101
|
Bhattacharjee P, Wang D, Anderson D, Buckler JN, de Geus E, Yan F, Polekhina G, Schittenhelm R, Creek DJ, Harris LD, Sadler AJ. The immune response to RNA suppresses nucleic acid synthesis by limiting ribose 5-phosphate. EMBO J 2024; 43:2636-2660. [PMID: 38778156 PMCID: PMC11217295 DOI: 10.1038/s44318-024-00100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/25/2024] Open
Abstract
During infection viruses hijack host cell metabolism to promote their replication. Here, analysis of metabolite alterations in macrophages exposed to poly I:C recognises that the antiviral effector Protein Kinase RNA-activated (PKR) suppresses glucose breakdown within the pentose phosphate pathway (PPP). This pathway runs parallel to central glycolysis and is critical to producing NADPH and pentose precursors for nucleotides. Changes in metabolite levels between wild-type and PKR-ablated macrophages show that PKR controls the generation of ribose 5-phosphate, in a manner distinct from its established function in gene expression but dependent on its kinase activity. PKR phosphorylates and inhibits the Ribose 5-Phosphate Isomerase A (RPIA), thereby preventing interconversion of ribulose- to ribose 5-phosphate. This activity preserves redox control but decreases production of ribose 5-phosphate for nucleotide biosynthesis. Accordingly, the PKR-mediated immune response to RNA suppresses nucleic acid production. In line, pharmacological targeting of the PPP during infection decreases the replication of the Herpes simplex virus. These results identify an immune response-mediated control of host cell metabolism and suggest targeting the RPIA as a potential innovative antiviral treatment.
Collapse
Affiliation(s)
- Pushpak Bhattacharjee
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Die Wang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joshua N Buckler
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Eveline de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases, Department of Clinical Hematology, Monash University, Clayton, VIC, 3004, Australia
| | - Galina Polekhina
- Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ralf Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Anthony J Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
102
|
Pye D, Scholey R, Ung S, Dawson M, Shahmalak A, Purba TS. Activation of the integrated stress response in human hair follicles. PLoS One 2024; 19:e0303742. [PMID: 38900734 PMCID: PMC11189182 DOI: 10.1371/journal.pone.0303742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Unravelling how energy metabolism and stress responses are regulated in human scalp hair follicles could reveal novel insights into the controls of hair growth and provide new targets to manage hair loss disorders. The Mitochondrial Pyruvate Carrier (MPC) imports pyruvate, produced via glycolysis, into the mitochondria, fuelling the TCA cycle. Previous work has shown that MPC inhibition promotes lactate generation, which activates murine epithelial hair follicle stem cells (eHFSCs). However, by pharmacologically targeting the MPC in short-term human hair follicle ex vivo organ culture experiments using UK-5099, we induced metabolic stress-responsive proliferative arrest throughout the human hair follicle epithelium, including within Keratin 15+ eHFSCs. Through transcriptomics, MPC inhibition was shown to promote a gene expression signature indicative of disrupted FGF, IGF, TGFβ and WNT signalling, mitochondrial dysfunction, and activation of the integrated stress response (ISR), which can arrest cell cycle progression. The ISR, mediated by the transcription factor ATF4, is activated by stressors including amino acid deprivation and ER stress, consistent with MPC inhibition within our model. Using RNAScope, we confirmed the upregulation of both ATF4 and the highly upregulated ATF4-target gene ADM2 on human hair follicle tissue sections in situ. Moreover, treatment with the ISR inhibitor ISRIB attenuated both the upregulation of ADM2 and the proliferative block imposed via MPC inhibition. Together, this work reveals how the human hair follicle, as a complex and metabolically active human tissue system, can dynamically adapt to metabolic stress.
Collapse
Affiliation(s)
- Derek Pye
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, United Kingdom
| | - Sin Ung
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | - Madoc Dawson
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | | | - Talveen S. Purba
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
103
|
Yin JZ, Keszei AFA, Houliston S, Filandr F, Beenstock J, Daou S, Kitaygorodsky J, Schriemer DC, Mazhab-Jafari MT, Gingras AC, Sicheri F. The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure 2024; 32:795-811.e6. [PMID: 38531363 DOI: 10.1016/j.str.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.
Collapse
Affiliation(s)
- Jay Z Yin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Salima Daou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Julia Kitaygorodsky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad T Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
104
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
105
|
Buschur KL, Pottinger TD, Vogel-Claussen J, Powell CA, Aguet F, Allen NB, Ardlie K, Bluemke DA, Durda P, Hermann EA, Hoffman EA, Lima JA, Liu Y, Malinsky D, Manichaikul A, Motahari A, Post WS, Prince MR, Rich SS, Rotter JI, Smith BM, Tracy RP, Watson K, Winther HB, Lappalainen T, Barr RG. Peripheral Blood Mononuclear Cell Gene Expression Associated with Pulmonary Microvascular Perfusion: The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2024; 21:884-894. [PMID: 38335160 PMCID: PMC11160125 DOI: 10.1513/annalsats.202305-417oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.
Collapse
Affiliation(s)
| | | | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Francois Aguet
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Norrina B. Allen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kristin Ardlie
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David A. Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | | | - Eric A. Hoffman
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - João A.C. Lima
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yongmei Liu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Amin Motahari
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Benjamin M. Smith
- Department of Medicine
- Research Institute, McGill University Health Center, Montreal, Québec, Canada
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Karol Watson
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Hinrich B. Winther
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Tuuli Lappalainen
- Department of Biostatistics
- Department of Systems Biology, Columbia University Medical Center, New York, New York
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
106
|
Chowdhury SP, Solley SC, Polishchuk E, Bacal J, Conrad JE, Gardner BM, Acosta-Alvear D, Zappa F. Baseline unfolded protein response signaling adjusts the timing of the mammalian cell cycle. Mol Biol Cell 2024; 35:br12. [PMID: 38656789 PMCID: PMC11238080 DOI: 10.1091/mbc.e23-11-0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The endoplasmic reticulum (ER) is a single-copy organelle that cannot be generated de novo, suggesting coordination between the mechanisms overseeing ER integrity and those controlling the cell cycle to maintain organelle inheritance. The Unfolded Protein Response (UPR) is a conserved signaling network that regulates ER homeostasis. Here, we show that pharmacological and genetic inhibition of the UPR sensors IRE1, ATF6, and PERK in unstressed cells delays the cell cycle, with PERK inhibition showing the most penetrant effect, which was associated with a slowdown of the G1-to-S/G2 transition. Treatment with the small molecule ISRIB to bypass the effects of PERK-dependent phosphorylation of the translation initiation factor eIF2α had no such effect, suggesting that cell cycle timing depends on PERK's kinase activity but is independent of eIF2α phosphorylation. Using complementary light and electron microscopy and flow cytometry-based analyses, we also demonstrate that the ER enlarges before mitosis. Together, our results suggest coordination between UPR signaling and the cell cycle to maintain ER physiology during cell division.
Collapse
Affiliation(s)
- Soham P. Chowdhury
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Sabrina C. Solley
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Julien Bacal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Julia E. Conrad
- Altos Labs Bay Area Institute of Science, Altos Labs, Redwood City, CA 94065
| | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Diego Acosta-Alvear
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Francesca Zappa
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
107
|
Mbara KC, Fotsing MC, Ndinteh DT, Mbeb CN, Nwagwu CS, Khan R, Mokhetho KC, Baijnath H, Nlooto M, Mokhele S, Leonard CM, Tembu VJ, Tarirai C. Endoplasmic reticulum stress in pancreatic β-cell dysfunction: The potential therapeutic role of dietary flavonoids. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100184. [PMID: 38846008 PMCID: PMC11153890 DOI: 10.1016/j.crphar.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Diabetes mellitus (DM) is a global health burden that is characterized by the loss or dysfunction of pancreatic β-cells. In pancreatic β-cells, endoplasmic reticulum (ER) stress is a fact of life that contributes to β-cell loss or dysfunction. Despite recent advances in research, the existing treatment approaches such as lifestyle modification and use of conventional therapeutics could not prevent the loss or dysfunction of pancreatic β-cells to abrogate the disease progression. Therefore, targeting ER stress and the consequent unfolded protein response (UPR) in pancreatic β-cells may be a potential therapeutic strategy for diabetes treatment. Dietary phytochemicals have therapeutic applications in human health owing to their broad spectrum of biochemical and pharmacological activities. Flavonoids, which are commonly obtained from fruits and vegetables worldwide, have shown promising prospects in alleviating ER stress. Dietary flavonoids including quercetin, kaempferol, myricetin, isorhamnetin, fisetin, icariin, apigenin, apigetrin, vitexin, baicalein, baicalin, nobiletin hesperidin, naringenin, epigallocatechin 3-O-gallate hesperidin (EGCG), tectorigenin, liquiritigenin, and acacetin have shown inhibitory effects on ER stress in pancreatic β-cells. Dietary flavonoids modulate ER stress signaling components, chaperone proteins, transcription factors, oxidative stress, autophagy, apoptosis, and inflammatory responses to exert their pharmacological effects on pancreatic β-cells ER stress. This review focuses on the role of dietary flavonoids as potential therapeutic adjuvants in preserving pancreatic β-cells from ER stress. Highlights of the underlying mechanisms of action are also presented as well as possible strategies for clinical translation in the management of DM.
