101
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
102
|
Li J, Huang D, Liao W, Wang Y, Liu Y, Luan P. Advanced Nanopharmaceutical Intervention for the Reduction of Inflammatory Responses and the Enhancement of Behavioral Outcomes in APP/PS1 Transgenic Mouse Models. Pharmaceutics 2025; 17:177. [PMID: 40006544 PMCID: PMC11859494 DOI: 10.3390/pharmaceutics17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The excessive accumulation of Aβ plays a critical role in the development of Alzheimer's disease. However, the therapeutic potential of drugs like curcumin is often limited by low biocompatibility and BBB permeability. In this study, we developed a nanomaterial, BP-PEG-Tar@Cur, which was designed to enhance the biocompatibility of (curcumin) Cur, target Aβ, and augment BBB permeability through near-infrared (NIR) photothermal effects. Methods: Soluble Aβ, ThT fluorescence, and Aβ depolymerization fluorescence experiments were conducted to evaluate the ability of BP-PEG-Tar@Cur to inhibit Aβ aggregation and dissociate Aβ fibrils. Cell uptake assays were performed to confirm the targeting ability of BP-PEG-Tar@Cur towards Aβ. In vitro mitochondrial ROS clearance and in vivo detection of inflammatory factors were used to assess the anti-inflammatory and antioxidant properties of the nanodrug. Water maze behavioral experiments were conducted to evaluate the effect of BP-PEG-Tar@Cur on spatial memory, learning ability, and behavioral disorders in AD mice. Results: The nanodrug effectively inhibited Aβ aggregation and dissociated Aβ fibrils in vitro. BP-PEG-Tar@Cur demonstrated efficiency in curbing ROS overproduction in mitochondria and dampening the activation of microglia and astrocytes triggered by Aβ aggregation. Water maze behavioral experiments revealed that BP-PEG-Tar@Cur enhanced spatial memory, learning ability, and alleviated behavioral disorders in AD mice. Conclusions: Collectively, these findings demonstrate that BP-PEG-Tar@Cur has the potential to be an effective targeted drug for inhibiting Aβ aggregation and improving cognitive impairment in AD mice.
Collapse
Affiliation(s)
- Jun Li
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Dongqing Huang
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wanchen Liao
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yulin Wang
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510260, China
| | - Yibiao Liu
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Ping Luan
- Department of Alzheimer’s Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; (J.L.); (D.H.); (W.L.); (Y.W.)
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
103
|
Tiong SQ, Mohgan RN, Quek JY, Liew JYS, Wong GYS, Thang ZQ, Chan ZL, Gan SY, Chan EWL. Inhibition of the Transforming Growth Factor-β Signaling Pathway Confers Neuroprotective Effects on Beta-Amyloid-Induced Direct Neurotoxicity and Microglia-Mediated Neuroinflammation. Neurol Res Int 2025; 2025:8948290. [PMID: 39949498 PMCID: PMC11824711 DOI: 10.1155/nri/8948290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025] Open
Abstract
Background: Abnormal elevation of transforming growth factor-beta (TGF-β) has been observed among Alzheimer's disease (AD) patients. This may be due to microglia-mediated release of proinflammatory cytokines, which promote neuroinflammation and neuronal apoptosis. Silencing of TGFBR1, a gene encoding TGF-β receptor type I (TGF-βR1), has resulted in neuronal survival from amyloid-beta (Aβ)-induced neurotoxicity. Therefore, the present study investigated the neuroprotective effect of TGF-βR1 inhibitors (RepSox, Galunisertib, and Vactosertib) against Aβ-induced direct neurotoxicity and microglia-mediated neuroinflammation. Methods: The neuroprotective effect of TGF-βR1 inhibitors against Aβ-induced direct neurotoxicity and microglia-mediated neuroinflammation were investigated using the RealTime-Glo™ MT Cell Viability Assay. The inhibitory effect of TGF-βR1 inhibitors on Aβ-induced microglia-mediated production of proinflammatory cytokines (TNF-α and IL-1β) was determined using enzyme-linked immunosorbent assay (ELISA). Results: TGF-βR1 inhibitors (RepSox, Galunisertib, and Vactosertib) at the tested concentrations (6.25-150 nM) showed no significant cytotoxicity effects on SH-SY5Y and BV-2 cells. Moreover, treatments with these inhibitors exhibited neuroprotection on SH-SY5Y cells against Aβ-induced direct neurotoxicity. The trend of cell viability after 24 h treatment also supports the microscopic images of the cells' morphology. Furthermore, pretreatment with these inhibitors conferred indirect neuroprotective effect against Aβ-induced microglia-mediated neuroinflammation by attenuating the production of proinflammatory cytokines (TNF-α and IL-1β). Conclusion: The inhibition of the TGF-β signaling pathway in neuronal and microglia cells by TGF-βR1 inhibitors resulted in neuroprotection against Aβ-induced direct neurotoxicity and microglia-mediated neuroinflammation. Hence, targeting the TGF-β signaling pathway in both neuronal and microglia cells could provide a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Shao Qin Tiong
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Jia Yee Quek
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | | | | | - Zi Qing Thang
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Zhi Ling Chan
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Sook Yee Gan
- School of Pharmacy, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Elaine Wan Ling Chan
- Institute for Research, Development and Innovation, IMU University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
104
|
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK, Malik T. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med (Lausanne) 2025; 12:1522223. [PMID: 39963432 PMCID: PMC11831571 DOI: 10.3389/fmed.2025.1522223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal loss and cognitive impairments, pose a significant global health challenge. This study explores the potential of nanotherapeutics as a promising approach to enhance drug delivery across physiological barriers, particularly the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSFB). By employing nanoparticles, this research aims to address critical challenges in the diagnosis and treatment of conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. The multifactorial nature of these disorders necessitates innovative solutions that leverage nanomedicine to improve drug solubility, circulation time, and targeted delivery while minimizing off-target effects. The findings underscore the importance of advancing nanomedicine applications to develop effective therapeutic strategies that can alleviate the burden of neurodegenerative diseases on individuals and healthcare systems.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mukul Jain
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology, Parul University, Vadodara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research & Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
105
|
Hyde VR, Zhou C, Fernandez JR, Chatterjee K, Ramakrishna P, Lin A, Fisher GW, Çeliker OT, Caldwell J, Bender O, Sauer PJ, Lugo-Martinez J, Bar DZ, D'Aiuto L, Shemesh OA. Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease. Cell Rep 2025; 44:115109. [PMID: 39753133 DOI: 10.1016/j.celrep.2024.115109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples. Expression of the herpesvirus protein ICP27 increases with AD severity and strongly colocalizes with p-tau but not with Aβ. Modeling in human brain organoids shows that HSV-1 infection elevates tau phosphorylation. Notably, p-tau reduces ICP27 expression and markedly decreases post-infection neuronal death from 64% to 7%. This modeling prompts investigation into the cGAS-STING-TBK1 pathway products, nuclear factor (NF)-κB and IRF-3, which colocalizes with ICP27 and p-tau in AD. Furthermore, experimental activation of STING enhances tau phosphorylation, while TBK1 inhibition prevents it. Together, these findings suggest that tau phosphorylation acts as an innate immune response in AD, driven by cGAS-STING.
Collapse
Affiliation(s)
- Vanesa R Hyde
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chaoming Zhou
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Juan R Fernandez
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Krishnashis Chatterjee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Pururav Ramakrishna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Amanda Lin
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gregory W Fisher
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Orhan Tunç Çeliker
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jill Caldwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Omer Bender
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Peter Joseph Sauer
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jose Lugo-Martinez
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel Z Bar
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Or A Shemesh
- School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
106
|
Xie J, Tandon R, Mitchell CS. Network Diffusion-Constrained Variational Generative Models for Investigating the Molecular Dynamics of Brain Connectomes Under Neurodegeneration. Int J Mol Sci 2025; 26:1062. [PMID: 39940829 PMCID: PMC11817396 DOI: 10.3390/ijms26031062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is a complex and progressive neurodegenerative condition with significant societal impact. Understanding the temporal dynamics of its pathology is essential for advancing therapeutic interventions. Empirical and anatomical evidence indicates that network decoupling occurs as a result of gray matter atrophy. However, the scarcity of longitudinal clinical data presents challenges for computer-based simulations. To address this, a first-principles-based, physics-constrained Bayesian framework is proposed to model time-dependent connectome dynamics during neurodegeneration. This temporal diffusion network framework segments pathological progression into discrete time windows and optimizes connectome distributions for biomarker Bayesian regression, conceptualized as a learning problem. The framework employs a variational autoencoder-like architecture with computational enhancements to stabilize and improve training efficiency. Experimental evaluations demonstrate that the proposed temporal meta-models outperform traditional static diffusion models. The models were evaluated using both synthetic and real-world MRI and PET clinical datasets that measure amyloid beta, tau, and glucose metabolism. The framework successfully distinguishes normative aging from AD pathology. Findings provide novel support for the "decoupling" hypothesis and reveal eigenvalue-based evidence of pathological destabilization in AD. Future optimization of the model, integrated with real-world clinical data, is expected to improve applications in personalized medicine for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiajia Xie
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Raghav Tandon
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
107
|
Zheng Y, Yu X, Li W, Wu F, Gu Y, Liu K, Tao S, Liu Y, Wang Q. HLA is a potent immunoinflammatory target in asymptomatic Alzheimer's disease. Neuroscience 2025; 565:386-398. [PMID: 39571960 DOI: 10.1016/j.neuroscience.2024.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease, neuroinflammation is an early pathological feature of AD. However, the alteration of the immune microenvironment in asymptomatic AD was not fully explained. In this study, we aimed to utilize the transcriptome data of AD patients in public databases to reveal the change of immune microenvironment in asymptomatic AD and screen the potential drug targets. A series of bioinformatics analyses were done, including differentially expressed genes (DEGs) screening, enrichment analysis, PPI network construction, and hub gene identification. Meanwhile, the selected hub genes were validated in APP/PS-1(AD) mice. Importantly, seven enrichment pathways and eight hub genes associated with inflammation were identified in asymptomatic AD. Correspondingly, more hub genes were increased in the hippocampus in AD mice compared to the other four brain regions. Accompanied by the activation of microglia and astrocytes, the inflammatory cytokines were increased in the hippocampus of AD mice. Subsequently, the relationship between HLA-C and inflammation was evaluated in AD mice. HLA-C was correlated with the activation of microglia, and HLA-DRB1 with IL-6 in the hippocampus. Moreover, HLA-C is expressed in the microglia cells and astrocytes. Further, five FDA-approved drugs (Itrazole, Dfo, Syrosingopine, Cefoperazone, and Pradaxa) were predicted as the common drug targeting HLA-C and HLA-DRB1 by molecular docking. Taken together, the results revealed the changes in the immune microenvironment of asymptomatic AD and provided a new perspective for the development of anti-inflammatory drugs for AD early treatment.
