specificity. Mutation of either position results in a reduction in catalytic efficiency, as exemplified by the 160-fold reduction in the kcat/Kml-Cys of eCGS-D45F and the 2850- and 30-fold reductions in the kcat/Kml-Cth of the eCBL-Y338E and the yCGL-E333A,Y mutants, respectively. However, the in vivo reaction specificity of the mutants was not altered, compared with the corresponding wild-type enzymes. The ΔmetB and ΔmetC strains, the optimized CBL and CGL assay conditions, and the efficient expression and affinity purification systems described provide the necessary tools to enable the continued exploration of the determinants of reaction specificity in the enzymes of the transsulfuration pathways.
Collapse
Affiliation(s)
- Ali Farsi
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Pratik H. Lodha
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Heidi Los
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Navya Kalidindi
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Susan M. Aitken
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
111
|
Mchunu NP, Singh S, Permaul K. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J Biotechnol 2009; 141:26-30. [DOI: 10.1016/j.jbiotec.2009.02.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 02/20/2009] [Accepted: 02/26/2009] [Indexed: 12/19/2022]
|
112
|
|
113
|
Abstract
We report a computational, structure-based redesign of the phenylalanine adenylation domain of the nonribosomal peptide synthetase enzyme gramicidin S synthetase A (GrsA-PheA) for a set of noncognate substrates for which the wild-type enzyme has little or virtually no specificity. Experimental validation of a set of top-ranked computationally predicted enzyme mutants shows significant improvement in the specificity for the target substrates. We further present enhancements to the methodology for computational enzyme redesign that are experimentally shown to result in significant additional improvements in the target substrate specificity. The mutant with the highest activity for a noncognate substrate exhibits 1/6 of the wild-type enzyme/wild-type substrate activity, further confirming the feasibility of our computational approach. Our results suggest that structure-based protein design can identify active mutants different from those selected by evolution.
Collapse
|
114
|
Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 2009; 27:297-306. [PMID: 19500547 DOI: 10.1016/j.biotechadv.2009.01.008] [Citation(s) in RCA: 584] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 02/08/2023]
Abstract
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S-S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA
| | | |
Collapse
|
115
|
Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 2009; 27:53-75. [DOI: 10.1016/j.biotechadv.2008.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 12/11/2022]
|
116
|
Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 2008; 74:7802-8. [PMID: 18952866 DOI: 10.1128/aem.02046-08] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofuels synthesized from renewable resources are of increasing interest because of global energy and environmental problems. We have previously demonstrated production of higher alcohols from Escherichia coli using a 2-keto acid-based pathway. Here, we took advantage of the growth phenotype associated with 2-keto acid deficiency to construct a hyperproducer of 1-propanol and 1-butanol by evolving citramalate synthase (CimA) from Methanococcus jannaschii. This new pathway, which directly converts pyruvate to 2-ketobutyrate, bypasses threonine biosynthesis and represents the shortest keto acid-mediated pathway for producing 1-propanol and 1-butanol from glucose. Directed evolution of CimA enhanced the specific activity over a wide temperature range (30 to 70 degrees C). The best CimA variant was found to be insensitive to feedback inhibition by isoleucine in addition to the improved activity. This CimA variant enabled 9- and 22-fold higher production levels of 1-propanol and 1-butanol, respectively, compared to the strain expressing the wild-type CimA. This work demonstrates (i) the first production of 1-propanol and 1-butanol using the citramalate pathway and (ii) the benefit of the 2-keto acid pathway that enables a growth-based evolutionary strategy to improve the production of non-growth-related products.
Collapse
|
117
|
|
118
|
Kim MS, Lei XG. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol 2008; 79:69-75. [DOI: 10.1007/s00253-008-1412-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/09/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
|
119
|
Khoronenkova SV, Tishkov VI. High-throughput screening assay for d-amino acid oxidase. Anal Biochem 2008; 374:405-10. [DOI: 10.1016/j.ab.2007.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 11/25/2022]
|
120
|
Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl Microbiol Biotechnol 2008; 78:85-94. [DOI: 10.1007/s00253-007-1287-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/11/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
121
|
Demain AL, Adrio JL. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 65:251-289. [PMID: 18084918 DOI: 10.1007/978-3-7643-8117-2_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbes have been good to us. They have given us thousands of valuable products with novel structures and activities. In nature, they only produce tiny amounts of these secondary metabolic products as a matter of survival. Thus, these metabolites are not overproduced in nature, but they must be overproduced in the pharmaceutical industry. Genetic manipulations are used in industry to obtain strains that produce hundreds or thousands of times more than that produced by the originally isolated strain. These strain improvement programs traditionally employ mutagenesis followed by screening or selection; this is known as 'brute-force' technology. Today, they are supplemented by modern strategic technologies developed via advances in molecular biology, recombinant DNA technology, and genetics. The progress in strain improvement has increased fermentation productivity and decreased costs tremendously. These genetic programs also serve other goals such as the elimination of undesirable products or analogs, discovery of new antibiotics, and deciphering of biosynthetic pathways.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (RISE), HS-330, Drew University, Madison, NJ 07940 USA.