Collapse
Affiliation(s)
- Kingsley C. Mbara
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Marthe C.D. Fotsing
- Drug Discovery and Smart Molecules Research Laboratory, Centre for Natural Products Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Derek T. Ndinteh
- Drug Discovery and Smart Molecules Research Laboratory, Centre for Natural Products Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Claudine N. Mbeb
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Chinekwu S. Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Kopang C. Mokhetho
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Himansu Baijnath
- Ward Herbarium, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, KwaZulu-Natal, South Africa
| | - Manimbulu Nlooto
- Department of Pharmaceutical Sciences, Healthcare Sciences, University of Limpopo, South Africa
| | - Shoeshoe Mokhele
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Carmen M. Leonard
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Vuyelwa J. Tembu
- Natural Products Chemistry Research Laboratory, Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Clemence Tarirai
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
108
|
Rocha AL, Pai V, Perkins G, Chang T, Ma J, De Souza EV, Chu Q, Vaughan JM, Diedrich JK, Ellisman MH, Saghatelian A. An Inner Mitochondrial Membrane Microprotein from the SLC35A4 Upstream ORF Regulates Cellular Metabolism. J Mol Biol 2024; 436:168559. [PMID: 38580077 PMCID: PMC11292582 DOI: 10.1016/j.jmb.2024.168559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing downstream translation under stress conditions. Computational and empirical methods have identified uORFs in the 5'-UTRs of approximately half of all mouse and human transcripts, making uORFs one of the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs were rarely studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functional microprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add SLC35A4-MP to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.
Collapse
Affiliation(s)
- Andréa L Rocha
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victor Pai
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tina Chang
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jiao Ma
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eduardo V De Souza
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qian Chu
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
109
|
Duffy EE, Assad EG, Kalish BT, Greenberg ME. Small but mighty: the rise of microprotein biology in neuroscience. Front Mol Neurosci 2024; 17:1386219. [PMID: 38807924 PMCID: PMC11130481 DOI: 10.3389/fnmol.2024.1386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The mammalian central nervous system coordinates a network of signaling pathways and cellular interactions, which enable a myriad of complex cognitive and physiological functions. While traditional efforts to understand the molecular basis of brain function have focused on well-characterized proteins, recent advances in high-throughput translatome profiling have revealed a staggering number of proteins translated from non-canonical open reading frames (ncORFs) such as 5' and 3' untranslated regions of annotated proteins, out-of-frame internal ORFs, and previously annotated non-coding RNAs. Of note, microproteins < 100 amino acids (AA) that are translated from such ncORFs have often been neglected due to computational and biochemical challenges. Thousands of putative microproteins have been identified in cell lines and tissues including the brain, with some serving critical biological functions. In this perspective, we highlight the recent discovery of microproteins in the brain and describe several hypotheses that have emerged concerning microprotein function in the developing and mature nervous system.
Collapse
Affiliation(s)
- Erin E. Duffy
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Elena G. Assad
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Brian T. Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
110
|
Landry C, Costanzo J, Mitne-Neto M, Zatz M, Schaffer A, Hatzoglou M, Muotri A, Miranda HC. Mitochondrial dysfunction heightens the integrated stress response to drive ALS pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594000. [PMID: 38798645 PMCID: PMC11118434 DOI: 10.1101/2024.05.13.594000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Vesicle-associated membrane protein-associated protein-B (VAPB) is an ER membrane bound protein. VAPB P56S causes a dominant, familial form of amyotrophic lateral sclerosis (ALS), however, the mechanism through which this mutation causes motor neuron (MN) disease remains unknown. Using inducible wild type (WT) and VAPB P56S expressing iPSC-derived MNs we show that VAPB P56S, but not WT, protein decreased neuronal firing and mitochondrial-ER contact (MERC) with an associated age-dependent decrease in mitochondrial membrane potential (MMP); all typical characteristics of MN-disease. We further show that VAPB P56S expressing iPSC-derived MNs have enhanced age-dependent sensitivity to ER stress. We identified elevated expression of the master regulator of the Integrated Stress Response (ISR) marker ATF4 and decreased protein synthesis in the VAPB P56S iPSC-derived MNs. Chemical inhibition of ISR with the compound, ISRIB, rescued all MN disease phenotype in VAPB P56S MNs. Thus, our results not only support ISR inhibition as a potential therapeutic target for ALS patients, but also provides evidence to pathogenesis.
Collapse
|
111
|
Jackson ER, Persson ML, Fish CJ, Findlay IJ, Mueller S, Nazarian J, Hulleman E, van der Lugt J, Duchatel RJ, Dun MD. A review of current therapeutics targeting the mitochondrial protease ClpP in diffuse midline glioma, H3 K27-altered. Neuro Oncol 2024; 26:S136-S154. [PMID: 37589388 PMCID: PMC11066926 DOI: 10.1093/neuonc/noad144] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/18/2023] Open
Abstract
Diffuse midline gliomas (DMGs) are devastating pediatric brain tumors recognized as the leading cause of cancer-related death in children. DMGs are high-grade gliomas (HGGs) diagnosed along the brain's midline. Euchromatin is the hallmark feature of DMG, caused by global hypomethylation of H3K27 either through point mutations in histone H3 genes (H3K27M), or by overexpression of the enhancer of zeste homolog inhibitory protein. In a clinical trial for adults with progressive HGGs, a 22-year-old patient with a thalamic DMG, H3 K27-altered, showed a remarkable clinical and radiological response to dordaviprone (ONC201). This response in an H3 K27-altered HGG patient, coupled with the lack of response of patients harboring wildtype-H3 tumors, has increased the clinical interest in dordaviprone for the treatment of DMG. Additional reports of clinical benefit have emerged, but research defining mechanisms of action (MOA) fall behind dordaviprone's clinical use, with biomarkers of response unresolved. Here, we summarize dordaviprone's safety, interrogate its preclinical MOA identifying the mitochondrial protease "ClpP" as a biomarker of response, and discuss other ClpP agonists, expanding the arsenal of potential weapons in the fight against DMG. Finally, we discuss combination strategies including ClpP agonists, and their immunomodulatory effects suggestive of a role for the tumor microenvironment in DMG patient response.
Collapse
Affiliation(s)
- Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Cameron J Fish
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Sabine Mueller
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery and Pediatric, UCSF, San Francisco, California, USA
| | - Javad Nazarian
- DIPG/DMG Center Zurich, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands, Utrecht, Netherlands
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales , Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
112
|
Jin S, Wang H, Zhang X, Song M, Liu B, Sun W. Emerging regulatory mechanisms in cardiovascular disease: Ferroptosis. Biomed Pharmacother 2024; 174:116457. [PMID: 38518600 DOI: 10.1016/j.biopha.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, autophagy, and other types of cell death, is a novel iron-dependent regulated cell death characterized by the accumulation of lipid peroxides and redox imbalance with distinct morphological, biochemical, and genetic features. Dysregulation of iron homeostasis, the disruption of antioxidative stress pathways and lipid peroxidation are crucial in ferroptosis. Ferroptosis is involved in the pathogenesis of several cardiovascular diseases, including atherosclerosis, cardiomyopathy, myocardial infarction, ischemia-reperfusion injury, abdominal aortic aneurysm, aortic dissection, and heart failure. Therefore, a comprehensive understanding of the mechanisms that regulate ferroptosis in cardiovascular diseases will enhance the prevention and treatment of these diseases. This review discusses the latest findings on the molecular mechanisms of ferroptosis and its regulation in cardiovascular diseases, the application of ferroptosis modulators in cardiovascular diseases, and the role of traditional Chinese medicines in ferroptosis regulation to provide a comprehensive understanding of the pathogenesis of cardiovascular diseases and identify new prevention and treatment options.
Collapse
Affiliation(s)
- Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China.
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 4026 YaTai Street, Changchun 130041, China.
| |
Collapse
|
113
|
Kwon A, Kim YS, Kim J, Koo JH. Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling. Biomol Ther (Seoul) 2024; 32:341-348. [PMID: 38589295 PMCID: PMC11063487 DOI: 10.4062/biomolther.2023.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 04/10/2024] Open
Abstract
Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.