Collapse
Affiliation(s)
- Yingwei Zheng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Xiaobo Yu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, PR China
| | - Wenwen Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Fan Wu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yunlu Gu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Keyao Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Liu
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, PR China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Qian Wang
- Department of Radiology, Xuzhou Central Hospital, Xuzhou 221009, PR China.
| |
Collapse
|
108
|
Ford J, Mohanty R, Westman E, Middleton L. Lower Network Functional Connectivity Is Associated With Higher Regional Tau Burden Among Those At-Risk of Alzheimer's Disease But Cognitively Unimpaired: Specific Patterns Based on Amyloid Status. RESEARCH SQUARE 2025:rs.3.rs-5820051. [PMID: 39975923 PMCID: PMC11838755 DOI: 10.21203/rs.3.rs-5820051/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Functional connectivity within the medial temporal lobe (MTL) and default mode network (DMN) changes across Alzheimer's disease stages, influenced by and influencing cortical amyloid-beta (Aβ) and regional tau burden. Previous research highlights functional connectivity's role in Alzheimer's disease progression and the interactions of cortical Aβ and functional connectivity within and between the MTL and DMN, but their impact on regional tau deposition remains largely unexplored. Methods Cognitively unimpaired participants from OASIS-3 (AV1451 cohort, n=287) were classified into Aβ- (n=193) and Aβ+ (n=94) groups via amyloid-PET for cross-sectional analyses. Principal components analysis of functional connectivity identified two MTL-functional connectivity and DMN-functional connectivity principal components (PCs), which were correlated with regional tau per Braak stages 1-6 brain regions. Aβ status-specific robust regressions evaluated whether functional connectivity was associated with tau. Results In Aβ- participants, lower "MTL Integration Axis" functional connectivity (PC1) was associated with higher tau levels in the left entorhinal cortex. In Aβ+ participants, lower "MTL Integration Axis" functional connectivity correlated with elevated tau levels in the DMN's left lateral parietal cortex, MTL's right parahippocampal cortex, and Braak stages 3-6 brain regions. Discussion Decreased functional connectivity was associated with increased regional tau burden, showing Aβ status-specific effects. Enhancing MTL functional connectivity could be a therapeutic strategy and a promising direction for future clinical interventions.
Collapse
|
109
|
Mancl JM, Wu X, Zhao M, Tang WJ. Dimerization and dynamics of angiotensin-I converting enzyme revealed by cryoEM and MD simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632263. [PMID: 39868314 PMCID: PMC11760429 DOI: 10.1101/2025.01.09.632263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Angiotensin-I converting enzyme (ACE) regulates the levels of disparate bioactive peptides, notably converting angiotensin-I to angiotensin-II and degrading amyloid beta. ACE is a heavily glycosylated dimer, containing 4 analogous catalytic sites, and exists in membrane bound and soluble (sACE) forms. ACE inhibition is a frontline, FDA-approved, therapy for cardiovascular diseases yet is associated with significant side effects, including higher rates of lung cancer. To date, structural studies have been confined to individual domains or partially denatured cryoEM structures. Here we report the cryoEM structure of the full-length, glycosylated, sACE dimer. We resolved four structural states at 2.99 to 3.65 Å resolution which are primarily differentiated by varying degrees of solvent accessibility to the active sites and reveal the full dimerization interface. We also employed all-atom molecular dynamics (MD) simulations and heterogeneity analysis in cryoSPARC, cryoDRGN, and RECOVAR to elucidate the conformational dynamics of sACE and identify key regions mediating conformational change. We identify differences in the mechanisms governing the conformational dynamics of individual domains that have implications for the design of domain-specific sACE modulators.
Collapse
Affiliation(s)
- Jordan M Mancl
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States
| | - Xiaoyang Wu
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Illinois, United States
| | - Wei-Jen Tang
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
110
|
Aivalioti E, Georgiopoulos G, Tual-Chalot S, Bampatsias D, Delialis D, Sopova K, Drakos SG, Stellos K, Stamatelopoulos K. Amyloid-beta metabolism in age-related neurocardiovascular diseases. Eur Heart J 2025; 46:250-272. [PMID: 39527015 PMCID: PMC11735085 DOI: 10.1093/eurheartj/ehae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024] Open
Abstract
Epidemiological evidence suggests the presence of common risk factors for the development and prognosis of both cardio- and cerebrovascular diseases, including stroke, Alzheimer's disease, vascular dementia, heart, and peripheral vascular diseases. Accumulation of harmful blood signals may induce organotypic endothelial dysfunction affecting blood-brain barrier function and vascular health in age-related diseases. Genetic-, age-, lifestyle- or cardiovascular therapy-associated imbalance of amyloid-beta (Aβ) peptide metabolism in the brain and periphery may be the missing link between age-related neurocardiovascular diseases. Genetic polymorphisms of genes related to Aβ metabolism, lifestyle modifications, drugs used in clinical practice, and Aβ-specific treatments may modulate Aβ levels, affecting brain, vascular, and cardiac diseases. This narrative review elaborates on the effects of interventions on Aβ metabolism in the brain, cerebrospinal fluid, blood, and peripheral heart or vascular tissues. Implications for clinical applicability, gaps in knowledge, and future perspectives of Aβ as the link among age-related neurocardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Department of Physiology, School of Medicine, University of Patras, Patra, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| |
Collapse
|
111
|
Ghosh P, Kundu A, Ganguly D. From experimental studies to computational approaches: recent trends in designing novel therapeutics for amyloidogenesis. J Mater Chem B 2025; 13:858-881. [PMID: 39664012 DOI: 10.1039/d4tb01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloidosis is a condition marked by misfolded proteins that build up in tissues and eventually destroy organs. It has been connected to a number of fatal illnesses, including non-neuropathic and neurodegenerative conditions, which in turn have a significant influence on the worldwide health sector. The inability to identify the underlying etiology of amyloidosis has hampered efforts to find a treatment for the condition. Despite the identification of a multitude of putative pathogenic variables that may operate independently or in combination, the molecular mechanisms responsible for the development and progression of the disease remain unclear. A thorough investigation into protein aggregation and the impacts of toxic aggregated species will help to clarify the cytotoxicity of aggregation-mediated cellular apoptosis and lay the groundwork for future studies aimed at creating effective treatments and medications. This review article provides a thorough summary of the combination of various experimental and computational approaches to modulate amyloid aggregation. Further, an overview of the latest developments of novel therapeutic agents is given, along with a discussion of the possible obstacles and viewpoints on this developing field. We believe that the information provided by this review will help scientists create innovative treatment strategies that affect the way proteins aggregate.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| | - Agnibin Kundu
- Department of Medicine, District Hospital Howrah, 10, Biplabi Haren Ghosh Sarani Lane, Howrah 711101, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science & Technology, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| |
Collapse
|
112
|
Summat R, Waiwut P, Daodee S, Nualkaew N, Phemphunananchai K, Arsito PN, Chulikhit Y, Montakantirat O, Khamphukdee C, Boonyarat C. Phytomedicine Potential of Oroxylum indicum Root and Its Constituents: Targeting Alzheimer's Disease. PLANTS (BASEL, SWITZERLAND) 2025; 14:223. [PMID: 39861577 PMCID: PMC11769049 DOI: 10.3390/plants14020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of Oroxylum indicum root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay. They inhibited β-amyloid aggregation as measured by the thioflavin T assay and acetylcholinesterase activity using the Ellman method. In cell culture models, O. indicum extract showed an ability to protect neurons from the toxic effects of H2O2. Western blot analysis revealed the extract and its major active component, baicalein, downregulated pro-apoptotic markers (cleaved caspase-3, and BAX) upon H2O2 exposure. Furthermore, they reduced the expression of amyloidogenic proteins (BACE1) and phosphorylated tau. These findings suggest that O. indicum root extract, particularly baicalein, possesses multifaceted neuroprotective properties, targeting various aspects of AD pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid formation, aggregation, and apoptosis. O. indicum root thus warrants further investigation as a promising source of therapeutic agents for AD.
Collapse
Affiliation(s)
- Rattana Summat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Khemjira Phemphunananchai
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Puguh Novi Arsito
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta 55183, Indonesia;
| | - Yaowared Chulikhit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Orawan Montakantirat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Charinya Khamphukdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| |
Collapse
|
113
|
Giuliani M, Uboldi C, Dellatorre FG, Latour E, Ponce NMA, Stortz CA, Lassalle VL, Ayala-Peña VB. Undaria pinnatifida fucoidan extract inhibits activation of the NF-κB signaling pathway by herpes simplex virus type 1 and prevents amyloid-β peptide synthesis in retinal pigment epithelium cells. Arch Virol 2025; 170:27. [PMID: 39762563 DOI: 10.1007/s00705-024-06212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 02/08/2025]
Abstract
Neurodegenerative pathologies such as age-related macular degeneration currently have no cure or effective treatment. In this type of disease, the presence of amyloid-β peptides, oxidative stress, and inflammation trigger dysregulation of retinal pigment epithelial cells and progression toward the death of these cells, resulting in a loss of vision. The production of amyloid-β peptides, oxidative stress, and inflammation can be triggered in response to viral infections. Fucoidans are sulfated polysaccharides that are present in the cell walls of brown algae. There is a large body of literature reporting a wide range of biological properties of these compounds. In this study, we investigated whether Undaria pinnatifida fucoidan extract can prevent infection with herpes simplex virus type 1 and if the extract has antioxidant activity. We also evaluated whether, under viral infection conditions, the synthesis of amyloid-β peptide and NF-κB activation could be inhibited by the extract. The results showed for the first time that this extract can prevent viral infection in retinal pigment epithelial cells and that they can prevent the formation of amyloid-β peptide and the activation of the NF-κB pathway during viral infection. We also found that Undaria pinnatifida fucoidan extract has antioxidant activity and reduces the levels of reactive oxygen species. These data suggest that Undaria pinnatifida fucoidan extract might be effective for treating diseases triggered by viral infections, such as degenerative retinal diseases.
