101
|
Abad-Navarro F, de la Morena-Barrio ME, Fernández-Breis JT, Corral J. Lost in translation: bioinformatic analysis of variations affecting the translation initiation codon in the human genome. Bioinformatics 2018; 34:3788-3794. [PMID: 29868922 DOI: 10.1093/bioinformatics/bty453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/30/2018] [Indexed: 11/12/2022] Open
Abstract
Motivation Translation is a key biological process controlled in eukaryotes by the initiation AUG codon. Variations affecting this codon may have pathological consequences by disturbing the correct initiation of translation. Unfortunately, there is no systematic study describing these variations in the human genome. Moreover, we aimed to develop new tools for in silico prediction of the pathogenicity of gene variations affecting AUG codons, because to date, these gene defects have been wrongly classified as missense. Results Whole-exome analysis revealed the mean of 12 gene variations per person affecting initiation codons, mostly with high (>0.01) minor allele frequency (MAF). Moreover, analysis of Ensembl data (December 2017) revealed 11 261 genetic variations affecting the initiation AUG codon of 7205 genes. Most of these variations (99.5%) have low or unknown MAF, probably reflecting deleterious consequences. Only 62 variations had high MAF. Genetic variations with high MAF had closer alternative AUG downstream codons than did those with low MAF. Besides, the high-MAF group better maintained both the signal peptide and reading frame. These differentiating elements could help to determine the pathogenicity of this kind of variation. Availability and implementation Data and scripts in Perl and R are freely available at https://github.com/fanavarro/hemodonacion. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Francisco Abad-Navarro
- Departamento de Informática y Sistemas, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Spain
| | | | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Spain
| |
Collapse
|
102
|
Shan S, Liu R, Jiang L, Zhu Y, Li H, Xing W, Yang G. Carp Toll-like receptor 8 (Tlr8): An intracellular Tlr that recruits TIRAP as adaptor and activates AP-1 pathway in immune response. FISH & SHELLFISH IMMUNOLOGY 2018; 82:41-49. [PMID: 30077802 DOI: 10.1016/j.fsi.2018.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Toll-like receptor 8 (Tlr8) is a member of intracellular TLRs family and play a critical role in the innate immunity. In the present study, we aimed to identify tlr8 from common carp (Cyprinus carpio L.), and explored its expression profile, localization, adaptor, and signaling pathways. A novel tlr8 cDNA sequence (Cctlr8) was identified from the carp, containing a signal peptide, a LRR-N-terminal (LRR-NT), 14 leucine-rich repeats, a LRR-C-terminal (LRR-CT), a transmembrane region and a TIR domain. Phylogenetic analysis revealed that CcTlr8 exhibited closest relationship to that of Ctenopharyngodon idella and Danio. rerio. Subcellular localization analysis indicated that CcTlr8 was localized to the endoplasmic reticulum in both HeLa cells and EPC cells. Quantitative Real-Time PCR analysis demonstrated that Cctlr8 was constitutively expressed in all the examined tissues, with the highest expression observed in the spleen. After poly (I:C) injection, the expression of Cctlr8 was significantly up-regulated in all the tested tissues. In addition, the expression of Cctlr8 was up-regulated in both PBLs and HKLs following poly (I:C) stimulation. The results of immuofluorescence and coimmunoprecipitation analysis indicated that CcTlr8 might recruit TIRAP as the adaptor. Furthermore, Luciferase reporter assays revealed that CcTlr8 could activate AP-1 in 293 T cells. Taken altogether, these findings lay the foundations for future research to investigate the mechanisms underlying fish tlr8.