Collapse
Affiliation(s)
- Ari Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ja Hyun Koo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
114
|
Kim KH, Lee CB. Socialized mitochondria: mitonuclear crosstalk in stress. Exp Mol Med 2024; 56:1033-1042. [PMID: 38689084 PMCID: PMC11148012 DOI: 10.1038/s12276-024-01211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024] Open
Abstract
Traditionally, mitochondria are considered sites of energy production. However, recent studies have suggested that mitochondria are signaling organelles that are involved in intracellular interactions with other organelles. Remarkably, stressed mitochondria appear to induce a beneficial response that restores mitochondrial function and cellular homeostasis. These mitochondrial stress-centered signaling pathways have been rapidly elucidated in multiple organisms. In this review, we examine current perspectives on how mitochondria communicate with the rest of the cell, highlighting mitochondria-to-nucleus (mitonuclear) communication under various stresses. Our understanding of mitochondria as signaling organelles may provide new insights into disease susceptibility and lifespan extension.
Collapse
Affiliation(s)
- Kyung Hwa Kim
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea.
| | - Cho Bi Lee
- Department of Health Sciences, The Graduate School of Dong-A University, 840 Hadan-dong, Saha-gu, Busan, 49315, Korea
| |
Collapse
|
115
|
Thenuwara G, Javed B, Singh B, Tian F. Biosensor-Enhanced Organ-on-a-Chip Models for Investigating Glioblastoma Tumor Microenvironment Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:2865. [PMID: 38732975 PMCID: PMC11086276 DOI: 10.3390/s24092865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Bilal Javed
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
116
|
Fehsel K, Bouvier ML, Capobianco L, Lunetti P, Klein B, Oldiges M, Majora M, Löffler S. Neuroreceptor Inhibition by Clozapine Triggers Mitohormesis and Metabolic Reprogramming in Human Blood Cells. Cells 2024; 13:762. [PMID: 38727298 PMCID: PMC11083702 DOI: 10.3390/cells13090762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The antipsychotic drug clozapine demonstrates superior efficacy in treatment-resistant schizophrenia, but its intracellular mode of action is not completely understood. Here, we analysed the effects of clozapine (2.5-20 µM) on metabolic fluxes, cell respiration, and intracellular ATP in human HL60 cells. Some results were confirmed in leukocytes of clozapine-treated patients. Neuroreceptor inhibition under clozapine reduced Akt activation with decreased glucose uptake, thereby inducing ER stress and the unfolded protein response (UPR). Metabolic profiling by liquid-chromatography/mass-spectrometry revealed downregulation of glycolysis and the pentose phosphate pathway, thereby saving glucose to keep the electron transport chain working. Mitochondrial respiration was dampened by upregulation of the F0F1-ATPase inhibitory factor 1 (IF1) leading to 30-40% lower oxygen consumption in HL60 cells. Blocking IF1 expression by cotreatment with epigallocatechin-3-gallate (EGCG) increased apoptosis of HL60 cells. Upregulation of the mitochondrial citrate carrier shifted excess citrate to the cytosol for use in lipogenesis and for storage as triacylglycerol in lipid droplets (LDs). Accordingly, clozapine-treated HL60 cells and leukocytes from clozapine-treated patients contain more LDs than untreated cells. Since mitochondrial disturbances are described in the pathophysiology of schizophrenia, clozapine-induced mitohormesis is an excellent way to escape energy deficits and improve cell survival.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.C.); (P.L.)
| | - Bianca Klein
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marko Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany; (B.K.); (M.O.)
| | - Marc Majora
- Leibniz Research Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany;
| | - Stefan Löffler
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Sana Klinikum Offenbach, Teaching Hospital of Goethe University, Starkenburgring 66, 63069 Offenbach, Germany;
| |
Collapse
|
117
|
Kucharska-Lusina A, Skrzypek M, Binda A, Majsterek I. Gene Expression Profiling to Unfolded Proteins Response as a Risk Modulator of Patients with Rheumatoid Arthritis. Int J Mol Sci 2024; 25:4854. [PMID: 38732072 PMCID: PMC11084936 DOI: 10.3390/ijms25094854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease. Despite new methods of diagnostics and treatment as well as extensive biological and immunosuppressive treatment, the etiology of RA is not fully understood. Moreover, the problem of diagnosis and treatment of RA patients is still current and affects a large group of patients. It is suggested that endoplasmic reticulum (ER)-related features may impair adaptation to chronic stress, inferring the risk of rheumatoid arthritis. The main goal in this study was evaluation of changes in mRNA translation to determine chronic ER stress conditions in rheumatoid arthritis patients. The study group consist of 86 individuals including a total of 56 rheumatoid arthritis patients and 30 healthy controls. The expression level of mRNA form blood samples of RA patients as well as controls of the unfolded protein response (UPR)-associated genes (p-eIF2, BCL-2, PERK, ATF4, and BAX) were investigated using real-time qPCR. GAPDH expression was used as a standard control. Considering the median, the expression levels of PERK, BCL-2, p-eIF2, ATF4, and BAX were found to be significantly increased in the blood of RA patients compared with the control group. The p-value for the PERK gene was 0.0000000036, the p-value for the BCL-2 gene was 0.000000014, the p-value for the p-eIF2 gene was 0.006948, the p-value for the ATF4 gene was 0.0000056, and the p-value for the BAX gene was 0.00019, respectively. Thus, it can be concluded that the targeting of the components of the PERK-dependent UPR signaling pathway via small-molecule PERK inhibitors may contribute to the development of novel, innovative treatment strategies against rheumatoid arthritis.
Collapse
Affiliation(s)
| | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (A.K.-L.); (M.S.); (A.B.)
| |
Collapse
|
118
|
Magg V, Manetto A, Kopp K, Wu CC, Naghizadeh M, Lindner D, Eke L, Welsch J, Kallenberger SM, Schott J, Haucke V, Locker N, Stoecklin G, Ruggieri A. Turnover of PPP1R15A mRNA encoding GADD34 controls responsiveness and adaptation to cellular stress. Cell Rep 2024; 43:114069. [PMID: 38602876 DOI: 10.1016/j.celrep.2024.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
The integrated stress response (ISR) is a key cellular signaling pathway activated by environmental alterations that represses protein synthesis to restore homeostasis. To prevent sustained damage, the ISR is counteracted by the upregulation of growth arrest and DNA damage-inducible 34 (GADD34), a stress-induced regulatory subunit of protein phosphatase 1 that mediates translation reactivation and stress recovery. Here, we uncover a novel ISR regulatory mechanism that post-transcriptionally controls the stability of PPP1R15A mRNA encoding GADD34. We establish that the 3' untranslated region of PPP1R15A mRNA contains an active AU-rich element (ARE) recognized by proteins of the ZFP36 family, promoting its rapid decay under normal conditions and stabilization for efficient expression of GADD34 in response to stress. We identify the tight temporal control of PPP1R15A mRNA turnover as a component of the transient ISR memory, which sets the threshold for cellular responsiveness and mediates adaptation to repeated stress conditions.
Collapse
Affiliation(s)
- Vera Magg
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Alessandro Manetto
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Katja Kopp
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Chia Ching Wu
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Mohsen Naghizadeh
- Heidelberg University, Medical Faculty Mannheim, Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), 68167 Mannheim, Germany
| | - Doris Lindner
- Heidelberg University, Medical Faculty Mannheim, Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), 68167 Mannheim, Germany
| | - Lucy Eke
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Julia Welsch
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany
| | - Stefan M Kallenberger
- Digital Health Center, Berlin Institute of Health (BIH) and Charité, 10178 Berlin, Germany; Medical Oncology, National Center for Tumor Diseases, Heidelberg University, 69120 Heidelberg, Germany
| | - Johanna Schott
- Heidelberg University, Medical Faculty Mannheim, Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), 68167 Mannheim, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, and Pharmacy, 14195 Berlin, Germany
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK; The Pirbright Institute, GU24 0NF Pirbright, UK
| | - Georg Stoecklin
- Heidelberg University, Medical Faculty Mannheim, Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Alessia Ruggieri
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120 Heidelberg, Germany.
| |
Collapse
|
119
|
Smirnova AM, Hronová V, Mohammad MP, Herrmannová A, Gunišová S, Petráčková D, Halada P, Coufal Š, Świrski M, Rendleman J, Jendruchová K, Hatzoglou M, Beznosková P, Vogel C, Valášek LS. Stem-loop-induced ribosome queuing in the uORF2/ATF4 overlap fine-tunes stress-induced human ATF4 translational control. Cell Rep 2024; 43:113976. [PMID: 38507410 PMCID: PMC11058473 DOI: 10.1016/j.celrep.2024.113976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.