Collapse
Affiliation(s)
- Macarena Giuliani
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Bahía Blanca, Buenos Aires, Argentina
| | - Camila Uboldi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Bahía Blanca, Buenos Aires, Argentina
| | - Fernando Gaspar Dellatorre
- Grupo de Investigación y Desarrollo Tecnológico en Acuicultura y Pesca (GIDTAP), Facultad Regional Chubut, Universidad Tecnológica Nacional, Puerto Madryn, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ezequiel Latour
- Grupo de Investigación y Desarrollo Tecnológico en Acuicultura y Pesca (GIDTAP), Facultad Regional Chubut, Universidad Tecnológica Nacional, Puerto Madryn, Argentina
| | - Nora Marta Andrea Ponce
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales and Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Stortz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales and Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica Leticia Lassalle
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, INQUISUR, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Victoria Belen Ayala-Peña
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Bahía Blanca, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
114
|
Chunhui G, Yanqiu Y, Jibing C, Ning L, Fujun L. Exosomes and non-coding RNAs: bridging the gap in Alzheimer's pathogenesis and therapeutics. Metab Brain Dis 2025; 40:84. [PMID: 39754674 PMCID: PMC11700052 DOI: 10.1007/s11011-024-01520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that primarily affects the elderly population and is the leading cause of dementia. Meanwhile, the vascular hypothesis suggests that vascular damage occurs in the early stages of the disease, leading to neurodegeneration and hindered waste clearance, which in turn triggers a series of events including the accumulation of amyloid plaques and Tau protein tangles. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), have been found to be involved in the regulation of AD. Furthermore, lncRNAs and circRNAs can act as competitive endogenous RNAs to inhibit miRNAs, and their interactions can form a complex regulatory network. Exosomes, which are extracellular vesicles (EVs), are believed to be able to transfer ncRNAs between cells, thus playing a regulatory role in the brain by crossing the blood-brain barrier (BBB). Exosomes are part of the intercellular carrier system; therefore, utilizing exosomes to deliver drugs to recipient cells might not activate the immune system, making it a potential strategy to treat central nervous system diseases. In this review, we review that AD is a multifactorial neurological disease and that ncRNAs can regulate its multiple pathogenic mechanisms to improve our understanding of the etiology of AD and to simultaneously regulate multiple pathogenic mechanisms of AD through the binding of ncRNAs to exosomes to improve the treatment of AD.
Collapse
Affiliation(s)
- Guo Chunhui
- Graduate School, Guangxi University of Chinese Medicine, Nanning, 530000, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - You Yanqiu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Chen Jibing
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Luo Ning
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Li Fujun
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
115
|
Wu W, Zhao Y, Cheng X, Xie X, Zeng Y, Tao Q, Yang Y, Xiao C, Zhang Z, Pang J, Jin J, He H, Lin Y, Li B, Ma J, Ye X, Lin WJ. Modulation of glymphatic system by visual circuit activation alleviates memory impairment and apathy in a mouse model of Alzheimer's disease. Nat Commun 2025; 16:63. [PMID: 39747869 PMCID: PMC11696061 DOI: 10.1038/s41467-024-55678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease is characterized by progressive amyloid deposition and cognitive decline, yet the pathological mechanisms and treatments remain elusive. Here we report the therapeutic potential of low-intensity 40 hertz blue light exposure in a 5xFAD mouse model of Alzheimer's disease. Our findings reveal that light treatment prevents memory decline in 4-month-old 5xFAD mice and motivation loss in 14-month-old 5xFAD mice, accompanied by restoration of glial water channel aquaporin-4 polarity, improved brain drainage efficiency, and a reduction in hippocampal lipid accumulation. We further demonstrate the beneficial effects of 40 hertz blue light are mediated through the activation of the vLGN/IGL-Re visual circuit. Notably, concomitant use of anti-Aβ antibody with 40 hertz blue light demonstrates improved soluble Aβ clearance and cognitive performance in 5xFAD mice. These findings offer functional evidence on the therapeutic effects of 40 hertz blue light in Aβ-related pathologies and suggest its potential as a supplementary strategy to augment the efficacy of antibody-based therapy.
Collapse
Affiliation(s)
- Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yubai Zhao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical and Rehabilitation Medicine, Guiyang Healthcare Vocational University, Guizhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoru Xie
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Yixiu Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quan Tao
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yishuai Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuan Xiao
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Zhan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Jiahui Pang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo He
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Rehabilitation Medicine, Guangzhou, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Junxian Ma
- Tianfu Xinglong Lake Laboratory, Chengdu, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Wei-Jye Lin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, China.
| |
Collapse
|
116
|
Mohamed DA, Mohamed RS, Fouda K, Mabrok HB. Dietary supplements for prevention of Alzheimer's disease: In vivo and in silico molecular docking studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:170-180. [PMID: 39850118 PMCID: PMC11756737 DOI: 10.22038/ijbms.2024.79960.17320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/03/2024] [Indexed: 01/25/2025]
Abstract
Objectives Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in people over 65. The present research aimed to investigate the potential of different dietary supplements (DS) in preventing AD in an experimental animal model and in silico study. Materials and Methods Three DS containing a mixture of wheat-germ oil and black pepper extract/or turmeric extract were prepared. Total phenolic content, HPLC-phenolic profile, phytosterols content, fatty-acids profile, and anti-oxidant activity were evaluated in all DS. The protective effect of the prepared DS was assessed through their impact on cholinergic neurotransmission and the gene expression of GSK3β, APP, and Akt. Oxidative stress and inflammatory markers were evaluated. The inhibition activities against acetylcholinesterase (AChE) and reduction of amyloid-β aggregation of the major phytochemicals present in the studied DS were evaluated using in silico molecular docking study. Results Molecular docking revealed that rosmarinic acid and β-Sitosterol exhibited the strongest binding affinities for AChE and Amyloid-β, respectively. The results showed that all DS reduced cholinergic neurotransmission, decreased TNF-α as an inflammatory marker, and improved oxidative stress status. All DS down-regulated the expression of GSK3β and APP while significantly up-regulating the expression of the Akt gene. Conclusion The present study concluded that all DS enhanced cholinergic neurotransmission, reduced inflammation, and improved oxidative stress status by impacting the expression of GSK3β, Akt, and APP genes. Rosmarinic acid and β-sitosterol showed promising effects for treating AD, according to an in silico molecular docking study. The studied dietary supplements were considered promising candidates for the prevention of AD.
Collapse
Affiliation(s)
- Doha Abdou Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Rasha Salah Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Karem Fouda
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Hoda Bakr Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
117
|
Gaur A, Singh YP, Sharma R, Bainsal N. Deoxyvasicinone hybrids in the management of Alzheimer's disease: Recent advances on manmade derivatives, pharmacological activities, and structure-activity relationship. Arch Pharm (Weinheim) 2025; 358:e2400742. [PMID: 39731272 DOI: 10.1002/ardp.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/29/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment. Presently marketed medications include memantine, an N-methyl-d-aspartate receptor (NMDA) antagonist, and acetylcholinesterase (AChE) inhibitors: rivastigmine, donepezil, and galantamine. Unfortunately, these medications are only useful in the initial stages of AD. The mentioned medications only provide symptomatic relief and do not slow down the disease progression in the advanced stages. Therefore, there is an urgent need to develop potential candidates to treat AD, symptomatically and therapeutically. Many research groups focus on natural products due to their diverse therapeutic profiles and easy availability. One such natural product is deoxyvasicinone, isolated from Adhatoda vasica. Given its broad pharmacological profile, various researchers have developed semisynthetic hybrids of deoxyvasicinone to address multifaceted diseases like AD. In this review article, we tried to summarize the semisynthetic hybrids of deoxyvasicinone developed over the past decade (2014-2024) for managing AD. We focus on their design, pharmacological activity, and structure-activity relationship (SAR) analysis. We hope this review enhances the reader's understanding of future exploratory options for deoxyvasicinone hybrids in AD management.
Collapse
Affiliation(s)
- Ankur Gaur
- Department of Pharmaceutical Chemistry, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Yash Pal Singh
- Department of Pharmaceutical Chemistry, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Rajiv Sharma
- Department of Pharmaceutical Chemistry, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Neeraj Bainsal
- Department of Pharmacognosy, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
118
|
Ju IG, Lee JH, Lee JM, Im H, Eo H, Moon M, Song MK, Kim YS, Oh MS, Kim YJ. NXP031 restores memory function by dual effects degrading Aβ accumulation and facilitating antioxidant pathway in Alzheimer's disease models. Free Radic Biol Med 2025; 226:158-170. [PMID: 39521153 DOI: 10.1016/j.freeradbiomed.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a representative neurodegenerative disease that is characterized by the overaccumulation of amyloid beta (Aβ) proteins. Since AD is accompanied by excessive oxidative stress, which aggravates neurological pathologies, the use of antioxidants has been considered to prevent disease development. NXP031, a combination of vitamin C (VitC) and an optimized aptamer that binds to VitC and stabilizes the reactivity of VitC, was designed. This study aimed to evaluate the effects of NXP031 on AD pathology, including Aβ accumulation, Aβ-induced oxidative stress, neuronal damage, and neuroinflammation. When NXP031 was administered to 5xFAD transgenic mice, NXP031 exerted a strong inhibitory action on Aβ accumulation, superior to that of VitC, by inducing an increase in Aβ-degrading endopeptidase expression. NXP031 diminished lipid peroxidation levels, activated Nrf2-mediated antioxidant pathways, and suppressed overactivated neuroinflammation. An in vitro study using Neuro2a cells revealed that NXP031 protects the cells against oxidative stress by regulating the MAPK signaling pathway-mediated apoptosis. Additionally, the neuroprotective effects of NXP031 were confirmed in a dose-dependent manner when administered to intrahippocampal Aβ-injected mice, as NXP031 attenuated memory decline, neuronal apoptosis, synaptic degeneration, and excessive glial activation, and reduced NOX-2 expression in the hippocampus. Taken together, NXP031 reduced the Aβ burden by regulating Aβ-degeneration and attenuated memory impairment, neuronal death, synaptic degeneration, and neuroinflammation induced by Aβ toxicity. These results suggest the potential of NXP031 as a therapeutic agent for AD.
Collapse
Affiliation(s)
- In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Joo Hee Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jae-Min Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyeri Im
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 32992, Republic of Korea.
| | - Min Kyung Song
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Yoon-Seong Kim
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA.