| | | |
Collapse
|
122
|
Improvement of the thermostability and activity of a pectate lyase by single amino acid substitutions, using a strategy based on melting-temperature-guided sequence alignment. Appl Environ Microbiol 2007; 74:1183-9. [PMID: 18156340 DOI: 10.1128/aem.02220-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the vast number of random mutagenesis experiments that have targeted protein thermostability, single amino acid substitutions that increase the apparent melting temperature (Tm) of the enzyme more than 1 to 2 degrees C are rare and often require the creation of a large library of mutated genes. Here we present a case where a single beneficial mutation (R236F) of a hemp fiber-processing pectate lyase of Xanthomonas campestris origin (PL(Xc)) produced a 6 degrees C increase in Tm and a 23-fold increase in the half-life at 45 degrees C without compromising the enzyme's catalytic efficiency. This success was based on a variation of sequence alignment strategy where a mesophilic amino acid sequence is matched with the sequences of its thermophilic counterparts that have established Tm values. Altogether, two-thirds of the nine targeted single amino acid substitutions were found to have effects either on the thermostability or on the catalytic activity of the enzyme, evidence of a high success rate of mutation without the creation of a large gene library and subsequent screening of clones. Combination of R236F with another beneficial mutation (A31G) resulted in at least a twofold increase in specific activity while preserving the improved Tm value. To understand the structural basis for the increased thermal stability or activity, the variant R236F and A31G R236F proteins and wild-type PL(Xc) were purified and crystallized. By structure analysis and computational methods, hydrophobic desolvation was found to be the driving force for the increased stability with R236F.
Collapse
|
123
|
Chockalingam K, Blenner M, Banta S. Design and application of stimulus-responsive peptide systems. Protein Eng Des Sel 2007; 20:155-61. [PMID: 17376876 DOI: 10.1093/protein/gzm008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of peptides and proteins to change conformations in response to external stimuli such as temperature, pH and the presence of specific small molecules is ubiquitous in nature. Exploiting this phenomenon, numerous natural and designed peptides have been used to engineer stimulus-responsive systems with potential applications in important research areas such as biomaterials, nanodevices, biosensors, bioseparations, tissue engineering and drug delivery. This review describes prominent examples of both natural and designed synthetic stimulus-responsive peptide systems. While the future looks bright for stimulus-responsive systems based on natural and rationally engineered peptides, it is expected that the range of stimulants used to manipulate such systems will be significantly broadened through the use of combinatorial protein engineering approaches such as directed evolution. These new proteins and peptides will continue to be employed in exciting and high-impact research areas including bionanotechnology and synthetic biology.
Collapse
|
124
|
Poyot T, Nachon F, Rochu D, Fournier D, Masson P. Optimiser les enzymes, mutagenèse et évolution dirigées. ANNALES PHARMACEUTIQUES FRANÇAISES 2007; 65:119-25. [PMID: 17404545 DOI: 10.1016/s0003-4509(07)90025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Among the different areas of biotechnology, enzyme engineering represents a growing field where major progress has been recently made. Indeed, chemical, pharmaceutical or food industries have increased needs for enzymes. This increase requires enzyme optimization in order to achieve, together or separately, greater operational stability, better specificity, increased solubility or preferential enantioselectivity. Directed and random mutagenesis, the classical methods of enzymatic engineering, have proved to be efficient in some cases, but are quite tricky. Directed evolution is a hybrid method recently developed in order to reproduce the random mechanisms of evolution in vitro. This method has now been used to optimise an increasing number of enzymes. In our research group, a directed evolution project has been initiated on a bacterial phosphotriesterase, a promising enzyme, capable of efficiently detoxifying organophosphorus nerve agents.