Collapse
Affiliation(s)
- Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Lei Jiang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Weixian Xing
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
103
|
Graner MW, Schnell S, Olin MR. Tumor-derived exosomes, microRNAs, and cancer immune suppression. Semin Immunopathol 2018; 40:505-515. [PMID: 29869058 PMCID: PMC6202205 DOI: 10.1007/s00281-018-0689-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023]
Abstract
Originally considered to be part of a cellular waste pathway, expansive research into exosomes has shown that these vesicles possess a vast array of functional utilities. As vital transporters of materials for communications between cells, particular interest has been generated in the ability of cancer cells to use exosomes to induce immune suppression, and to establish a thriving microenvironment, ideal for disease progression. Exosomes carry and transfer many types of cargo, including microRNAs (miRNAs; miRs), which are important modulators of messenger RNA (mRNA) expression. These miRNAs have been shown to be noteworthy components of the mechanisms used by tumor-derived exosomes to carry out their functions. Alternatively, research has been expanding into using exosomes and miRNAs as both biomarkers for detecting cancer and disease progression, and as potential treatment tools. Here, we discuss some of the progress that researchers have made related to cancer exosomes, their suppression of the immune system and the importance of the miRNAs they shuttle, along with some of the shortcomings, obstacles, and challenges that lie ahead.
Collapse
Affiliation(s)
- Michael W Graner
- Anschutz Medical Campus, Department of Neurosurgery, University of Colorado Denver, RC2, 12700 E 19th Ave, Room 5125, Aurora, CO, 80045, USA.
| | - Sathya Schnell
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Masonic Cancer Center, University of Minnesota, MMC 806, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Michael R Olin
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Masonic Cancer Center, University of Minnesota, MMC 806, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
104
|
Hu Z, Tanji H, Jiang S, Zhang S, Koo K, Chan J, Sakaniwa K, Ohto U, Candia A, Shimizu T, Yin H. Small-Molecule TLR8 Antagonists via Structure-Based Rational Design. Cell Chem Biol 2018; 25:1286-1291.e3. [PMID: 30100350 DOI: 10.1016/j.chembiol.2018.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/16/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023]
Abstract
Rational design of drug-like small-molecule ligands based on structural information of proteins remains a significant challenge in chemical biology. In particular, designs targeting protein-protein interfaces have met little success given the dynamic nature of the protein surfaces. Herein, we utilized the structure of a small-molecule ligand in complex with Toll-like receptor 8 (TLR8) as a model system due to TLR8's clinical relevance. Overactivation of TLR8 has been suggested to play a prominent role in the pathogenesis of various autoimmune diseases; however, there are still few small-molecule antagonists available, and our rational designs led to the discovery of six exceptionally potent compounds with ∼picomolar IC50 values. Two X-ray crystallographic structures validated the contacts within the binding pocket. A variety of biological evaluations in cultured cell lines, human peripheral blood mononuclear cells, and splenocytes from human TLR8-transgenic mice further demonstrated these TLR8 inhibitors' high efficacy, suggesting strong therapeutic potential against autoimmune disorders.
Collapse
Affiliation(s)
- Zhenyi Hu
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuangshuang Jiang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China
| | - Kyoin Koo
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jean Chan
- Dynavax Technologies Corporation, Berkeley, CA 94710, USA
| | - Kentaro Sakaniwa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Albert Candia
- Dynavax Technologies Corporation, Berkeley, CA 94710, USA
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100082, China.
| |
Collapse
|
105
|
Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, Libert C, Smets I, Goris A, Wouters C, Matthys P. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol 2018; 48:1506-1521. [DOI: 10.1002/eji.201847578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/28/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Maya Imbrechts
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | | | - Karlien Fierens
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | - Ellen Brisse
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | | | - Tania Mitera
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | - Claude Libert
- VIB Center for Inflammation Research; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Ide Smets
- KU Leuven; Department of Neurosciences; Laboratory for Neuroimmunology; Leuven Belgium
- Department of Neurology; University Hospitals Leuven; Leuven Belgium
| | - An Goris
- KU Leuven; Department of Neurosciences; Laboratory for Neuroimmunology; Leuven Belgium
| | - Carine Wouters
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
- Laboratory of Paediatric Immunology; University Hospitals Leuven; Leuven Belgium
| | - Patrick Matthys
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| |
Collapse
|
106
|
Yue J, Pallares RM, Cole LE, Coughlin EE, Mirkin CA, Lee A, Odom TW. Smaller CpG-Conjugated Gold Nanoconstructs Achieve Higher Targeting Specificity of Immune Activation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21920-21926. [PMID: 29873227 PMCID: PMC6101240 DOI: 10.1021/acsami.8b06633] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study describes a side-by-side comparison of the in vitro immunostimulatory activity of cytosine-phosphate-guanine (CpG)-conjugated gold nanoparticles. Three different gold nanoparticle cores (13 nm spheres, 50 nm spheres, and 40 nm stars) with the same CpG surface density were investigated for toll-like receptor 9 activation. For this parameter set, 13 nm spheres displayed significantly higher specificity for targeting immune receptors and larger nanoparticles (50 nm spheres and 40 nm stars) showed higher cellular uptake and higher immune activation because of off-target effects. Changes in nanoparticle size and presentation of activating ligands affect construct-induced immune responses at different levels, and care must be taken when considering practical and global design rules for CpG delivery.