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
119
|
Mitra A, Chakraborty D, Naik L, Dhiman R, Sarkar N. Anti-amyloidogenic hexapeptide-coated gold nanoparticles for enhanced inhibition of amyloid formation: A promising therapeutic approach. Int J Biol Macromol 2025; 284:138002. [PMID: 39586437 DOI: 10.1016/j.ijbiomac.2024.138002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Under specific external stimulus, misfolded and natively disordered globular proteins undergo irreversible transformation into pathogenic β-sheet-rich insoluble fibrillar structure, and deposition of theses fibrils in cells and tissues leads to disorders like Alzheimer's, Dementia, Type II diabetes, and many more. Here, we have developed a positively-charged Arg-containing hexapeptide, SqP7, and elucidated its anti-amyloidogenic propensity on in vitro HEWL amyloid formation under acidic and neutral fibrillation conditions using computational tools and several biophysical techniques. SqP7, at a five-fold molar excess, displayed excellent amyloid inhibition capability at both pH conditions (~83 % and 72 % inhibition under acidic and neutral fibrillation conditions, respectively), and was further chosen as a coating agent on gold nanoparticles. This was done to investigate whether coating of this peptide on gold nanoparticles has any effect on its anti-amyloidogenic efficiency and effective inhibition concentration. The synthesized SqP7-coated gold nanoparticles were characterized to be spherical and highly-dispersed having a mean diameter of 9.12 ± 2.08 nm. The anti-amyloidogenic capability of the synthesized SqP7-coated gold nanoparticles was further evaluated, and a 10-fold reduction in the effective inhibition concentration of SqP7 was observed. This peptide‑gold nanoparticle based integrated approach can lead to the development of highly effective therapeutics for amyloid-related diseases, offering improved prevention and treatment options.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Debashmita Chakraborty
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India.
| |
Collapse
|
120
|
Saribas AS, Jensen LE, Safak M. Recent advances in discovery and functional analysis of the small proteins and microRNA expressed by polyomaviruses. Virology 2025; 602:110310. [PMID: 39612622 DOI: 10.1016/j.virol.2024.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
The polyomavirus family consists of a highly diverse group of small DNA viruses isolated from various species, including humans. Some family members have been used as model systems to understand the fundamentals of modern biology. After the discovery of the first two human polyomaviruses (JC virus and BK virus) during the early 1970s, their current number reached 14 today. Some family members cause considerably severe human diseases, including polyomavirus-associated nephropathy (PVAN), progressive multifocal leukoencephalopathy (PML), trichodysplasia spinulosa (TS) and Merkel cell carcinoma (MCC). Polyomaviruses encode universal regulatory and structural proteins, but some members express additional virus-specific proteins and microRNA, which significantly contribute to the viral biology, cell transformation, and perhaps progression of the disease that they are associated with. In the current review, we summarized the recent advances in discovery, and functional and structural analysis of those viral proteins and microRNA.
Collapse
Affiliation(s)
- A Sami Saribas
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Liselotte E Jensen
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Mahmut Safak
- Lewis Katz School of Medicine at Temple University, Department of Microbiology, Immunology and Inflammation Center for Neurovirology and Gene Editing, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
121
|
Doifode T, Maziero MP, Quevedo J, Barichello T. Biomarkers Unveiling the Interplay of Mind, Nervous System, and Immunity. Methods Mol Biol 2025; 2868:73-90. [PMID: 39546226 DOI: 10.1007/978-1-0716-4200-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The field of psychoneuroimmunology has significantly expanded in the last few decades and so has our understanding of the bidirectional communications between the immune and central nervous systems (CNS). There is a preponderance of evidence supporting the fact that immunological pathways and neuroinflammation are involved in the pathophysiology of multiple neurological and mental health conditions. In this chapter, we have explored various neuroimmunological biomarkers involved in these pathways, responsible for developing and perpetuating different neuropsychiatric disorders. This chapter will examine inflammatory biomarkers and those associated with intestinal homeostasis, blood-brain barrier (BBB) permeability, glial cells, and neuronal injury. A range of tests has been developed to evaluate these markers, and we will also explore the existing methods currently employed for these techniques. Further studies of these inflammatory and neurological markers are needed to support their utility as biomarkers for diagnosis and prognosis and to inform treatment strategies for various neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Maria Paula Maziero
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
122
|
Pandey K, Srivastava P, Pandey SK, Johari S, Bhatnagar P, Sonane M, Mishra A. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Curr Mol Med 2025; 25:146-166. [PMID: 39318206 DOI: 10.2174/0115665240334785240913071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by loss of the neurons, excessive accumulation of misfolded Aβ and Tau proteins, and degeneration of neural synapses, primarily occurring in the neocortex and the hippocampus regions of the brain. AD Progression is marked by cognitive deterioration, memory decline, disorientation, and loss of problem-solving skills, as well as language. Due to limited comprehension of the factors contributing to AD and its severity due to neuronal loss, even today, the medications approved by the U.S. Food and Drug Administration (FDA) are not precisely efficient and curative. Stem cells possess great potential in aiding AD due to their self-renewal, proliferation, and differentiation properties. Stem cell therapy can aid by replacing the lost neurons, enhancing neurogenesis, and providing an enriched environment to the pre-existing neural cells. Stem cell therapy has provided us with promising results in regard to the animal AD models, and even pre-clinical studies have shown rather positive results. Cell replacement therapies are potential curative means to treat AD, and there are a number of undergoing human clinical trials to make Stem Cell therapy accessible for AD patients. In this review, we aim to discuss the AD pathophysiology and varied stem cell types and their application.
Collapse
Affiliation(s)
- Kratika Pandey
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Srivastava
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Surabhi Johari
- School of Biosciences, Institute of Management Studies Ghaziabad 9 (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, 201015, India
| | - Priyanka Bhatnagar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, Delhi, 110029, India
| | - Madhavi Sonane
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| |
Collapse
|
123
|
Cottrill R, Ekanayake A, Grove C, Peiris S, Corbett N, Ahmed B, Jens W, Brearly T, Kanekar S, Eslinger P, Yang Q, Karunanayaka P. Alzheimer's disease (AD) in multiple sclerosis (MS): A systematic review of published cases, mechanistic links between AD and MS, and possible clinical evaluation of AD in MS. J Alzheimers Dis Rep 2025; 9:25424823251316134. [PMID: 40034519 PMCID: PMC11864252 DOI: 10.1177/25424823251316134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
Background: Alzheimer's disease (AD) and multiple sclerosis (MS) are two neurological disorders that can pose enormous burden to a person's quality of life. Due to new therapeutic advancements that significantly extend the lifespan, there may be an increased prevalence of AD in elderly MS patients. Objective: Building on a previous review on MS-AD coexistence, this review not only aimed to broaden the pool of literature searched, but also investigated possible mechanistic links between clinical markers for MS and AD. Methods: We searched for newly reported cases of coexisting MS and AD in PubMed, Clinical Key, BioMed Central, and Europe PubMed Central databases; and identified 101 new cases in addition to the previously reported 24 cases by Luczynski et al. (2019). The resulting 125 comorbid cases necessitated an evaluation of literature on the pathogenesis of MS and AD. Results: This review highlights many overlaps between AD and MS (for instance, the immune cell dysfunction, glymphatic dysfunction, genetics, environmental factors, and others). We critically evaluated clinical and laboratory metrics used to identify AD in MS patients (e.g., MRI, amyloid-β and tau protein identification, miRNA biomarker evaluation, cerebrospinal fluid analysis, vitamin levels, gut microbiota etc.). Conclusions: Future research should refine these diagnostic criteria and focus on enhancing screening and detection methods for AD in MS patients. Furthermore, one should also investigate the primary causes of the increased comorbidity between AD and MS.
Collapse
Affiliation(s)
- Ross Cottrill
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Anupa Ekanayake
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Cooper Grove
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Senal Peiris
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Nicholas Corbett
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Biyar Ahmed
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Will Jens
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Tim Brearly
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Sangam Kanekar
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Paul Eslinger
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurology, Penn State University College of Medicine, Hershey, PA, USA
| | - Qing Yang
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
124
|
Pal S, Melnik R. Nonequilibrium landscape of amyloid-beta and calcium ions in application to Alzheimer's disease. Phys Rev E 2025; 111:014418. [PMID: 39972789 DOI: 10.1103/physreve.111.014418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025]
Abstract
Amyloid-beta (Aβ) peptides and calcium ions (Ca^{2+}) serve critical roles in various physiological processes inside neurons, but their dysregulation is involved in the development of neurological disorders, including Alzheimer's disease. Particularly, Aβ_{42} peptides alter Ca^{2+} homeostasis, resulting in synaptic dysfunction and neuronal damage. On the other hand, Ca^{2+} ions can affect Aβ aggregation and clearance routes, either worsening or improving AD pathogenesis. We have considered a deterministic model for Aβ-Ca^{2+} interaction and studied its noise-induced dynamics. The stochastic sensitivity analysis helps to find the confidential ellipses for the stable attractors of the stochastic system. In addition, we have developed a network model based on the interaction between Aβ peptides and Ca^{2+} ions to comprehend their dynamics in the brain connectome better. The probabilistic evolution approach characterizes the dynamics of the stochastic network model and estimates the potentials required to escape from one attractor to another. The numerical simulations suggest that the more connected node requires more energy to switch its state, and the noise intensity plays a crucial role in such cases. Furthermore, this study reveals that external perturbations on Aβ-Ca^{2+} dynamics uncover novel targets for drug development and provide insights into the complex interplay between protein misfolding and synaptic dysfunction in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Swadesh Pal
- Wilfrid Laurier University, MS2 Discovery Interdisciplinary Research Institute, Waterloo, Canada
| | - Roderick Melnik
- Basque Center for Applied Mathematics, Wilfrid Laurier University, MS2 Discovery Interdisciplinary Research Institute, Waterloo, Canada and BCAM - , E-48009 Bilbao, Spain
| |
Collapse
|
125
|
Parker J, Moris JM, Goodman LC, Paidisetty VK, Vanegas V, Turner HA, Melgar D, Koh Y. A multifactorial lens on risk factors promoting the progression of Alzheimer's disease. Brain Res 2025; 1846:149262. [PMID: 39374837 DOI: 10.1016/j.brainres.2024.149262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The prevalence of Alzheimer's disease (AD) among adults has continued to increase over the last two decades, which has sparked a significant increase in research that focuses on the topic of "brain health." While AD is partially determined by a genetic predisposition, there are still numerous pathophysiological factors that require further research. This research requirement stems from the acknowledgment that AD is a multifactorial disease that to date, cannot be prevented. Therefore, addressing and understanding the potential AD risk factors is necessary to increase the quality of life of an aging population. To raise awareness of critical pathways that impact AD progression, this review manuscript describes AD etiologies, structural impairments, and biomolecular changes that can significantly increase the risk of AD. Among them, a special highlight is given to inflammasomes, which have been shown to bolster neuroinflammation. Alike, the role of brain-derived neurotrophic factor, an essential neuropeptide that promotes the preservation of cognition is presented. In addition, the functional role of neurovascular units to regulate brain health is highlighted and contrasted to inflammatory conditions, such as cellular senescence, vascular damage, and increased visceral adiposity, who all increase the risk of neuroinflammation. Altogether, a multifactorial interventional approach is warranted to reduce the risk of AD.