Collapse
Affiliation(s)
- T Poyot
- Centre de recherches du service de santé des armées, Département de toxicologie, Unité d'enzymologie, BP 87, F 38702 La Tronche Cedex.
| | | | | | | | | |
Collapse
|
125
|
Modification of optimal pH in l-arabinose isomerase from Geobacillus stearothermophilus for d-galactose isomerization. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
126
|
Pfleger BF, Pitera DJ, Newman JD, Martin VJJ, Keasling JD. Microbial sensors for small molecules: development of a mevalonate biosensor. Metab Eng 2006; 9:30-8. [PMID: 17002894 DOI: 10.1016/j.ymben.2006.08.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/02/2006] [Indexed: 11/26/2022]
Abstract
We describe a novel biosensor strain for detection and quantification of a small molecule, mevalonate. The biosensor strain is an Escherichia coli mevalonate auxotroph that expresses the green fluorescent protein and reports on the mevalonate concentration in the growth medium through a change in growth rate. A model describing the growth rate dependence on mevalonate was developed in order to use the biosensor strain for high-throughput screening (HTS) and quantitative measurement of mevalonate in the extracellular environment. In general, this method should be applicable to the quantification of any small molecule for which an auxotroph can be developed and will be useful for HTS of evolved metabolic pathways for which there is no readily available screen or selection.
Collapse
Affiliation(s)
- Brian F Pfleger
- Department of Chemical Engineering, University of California-Berkeley, Berkeley, CA 94720-1462, USA
| | | | | | | | | |
Collapse
|
127
|
Liu Z, Sun Z, Leng Y. Directed evolution and characterization of a novel D-pantonohydrolase from Fusarium moniliforme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:5823-30. [PMID: 16881683 DOI: 10.1021/jf060794m] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
D-Pantonohydrolase has attracted increasing attention as a biocatalyst for stereospecific production of D-pantoic acid. The Fusarium moniliforme D-pantonohydrolase was selected for directed evolution through error-prone Polymerase Chain Reaction (PCR) combined with DNA shuffling for improved activity and pH stability using a convenient two-step high-throughput screening method based on the product formation and pH indicator. After three sequential error-prone PCRs and two rounds of DNA shuffling followed by screening, about 60 positive mutants were produced and a best mutant, Mut H-1287, with improved activity and pH stability was obtained. As compared to wild-type D-pantonohydrolase, Mut H-1287 showed a 10.5-fold higher specific activity; moreover, it could retain 85% of its original activity after incubation under low pH. Gene analysis indicated that the Mut H-1287 had D63H, K118Q, and V241I substitutions. The wild-type and evolved D-pantonohydrolase (Mut H-1287) was purified in three steps. The activities and characteristics of purified wild-type and evolved D-pantonohydrolase were also studied and compared.
Collapse
Affiliation(s)
- Zhiqiang Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi, People's Republic of China
| | | | | |
Collapse
|
128
|
Heckmann-Pohl DM, Bastian S, Altmeier S, Antes I. Improvement of the fungal enzyme pyranose 2-oxidase using protein engineering. J Biotechnol 2006; 124:26-40. [PMID: 16569455 DOI: 10.1016/j.jbiotec.2006.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/24/2005] [Accepted: 02/01/2006] [Indexed: 11/24/2022]
Abstract
Native pyranose 2-oxidase (P2Ox) was purified from Peniophora sp. and characterized. To improve its catalytic efficiencies and stabilities by protein engineering, we cloned and expressed the P2Ox gene in Escherichia coli and received active, fully flavinylated recombinant P2OxA. Selenomethionine-labeled P2OxA was used for X-ray analysis and the resulting crystal structure enabled the rational design using variant P2OxA1 with the substitution E542K as template. Besides increased thermal and pH stabilities this variant showed improved catalytic efficiencies (k(cat)/K(m)) for the main substrates. A new variant, P2OxA2H, with an additional substitution T158A and a C-terminal His(6)-tag exhibited significantly decreased apparent K(m) values for D-glucose (0.47 mM), l-sorbose (1.79 mM), and D-xylose (1.35 mM). Compared to native P2Ox, the catalytic efficiencies were substantially improved for D-glucose (230-fold), L-sorbose (874-fold), and D-xylose (1751-fold). This P2Ox variant was used for the bioconversion of L-sorbose under O(2)-saturation in a molar scale. The structure-activity relationships of the amino acid substitutions were analyzed by modelling of the mutated P2Ox structures. Molecular docking calculations of various carbohydrates into the crystal structure of P2OxA and the analysis of the protein-ligand interactions in the docked complexes enabled us to explain the substrate specificity of the enzyme by a conserved hydrogen bond pattern which is formed between the protein and all substrates.
Collapse
|
129
|
Abstract
Although microorganisms are extremely good in presenting us with an amazing array of valuable products, they usually produce them only in amounts that they need for their own benefit; thus, they tend not to overproduce their metabolites. In strain improvement programs, a strain producing a high titer is usually the desired goal. Genetics has had a long history of contributing to the production of microbial products. The tremendous increases in fermentation productivity and the resulting decreases in costs have come about mainly by mutagenesis and screening/selection for higher producing microbial strains and the application of recombinant DNA technology.