Collapse
Affiliation(s)
- Jun Yue
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Roger M. Pallares
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lisa E. Cole
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emma E. Coughlin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrew Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United Statesm
| | - Teri W. Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Corresponding Author: .
| |
Collapse
|
107
|
do Nascimento NC, Guimaraes AMS, Dos Santos AP, Chu Y, Marques LM, Messick JB. RNA-Seq based transcriptome of whole blood from immunocompetent pigs (Sus scrofa) experimentally infected with Mycoplasma suis strain Illinois. Vet Res 2018; 49:49. [PMID: 29914581 PMCID: PMC6006945 DOI: 10.1186/s13567-018-0546-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Pigs are popular animal models in biomedical research. RNA-Seq is becoming the predominant tool to investigate transcriptional changes of the pig’s response to infection. The high sensitivity of this tool requires a strict control of the study design beginning with the selection of healthy animals to provide accurate interpretation of research data. Pigs chronically infected with Mycoplasma suis often show no obvious clinical signs, however the infection may affect the validity of animal research. The goal of this study was to investigate whether or not this silent infection is also silent at the host transcriptional level. Therefore, immunocompetent pigs were experimentally infected with M. suis and transcriptional profiles of whole blood, generated by RNA-Seq, were analyzed and compared to non-infected animals. RNA-Seq showed 55 differentially expressed (DE) genes in the M. suis infected pigs. Down-regulation of genes related to innate immunity (tlr8, chemokines, chemokines receptors) and genes containing IFN gamma-activated sequence (gbp1, gbp2, il15, cxcl10, casp1, cd274) suggests a general suppression of the immune response in the infected animals. Sixteen (29.09%) of the DE genes were involved in two protein interaction networks: one involving chemokines, chemokine receptors and interleukin-15 and another involving the complement cascade. Genes related to vascular permeability, blood coagulation, and endothelium integrity were also DE in infected pigs. These findings suggest that M. suis subclinical infection causes significant alterations in blood mRNA levels, which could impact data interpretation of research using pigs. Screening of pigs for M. suis infection before initiating animal studies is strongly recommended.
Collapse
Affiliation(s)
- Naíla C do Nascimento
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Ana M S Guimaraes
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Andrea P Dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Yuefeng Chu
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute of CAAS, Lanzhou, China
| | - Lucas M Marques
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.,Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, Bahia, Brazil
| | - Joanne B Messick
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
108
|
Bösl K, Giambelluca M, Haug M, Bugge M, Espevik T, Kandasamy RK, Bergstrøm B. Coactivation of TLR2 and TLR8 in Primary Human Monocytes Triggers a Distinct Inflammatory Signaling Response. Front Physiol 2018; 9:618. [PMID: 29896111 PMCID: PMC5986927 DOI: 10.3389/fphys.2018.00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/07/2018] [Indexed: 01/04/2023] Open
Abstract
Innate immune signaling is essential to mount a fast and specific immune response to pathogens. Monocytes and macrophages are essential cells in the early response in their capacity as ubiquitous phagocytic cells. They phagocytose microorganisms or damaged cells and sense pathogen/damage-associated molecular patterns (PAMPs/DAMPs) through innate receptors such as Toll-like receptors (TLRs). We investigated a phenomenon where co-signaling from TLR2 and TLR8 in human primary monocytes provides a distinct immune activation profile compared to signaling from either TLR alone. We compare gene signatures induced by either stimulus alone or together and show that co-signaling results in downstream differences in regulation of signaling and gene transcription. We demonstrate that these differences result in altered cytokine profiles between single and multi-receptor signaling, and show how it can influence both T-cell and neutrophil responses. The end response is tailored to combat extracellular pathogens, possibly by modifying the regulation of IFNβ and IL12-family cytokines.