Collapse
Affiliation(s)
- Jenna Parker
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Jose M Moris
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Lily C Goodman
- School of Medicine, Creighton University, Phoenix, AZ, USA
| | - Vineet K Paidisetty
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Vicente Vanegas
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Haley A Turner
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Daniel Melgar
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA.
| |
Collapse
|
126
|
Katsipis G, Lavrentiadou SN, Geromichalos GD, Tsantarliotou MP, Halevas E, Litsardakis G, Pantazaki AA. Evaluation of the Anti-Amyloid and Anti-Inflammatory Properties of a Novel Vanadium(IV)-Curcumin Complex in Lipopolysaccharides-Stimulated Primary Rat Neuron-Microglia Mixed Cultures. Int J Mol Sci 2024; 26:282. [PMID: 39796150 PMCID: PMC11720140 DOI: 10.3390/ijms26010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability. V-Cur, a novel hemocompatible Vanadium(IV)-curcumin complex with higher solubility and bioactivity than curcumin, is studied here. Co-cultures consisting of rat primary neurons and microglia were treated with LPS and/or curcumin or V-Cur. V-Cur disrupted LPS-induced overexpression of amyloid precursor protein (APP) and the in vitro aggregation of human insulin (HI), more effectively than curcumin. Cell stimulation with LPS also increased full-length, inactive, and total iNOS levels, and the inflammation markers IL-1β and TNF-α. Both curcumin and V-Cur alleviated these effects, with V-Cur reducing iNOS levels more than curcumin. Complementary insights into possible bioactivity mechanisms of both curcumin and V-Cur were provided by In silico molecular docking calculations on Aβ1-42, APP, Aβ fibrils, HI, and iNOS. This study renders curcumin-based compounds a promising anti-inflammatory intervention that may be proven a strong tool in the effort to mitigate neurodegenerative disease pathology and neuroinflammatory conditions.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| | - Sophia N. Lavrentiadou
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George D. Geromichalos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria P. Tsantarliotou
- Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleftherios Halevas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece
| | - George Litsardakis
- Laboratory of Materials for Electrotechnics, School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (E.H.)
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001 Thessaloniki, Greece;
| |
Collapse
|
127
|
Li X, Ichiba Y, Watanabe T, Yoshino A, Cheng L, Nagasato Y, Takata F, Dohgu S, Iwasaki K, Tanaka M, Matsui T. Preventive effect of Tyr-Pro, a blood-brain barrier transportable dipeptide, on memory impairment in SAMP8 mice. NPJ Sci Food 2024; 8:114. [PMID: 39738076 DOI: 10.1038/s41538-024-00360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025] Open
Abstract
In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days. The hippocampus and cortex regions of SAMP8 harvested after the test showed lower amyloid ß (Aß) accumulation in the Tyr-Pro group than those in the control and amino acid groups. Consistent with the lower level of Aß, decreased expression of ß-secretase (BACE1) and markedly increased expression (4-times higher) of insulin degrading enzyme (IDE) were obtained compared to those in the control group. Collectively, we demonstrated that long-term daily intake of the dipeptide Tyr-Pro in SAMP8 mice may be sufficient for maintaining cognitive ability by preventing excess Aß accumulation through downregulated BACE1 and particularly upregulated IDE.
Collapse
Affiliation(s)
- Xixi Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
| | - Yuka Ichiba
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
| | - Takuya Watanabe
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Atsuko Yoshino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
| | - Lihong Cheng
- Department of Cell Biology, Graduate School of Medical and Dental Science, Institute of Science Tokyo, Tokyo, Japan
| | - Yuki Nagasato
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan.
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan.
| |
Collapse
|
128
|
Ko YS, Ryu YK, Han S, Park HJ, Choi M, Kim BC, Jeong HS, Jang S, Jo J, Lee S, Choi WS, Cho HH. Hearing modulation affects Alzheimer's disease progression linked to brain inflammation: a study in mouse models. Mol Med 2024; 30:276. [PMID: 39725872 PMCID: PMC11670416 DOI: 10.1186/s10020-024-01040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models. METHODS DIHL was induced in 5xFAD and Tg2576 mice aged 3 to 3.5 weeks using kanamycin (700 mg/kg, subcutaneous) and furosemide (600 mg/kg, intraperitoneal). The accumulation and expression of beta-amyloid (Aβ), ionized calcium-binding adaptor molecule 1 (Iba1), and glial fibrillary acidic protein (GFAP) were measured through immunohistochemistry and immunoblotting. Additionally, the expression of proteins involved in the mammalian target of rapamycin (mTOR) pathway, including downstream effectors p70 ribosomal S6 kinase (p70S6K) and S6, as well as proinflammatory cytokines, was analyzed. RESULTS Compared to control conditions, HL led to a significant increase in the accumulation of Aβ in the hippocampus and cortex. Elevated levels of neuroinflammatory markers, including Iba1 and GFAP, as well as proinflammatory cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α), were observed. Moreover, DIHL enhanced phosphorylation of mTOR, p70S6K, and S6, indicating activation of the mTOR pathway. CONCLUSIONS HL significantly increases Aβ accumulation in the brain. Furthermore, HL activates astrocytes and microglia, leading to increased neuroinflammation and thereby accelerating AD progression. These findings strongly suggest that HL contributes autonomously to neuroinflammation, highlighting the potential for early intervention in HL to reduce AD risk.
Collapse
Affiliation(s)
- Yoo-Seung Ko
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Young-Kyoung Ryu
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Sujin Han
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Hyung Joon Park
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Munyoung Choi
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School & Hospital, Gwangju, 61469, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
129
|
Yang F, Gao W, Wang J, Li X, Li H. Progress of Chinese Medicine in Regulating Microglial Polarization against Alzheimer's Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2255-2275. [PMID: 39721955 DOI: 10.1142/s0192415x24500873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), the predominant form of dementia, is a neurodegenerative disorder of the central nervous system (CNS) characterized by a subtle onset and a spectrum of cognitive and functional declines. The clinical manifestation of AD encompasses memory deficits, cognitive deterioration, and behavioral disturbances, culminating in a severe impairment of daily living skills. Despite its high prevalence, accounting for 60-70% of all dementia cases, there remains an absence of curative therapeutics. Microglia (MG), the resident immune cells of the CNS, exhibit a bifurcated role in AD pathogenesis. Functioning in a neuroprotective capacity, MGs express scavenger receptors, facilitating the clearance of [Formula: see text]-amyloid protein (A[Formula: see text]) and cellular debris. Conversely, aberrant activation of MGs can lead to the secretion of pro-inflammatory cytokines, thereby propagating neuroinflammatory responses that are detrimental to neuronal integrity. The dynamics of MG activation and the ensuing neuroinflammation are pivotal in the evolution of AD. Chinese medicine (CM), a treasure trove of traditional Chinese cultural practices, has demonstrated significant potential in the therapeutic management of AD. Over the past triennium, CM has garnered considerable research attention for its multifaceted approaches to AD, including the regulation of MG polarization. This review synthesizes current knowledge on the origins, polarization dynamics, and mechanistic interplay of MG with AD pathology. It further explores the nexus between MG polarization and cardinal pathological hallmarks of AD, such as A[Formula: see text] plaque deposition, hyperphosphorylation of tau, synaptic plasticity impairments, neuroinflammation, and brain-gut-axis dysregulation. The review also encapsulates the therapeutic strategies of CM, which encompass monomers, formulae, and acupuncture. These strategies modulate MG polarization in the context of AD treatment, thereby providing a robust theoretical framework in which to conduct future investigative endeavors in both the clinical and preclinical realms.