Collapse
Affiliation(s)
- Jose L Adrio
- Department of Biotechnology, Puleva Biotech, S.A., Granada, Spain.
| | | |
Collapse
|
130
|
Chefson A, Auclair K. Progress towards the easier use of P450 enzymes. MOLECULAR BIOSYSTEMS 2006; 2:462-9. [PMID: 17216026 DOI: 10.1039/b607001a] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytochrome P450 enzymes (P450s or CYPs) form a large family of heme proteins involved in drug metabolism and in the biosynthesis of steroids, lipids, vitamins and natural products. Their remarkable ability to catalyze the insertion of oxygen into non-activated C-H bonds has attracted the interest of chemists for several decades. Very few chemical methods exist that directly hydroxylate aliphatic or aromatic C-H bonds, and most of them are not selective or of limited scope. Biocatalysts such as P450s represent a promising alternative: however, their applications have been limited by substrate specificity, low activity, poor stability and the need for cofactors. This review covers the attempts to overcome these limitations using approaches such as mutagenesis, chemical modifications, conditions engineering and immobilization.
Collapse
Affiliation(s)
- Amandine Chefson
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | | |
Collapse
|
131
|
Zhou M, Xu H, Wei X, Ye Z, Wei L, Gong W, Wang Y, Zhu Z. Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy. PLANT PHYSIOLOGY 2006; 140:184-95. [PMID: 16361526 PMCID: PMC1326043 DOI: 10.1104/pp.105.068577] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/16/2005] [Accepted: 09/25/2005] [Indexed: 05/05/2023]
Abstract
5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) is a key enzyme in the shikimate pathway and is targeted by the wide-spectrum herbicide glyphosate. Here, we describe the use of a selection system based on directed evolution to select glyphosate-resistant mutants of EPSPS. Using this system, the rice (Oryza sativa) EPSPS gene, mutagenized by Error-Prone polymerase chain reaction, was introduced into an EPSPS-deficient Escherichia coli strain, AB2829, and transformants were selected on minimal medium by functional complementation. Three mutants with high glyphosate resistance were identified in three independent glyphosate selection experiments. Each mutant contained a C(317)-->T transition within the EPSPS coding sequence, causing a change of proline-106 to leucine (P106L) in the protein sequence. Glyphosate resistance assays indicated a 3-fold increase in glyphosate resistance of E. coli expressing the P106L mutant. Affinity of the P106L mutant for glyphosate and phosphoenolpyruvate was decreased about 70-fold and 4.6-fold, respectively, compared to wild-type EPSPS. Analysis based on a kinetic model demonstrates that the P106L mutant has a high glyphosate resistance while retaining relatively high catalytic efficiency at low phosphoenolpyruvate concentrations. A mathematical model derived from the Michaelis-Menten equation was used to characterize the effect of expression level and selection conditions on kinetic (Ki and Km) variation of the mutants. This prediction suggests that the expression level is an important aspect of the selection system. Furthermore, glyphosate resistance of the P106L mutant was confirmed in transgenic tobacco (Nicotiana tabacum), demonstrating the potential for using the P106L mutant in transgenic crops.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
132
|
|
133
|
Wong TS, Roccatano D, Zacharias M, Schwaneberg U. A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol 2005; 355:858-71. [PMID: 16325201 DOI: 10.1016/j.jmb.2005.10.082] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 10/26/2005] [Accepted: 10/28/2005] [Indexed: 11/28/2022]
Abstract
We have developed a statistical method named MAP (mutagenesis assistant program) to equip protein engineers with a tool to develop promising directed evolution strategies by comparing 19 mutagenesis methods. Instead of conventional transition/transversion bias indicators as benchmarks for comparison, we propose to use three indicators based on the subset of amino acid substitutions generated on the protein level: (1) protein structure indicator; (2) amino acid diversity indicator with a codon diversity coefficient; and (3) chemical diversity indicator. A MAP analysis for a single nucleotide substitution was performed for four genes: (1) heme domain of cytochrome P450 BM-3 from Bacillus megaterium (EC 1.14.14.1); (2) glucose oxidase from Aspergillus niger (EC 1.1.3.4); (3) arylesterase from Pseudomonas fluorescens (EC 3.1.1.2); and (4) alcohol dehydrogenase from Saccharomyces cerevisiae (EC 1.1.1.1). Based on the MAP analysis of these four genes, 19 mutagenesis methods have been evaluated and criteria for an ideal mutagenesis method have been proposed. The statistical analysis showed that existing gene mutagenesis methods are limited and highly biased. An average amino acid substitution per residue of only 3.15-7.4 can be achieved with current random mutagenesis methods. For the four investigated gene sequences, an average fraction of amino acid substitutions of 0.5-7% results in stop codons and 4.5-23.9% in glycine or proline residues. An average fraction of 16.2-44.2% of the amino acid substitutions are preserved, and 45.6% (epPCR method) are chemically different. The diversity remains low even when applying a non-biased method: an average of seven amino acid substitutions per residue, 2.9-4.7% stop codons, 11.1-16% glycine/proline residues, 21-25.8% preserved amino acids, and 55.5% are amino acids with chemically different side-chains. Statistical information for each mutagenesis method can further be used to investigate the mutational spectra in protein regions regarded as important for the property of interest.