Collapse
Affiliation(s)
- Anna M Smirnova
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Denisa Petráčková
- Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Štěpán Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Michał Świrski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Kristína Jendruchová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Christine Vogel
- Department of Biology, New York University, New York, NY, USA.
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
120
|
Jasani N, Xu X, Posorske B, Kim Y, Vera O, Tsai KY, DeNicola GM, Karreth FA. MAPK-mediated PHGDH induction is essential for melanoma formation and represents an actionable vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589139. [PMID: 38659816 PMCID: PMC11042198 DOI: 10.1101/2024.04.11.589139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Overexpression of PHGDH, the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. While PHGDH amplification explains PHGDH overexpression in a subset of melanomas, we find that PHGDH levels are universally increased in melanoma cells due to oncogenic BRAFV600E promoting PHGDH transcription through mTORC1-mediated translation of ATF4. Importantly, PHGDH expression was critical for melanomagenesis as depletion of PHGDH in genetic mouse models blocked melanoma formation. Despite BRAFV600E-mediated upregulation, PHGDH was further induced by exogenous serine restriction. Surprisingly, BRAFV600E inhibition diminished serine restriction-mediated PHGDH expression by preventing ATF4 induction, creating a potential vulnerability whereby melanoma cells could be specifically starved of serine by combining BRAFV600E inhibition with exogenous serine restriction. Indeed, we show that this combination promoted cell death in vitro and attenuated melanoma growth in vivo. This study identified a melanoma cell-specific PHGDH-dependent vulnerability.
Collapse
Affiliation(s)
- Neel Jasani
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Benjamin Posorske
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Yumi Kim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Olga Vera
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Kenneth Y. Tsai
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
121
|
Kapuy O. Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4368. [PMID: 38673953 PMCID: PMC11050573 DOI: 10.3390/ijms25084368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis. It has already been proven that the proper order and characteristic features of both surviving and self-killing mechanisms are controlled by negative and positive feedback loops, respectively. The new results suggest that these feedback loops are found not only within but also between branches of the UPR, fine-tuning the response to ER stress. In this review, we summarize the recent knowledge of the dynamical characteristic of endoplasmic reticulum stress response mechanism by using both theoretical and molecular biological techniques. In addition, this review pays special attention to describing the mechanism of action of the dynamical features of the feedback loops controlling cellular life-and-death decision upon ER stress. Since ER stress appears in diseases that are common worldwide, a more detailed understanding of the behaviour of the stress response is of medical importance.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
122
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
123
|
García-López D, Zaragoza-Ojeda M, Eguía-Aguilar P, Arenas-Huertero F. Endoplasmic Reticulum Stress in Gliomas: Exploiting a Dual-Effect Dysfunction through Chemical Pharmaceutical Compounds and Natural Derivatives for Therapeutical Uses. Int J Mol Sci 2024; 25:4078. [PMID: 38612890 PMCID: PMC11012637 DOI: 10.3390/ijms25074078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/14/2024] Open
Abstract
The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas.
Collapse
Affiliation(s)
- Daniel García-López
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Facultad de Ciencia y Tecnología, Universidad Simón Bolívar, Mexico City 03920, Mexico
| | - Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
| | - Pilar Eguía-Aguilar
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (D.G.-L.); (M.Z.-O.); (P.E.-A.)
- Centro de Investigación en Biomedicina y Bioseguridad, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
124
|
Cottrell KA, Ryu S, Pierce JR, Soto Torres L, Bohlin HE, Schab AM, Weber JD. Induction of Viral Mimicry Upon Loss of DHX9 and ADAR1 in Breast Cancer Cells. CANCER RESEARCH COMMUNICATIONS 2024; 4:986-1003. [PMID: 38530197 PMCID: PMC10993856 DOI: 10.1158/2767-9764.crc-23-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Detection of viral double-stranded RNA (dsRNA) is an important component of innate immunity. However, many endogenous RNAs containing double-stranded regions can be misrecognized and activate innate immunity. The IFN-inducible ADAR1-p150 suppresses dsRNA sensing, an essential function for adenosine deaminase acting on RNA 1 (ADAR1) in many cancers, including breast. Although ADAR1-p150 has been well established in this role, the functions of the constitutively expressed ADAR1-p110 isoform are less understood. We used proximity labeling to identify putative ADAR1-p110-interacting proteins in breast cancer cell lines. Of the proteins identified, the RNA helicase DHX9 was of particular interest. Knockdown of DHX9 in ADAR1-dependent cell lines caused cell death and activation of the dsRNA sensor PKR. In ADAR1-independent cell lines, combined knockdown of DHX9 and ADAR1, but neither alone, caused activation of multiple dsRNA sensing pathways leading to a viral mimicry phenotype. Together, these results reveal an important role for DHX9 in suppressing dsRNA sensing by multiple pathways. SIGNIFICANCE These findings implicate DHX9 as a suppressor of dsRNA sensing. In some cell lines, loss of DHX9 alone is sufficient to cause activation of dsRNA sensing pathways, while in other cell lines DHX9 functions redundantly with ADAR1 to suppress pathway activation.
Collapse
Affiliation(s)
- Kyle A. Cottrell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Sua Ryu
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jackson R. Pierce
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Luisangely Soto Torres
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Holly E. Bohlin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Angela M. Schab
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jason D. Weber
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biology, Siteman Cancer Center, St. Louis, Missouri
| |
Collapse
|
125
|
Dey N, Koumenis C, Ruggero D, Fuchs SY, Diehl JA. miR-217 Regulates Normal and Tumor Cell Fate Following Induction of Endoplasmic Reticulum Stress. Mol Cancer Res 2024; 22:360-372. [PMID: 38236939 PMCID: PMC10987263 DOI: 10.1158/1541-7786.mcr-23-0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Rapidly proliferating cancer cells require a microenvironment where essential metabolic nutrients like glucose, oxygen, and growth factors become scarce as the tumor volume surpasses the established vascular capacity of the tissue. Limits in nutrient availability typically trigger growth arrest and/or apoptosis to prevent cellular expansion. However, tumor cells frequently co-opt cellular survival pathways thereby favoring cell survival under this environmental stress. The unfolded protein response (UPR) pathway is typically engaged by tumor cells to favor adaptation to stress. PERK, an endoplasmic reticulum (ER) protein kinase and UPR effector is activated in tumor cells and contributes tumor cell adaptation by limiting protein translation and balancing redox stress. PERK also induces miRNAs that contribute to tumor adaptation. miR-211 and miR-216b were previously identified as PERK-ATF4-regulated miRNAs that regulate cell survival. We have identified another PERK-responsive miRNA, miR-217, with increased expression under prolonged ER stress. Key targets of miR-217 are identified as TRPM1, the host gene for miR-211 and EZH2. Evidence is provided that miR-217 expression is essential for the rapid loss of miR-211 in prolonged ER stress and provides a functional link for determining whether cells adapt to stress or commit to apoptosis. IMPLICATIONS PERK-dependent induction of miR-217 limits accumulation and function of the prosurvival miRNA, miR-211, to establish cell fate and promote cell commitment to apoptosis.
Collapse
Affiliation(s)
- Neekkan Dey
- Department of Biochemistry, Case Comprehensive Cancer Center; Case Western Reserve University, Cleveland, OH 44106, USA
| | - Costas Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davide Ruggero
- Departments of Urology and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Serge Y. Fuchs
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Alan Diehl
- Department of Biochemistry, Case Comprehensive Cancer Center; Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
126
|
Ryoo HD. The integrated stress response in metabolic adaptation. J Biol Chem 2024; 300:107151. [PMID: 38462161 PMCID: PMC10998230 DOI: 10.1016/j.jbc.2024.107151] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024] Open
Abstract
The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
127
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
128
|
Ahn SH, Jang SK, Kim YJ, Kim G, Park KS, Park IC, Jin HO. Amino acid deprivation induces TXNIP expression by NRF2 downregulation. IUBMB Life 2024; 76:212-222. [PMID: 38054509 DOI: 10.1002/iub.2792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Thioredoxin-interacting protein (TXNIP) is sensitive to oxidative stress and is involved in the pathogenesis of various metabolic, cardiovascular, and neurodegenerative disorders. Therefore, several studies have suggested that TXNIP is a promising therapeutic target for several diseases, particularly cancer and diabetes. However, the regulation of TXNIP expression under amino acid (AA)-restricted conditions is not well understood. In the present study, we demonstrated that TXNIP expression was promoted by the deprivation of AAs, especially arginine, glutamine, lysine, and methionine, in non-small cell lung cancer (NSCLC) cells. Interestingly, we determined that increased TXNIP expression induced by AA deprivation was associated with nuclear factor erythroid 2-related factor 2 (NRF2) downregulation, but not with activating transcription factor 4 (ATF4) activation. Furthermore, N-acetyl-l-cysteine (NAC), a scavenger of reactive oxygen species (ROS), suppressed TXNIP expression in NSCLC cells deprived of AA. Collectively, the induction of TXNIP expression by AA deprivation was mediated by ROS production, potentially through NRF2 downregulation. Our findings suggest that TXNIP expression may be associated with the redox homeostasis of AA metabolism and provide a possible rationale for a therapeutic strategy to treat cancer with AA restriction.