Collapse
Affiliation(s)
- Fengge Yang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
| | - Wei Gao
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- Jiangsu College of Nursing Jiangsu, Huaian, Huaiyin 223001, P. R. China
| | - Junting Wang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P. R. China
| | - Xue Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
| | - Honglin Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P. R. China
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
130
|
Hassan MN, Ahmad A, Hussain M, Gupta S, Khan HY, Aziz T, Khan RH. Exploring Cimetidine as a Potential Therapeutic Attenuator against Amyloid Formation in Parkinson's Disease: Spectroscopic and Microscopic Insights into Alpha-Synuclein and Human Insulin. ACS Chem Neurosci 2024; 15:4517-4532. [PMID: 39628315 DOI: 10.1021/acschemneuro.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Neurodegenerative diseases, notably Alzheimer's and Parkinson's, hallmark their progression through the formation of amyloid aggregates resulting from misfolding. While current therapeutics alleviate symptoms, they do not impede disease onset. In this context, repurposing existing drugs stands as a viable therapeutic strategy. Our study determines the antihistamine drug Cimetidine's potential as an inhibitor using diverse spectroscopic and microscopic methods on alpha-synuclein and human insulin amyloid formation, unveiling its efficacy. The thioflavin T (ThT) assay illustrated a dose-dependent reduction in amyloid formation with escalating concentrations of Cimetidine. Notably, the antihistamine drug maintained a helical structure and showed no significant conformational changes in the secondary structure. Confocal microscopy validated fewer fibrils in the Cimetidine-treated samples. Remarkably, Cimetidine interacted with pre-existing fibrils, leading to their disintegration. Further analyses (ThT, circular dichroism, and dynamic light scattering) showcased the conversion of fibrils into smaller aggregates upon Cimetidine addition. These findings signify the potential of this antihistamine drug as a plausible therapeutic option for Parkinson's disease. This study may open avenues for deeper investigations and possible therapeutic developments, emphasizing Cimetidine's promising role in mitigating neurodegenerative diseases like Parkinson's.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Murtaza Hussain
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Suhani Gupta
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Tariq Aziz
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India
| |
Collapse
|
131
|
Kuznetsov AV. Effect of diffusivity of amyloid beta monomers on the formation of senile plaques. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2024; 41:346-362. [PMID: 39404062 DOI: 10.1093/imammb/dqae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) presents a perplexing question: why does its development span decades, even though individual amyloid beta (Aβ) deposits (senile plaques) can form rapidly in as little as 24 hours, as recent publications suggest? This study investigated whether the formation of senile plaques can be limited by factors other than polymerization kinetics alone. Instead, their formation may be limited by the diffusion-driven supply of Aβ monomers, along with the rate at which the monomers are produced from amyloid precursor protein and the rate at which Aβ monomers undergo degradation. A mathematical model incorporating the nucleation and autocatalytic process (via the Finke-Watzky model), as well as Aβ monomer diffusion, was proposed. The obtained system of partial differential equations was solved numerically, and a simplified version was investigated analytically. The computational results predicted that it takes approximately 7 years for Aβ aggregates to reach a neurotoxic concentration of 50 μM. Additionally, a sensitivity analysis was performed to examine how the diffusivity of Aβ monomers and their production rate impact the concentration of Aβ aggregates.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, 1840 Entrepreneur Drive, Raleigh, North Carolina 27695-7910, USA
| |
Collapse
|
132
|
Engelhardt E, Resende EDPF, Gomes KB. Physiopathological mechanisms underlying Alzheimer's disease: a narrative review. Dement Neuropsychol 2024; 18:e2024VR01. [PMID: 39697643 PMCID: PMC11654088 DOI: 10.1590/1980-5764-dn-2024-vr01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 12/20/2024] Open
Abstract
The neuropathological signature of Alzheimer's disease (AD) comprises mainly amyloid plaques, and neurofibrillary tangles, resulting in synaptic and neuronal loss. These pathological structures stem from amyloid dysfunctional metabolism according to the amyloid cascade hypothesis, leading to the formation of plaques, and apparently inducing the initiation of the abnormal tau pathway, with phosphorylation and aggregation of these proteins, ultimately causing the formation of tangles. In this narrative review, the existing hypothesis related to the pathophysiology of AD were compiled, and biological pathways were highlighted in order to identify the molecules that could represent biological markers of the disease, necessary to establish early diagnosis, as well as the selection of patients for therapeutical interventional strategies.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- Universidade Federal do Rio de Janeiro, Instituto de Neurologia Deolindo Couto, Rio de Janeiro RJ, Brazil
| | - Elisa de Paula França Resende
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte MG, Brazil
| | - Karina Braga Gomes
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Belo Horizonte MG, Brazil
| |
Collapse
|
133
|
Salunkhe J, Ugale R. Recent updates on immunotherapy in neurodegenerative diseases. Brain Res 2024; 1845:149205. [PMID: 39197568 DOI: 10.1016/j.brainres.2024.149205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Neurodegeneration is a progressive event leading to specific neuronal loss due to the accumulation of aberrant proteins. These pathologic forms of proteins further worsen and interfere with normal physiologic mechanisms, which can lead to abnormal proliferation of immune cells and subsequent inflammatory cascades and ultimately neuronal loss. Recently, immunotherapies targeting abnormal, pathologic forms of protein have shown a promising approach to modify the progression of neurodegeneration. Recent advances in immunotherapy have led to the development of novel antibodies against the proteinopathies which can eradicate aggregations of protein as evident from preclinical and clinical studies. Nonetheless, only a few of them have successfully received clinical approval, while others have been discontinued due to a lack of clinical efficacy endpoints. The current review discusses the status of investigational antibodies under clinical trials, their targets for therapeutic action, and evidence for failure or success.
Collapse
Affiliation(s)
- Jotiram Salunkhe
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India.
| |
Collapse
|
134
|
Saxena SK, Ansari S, Maurya VK, Kumar S, Sharma D, Malhotra HS, Tiwari S, Srivastava C, Paweska JT, Abdel-Moneim AS, Nityanand S. Neprilysin-Mediated Amyloid Beta Clearance and Its Therapeutic Implications in Neurodegenerative Disorders. ACS Pharmacol Transl Sci 2024; 7:3645-3657. [PMID: 39698259 PMCID: PMC11651204 DOI: 10.1021/acsptsci.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 12/20/2024]
Abstract
Neprilysin (NEP) is a neutral endopeptidase, important for the degradation of amyloid beta (Aβ) peptides and other neuropeptides, including enkephalins, substance P, and bradykinin, in the brain, that influences various physiological processes such as blood pressure homeostasis, pain perception, and neuroinflammation. NEP breaks down Aβ peptides into smaller fragments, preventing the development of detrimental aggregates such as Aβ plaques. NEP clears Aβ plaques predominantly by enzymatic breakdown in the extracellular space. However, NEP activity may be regulated by a variety of factors, including its expression and activity levels as well as interactions with other proteins or substances present in the brain. The Aβ de novo synthesis results from the amyloidogenic and nonamyloidogenic processing of the amyloid precursor protein (APP). In addition to Aβ synthesis, enzymatic degradation and various clearance pathways also contribute to the degradation of the monomeric form of Aβ peptides in the brain. Higher production, dysfunction of degradation enzymes, defective clearance mechanisms, intracellular accumulation of phosphorylated tau proteins, and extracellular deposition of Aβ are hallmarks of neurodegenerative diseases. Strategies for promoting NEP levels or activity, such as pharmaceutical interventions or gene therapy procedures, are being studied as possible therapies for neurodegenerative diseases including Alzheimer's disease. Therefore, in this perspective, we discuss the recent developments in NEP-mediated amyloidogenic and plausible mechanisms of nonamyloidogenic clearance of Aβ. We further highlight the current therapeutic interventions such as pharmaceutical agents, gene therapy, monoclonal antibodies, and stem-cell-based therapies targeting NEP for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shailendra K. Saxena
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
| | - Saniya Ansari
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
| | - Vimal K. Maurya
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
| | - Swatantra Kumar
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
| | - Deepak Sharma
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
| | - Hardeep S. Malhotra
- Department
of Neurology, King George’s Medical
University, Lucknow 226003, India
| | - Sneham Tiwari
- F.
M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Chhitij Srivastava
- Department
of Neurosurgery, King George’s Medical
University, Lucknow 226003, India
| | - Janusz T. Paweska
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
- Centre for
Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health
Laboratory Service, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Ahmed S. Abdel-Moneim
- Department
of Microbiology, College of Medicine, Taif
University, Al-Taif 21944 Saudi Arabia
| | - Soniya Nityanand
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
| |
Collapse
|
135
|
Khodyreva SN, Dyrkheeva NS, Lavrik OI. Proteins Associated with Neurodegenerative Diseases: Link to DNA Repair. Biomedicines 2024; 12:2808. [PMID: 39767715 PMCID: PMC11673744 DOI: 10.3390/biomedicines12122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The nervous system is susceptible to DNA damage and DNA repair defects, and if DNA damage is not repaired, neuronal cells can die, causing neurodegenerative diseases in humans. The overall picture of what is known about DNA repair mechanisms in the nervous system is still unclear. The current challenge is to use the accumulated knowledge of basic science on DNA repair to improve the treatment of neurodegenerative disorders. In this review, we summarize the current understanding of the function of DNA damage repair, in particular, the base excision repair and double-strand break repair pathways as being the most important in nervous system cells. We summarize recent data on the proteins involved in DNA repair associated with neurodegenerative diseases, with particular emphasis on PARP1 and ND-associated proteins, which are involved in DNA repair and have the ability to undergo liquid-liquid phase separation.
Collapse
Affiliation(s)
- Svetlana N. Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentyeva pr., Novosibirsk 630090, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez pr., St. Petersburg 194223, Russia
| |
Collapse
|
136
|
Singh A, Sharma A, Singh K, Kaur K, Mohana P, Prajapati J, Kaur U, Goswami D, Arora S, Chadha R, Singh Bedi PM. Development of coumarin-inspired bifunctional hybrids as a new class of anti-Alzheimer's agents with potent in vivo efficacy. RSC Med Chem 2024:d4md00782d. [PMID: 39790122 PMCID: PMC11707525 DOI: 10.1039/d4md00782d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized via a click chemistry approach and preliminarily screened for cholinesterase and Aβ1-42 aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC50 = 0.047 μM) over butyrylcholinesterase (BuChE: IC50 ≥ 10 μM) with desired Aβ1-42 aggregation inhibition (72.21% at 50 μM) properties. In addition, AS15 showed protective effects against DNA damage caused by hydroxyl radicals originating from H2O2. Molecular docking and simulation studies confirmed the favorable interactions of AChE and the Aβ1-42 monomer desired for their inhibition. AS15 exhibited an LD50 value of 300 mg kg-1 and showed significant improvements in memory and learning behavior in scopolamine-induced cognition impairment mouse-based animal models (Y-maze test and Morris water maze test) for behavioral analysis. Overall outcomes suggest AS15 as a potential preclinical multifunctional candidate for the management of Alzheimer's disease, and it serves as a promising lead for further development of potent and safer multifunctional anti-Alzheimer's agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Jignesh Prajapati
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujrat University Ahmedabad Gujrat 380009 India
| | - Uttam Kaur
- University School of Business Management, Chandigarh University Gharuan 140413 India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujrat University Ahmedabad Gujrat 380009 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh 160014 India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University Amritsar Punjab 143005 India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University Amritsar Punjab 143005 India
| |
Collapse
|
137
|
Khan MA. Targeting Iron Responsive Elements (IREs) of APP mRNA into Novel Therapeutics to Control the Translation of Amyloid-β Precursor Protein in Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:1669. [PMID: 39770511 PMCID: PMC11677800 DOI: 10.3390/ph17121669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The hallmark of Alzheimer's disease (AD) is the buildup of amyloid-β (Aβ), which is produced when the amyloid precursor protein (APP) misfolds and deposits as neurotoxic plaques in the brain. A functional iron responsive element (IRE) RNA stem loop is encoded by the APP 5'-UTR and may be a target for regulating the production of Alzheimer's amyloid precursor protein. Since modifying Aβ protein expression can give anti-amyloid efficacy and protective brain iron balance, targeted regulation of amyloid protein synthesis through modulation of 5'-UTR sequence function is a novel method for the prospective therapy of Alzheimer's disease. Numerous mRNA interference strategies target the 2D RNA structure, even though messenger RNAs like tRNAs and rRNAs can fold into complex, three-dimensional structures, adding even another level of complexity. The IRE family is among the few known 3D mRNA regulatory elements. This review seeks to describe the structural and functional aspects of IREs in transcripts, including that of the amyloid precursor protein, that are relevant to neurodegenerative diseases, including AD. The mRNAs encoding the proteins involved in iron metabolism are controlled by this family of similar base sequences. Like ferritin IRE RNA in their 5'-UTR, iron controls the production of APP in their 5'-UTR. Iron misregulation by iron regulatory proteins (IRPs) can also be investigated and contrasted using measurements of the expression levels of tau production, Aβ, and APP. The development of AD is aided by iron binding to Aβ, which promotes Aβ aggregation. The development of small chemical therapeutics to control IRE-modulated expression of APP is increasingly thought to target messenger RNAs. Thus, IRE-modulated APP expression in AD has important therapeutic implications by targeting mRNA structures.