Collapse
Affiliation(s)
- Tuck Seng Wong
- International University Bremen (IUB), Campus Ring 8, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
134
|
Jeoh T, Baker JO, Ali MK, Himmel ME, Adney WS. Beta-D-glucosidase reaction kinetics from isothermal titration microcalorimetry. Anal Biochem 2005; 347:244-53. [PMID: 16269126 DOI: 10.1016/j.ab.2005.09.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 11/16/2022]
Abstract
The cellobiase activities of nine thermal stable mutants of Thermobifida fusca BglC were assayed by isothermal titration microcalorimetry (ITC). The mutations were previously generated using random mutagenesis and identified by high-temperature screening as imparting improved thermal stability to the beta-D-glucosidase enzyme. Analysis of the substrate-saturation curves obtained by ITC for the wild-type enzyme and the nine thermally stabilized mutants revealed that the wild type and all the mutants were subject to binding of a second substrate molecule. Furthermore, the "inhibited" enzyme-substrate complexes were shown to retain catalytic activity. In the case of three of the BglC mutants (N178I, N317Y/L444F, and N317Y/L444F/A433V), binding of a second substrate molecule resulted in improved cellobiose turnover rates at lower substrate concentrations. No correlation between denaturation temperatures of the mutants and activity on cellobiose at 25 degrees C was evident. However, one particular mutant, BglC S319C, was significantly improved in both thermal tolerance and cellobiase activity with respect to those of the wild-type BglC. The triple mutant, N317Y/L444F/A433V, had a 5 degrees C increase in denaturation temperature while maintaining activity levels similar to that of the wild type at higher substrate concentrations. ITC provided a highly sensitive and nondestructive means to continuously monitor the reaction of BglC with cellobiose, resulting in abundant data sets that could be rigorously analyzed by fitting to known enzyme kinetics models. One distinct advantage of using data from the ITC was the empirical validation of the pseudo steady state assumption, a necessary condition for obtaining solutions to the proposed mechanisms.
Collapse
Affiliation(s)
- Tina Jeoh
- National Renewable Energy Laboratory, National Bioenergy Center, 1617 Cole Boulevard, Golden, CO 80401, USA.
| | | | | | | | | |
Collapse
|
135
|
Eom GT, Song JK, Ahn JH, Seo YS, Rhee JS. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system. Appl Environ Microbiol 2005; 71:3468-74. [PMID: 16000750 PMCID: PMC1169004 DOI: 10.1128/aem.71.7.3468-3474.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter.
Collapse
Affiliation(s)
- Gyeong Tae Eom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
136
|
Abstract
Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to "evolve" in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Plant and Soil Sciences, and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | |
Collapse
|
137
|
Bastian S, Rekowski MJ, Witte K, Heckmann-Pohl DM, Giffhorn F. Engineering of pyranose 2-oxidase from Peniophora gigantea towards improved thermostability and catalytic efficiency. Appl Microbiol Biotechnol 2005; 67:654-63. [PMID: 15660220 DOI: 10.1007/s00253-004-1813-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 10/15/2004] [Accepted: 10/19/2004] [Indexed: 11/28/2022]
Abstract
To improve the stability and catalytic efficiency of pyranose 2-oxidase (P2Ox) by molecular enzyme evolution, we cloned P2Ox cDNA by RACE-PCR from a cDNA library derived from the basidiomycete Peniophora gigantea. The P2Ox gene was expressed in Escherichia coli BL21(DE3), yielding an intracellular and enzymatically active P2OxB with a volumetric yield of 500 units/l. Site-directed mutagenesis was employed to construct the P2Ox variant E540K (termed P2OxB1), which exhibited increased thermo- and pH-stability compared with the wild type, concomitantly with increased catalytic efficiencies (k(cat)/K(m)) for D-xylose and L-sorbose. P2OxB1 was provided with a C-terminal His(6)-tag (termed P2OxB1H) and subjected to directed evolution using error-prone PCR. Screening based on a chromogenic assay yielded the new P2Ox variant K312E (termed P2OxB2H) that showed significant improvements with respect to k(cat)/K(m) for D-glucose (5.3-fold), methyl-beta-D-glucoside (2.0-fold), D-galactose (4.8-fold), D-xylose (59.9-fold), and L-sorbose (69.0-fold), compared with wild-type P2Ox. The improved catalytic performance of P2OxB2H was demonstrated by bioconversions of L-sorbose that initially was a poor substrate for wild-type P2Ox. This is the first report on the improvement of a pyranose 2-oxidase by a dual approach of site-directed mutagenesis and directed evolution, and the application of the engineered P2Ox in bioconversions.