Collapse
Affiliation(s)
- Se Hee Ahn
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Yu Jin Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
129
|
Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer. Arch Toxicol 2024; 98:1025-1041. [PMID: 38383612 DOI: 10.1007/s00204-024-03681-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding (CREB) family, plays a critical role as a stress-induced transcription factor. It orchestrates cellular responses, particularly in the management of endoplasmic reticulum stress, amino acid deprivation, and oxidative challenges. ATF4's primary function lies in regulating gene expression to ensure cell survival during stressful conditions. However, when considering its involvement in ferroptosis, characterized by severe lipid peroxidation and pronounced endoplasmic reticulum stress, the ATF4 pathway can either inhibit or promote ferroptosis. This intricate relationship underscores the complexity of cellular responses to varying stress levels. Understanding the connections between ATF4, ferroptosis, and endoplasmic reticulum stress holds promise for innovative cancer therapies, especially in addressing apoptosis-resistant cells. In this review, we provide an overview of ATF4, including its structure, modifications, and functions, and delve into its dual role in both ferroptosis and cancer.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
130
|
Lawrence RE, Shoemaker SR, Deal A, Sangwan S, Anand AA, Wang L, Marqusee S, Walter P. A helical fulcrum in eIF2B coordinates allosteric regulation of stress signaling. Nat Chem Biol 2024; 20:422-431. [PMID: 37945896 PMCID: PMC10972756 DOI: 10.1038/s41589-023-01453-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/17/2023] [Indexed: 11/12/2023]
Abstract
The integrated stress response (ISR) enables cells to survive a variety of acute stresses, but chronic activation of the ISR underlies age-related diseases. ISR signaling downregulates translation and activates expression of stress-responsive factors that promote return to homeostasis and is initiated by inhibition of the decameric guanine nucleotide exchange factor eIF2B. Conformational and assembly transitions regulate eIF2B activity, but the allosteric mechanisms controlling these dynamic transitions and mediating the therapeutic effects of the small-molecule ISR inhibitor ISRIB are unknown. Using hydrogen-deuterium exchange-mass spectrometry and cryo-electron microscopy, we identified a central α-helix whose orientation allosterically coordinates eIF2B conformation and assembly. Biochemical and cellular signaling assays show that this 'switch-helix' controls eIF2B activity and signaling. In sum, the switch-helix acts as a fulcrum of eIF2B conformational regulation and is a highly conserved actuator of ISR signal transduction. This work uncovers a conserved allosteric mechanism and unlocks new therapeutic possibilities for ISR-linked diseases.
Collapse
Affiliation(s)
- Rosalie E Lawrence
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Sophie R Shoemaker
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aniliese Deal
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Altos Laboratories, Bay Area Institute of Science, Redwood City, CA, USA
| | - Smriti Sangwan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Aditya A Anand
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Genentech, Inc., South San Francisco, CA, USA
| | - Lan Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- The Hong Kong University of Science and Technology, Hong Kong, Hong Kong.
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
- Altos Laboratories, Bay Area Institute of Science, Redwood City, CA, USA.
| |
Collapse
|
131
|
Deng B, Liu F, Chen N, Li X, Lei J, Chen N, Wu J, Wang X, Lu J, Fang M, Chen A, Zhang Z, He B, Yan M, Zhang Y, Wang Z, Liu Q. AURKA emerges as a vulnerable target for KEAP1-deficient non-small cell lung cancer by activation of asparagine synthesis. Cell Death Dis 2024; 15:233. [PMID: 38521813 PMCID: PMC10960834 DOI: 10.1038/s41419-024-06577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
AURKA is an established target for cancer therapy; however, the efficacy of its inhibitors in clinical trials is hindered by differential response rates across different tumor subtypes. In this study, we demonstrate AURKA regulates amino acid synthesis, rendering it a vulnerable target in KEAP1-deficient non-small cell lung cancer (NSCLC). Through CRISPR metabolic screens, we identified that KEAP1-knockdown cells showed the highest sensitivity to the AURKA inhibitor MLN8237. Subsequent investigations confirmed that KEAP1 deficiency heightens the susceptibility of NSCLC cells to AURKA inhibition both in vitro and in vivo, with the response depending on NRF2 activation. Mechanistically, AURKA interacts with the eIF2α kinase GCN2 and maintains its phosphorylation to regulate eIF2α-ATF4-mediated amino acid biosynthesis. AURKA inhibition restrains the expression of asparagine synthetase (ASNS), making KEAP1-deficient NSCLC cells vulnerable to AURKA inhibitors, in which ASNS is highly expressed. Our study unveils the pivotal role of AURKA in amino acid metabolism and identifies a specific metabolic indication for AURKA inhibitors. These findings also provide a novel clinical therapeutic target for KEAP1-mutant/deficient NSCLC, which is characterized by resistance to radiotherapy, chemotherapy, and targeted therapy.
Collapse
Affiliation(s)
- Bing Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Nana Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinhao Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jie Lei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ning Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jingjing Wu
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jie Lu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mouxiang Fang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ailin Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zijian Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bin He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Min Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuchen Zhang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Quentin Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
132
|
Silva AC, Loizou GD, McNally K, Osborne O, Potter C, Gott D, Colbourne JK, Viant MR. A novel method to derive a human safety limit for PFOA by gene expression profiling and modelling. FRONTIERS IN TOXICOLOGY 2024; 6:1368320. [PMID: 38577564 PMCID: PMC10991825 DOI: 10.3389/ftox.2024.1368320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant that can accumulate in the human body due to its long half-life. This substance has been associated with liver, pancreatic, testicular and breast cancers, liver steatosis and endocrine disruption. PFOA is a member of a large group of substances also known as "forever chemicals" and the vast majority of substances of this group lack toxicological data that would enable their effective risk assessment in terms of human health hazards. This study aimed to derive a health-based guidance value for PFOA intake (ng/kg BW/day) from in vitro transcriptomics data. To this end, we developed an in silico workflow comprising five components: (i) sourcing in vitro hepatic transcriptomics concentration-response data; (ii) deriving molecular points of departure using BMDExpress3 and performing pathway analysis using gene set enrichment analysis (GSEA) to identify the most sensitive molecular pathways to PFOA exposure; (iii) estimating freely-dissolved PFOA concentrations in vitro using a mass balance model; (iv) estimating in vivo doses by reverse dosimetry using a PBK model for PFOA as part of a quantitative in vitro to in vivo extrapolation (QIVIVE) algorithm; and (v) calculating a tolerable daily intake (TDI) for PFOA. Fourteen percent of interrogated genes exhibited in vitro concentration-response relationships. GSEA pathway enrichment analysis revealed that "fatty acid metabolism" was the most sensitive pathway to PFOA exposure. In vitro free PFOA concentrations were calculated to be 2.9% of the nominal applied concentrations, and these free concentrations were input into the QIVIVE workflow. Exposure doses for a virtual population of 3,000 individuals were estimated, from which a TDI of 0.15 ng/kg BW/day for PFOA was calculated using the benchmark dose modelling software, PROAST. This TDI is comparable to previously published values of 1.16, 0.69, and 0.86 ng/kg BW/day by the European Food Safety Authority. In conclusion, this study demonstrates the combined utility of an "omics"-derived molecular point of departure and in silico QIVIVE workflow for setting health-based guidance values in anticipation of the acceptance of in vitro concentration-response molecular measurements in chemical risk assessment.