Collapse
Affiliation(s)
- Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam Giambelluca
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olav's University Hospital, Trondheim, Norway
| | - Marit Bugge
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarte Bergstrøm
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
109
|
Said EA, Tremblay N, Al-Balushi MS, Al-Jabri AA, Lamarre D. Viruses Seen by Our Cells: The Role of Viral RNA Sensors. J Immunol Res 2018; 2018:9480497. [PMID: 29854853 PMCID: PMC5952511 DOI: 10.1155/2018/9480497] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/20/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
The role of the innate immune response in detecting RNA viruses is crucial for the establishment of proper inflammatory and antiviral responses. Different receptors, known as pattern recognition receptors (PRRs), are present in the cytoplasm, endosomes, and on the cellular surface. These receptors have the capacity to sense the presence of viral nucleic acids as pathogen-associated molecular patterns (PAMPs). This recognition leads to the induction of type 1 interferons (IFNs) as well as inflammatory cytokines and chemokines. In this review, we provide an overview of the significant involvement of cellular RNA helicases and Toll-like receptors (TLRs) 3, 7, and 8 in antiviral immune defenses.
Collapse
Affiliation(s)
- Elias A. Said
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Muscat, Oman
| | - Nicolas Tremblay
- Centre de Recherche du CHUM (CRCHUM) et Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Mohammed S. Al-Balushi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Muscat, Oman
| | - Ali A. Al-Jabri
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Muscat, Oman
| | - Daniel Lamarre
- Centre de Recherche du CHUM (CRCHUM) et Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
110
|
Martínez D, Díaz-Ibarrola D, Vargas-Lagos C, Oyarzún R, Pontigo JP, Muñoz JLP, Yáñez AJ, Vargas-Chacoff L. Immunological response of the Sub-Antarctic Notothenioid fish Eleginops maclovinus injected with two strains of Piscirickettsia salmonis. FISH & SHELLFISH IMMUNOLOGY 2018; 75:139-148. [PMID: 29421586 DOI: 10.1016/j.fsi.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Eleginops maclovinus is an endemic fish to Chile that lives in proximity to salmonid culture centers, feeding off of uneaten pellet and salmonid feces. Occurring in the natural environment, this interaction between native and farmed fish could result in the horizontal transmission of pathogens affecting the aquaculture industry. The aim of this study was to evaluate the innate and adaptive immune responses of E. maclovinus challenged with P. salmonis. Treatment injections (in duplicate) were as follows: control (100 μL of culture medium), wild type LF-89 strain (100 μL, 1 × 108 live bacteria), and antibiotic resistant strain Austral-005 (100 μL, 1 × 108 live bacteria). The fish were sampled at various time-points during the 35-day experimental period. The gene expression of TLRs (1, 5, and 8), NLRCs (3 and 5), C3, IL-1β, MHCII, and IgMs were significantly modulated during the experimental period in both the spleen and gut (excepting TLR1 and TLR8 spleen expressions), with tissue-specific expression profiles and punctual differences between the injected strains. Anti-P. salmonis antibodies increased in E. maclovinus serum from day 14-28 for the LF-89 strain and from day 14-35 for the Austral-005 strain. These results suggest temporal activation of the innate and adaptive immune responses in E. maclovinus tissues when injected by distinct P. salmonis strains. The Austral-005 strain did not always cause the greatest increases/decreases in the number of transcripts, so the magnitude of the observed immune response (mRNA) may not be related to antibiotic resistance. This is the first immunological study to relate a pathogen widely studied in salmonids with a native fish.