Collapse
Affiliation(s)
- Sabine Bastian
- Lehrstuhl für Angewandte Mikrobiologie, Universität des Saarlandes, Postfach 15 11 50, Saarbrücken 66041, Germany
| | | | | | | | | |
Collapse
|
138
|
Miyamoto Y, Teramoto N, Imanishi Y, Ito Y. In vitro evolution and characterization of a ligase ribozyme adapted to acidic conditions: Effect of further rounds of evolution. Biotechnol Bioeng 2005; 90:36-45. [PMID: 15723313 DOI: 10.1002/bit.20360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A ligase ribozyme that accelerates the ligation reaction with an oligonucleotide under low pH conditions was identified by in vitro adaptation in a previous study. We examined the effects of further rounds of evolution to isolate a more active ribozyme. The ribozyme, which was obtained after four rounds of evolution, was randomly mutated, and the resultant RNA library was subjected to in vitro selection at low pH. One ribozyme isolated from the pool was found to react 8,000 times faster than the original b1 ribozyme at pH 4. The reaction rate of the isolated ribozyme was enhanced at various pH values, and its pH dependence was less than that of the original ribozyme or the ribozyme selected with four rounds of evolution. The reaction rate of the isolated ribozyme was reduced in the presence of 3' primer, the sequence of which is complementary to the 3' primer-binding site of the ligase ribozyme. This inhibition induced by the primer oligonucleotide binding to the ribozyme 3' region implies that the 3' region plays a role in the ligation reaction of the ribozyme.
Collapse
Affiliation(s)
- Yoshitaka Miyamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
139
|
Affiliation(s)
- Huimin Zhao
- Department of Chemical and Biological Engineering, University of Illinois at Urbana, 61801, USA
| |
Collapse
|
140
|
Chang CC, Chuang YC, Chang MC. Fluorescent intensity of a novel NADPH-binding protein of Vibrio vulnificus can be improved by directed evolution. Biochem Biophys Res Commun 2004; 322:303-9. [PMID: 15313207 DOI: 10.1016/j.bbrc.2004.07.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Indexed: 11/21/2022]
Abstract
Blue fluorescent protein, BfgV, found from Vibrio vulnificus CKM-1, fluoresces through augmenting the intrinsic fluorescence of bound NADPH. Random mutagenesis and DNA shuffling were applied to increase the fluorescent intensity of BfgV. The wild type bfgV gene was subjected to four cycles of mutagenesis processes. A prominent D7 mutant protein had fluorescent intensity four times larger than wild type BfgV. The emission wavelength of this mutant protein appeared at 440 nm, which was 16 nm shorter than that of BfgV. There were eight amino acid substitutions in D7. As these substitutions were assigned to the modeled 3D structure of BfgV, three of them, V83M, G176S, and E179K, were shown to be located around NADPH-binding site. Time course analysis indicated the synthesis of D7 protein and fluorescent expression in Escherichia coli transformants were synchronic. This property was different from that of wild type GFP.
Collapse
Affiliation(s)
- Chun Chin Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | |
Collapse
|
141
|
Koutsopoulos S, van der Oost J, Norde W. Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:6401-6406. [PMID: 15248729 DOI: 10.1021/la049821y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interaction of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus with two types of surfaces, that is, hydrophobic polystyrene and hydrophilic silica, was investigated, and the adsorption isotherms were determined. The adsorbed hyperthermostable enzyme did not undergo loss of biological activity. A model was proposed for the mechanism of interaction of the enzyme with the surface based on the shape of the adsorption isotherm, the morphological characteristics of the enzyme, and the thermodynamic parameters of the system. The enzyme was irreversibly immobilized at the solid/liquid interface even at high temperatures, and most interestingly, it acquired further heat stabilization upon adsorption. The denaturation temperature increased from 108 degrees C in solution to 116 degrees C upon adsorption on hydrophilic silica particles. Adsorption on the hydrophobic polystyrene surface even shifted the denaturation temperature to 135 degrees C, the most extreme experimentally determined protein denaturation temperature ever reported. Maintenance of the biological function particularly at high temperatures is important for the development of solid substrate immobilized enzymes for applications in biocatalysis and biotechnology. This also presents an additional stabilization mechanism employed by nature where the extracellular hyperthermostable enzyme remains folded and active at the extreme temperatures of its natural environment by adsorption on the surface of rocks and other materials appearing in the surroundings of the microorganism.