Collapse
Affiliation(s)
- Arthur de Carvalho e Silva
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, United Kingdom
| | | | | | - Olivia Osborne
- Science Evidence and Research Division, Food Standards Agency, London, United Kingdom
| | - Claire Potter
- Science Evidence and Research Division, Food Standards Agency, London, United Kingdom
| | - David Gott
- Science Evidence and Research Division, Food Standards Agency, London, United Kingdom
| | - John K. Colbourne
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, United Kingdom
| | - Mark R. Viant
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Environmental Research and Justice (CERJ), University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
133
|
Jiogo H, Crist C. Navigating translational control of gene expression in satellite cells. Curr Top Dev Biol 2024; 158:253-277. [PMID: 38670709 DOI: 10.1016/bs.ctdb.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Satellite cells, named for their satellite position around the sarcolemma of the myofibre, are responsible for skeletal muscle regeneration. Satellite cells normally reside in a quiescent state, but rapidly activate the myogenic program and the cell cycle in response to injury. Translational control of gene expression has emerged as an important regulator of satellite cell activity. Quiescent satellite cells maintain low levels of protein synthesis and selectively translate specific mRNAs to conserve limited energy. Activated satellite cells rapidly restore global protein synthesis to meet the demands of proliferating myogenic progenitors that participate in muscle repair. We propose a model by which translational control enables rapid protein level changes in response to injury-induced environmental shifts, serving as both a brake mechanism during quiescence and an accelerator for injury response. In this Chapter, we navigate the processing, translation and metabolism of newly transcribed mRNAs. We review the modifications of mRNA that occur during mRNA processing in the nucleus of satellite cells, and illustrate how these modifications impact the translation and stability of mRNAs. In the cytoplasm, we review how pathways work in concert to regulate protein synthesis globally, while trans acting microRNAs and RNA binding proteins modify specific mRNA translation within a context of tightly regulated protein synthesis. While navigating translational control of gene expression in satellite cells, this chapter reveals that despite significant progress, the field remains nascent in the broader scope of translational control in cell biology. We propose that future investigations will benefit from incorporating emerging global analyses to study translational control of gene expression in rare satellite cells, and we pose unanswered questions that warrant future exploration.
Collapse
Affiliation(s)
- Holly Jiogo
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Colin Crist
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
134
|
Ciudad MT, Quevedo R, Lamorte S, Jin R, Nzirorera N, Koritzinsky M, McGaha TL. Dabrafenib Alters MDSC Differentiation and Function by Activation of GCN2. CANCER RESEARCH COMMUNICATIONS 2024; 4:765-784. [PMID: 38421883 PMCID: PMC10936428 DOI: 10.1158/2767-9764.crc-23-0376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The effect of targeted therapeutics on anticancer immune responses is poorly understood. The BRAF inhibitor dabrafenib has been reported to activate the integrated stress response (ISR) kinase GCN2, and the therapeutic effect has been partially attributed to GCN2 activation. Because ISR signaling is a key component of myeloid-derived suppressor cell (MDSC) development and function, we measured the effect of dabrafenib on MDSC differentiation and suppressive activity. Our data showed that dabrafenib attenuated MDSC ability to suppress T-cell activity, which was associated with a GCN2-dependent block of the transition from monocytic progenitor to polymorphonuclear (PMN)-MDSCs and proliferative arrest resulting in PMN-MDSC loss. Transcriptional profiling revealed that dabrafenib-driven GCN2 activation altered metabolic features in MDSCs enhancing oxidative respiration, and attenuated transcriptional programs required for PMN development. Moreover, we observed a broad downregulation of transcriptional networks associated with PMN developmental pathways, and increased activity of transcriptional regulons driven by Atf5, Mafg, and Zbtb7a. This transcriptional program alteration underlies the basis for PMN-MDSC developmental arrest, skewing immature MDSC development toward monocytic lineage cells. In vivo, we observed a pronounced reduction in PMN-MDSCs in dabrafenib-treated tumor-bearing mice suggesting that dabrafenib impacts MDSC populations systemically and locally, in the tumor immune infiltrate. Thus, our data reveal transcriptional networks that govern MDSC developmental programs, and the impact of GCN2 stress signaling on the innate immune landscape in tumors, providing novel insight into potentially beneficial off-target effects of dabrafenib. SIGNIFICANCE An important, but poorly understood, aspect of targeted therapeutics for cancer is the effect on antitumor immune responses. This article shows that off-target effects of dabrafenib activating the kinase GCN2 impact MDSC development and function reducing PMN-MDSCs in vitro and in vivo. This has important implications for our understanding of how this BRAF inhibitor impacts tumor growth and provides novel therapeutic target and combination possibilities.
Collapse
Affiliation(s)
- M. Teresa Ciudad
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Rene Quevedo
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Sara Lamorte
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Nadine Nzirorera
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
135
|
Zhang J, Shi Y. An upstream open reading frame (5'-uORF) links oxidative stress to translational control of ALCAT1 through phosphorylation of eIF2α. Free Radic Biol Med 2024; 214:129-136. [PMID: 38360278 PMCID: PMC11798684 DOI: 10.1016/j.freeradbiomed.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT1) is an enzyme that promotes mitochondrial dysfunction by catalyzing pathological remodeling of cardiolipin. Upregulation of ALCAT1 protein expression by oxidative stress is implicated in the pathogenesis of age-related metabolic diseases, but the underlying molecular mechanisms remain elusive. In this study, we identified a highly conserved upstream open reading frame (uORF) at the 5'-untranslated region (5'-UTR) of ALCAT1 mRNA as a key regulator of ALCAT1 expression in response to oxidative stress. We show that the uORF serves as a decoy that prevents translation initiation of ALCAT1 under homeostatic condition. The inhibitory activity of the uORF on ALCAT1 mRNA translation is mitigated by oxidative stress but not ER stress, which requires the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Consequently, ablation of uORF or eIF2α phosphorylation at Ser51 renders ALCAT1 protein expression unresponsive to induction by oxidative stress. Taken together, our data show that the uORF links oxidative stress to translation control of ALCAT1 mRNAs through phosphorylation of eIF2α at Ser51.
Collapse
Affiliation(s)
- Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
136
|
Yan G, Han Z, Kwon Y, Jousma J, Nukala SB, Prosser BL, Du X, Pinho S, Ong SB, Lee WH, Ong SG. Integrated Stress Response Potentiates Ponatinib-Induced Cardiotoxicity. Circ Res 2024; 134:482-501. [PMID: 38323474 PMCID: PMC10940206 DOI: 10.1161/circresaha.123.323683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.
Collapse
Affiliation(s)
- Gege Yan
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Youjeong Kwon
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaoping Du
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, CUHK, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence (HK HOPE), Hong Kong Children’s Hospital (HKCH), Kowloon Bay, Hong Kong SAR, China
- Kunming Institute of Zoology – The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Neural, Vascular, and Metabolic Biology Thematic Research Program, School of Biomedical Sciences (SBS), Chinese University of Hong Kong (CUHK), Hong Kong SAR, China
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, USA
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, USA
| |
Collapse
|
137
|
Cloots E, Guilbert P, Provost M, Neidhardt L, Van de Velde E, Fayazpour F, De Sutter D, Savvides SN, Eyckerman S, Janssens S. Activation of goblet-cell stress sensor IRE1β is controlled by the mucin chaperone AGR2. EMBO J 2024; 43:695-718. [PMID: 38177501 PMCID: PMC10907643 DOI: 10.1038/s44318-023-00015-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Intestinal goblet cells are secretory cells specialized in the production of mucins, and as such are challenged by the need for efficient protein folding. Goblet cells express Inositol-Requiring Enzyme-1β (IRE1β), a unique sensor in the unfolded protein response (UPR), which is part of an adaptive mechanism that regulates the demands of mucin production and secretion. However, how IRE1β activity is tuned to mucus folding load remains unknown. We identified the disulfide isomerase and mucin chaperone AGR2 as a goblet cell-specific protein that crucially regulates IRE1β-, but not IRE1α-mediated signaling. AGR2 binding to IRE1β disrupts IRE1β oligomerization, thereby blocking its downstream endonuclease activity. Depletion of endogenous AGR2 from goblet cells induces spontaneous IRE1β activation, suggesting that alterations in AGR2 availability in the endoplasmic reticulum set the threshold for IRE1β activation. We found that AGR2 mutants lacking their catalytic cysteine, or displaying the disease-associated mutation H117Y, were no longer able to dampen IRE1β activity. Collectively, these results demonstrate that AGR2 is a central chaperone regulating the goblet cell UPR by acting as a rheostat of IRE1β endonuclease activity.
Collapse
Affiliation(s)
- Eva Cloots
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Pediatrics and Internal Medicine, Ghent University, 9052, Ghent, Belgium
| | - Phaedra Guilbert
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Pediatrics and Internal Medicine, Ghent University, 9052, Ghent, Belgium
| | - Mathias Provost
- Unit for Structural Biology, VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, 9052, Ghent, Belgium
| | - Lisa Neidhardt
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Evelien Van de Velde
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Pediatrics and Internal Medicine, Ghent University, 9052, Ghent, Belgium
| | - Farzaneh Fayazpour
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Pediatrics and Internal Medicine, Ghent University, 9052, Ghent, Belgium
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052, Ghent, Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, VIB Center for Inflammation Research, 9052, Ghent, Belgium
- Unit for Structural Biology, Department of Biochemistry and Microbiology, 9052, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, 9052, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, 9052, Ghent, Belgium.