Collapse
Affiliation(s)
- Mateen A Khan
- Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
138
|
Guo J, Xu Y, Liu J, Hou X. The involvement of lidocaine in amyloid-β1-42-dependent mitochondrial dysfunction and apoptosis in hippocampal neurons via nerve growth factor-protein kinase B pathway. Neuroreport 2024; 35:1123-1132. [PMID: 39445521 DOI: 10.1097/wnr.0000000000002105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This project is conceived to reveal the role of lidocaine in the process of Alzheimer's disease (AD) and its possible downstream targets. After the employment of AD cell model in mice hippocampal neuronal HT-22 cells in the presence of amyloid-β1-42 (Aβ1-42), Cell Counting Kit-8 method investigated cell viability. Oxidative damage was assayed based on a dichloro-dihydro-fluorescein diacetate fluorescent probe and commercially available kits. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide fluorescent probe estimated mitochondrial function. Terminal-deoxynucleotidyl transferase mediated nick end labeling, western blotting, and immunofluorescence appraised the apoptotic level. Western blot also ascertained the alternations of nerve growth factors (NGF)-protein kinase B (Akt) pathway-related proteins. Aβ1-42 concentration dependently triggered the viability loss, oxidative damage, and apoptosis in HT-22 cells. Lidocaine promoted the viability and reduced the mitochondrial impairment and mitochondria-dependent apoptosis in Aβ1-42-treated HT-22 cells in a concentration-dependent manner. Besides, lidocaine activated the NGF-Akt pathway and NGF absence blocked NGF-Akt pathway, aggravated mitochondrial dysfunction as well as mitochondria-dependent apoptosis in lidocaine-administrated HT-22 cells in response to Aβ1-42. Altogether, these observations concluded that lidocaine might stimulate NGF-Akt pathway to confer protection against mitochondrial impairment and apoptosis in Aβ1-42-mediated cellular model of AD.
Collapse
Affiliation(s)
- Jianlian Guo
- Department of Surgical Anesthesiology, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | | | | | | |
Collapse
|
139
|
Shen H, Liu W, Dou Y, Lu Y, Zhang C, Wang X, Kong F, Wang S. Guluronic acid disaccharide inhibits reactive oxygen species production and amyloid-β oligomer formation. Biochem Biophys Res Commun 2024; 737:150467. [PMID: 39133984 DOI: 10.1016/j.bbrc.2024.150467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 11/13/2024]
Abstract
In general, Cu(II) is the critical factor in catalyzing reactive oxygen species (ROS) production and accelerating amyloid-β (Aβ) oligomer formation in Alzheimer's disease (AD). Natural chelating agents with good biocompatibility and appropriate binding affinity with Cu(II) have emerged as potential candidates for AD therapy. Herein, we tested the capability of guluronic acid disaccharide (Di-GA), a natural chelating agent with the moderate association affinity to Cu(II), in inhibiting ROS production and Aβ oligomer formation. The results showed that Di-GA was capable of chelating with Cu(II) and reducing ROS production, even in solutions containing Fe(II), Zn(II), and Aβ. In addition, Di-GA can also capture Cu(II) from Cu-Aβ complexes and decrease Aβ oligomer formation. The cellular results confirmed that Di-GA prevented SH-SY5Y cells from ROS and Aβ oligomer damage by reducing the injury of ROS and Aβ oligomers on cell membrane and decreasing their intracellular damage on mitochondria. Notably, the slightly higher efficiency of Di-GA in chelating with Cu(I) than Cu(II) can be benefit for its in vivo applications, as Cu(I) is not only the most active but also the special intermediate specie during ROS production process. All of these results proved that Di-GA could be a promising marine drug candidate in reducing copper-related ROS damage and Aβ oligomer toxicity associated with AD.
Collapse
Affiliation(s)
- Hangyu Shen
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Wenhui Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Yun Dou
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Yongxin Lu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Chunling Zhang
- Department of Rheumatology, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong, 250013, China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China; Shandong Haizhibao Ocean Science and Technology Co., Ltd, Weihai, Shandong, 264300, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
140
|
Cehlar O, Njemoga S, Horvath M, Cizmazia E, Bednarikova Z, Barrera EE. Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer's Disease, Parkinson's Disease and Prionopathies. Int J Mol Sci 2024; 25:13049. [PMID: 39684761 DOI: 10.3390/ijms252313049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer's and Parkinson's disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies.
Collapse
Affiliation(s)
- Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Marian Horvath
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Erik Cizmazia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovakia
| | - Exequiel E Barrera
- Instituto de Histología y Embriología (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo, Mendoza M5502JMA, Argentina
| |
Collapse
|
141
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
142
|
Habeck T, Zurmühl SS, Figueira AJ, Maciel EVS, Gomes CM, Lermyte F. Cross-Interactions of Aβ Peptides Implicated in Alzheimer's Disease Shape Amyloid Oligomer Structures and Aggregation. ACS Chem Neurosci 2024; 15:4295-4304. [PMID: 39561091 DOI: 10.1021/acschemneuro.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
A defining hallmark of Alzheimer's disease (AD) is the synaptic aggregation of the amyloid β (Aβ) peptide. In vivo, Aβ production results in a diverse mixture of variants, of which Aβ40, Aβ42, and Aβ43 are profusely present in the AD brain, and their relative abundance is recognized to play a role in disease onset and progression. Nonetheless, the occurrence of Aβ40, Aβ42, and Aβ43 hetero-oligomerization and the subsequent effects on Aβ aggregation remain elusive and were investigated here. Using thioflavin-T (ThT)-monitored aggregation assays and native mass spectrometry coupled to ion mobility analysis (IM-MS), we first show that all Aβ peptides are aggregation-competent and self-assemble into homo-oligomers with distinct conformational populations, which are more pronounced between Aβ40 than the longer variants. ThT assays were then conducted on binary mixtures of Aβ variants, revealing that Aβ42 and Aβ43 aggregate independently from Aβ40 but significantly speed up Aβ40 fibrillation. Aβ42 and Aβ43 were observed to aggregate concurrently and mutually accelerate fibril formation, which likely involves hetero-oligomerization. Accordingly, native MS analysis revealed pairwise oligomerization between all variants, with the formation of heterodimers and heterotrimers. Interestingly, IM-MS indicates that hetero-oligomers containing longer Aβ variants are enriched in conformers with lower collision cross-sections when compared to their homo-oligomer counterparts. This suggests that Aβ42 and Aβ43 are capable of remodeling the oligomer structure toward a higher compaction level. Altogether, our findings provide a mechanistic description for the hetero-oligomerization of Aβ variants implicated in AD, contributing to rationalizing their in vivo proteotoxic interplay.
Collapse
Affiliation(s)
- Tanja Habeck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Silvana Smilla Zurmühl
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - António J Figueira
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | - Cláudio M Gomes
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
143
|
Paterson C, Vargis E. Applying low levels of strain to model nascent phenomenon of retinal pathologies. LAB ON A CHIP 2024; 24:5338-5346. [PMID: 39575534 PMCID: PMC11884429 DOI: 10.1039/d4lc00205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in aging populations. A better understanding of the mechanisms of the disease, especially at early stages, could elucidate new treatment targets. One characteristic of AMD is strain on the retinal pigment epithelium (RPE), a crucial layer of the retina. This strain can be caused by physical phenomena like waste aggregation underneath the RPE, drusen formation, or leaky blood vessels that infiltrate the retina during choroidal neovascularization (CNV). It is not well understood how strain affects RPE cell function. Most models generate equibiaxial strain or higher levels of strain that are not representative of early stages of AMD. To overcome these issues, we engineered a device to cause controlled, low amounts of localized, radial strain (maximum ∼1.4%). This strain level is more mimetic to what occurs during aging or at the beginning of physical disruptions experienced during AMD. To evaluate how RPE cells respond to this physical stimulus, primary porcine RPE cells were exposed to low levels of strain applied by our custom-made device. Cell secretions and genetic expression were analyzed to determine how proteins linked to drusen and CNV are affected. The results indicate that this low amount of strain does not immediately initiate angiogenesis but causes changes in mRNA expression of amyloid precursor protein (APP), which plays a role in retinal health and drusen accumulation. This research offers insight into AMD progression as well as the health of other organs, including the brain.
Collapse
Affiliation(s)
- Chase Paterson
- Biological Engineering, Utah State University College of Engineering, 4105 Old Main Hill, ENGR 402, Logan, Utah, USA.
| | - Elizabeth Vargis
- Biological Engineering, Utah State University College of Engineering, 4105 Old Main Hill, ENGR 402, Logan, Utah, USA.
| |
Collapse
|
144
|
Wani NA, Gazit E, Ramamoorthy A. Interplay between Antimicrobial Peptides and Amyloid Proteins in Host Defense and Disease Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25355-25366. [PMID: 39564995 DOI: 10.1021/acs.langmuir.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The biological properties of antimicrobial peptides (AMPs) and amyloid proteins and their cross-talks have gained increasing attention due to their potential implications in both host defense mechanisms and amyloid-related diseases. However, complex interactions, molecular mechanisms, and physiological applications are not fully understood. The interplay between antimicrobial peptides and amyloid proteins is crucial for uncovering new insights into immune defense and disease mechanisms, bridging critical gaps in understanding infectious and neurodegenerative diseases. This review provides an overview of the cross-talk between AMPs and amyloids, highlighting their intricate interplay, mechanisms of action, and potential therapeutic implications. The dual roles of AMPs, which not only serve as key components of the innate immune system, combating microbial infections, but also exhibit modulatory effects on amyloid formation and toxicity, are discussed. The diverse mechanisms employed by AMPs to modulate amyloid aggregation, fibril formation, and toxicity are also discussed. Additionally, we explore emerging evidence suggesting that amyloid proteins may possess antimicrobial properties, adding a new dimension to the intricate relationship between AMPs and amyloids. This review underscores the importance of understanding the cross-talk between AMPs and amyloids to better understand the molecular processes underlying infectious diseases and amyloid-related disorders and to aid in the development of therapeutic avenues to treat them.