Collapse
Affiliation(s)
- Sotiris Koutsopoulos
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
| | | | | |
Collapse
|
142
|
Molecular engineering of Rhizopus oryzae lipase using a combinatorial protein library constructed on the yeast cell surface. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2003.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
143
|
van den Heuvel RHH, van den Berg WAM, Rovida S, van Berkel WJH. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin. J Biol Chem 2004; 279:33492-500. [PMID: 15169773 DOI: 10.1074/jbc.m312968200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flavoenzyme vanillyl-alcohol oxidase was subjected to random mutagenesis to generate mutants with enhanced reactivity to creosol (2-methoxy-4-methylphenol). The vanillyl-alcohol oxidase-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) is oxidized to the widely used flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde). The first step of this reaction is extremely slow due to the formation of a covalent FAD N-5-creosol adduct. After a single round of error-prone PCR, seven mutants were generated with increased reactivity to creosol. The single-point mutants I238T, F454Y, E502G, and T505S showed an up to 40-fold increase in catalytic efficiency (kcat/Km) with creosol compared with the wild-type enzyme. This enhanced reactivity was due to a lower stability of the covalent flavin-substrate adduct, thereby promoting vanillin formation. The catalytic efficiencies of the mutants were also enhanced for other ortho-substituted 4-methylphenols, but not for p-cresol (4-methylphenol). The replaced amino acid residues are not located within a distance of direct interaction with the substrate, and the determined three-dimensional structures of the mutant enzymes are highly similar to that of the wild-type enzyme. These results clearly show the importance of remote residues, not readily predicted by rational design, for the substrate specificity of enzymes.
Collapse
Affiliation(s)
- Robert H H van den Heuvel
- Department of Genetics and Microbiology, University of Pavia, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | |
Collapse
|
144
|
Bessler C, Schmitt J, Maurer KH, Schmid RD. Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci 2004; 12:2141-9. [PMID: 14500872 PMCID: PMC2366932 DOI: 10.1110/ps.0384403] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
alpha-Amylases, in particular, microbial alpha-amylases, are widely used in industrial processes such as starch liquefaction and pulp processes, and more recently in detergency. Due to the need for alpha-amylases with high specific activity and activity at alkaline pH, which are critical parameters, for example, for the use in detergents, we have enhanced the alpha-amylase from Bacillus amyloliquefaciens (BAA). The genes coding for the wild-type BAA and the mutants BAA S201N and BAA N297D were subjected to error-prone PCR and gene shuffling. For the screening of mutants we developed a novel, reliable assay suitable for high throughput screening based on the Phadebas assay. One mutant (BAA 42) has an optimal activity at pH 7, corresponding to a shift of one pH unit compared to the wild type. BAA 42 is active over a broader pH range than the wild type, resulting in a 5-fold higher activity at pH 10. In addition, the activity in periplasmic extracts and the specific activity increased 4- and 1.5-fold, respectively. Another mutant (BAA 29) possesses a wild-type-like pH profile but possesses a 40-fold higher activity in periplasmic extracts and a 9-fold higher specific activity. The comparison of the amino acid sequences of these two mutants with other homologous microbial alpha-amylases revealed the mutation of the highly conserved residues W194R, S197P, and A230V. In addition, three further mutations were found K406R, N414S, and E356D, the latter being present in other bacterial alpha-amylases.
Collapse
|
145
|
Rajendhran J, Gunasekaran P. Recent biotechnological interventions for developing improved penicillin G acylases. J Biosci Bioeng 2004; 97:1-13. [PMID: 16233581 DOI: 10.1016/s1389-1723(04)70157-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 10/02/2003] [Indexed: 10/26/2022]
Abstract
Penicillin G acylase (PAC; EC 3.5.1.11) is the key enzyme used in the industrial production of beta-lactam antibiotics. This enzyme hydrolyzes the side chain of penicillin G and related beta-lactam antibiotics releasing 6-amino penicillanic acid (6-APA), which is the building block in the manufacture of semisynthetic penicillins. PAC from Escherichia coli strain ATCC 11105, Bacillus megaterium strain ATCC 14945 and mutants of these two strains is currently used in industry. Genes encoding for PAC from various bacterial sources have been cloned and overexpressed with significant improvements in transcription, translation and post-translational processing. Recent developments in enzyme engineering have shown that PAC can be modified to gain conformational stability and desired functionality. This review provides an overview of recent advances in the production, stabilization and application of PAC, highlighting the recent biotechnological approaches for the improved catalysis of PAC.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Microbial Technology, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, India
| | | |
Collapse
|
146
|
Minak-Bernero V, Bare RE, Haith CE, Grossman MJ. Detection of alkanes, alcohols, and aldehydes using bioluminescence. Biotechnol Bioeng 2004; 87:170-7. [PMID: 15236245 DOI: 10.1002/bit.20089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report a novel method for the rapid, sensitive, and quantitative detection of alkanes, alcohols, and aldehydes that relies on the reaction of bacterial luciferase with an aldehyde, resulting in the emission of light. Primary alcohols with corresponding aldehydes that are within the substrate range of the particular luciferase are detected after conversion to the aldehyde by an alcohol dehydrogenase. In addition, alkanes themselves may be detected by conversion to primary alcohols by an alkane hydroxylase, followed by conversion to the aldehyde by alcohol dehydrogenase. We developed a rapid bioluminescent method by genetically engineering the genes encoding bacterial luciferase, alcohol dehydrogenase, and alkane hydroxylase into a plasmid for simultaneous expression in an E. coli host cell line. Alkanes, alcohols, or aldehydes were detected within seconds, with sensitivity in the micromolar range, by measuring the resulting light emission with a microplate reader. We demonstrate the application of this method for the detection of alkanes, alcohols, and aldehydes and for the detection of alkane hydroxylase and alcohol dehydrogenase activity in vivo. This method is amenable to the high-throughput screening needs required for the identification of novel catalysts.