- Department of Pediatrics and Internal Medicine, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
138
|
Misra J, Carlson KR, Spandau DF, Wek RC. Multiple mechanisms activate GCN2 eIF2 kinase in response to diverse stress conditions. Nucleic Acids Res 2024; 52:1830-1846. [PMID: 38281137 PMCID: PMC10899773 DOI: 10.1093/nar/gkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Diverse environmental insults induce the integrated stress response (ISR), which features eIF2 phosphorylation and translational control that serves to restore protein homeostasis. The eIF2 kinase GCN2 is a first responder in the ISR that is activated by amino acid depletion and other stresses not directly related to nutrients. Two mechanisms are suggested to trigger an ordered process of GCN2 activation during stress: GCN2 monitoring stress via accumulating uncharged tRNAs or by stalled and colliding ribosomes. Our results suggest that while ribosomal collisions are indeed essential for GCN2 activation in response to translational elongation inhibitors, conditions that trigger deacylation of tRNAs activate GCN2 via its direct association with affected tRNAs. Both mechanisms require the GCN2 regulatory domain related to histidyl tRNA synthetases. GCN2 activation by UV irradiation features lowered amino acids and increased uncharged tRNAs and UV-induced ribosome collisions are suggested to be dispensable. We conclude that there are multiple mechanisms that activate GCN2 during diverse stresses.
Collapse
Affiliation(s)
- Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Kenneth R Carlson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Dan F Spandau
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
- Department of Dermatology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS4067 Indianapolis, Indiana 46202, USA
| |
Collapse
|
139
|
Smirnova AM, Hronova V, Mohammad MP, Herrmannova A, Gunisova S, Petrackova D, Halada P, Coufal S, Swirski M, Rendelman J, Jendruchova K, Hatzoglou M, Beznoskova P, Vogel C, Valasek LS. Stem-loop induced ribosome queuing in the uORF2/ATF4 overlap fine-tunes stress-induced human ATF4 translational control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548609. [PMID: 37502919 PMCID: PMC10369994 DOI: 10.1101/2023.07.12.548609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
ATF4 is a master transcriptional regulator of the integrated stress response leading cells towards adaptation or death. ATF4's induction under stress was thought to be mostly due to delayed translation reinitiation, where the reinitiation-permissive uORF1 plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations, but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrate that the canonical ATF4 translation start site is substantially leaky-scanned. Thus, ATF4's translational control is more complex than originally described underpinning its key role in diverse biological processes.
Collapse
|
140
|
Blake LA, De La Cruz A, Wu B. Imaging spatiotemporal translation regulation in vivo. Semin Cell Dev Biol 2024; 154:155-164. [PMID: 36963991 PMCID: PMC10514244 DOI: 10.1016/j.semcdb.2023.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Translation is regulated spatiotemporally to direct protein synthesis when and where it is needed. RNA localization and local translation have been observed in various subcellular compartments, allowing cells to rapidly and finely adjust their proteome post-transcriptionally. Local translation on membrane-bound organelles is important to efficiently synthesize proteins targeted to the organelles. Protein-RNA phase condensates restrict RNA spatially in membraneless organelles and play essential roles in translation regulation and RNA metabolism. In addition, the temporal translation kinetics not only determine the amount of protein produced, but also serve as an important checkpoint for the quality of ribosomes, mRNAs, and nascent proteins. Translation imaging provides a unique capability to study these fundamental processes in the native environment. Recent breakthroughs in imaging enabled real-time visualization of translation of single mRNAs, making it possible to determine the spatial distribution and key biochemical parameters of in vivo translation dynamics. Here we reviewed the recent advances in translation imaging methods and their applications to study spatiotemporal translation regulation in vivo.
Collapse
Affiliation(s)
- Lauren A Blake
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ana De La Cruz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
141
|
Geng H, Chen L, Lv S, Li M, Huang X, Li M, Liu C, Liu C. Photochemically Controlled Release of the Glucose Transporter 1 Inhibitor for Glucose Deprivation Responses and Cancer Suppression Research. J Proteome Res 2024; 23:653-662. [PMID: 38170682 DOI: 10.1021/acs.jproteome.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer cells need a greater supply of glucose mainly due to their aerobic glycolysis, known as the Warburg effect. Glucose transport by glucose transporter 1 (GLUT1) is the rate-limiting step for glucose uptake, making it a potential cancer therapeutic target. However, GLUT1 is widely expressed and performs crucial functions in a variety of cells, and its indiscriminate inhibition will cause serious side effects. In this study, we designed and synthesized a photocaged GLUT1 inhibitor WZB117-PPG to suppress the growth of cancer cells in a spatiotemporally controllable manner. WZB117-PPG exhibited remarkable photolysis efficiency and substantial cytotoxicity toward cancer cells under visible light illumination with minimal side effects, ensuring its safety as a potential cancer therapy. Furthermore, our quantitative proteomics data delineated a comprehensive portrait of responses in cancer cells under glucose deprivation, underlining the mechanism of cell death via necrosis rather than apoptosis. We reason that our study provides a potentially reliable cancer treatment strategy and can be used as a spatiotemporally controllable trigger for studying nutrient deprivation-related stress responses.
Collapse
Affiliation(s)
- Hongen Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - ShuWen Lv
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoping Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Man Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
142
|
Akai R, Hamashima H, Saito M, Kohno K, Iwawaki T. Partial limitation of cellular functions and compensatory modulation of unfolded protein response pathways caused by double-knockout of ATF6α and ATF6β. Cell Stress Chaperones 2024; 29:34-48. [PMID: 38320450 PMCID: PMC10939067 DOI: 10.1016/j.cstres.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 02/08/2024] Open
Abstract
Mammalian cells have three types of endoplasmic reticulum (ER) stress-sensing molecules: ATF6, IRE1, and PERK. Among these, ATF6 is unique in that it is processed in an ER-stress-specific manner and functions as a transcription factor for the activation of anti-ER stress genes (such as BiP). ATF6 is known to have two homologues, ATF6α and ATF6β, and a greater understanding of their functions has been achieved through analyses using cultured cells. Physiological functions are also gradually being investigated in mice lacking ATF6α or ATF6β. However, little is known about the effects on mouse organisms of the deletion of both the ATF6α and ATF6β genes, since such double-knockout (DKO) mice suffer embryonic lethality at an early developmental stage. In this study, we generated and analyzed ATF6 DKO mice in which embryonic lethality was evaded by using Cre/loxP technology. Pancreatic β cell-specific ATF6 DKO mice were born normally and lived without dysregulation of blood-glucose levels but had a reduced tolerance to glucose. Islets isolated from ATF6 DKO mice also showed low production and secretion of insulin and mild enhancement of IRE1 and PERK activity. We further examined the developmental abnormalities of systemic ATF6 DKO mice. The phenotypes of ATF6α-/-; ATF6β-/- mice were similar to those previously reported, but ATF6α+/-; ATF6β-/- and ATF6α-/-; ATF6β+/- mice showed embryonic lethality at middle developmental stages, unlike those reported. Analysis of embryonic fibroblasts derived from these mice revealed that ATF6α and ATF6β have a gene-dose-dependent functional redundancy and display distinct differences in their ability to induce BiP expression. (250 words).
Collapse
Affiliation(s)
- Ryoko Akai
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Hisayo Hamashima
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Michiko Saito
- Bio-science Research Center, Kyoto Pharmaceutical University, 1, Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenji Kohno
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan; Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Takao Iwawaki
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku, Ishikawa 920-0293, Japan.
| |
Collapse
|
143
|
Fan H, Xu Z, Yao K, Zheng B, Zhang Y, Wang X, Zhang T, Li X, Hu H, Yue B, Hu Z, Zheng H. Osteoclast Cancer Cell Metabolic Cross-talk Confers PARP Inhibitor Resistance in Bone Metastatic Breast Cancer. Cancer Res 2024; 84:449-467. [PMID: 38038966 DOI: 10.1158/0008-5472.can-23-1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
The majority of patients with late-stage breast cancer develop distal bone metastases. The bone microenvironment can affect response to therapy, and uncovering the underlying mechanisms could help identify improved strategies for treating bone metastatic breast cancer. Here, we observed that osteoclasts reduced the sensitivity of breast cancer cells to DNA damaging agents, including cisplatin and the PARP inhibitor (PARPi) olaparib. Metabolic profiling identified elevated glutamine production by osteoclasts. Glutamine supplementation enhanced the survival of breast cancer cells treated with DNA damaging agents, while blocking glutamine uptake increased sensitivity and suppressed bone metastasis. GPX4, the critical enzyme responsible for glutathione oxidation, was upregulated in cancer cells following PARPi treatment through stress-induced ATF4-dependent transcriptional programming. Increased glutamine uptake and GPX4 upregulation concertedly enhanced glutathione metabolism in cancer cells to help neutralize oxidative stress and generate PARPi resistance. Analysis of paired patient samples of primary breast tumors and bone metastases revealed significant induction of GPX4 in bone metastases. Combination therapy utilizing PARPi and zoledronate, which blocks osteoclast activity and thereby reduces the microenvironmental glutamine supply, generated a synergistic effect in reducing bone metastasis. These results identify a role for glutamine production by bone-resident cells in supporting metastatic cancer cells to overcome oxidative stress and develop resistance to DNA-damaging therapies. SIGNIFICANCE Metabolic interaction between osteoclasts and tumor cells contributes to resistance to DNA-damaging agents, which can be blocked by combination treatment with PARP and osteoclast inhibitors to reduce bone metastatic burden.