Collapse
Affiliation(s)
- D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de l6a Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | - D Díaz-Ibarrola
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - C Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Magister en Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de l6a Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - J L P Muñoz
- Centro de Investigación y Desarrollo i ∼ mar, Universidad de los Lagos, Casilla 557, Puerto Montt, Chile
| | - A J Yáñez
- Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile; Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| |
Collapse
|
111
|
Silver AC, Buckley SM, Hughes ME, Hastings AK, Nitabach MN, Fikrig E. Daily oscillations in expression and responsiveness of Toll-like receptors in splenic immune cells. Heliyon 2018; 4:e00579. [PMID: 29862343 PMCID: PMC5968137 DOI: 10.1016/j.heliyon.2018.e00579] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/16/2018] [Accepted: 03/14/2018] [Indexed: 11/04/2022] Open
Abstract
Circadian rhythms refer to biologic processes that oscillate with an approximate 24-h period. These rhythms direct nearly all aspects of animal behavior and physiology. The aim of our study was to determine if Toll-like receptor (TLR) expression and responsiveness exhibit time-of-day dependent differences. Therefore, we isolated an adherent splenocyte population, which consisted primarily of B cells, dendritic cells, and macrophages, over the course of a 24-h light-dark period and measured daily changes in Tlr1-8 mRNA levels and cytokine expression after cells were challenged at Zeitgeber time (ZT) 1 or ZT13 with a TLR ligand. In addition, we assessed TLR3 protein levels in adherent splenocytes over the 24-h light-dark period and challenged mice at ZT1 or ZT13 with poly(I:C), the TLR3 ligand. Our study revealed that in this adherent cell population, all Tlrs exhibited rhythmic expression except Tlr2 and Tlr5, and all TLRs, except TLR8, demonstrated daily variations in responsiveness after challenge with their respective ligand. We also revealed that TLR3 protein levels fluctuate over the daily light-dark cycle in adherent splenocytes and mice exhibit a time-of-day dependent immune response when challenged with poly(I:C). Finally, we demonstrated that mRNA levels of Tlr2 and Tlr6 display rhythmic expression in splenic macrophages. Taken together, these findings could have important implications for TLR-directed therapeutics.
Collapse
Affiliation(s)
- Adam C Silver
- Department of Biology, University of Hartford, West Hartford, CT, USA.,Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sara M Buckley
- Department of Biology, University of Hartford, West Hartford, CT, USA
| | - Michael E Hughes
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew K Hastings
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
112
|
Eng HL, Hsu YY, Lin TM. Differences in TLR7/8 activation between monocytes and macrophages. Biochem Biophys Res Commun 2018; 497:319-325. [PMID: 29448098 DOI: 10.1016/j.bbrc.2018.02.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/29/2022]
Abstract
The recognition of single-stranded RNA by TLR7/8 leads to the production of NF-κB-mediated cytokines and type I IFNs. However, the role of TLR7/8 activation in monocytes and macrophages is still unclear. The aim of this study was to investigate the differences in the activation of TLR7/8 between these two cell types. Microarray analysis, qRT-PCR and flow cytometry were used to analyse TLR7/8 signalling pathways in monocytes and macrophages after stimulation with agonists. Our data indicated that TLR8 agonists activated the NF-κB- and IRF-mediated pathways in THP-1 cells, whereas TLR7 agonists did not. However, silent TLR8 and enhanced TLR7 expression could increase TLR7-induced NF-κB activation in monocytes. TLR7 and TLR8 agonists induced NF-κB activation but no ISG response in PMA-differentiated THP-1 cells. The mRNA levels of pro-inflammatory cytokine were elevated upon CL075 stimulation in macrophages compared to monocytes. Thus, TLR7 and TLR8 might modulate different immune responses in monocytes and macrophages.