Collapse
Affiliation(s)
- Vera Minak-Bernero
- ExxonMobil Research & Engineering, Corporate Strategic Research, Annandale, New Jersey, USA
| | | | | | | |
Collapse
|
147
|
High-throughput screening methods for selecting l-threonine aldolases with improved activity. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.molcatb.2003.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
148
|
Rosenblatt MM, Wang J, Suslick KS. De novo designed cyclic-peptide heme complexes. Proc Natl Acad Sci U S A 2003; 100:13140-5. [PMID: 14595023 PMCID: PMC263730 DOI: 10.1073/pnas.2231273100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2002] [Accepted: 09/02/2003] [Indexed: 11/18/2022] Open
Abstract
The structural characterization of de novo designed metalloproteins together with determination of chemical reactivity can provide a detailed understanding of the relationship between protein structure and functional properties. Toward this goal, we have prepared a series of cyclic peptides that bind to water-soluble metalloporphyrins (FeIII and CoIII). Neutral and positively charged histidine-containing peptides bind with a high affinity, whereas anionic peptides bind only weakly to the negatively charged metalloporphyrin. Additionally, it was found that the peptide becomes helical only in the presence of the metalloporphyrin. CD experiments confirm that the metalloporphyrin binds specific cyclic peptides with high affinity and with isodichroic behavior. Thermal unfolding experiments show that the complex has "native-like" properties. Finally, NMR spectroscopy produced well dispersed spectra and experimental restraints that provide a high-resolution solution structure of the complexed peptide.
Collapse
Affiliation(s)
- Michael M Rosenblatt
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
149
|
|
150
|
Aita T, Ota M, Husimi Y. An in silico exploration of the neutral network in protein sequence space. J Theor Biol 2003; 221:599-613. [PMID: 12713943 DOI: 10.1006/jtbi.2003.3209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Designating amino-acid sequences that fold into a common main-chain structure as "neutral sequences" for the structure, regardless of their function or stability, we investigated the distribution of neutral sequences in protein sequence space. For four distinct target structures (alpha, beta,alpha/beta and alpha+beta types) with the same chain length of 108, we generated the respective neutral sequences by using the inverse folding technique with a knowledge-based potential function. We assumed that neutral sequences for a protein structure have Z scores higher than or equal to fixed thresholds, where thresholds are defined as the Z score for the corresponding native sequence (case 1) or much greater Z score (case 2). An exploring walk simulation suggested that the neutral sequences mapped into the sequence space were connected with each other through straight neutral paths and formed an inherent neutral network over the sequence space. Through another exploring walk simulation, we investigated contiguous regions between or among the neutral networks for the distinct protein structures and obtained the following results. The closest approach distance between the two neutral networks ranged from 5 to 29 on the Hamming distance scale, showing a linear increase against the threshold values. The sequences located at the "interchange" regions between the two neutral networks have intermediate sequence-profile-scores for both corresponding structures. Introducing a "ball" in the sequence space that contains at least one neutral sequence for each of the four structures, we found that the minimal radius of the ball that is centered at an arbitrary position ranged from 35 to 50, while the minimal radius of the ball that is centered at a certain special position ranged from 20 to 30, in the Hamming distance scale. The relatively small Hamming distances (5-30) may support an evolution mechanism by transferring from a network for a structure to another network for a more beneficial structure via the interchange regions.
Collapse
Affiliation(s)
- Takuyo Aita
- Tsukuba Research Institute, Novartis Pharma K. K. Ohkubo 8, Tsukuba 300-2611, Japan
| | | | | |
Collapse
|