Collapse
Affiliation(s)
- Naiem Ahmad Wani
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Ehud Gazit
- Department of Materials Science and Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Ayyalusamy Ramamoorthy
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32304, United States
| |
Collapse
|
145
|
Negi M, Amulya E, Phatale V, Abraham N, Hedaoo A, Srinivasarao DA, Srivastava S. Surface engineered nano architectonics: An evolving paradigm for tackling Alzheimer's disease. Life Sci 2024; 358:123155. [PMID: 39433085 DOI: 10.1016/j.lfs.2024.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As per the World Health Organization (WHO) estimation, Alzheimer's disease (AD) will affect 100 million population across the globe by 2050. AD is an incurable neurodegenerative disease that remains a mystery for neurologists owing to its complex pathophysiology. Currently, available therapeutic regimens will only cause symptomatic relief by improving the cognitive and behavioral functions of AD. However, the major pitfalls in managing AD include tight junctions in the endothelial cells of the blood-brain barrier (BBB), diminished neuronal bioavailability, enzymatic degradation and reduced stability of the therapeutic moiety. In an effort to surmount the drawbacks mentioned above, researchers shifted their focus toward nanocarriers (NCs). Nevertheless, non-specific targeting of NCs imparts toxicity to the peripheral organs, thereby reducing the bioavailability of therapeutic moiety at the target site. To unravel this unmet clinical need, scientists came up with the idea of a novel intriguing strategy of surface engineering by targeting ligands. Surface-decorated NCs provide targeted drug delivery, controlled drug release, enhanced penetration and bioavailability. In this state-of-the-art review, we have highlighted in detail various molecular signalling pathways involved in AD pathogenesis. The significance of surface functionalization and its application in AD management have been deliberated. We have elaborated on the regulatory bottlenecks and clinical hurdles faced during lab-to-industrial scale translation along with possible solutions.
Collapse
Affiliation(s)
- Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
146
|
Zhu C, Wang S, Ma S, Zhang S, Wang Y, Li B, Zhang W, Sun Z. Gastrodin reduces Aβ brain levels in an Alzheimer's disease mouse model by inhibiting P-glycoprotein ubiquitination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156229. [PMID: 39541666 DOI: 10.1016/j.phymed.2024.156229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Studies have demonstrated the potential of gastrodin in the treatment of Alzheimer's disease (AD), however, its mechanism of action remains elusive. Currently, the Amyloid-β (Aβ) cascade hypothesis continues to be the prevailing theory regarding AD etiology. The ubiquitination of P-glycoprotein (P-gp) at the blood-brain barrier (BBB) contributes to the accumulation of Aβ in the brain during AD. PURPOSE To investigate the mechanism of gastrodin intervention in AD. METHODS The molecular docking, molecular dynamics simulations, and microscale thermophoresis (MST) were employed to identify the action target of gastrodin. The western blot (WB) was performed to detect the protein expression level, the ubiquitination level of P-gp was determined using co-immunoprecipitation (CO-IP) assay. P-gp transport activity was detected using an NBD-CSA fluorescence assay. Trans-Epithelial Electrical Resistance (TEER) was used to detect cell resistance. Fluorescein-labeled dextran experiments were performed to determine the individual cell permeability. The immunofluorescence (IF) was employed to detect Aβ deposition, the Morris Water Maze test was used to assess behavioral changes in APP/PS1 mice and the levels of Aβ40 and Aβ42 expression were quantified using enzyme-linked immunosorbent assay. RESULTS The FBXO15 was the target of gastrodin-mediated inhibition of P-gp ubiquitination. Gastrodin increased the P-gp expression, cell resistance, and P-gp transport activity of BEND.3 cells upon treatment with Aβ40 through mechanisms involving the reduction of FBXO15 and P-gp binding and the inhibition of P-gp ubiquitination. And gastrodin could effectively improve memory function and increase number of neurons in APP/PS1 mice, reduce the accumulation of Aβ40 and Aβ42, and enhance P-gp expression in a dose-dependent manner. CONCLUSION Aβ40 induces the ubiquitination and proteasomal degradation of BBB P-gp, however, gastrodin inhibits the ubiquitination of P-gp by binding to FBXO15, thereby increasing P-gp protein expression and enhancing its transport function.
Collapse
Affiliation(s)
- Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Siyu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Shurui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yanjun Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Baoshan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Wei Zhang
- Chinese Herbal Medicine Industry Development Center of Ningqiang County, Hanzhong 724400, PR China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
147
|
Tolstova AP, Adzhubei AA, Strelkova MA, Makarov AA, Mitkevich VA. Survey of the Aβ-peptide structural diversity: molecular dynamics approaches. Biophys Rev 2024; 16:701-722. [PMID: 39830132 PMCID: PMC11735825 DOI: 10.1007/s12551-024-01253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
The review deals with the application of Molecular Dynamics (MD) to the structure modeling of beta-amyloids (Aβ), currently classified as intrinsically disordered proteins (IDPs). In this review, we strive to relate the main advances in this area but specifically focus on the approaches and methodology. All relevant papers on the Aβ modeling are cited in the Tables in Supplementary Data, including a concise description of the applied approaches, sorted according to the types of the studied systems: modeling of the monomeric Aβ and Aβ aggregates. Similar sections focused according to the type of modeled object are present in the review. In the final part of the review, novel methods of general IDP modeling not confined to Aβ are described. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-024-01253-y.
Collapse
Affiliation(s)
- Anna P. Tolstova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Alexei A. Adzhubei
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
- Washington University School of Medicine and Health Sciences, Washington, DC USA
| | - Maria A. Strelkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| |
Collapse
|
148
|
Kamalaldinezabadi SS, Watzlawik JO, Rosenberry TL, Paravastu AK, Stagg SM. Aggregation dynamics of a 150 kDa Aβ42 oligomer: Insights from cryo electron microscopy and multimodal analysis. Comput Struct Biotechnol J 2024; 23:4205-4213. [PMID: 39650331 PMCID: PMC11621449 DOI: 10.1016/j.csbj.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 12/11/2024] Open
Abstract
Protein misfolding is a widespread phenomenon that can result in the formation of protein aggregates, which are markers of various disease states, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) peptides are key players in the disease's progression, particularly the 40- and 42- residue variants, Aβ40 and Aβ42. These peptides aggregate to form amyloid plaques and contribute to neuronal toxicity. Recent research has shifted attention from solely Aβ fibrils to also include Aβ protofibrils and oligomers as potentially critical pathogenic agents. Particularly, oligomers demonstrate more significant toxicity compared to other Aβ specie. Hence, there is an increased interest in studying the correlation between toxicity and their structure and aggregation pathway. The present study investigates the aggregation of a 150 kDa Aβ42 oligomer that does not lead to fibril formation. Using negative stain transmission electron microscopy (TEM), size exclusion chromatography (SEC), dynamic light scattering (DLS), and cryo-electron microscopy (cryo-EM), we demonstrate that 150 kDa Aβ42 oligomers form higher-order string-like assemblies over time. These strings are unique from the classical Aβ fibrils. The significance of our work lies in elucidating molecular behavior of a novel non-fibrillar form of Aβ42 aggregate.
Collapse
Affiliation(s)
| | - Jens O. Watzlawik
- The Departments on Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Terrone L. Rosenberry
- The Departments on Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anant K. Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
149
|
Kuznetsov AV. Simulating the Growth of TATA-Box Binding Protein-Associated Factor 15 Inclusions in Neuron Soma. J Biomech Eng 2024; 146:121010. [PMID: 39222014 DOI: 10.1115/1.4066386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
To the best of the author's knowledge, this paper presents the first attempt to develop a mathematical model of the formation and growth of inclusions containing misfolded TATA-box binding protein associated factor 15 (TAF15). It has recently been shown that TAF15 inclusions are involved in approximately 10% of cases of frontotemporal lobar degeneration (FTLD). FTLD is the second most common neurodegenerative disease after Alzheimer's disease (AD). It is characterized by a progressive loss of personality, behavioral changes, and a decline in language skills due to the degeneration of the frontal and anterior temporal lobes. The model simulates TAF15 monomer production, nucleation and autocatalytic growth of free TAF15 aggregates, and their deposition into TAF15 inclusions. The accuracy of the numerical solution of the model equations is validated by comparing it with analytical solutions available for limiting cases. Physiologically relevant parameter values were used to predict TAF15 inclusion growth. It is shown that the growth of TAF15 inclusions is influenced by two opposing mechanisms: the rate at which free TAF15 aggregates are deposited into inclusions and the rate of autocatalytic production of free TAF15 aggregates from monomers. A low deposition rate slows inclusion growth, while a high deposition rate hinders the autocatalytic production of new aggregates, thus also slowing inclusion growth. Consequently, the rate of inclusion growth is maximized at an intermediate deposition rate of free TAF15 aggregates into TAF15 inclusions.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
150
|
Fayoud H, Belousov MV, Antonets KS, Nizhnikov AA. Pathogenesis-Associated Bacterial Amyloids: The Network of Interactions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2107-2132. [PMID: 39865026 DOI: 10.1134/s0006297924120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 01/28/2025]
Abstract
Amyloids are protein fibrils with a characteristic cross-β structure that is responsible for the unusual resistance of amyloids to various physical and chemical factors, as well as numerous pathogenic and functional consequences of amyloidogenesis. The greatest diversity of functional amyloids was identified in bacteria. The majority of bacterial amyloids are involved in virulence and pathogenesis either via facilitating formation of biofilms and adaptation of bacteria to colonization of a host organism or through direct regulation of toxicity. Recent studies have shown that, beside their commonly known activity, amyloids may be involved in the spatial regulation of proteome by modulating aggregation of other amyloidogenic proteins with multiple functional or pathological effects. Although the studies on the role of microbiome-produced amyloids in the development of amyloidoses in humans and animals have only been started, it is clear that humans as holobionts contain amyloids encoded not only by the host genome, but also by microorganisms that constitute the microbiome. Amyloids acquired from external sources (e.g., food) can interact with holobiont amyloids and modulate the effects of bacterial and host amyloids, thus adding another level of complexity to the holobiont-associated amyloid network. In this review, we described bacterial amyloids directly or indirectly involved in disease pathogenesis in humans and discussed the significance of bacterial amyloids in the three-component network of holobiont-associated amyloids.
Collapse
Affiliation(s)
- Haidar Fayoud
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Mikhail V Belousov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Kirill S Antonets
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| | - Anton A Nizhnikov
- Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034, Russia. ARRAY(0x5ae2b7af6df8)
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, 196608, Russia
| |
Collapse
|