Collapse
Affiliation(s)
- Huijuan Fan
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhanao Xu
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ke Yao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuan Zhang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuxiang Wang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Tengjiang Zhang
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xuan Li
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Haitian Hu
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
144
|
Cao Y, Li H, Gao Y, Long J, Zheng L, Zhang Q, Li N, Chi X. Esketamine induces apoptosis of nasopharyngeal carcinoma cells through the PERK/CHOP pathway. Toxicol Appl Pharmacol 2024; 483:116800. [PMID: 38219984 DOI: 10.1016/j.taap.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Nasopharyngeal carcinoma, a malignant tumor prevalent in southeast Asia and north Africa, still lacks effective treatment. Esketamine, an N-methyl-D-aspartatic acid (NMDA) receptor (NMDAR) antagonist, is widely used in clinical anesthesia. Emerging evidence suggests that esketamine plays an important role in inhibiting tumor cell activity. However, the underlying mechanisms of esketamine on nasopharyngeal carcinoma remain unknown. In this study, we found that esketamine inhibited the proliferation and migration of nasopharyngeal carcinoma cells. Mechanically, transcriptome sequencing and subsequent verification experiments revealed that esketamine promoted the apoptosis of nasopharyngeal carcinoma cells through endoplasmic reticulum stress PERK/ATF4/CHOP signaling pathway mediated by NMDAR. Additionally, when combined with esketamine, the inhibitory effect of cisplatin on the proliferation of nasopharyngeal carcinoma cells was significantly enhanced. These findings provide new insights into future anti-nasopharyngeal carcinoma clinical strategies via targeting the NMDAR/PERK/CHOP axis alone or in combination with cisplatin.
Collapse
Affiliation(s)
- Yuling Cao
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Huiting Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunfei Gao
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jiao Long
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lei Zheng
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qi Zhang
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Xinjin Chi
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
145
|
Ahlstedt BA, Ganji R, Mukkavalli S, Paulo JA, Gygi SP, Raman M. UBXN1 maintains ER proteostasis and represses UPR activation by modulating translation. EMBO Rep 2024; 25:672-703. [PMID: 38177917 PMCID: PMC10897191 DOI: 10.1038/s44319-023-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
ER protein homeostasis (proteostasis) is essential for proper folding and maturation of proteins in the secretory pathway. Loss of ER proteostasis can lead to the accumulation of misfolded or aberrant proteins in the ER and triggers the unfolded protein response (UPR). In this study, we find that the p97 adaptor UBXN1 is an important negative regulator of the UPR. Loss of UBXN1 sensitizes cells to ER stress and activates the UPR. This leads to widespread upregulation of the ER stress transcriptional program. Using comparative, quantitative proteomics we show that deletion of UBXN1 results in a significant enrichment of proteins involved in ER-quality control processes including those involved in protein folding and import. Notably, we find that loss of UBXN1 does not perturb p97-dependent ER-associated degradation (ERAD). Our studies indicate that loss of UBXN1 increases translation in both resting and ER-stressed cells. Surprisingly, this process is independent of p97 function. Taken together, our studies have identified a new role for UBXN1 in repressing translation and maintaining ER proteostasis in a p97 independent manner.
Collapse
Affiliation(s)
- Brittany A Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- ALPCA diagnostics, Salem, NH, USA
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Sirisha Mukkavalli
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- Dana Farber Cancer Research Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
146
|
Kim LC, Lesner NP, Simon MC. Cancer Metabolism under Limiting Oxygen Conditions. Cold Spring Harb Perspect Med 2024; 14:a041542. [PMID: 37848248 PMCID: PMC10835619 DOI: 10.1101/cshperspect.a041542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Molecular oxygen (O2) is essential for cellular bioenergetics and numerous biochemical reactions necessary for life. Solid tumors outgrow the native blood supply and diffusion limits of O2, and therefore must engage hypoxia response pathways that evolved to withstand acute periods of low O2 Hypoxia activates coordinated gene expression programs, primarily through hypoxia inducible factors (HIFs), to support survival. Many of these changes involve metabolic rewiring such as increasing glycolysis to support ATP generation while suppressing mitochondrial metabolism. Since low O2 is often coupled with nutrient stress in the tumor microenvironment, other responses to hypoxia include activation of nutrient uptake pathways, metabolite scavenging, and regulation of stress and growth signaling cascades. Continued development of models that better recapitulate tumors and their microenvironments will lead to greater understanding of oxygen-dependent metabolic reprogramming and lead to more effective cancer therapies.
Collapse
Affiliation(s)
- Laura C Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
147
|
Dolliver SM, Galbraith C, Khaperskyy DA. Human Betacoronavirus OC43 Interferes with the Integrated Stress Response Pathway in Infected Cells. Viruses 2024; 16:212. [PMID: 38399988 PMCID: PMC10893100 DOI: 10.3390/v16020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Viruses evolve many strategies to ensure the efficient synthesis of their proteins. One such strategy is the inhibition of the integrated stress response-the mechanism through which infected cells arrest translation through the phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2α). We have recently shown that the human common cold betacoronavirus OC43 actively inhibits eIF2α phosphorylation in response to sodium arsenite, a potent inducer of oxidative stress. In this work, we examined the modulation of integrated stress responses by OC43 and demonstrated that the negative feedback regulator of eIF2α phosphorylation GADD34 is strongly induced in infected cells. However, the upregulation of GADD34 expression induced by OC43 was independent from the activation of the integrated stress response and was not required for the inhibition of eIF2α phosphorylation in virus-infected cells. Our work reveals a complex interplay between the common cold coronavirus and the integrated stress response, in which efficient viral protein synthesis is ensured by the inhibition of eIF2α phosphorylation but the GADD34 negative feedback loop is disrupted.
Collapse
Affiliation(s)
| | | | - Denys A. Khaperskyy
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
148
|
Witkamp D, Oudejans E, Hoogterp L, Hu-A-Ng GV, Glaittli KA, Stevenson TJ, Huijsmans M, Abbink TEM, van der Knaap MS, Bonkowsky JL. Lithium: effects in animal models of vanishing white matter are not promising. Front Neurosci 2024; 18:1275744. [PMID: 38352041 PMCID: PMC10861708 DOI: 10.3389/fnins.2024.1275744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3β, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3β, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.
Collapse
Affiliation(s)
- Diede Witkamp
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Ellen Oudejans
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Leoni Hoogterp
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gino V. Hu-A-Ng
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Kathryn A. Glaittli
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Tamara J. Stevenson
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Marleen Huijsmans
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Truus E. M. Abbink
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Marjo S. van der Knaap
- Child Neurology, Emma Children’s Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Joshua L. Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
149
|
Chen H, Wang YD, Blan AW, Almanza-Fuerte EP, Bonkowski ES, Bajpai R, Pruett-Miller SM, Mefford HC. Patient derived model of UBA5-associated encephalopathy identifies defects in neurodevelopment and highlights potential therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577254. [PMID: 38328212 PMCID: PMC10849720 DOI: 10.1101/2024.01.25.577254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Aidan W. Blan
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edith P. Almanza-Fuerte
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily S. Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
150
|
Amiri M, Kiniry SJ, Possemato AP, Mahmood N, Basiri T, Dufour CR, Tabatabaei N, Deng Q, Bellucci MA, Harwalkar K, Stokes MP, Giguère V, Kaufman RJ, Yamanaka Y, Baranov PV, Tahmasebi S, Sonenberg N. Impact of eIF2α phosphorylation on the translational landscape of mouse embryonic stem cells. Cell Rep 2024; 43:113615. [PMID: 38159280 PMCID: PMC10962698 DOI: 10.1016/j.celrep.2023.113615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/β) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.
Collapse
Affiliation(s)
- Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | | | - Niaz Mahmood
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Tayebeh Basiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Qiyun Deng
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Michael A Bellucci
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Matthew P Stokes
- Cell Signaling Technology, Inc., 3 Trask Lane, Danvers, MA 01923, USA
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|