Collapse
Affiliation(s)
- Hock-Liew Eng
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
| | - Yuan-Ying Hsu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Tsun-Mei Lin
- Department of Medical Research, E-DA Hospital/I-Shou University, Kaohsiung, 824, Taiwan; Department of Medical Laboratory Science, I-Shou University, Kaohsiung, 824, Taiwan.
| |
Collapse
|
113
|
Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways. Infect Immun 2018; 86:IAI.00594-17. [PMID: 29133347 DOI: 10.1128/iai.00594-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
To better understand the innate immune response to Vibrio cholerae infection, we tracked gene expression in the duodenal mucosa of 11 Bangladeshi adults with cholera, using biopsy specimens obtained immediately after rehydration and 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, mitogen-activated protein kinase (MAPK), and Toll-like receptor (TLR)-mediated signaling pathways, which, unexpectedly, persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across the 11 participants. These genes included the endosomal Toll-like receptor gene TLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signaling in vivo, our pathway analysis found that interferon regulatory factor 7 and beta 1 and alpha 2 interferons were among the top upstream regulators activated during cholera. Among the innate immune effectors, we found that the gene for DUOX2, an NADPH oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases in DUOX2 and TLR8 expression were also modeled in vitro when Caco-2 or THP-1 cells, respectively, were stimulated with live V. cholerae but not with heat-killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response to V. cholerae extend our understanding of the mucosal immune signaling pathways and effectors activated in vivo following cholera.
Collapse
|
114
|
PRR Function of Innate Immune Receptors in Recognition of Bacteria or Bacterial Ligands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:255-280. [DOI: 10.1007/978-981-13-3065-0_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
115
|
Shayan G, Kansy BA, Gibson SP, Srivastava RM, Bryan JK, Bauman JE, Ohr J, Kim S, Duvvuri U, Clump DA, Heron DE, Johnson JT, Hershberg RM, Ferris RL. Phase Ib Study of Immune Biomarker Modulation with Neoadjuvant Cetuximab and TLR8 Stimulation in Head and Neck Cancer to Overcome Suppressive Myeloid Signals. Clin Cancer Res 2017; 24:62-72. [PMID: 29061643 DOI: 10.1158/1078-0432.ccr-17-0357] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/18/2017] [Accepted: 10/17/2017] [Indexed: 01/04/2023]
Abstract
Purpose: The response rate of patients with head and neck squamous cell carcinoma (HNSCC) to cetuximab therapy is only 15% to 20%, despite frequent EGFR overexpression. Because immunosuppression is common in HNSCC, we hypothesized that adding a proinflammatory TLR8 agonist to cetuximab therapy might result in enhanced T-lymphocyte stimulation and anti-EGFR-specific priming.Experimental Design: Fourteen patients with previously untreated HNSCC were enrolled in this neoadjuvant trial and treated preoperatively with 3 to 4 weekly doses of motolimod (2.5 mg/m2) and cetuximab. Correlative tumor and peripheral blood specimens were obtained at baseline and at the time of surgical resection and analyzed for immune biomarker changes. Preclinical in vitro studies were also performed to assess the effect of cetuximab plus motolimod on myeloid cells.Results: TLR8 stimulation skewed monocytes toward an M1 phenotype and reversed myeloid-derived suppressor cell (MDSC) suppression of T-cell proliferation in vitro These data were validated in a prospective phase Ib neoadjuvant trial, in which fewer MDSC and increased M1 monocyte infiltration were found in tumor-infiltrating lymphocytes. Motolimod plus cetuximab also decreased induction of Treg and reduced markers of suppression, including CTLA-4, CD73, and membrane-bound TGFβ. Significantly increased circulating EGFR-specific T cells were observed, concomitant with enhanced CD8+ T-cell infiltration into tumors. These T cells manifested increased T-cell receptor (TCR) clonality, upregulation of the costimulatory receptor CD27, and downregulation of inhibitory receptor TIGIT.Conclusions: Enhanced inflammatory stimulation in the tumor microenvironment using a TLR agonist overcomes suppressive myeloid and regulatory cells, enhancing the cellular antitumor immune response by therapeutic mAb in HNSCC. Clin Cancer Res; 24(1); 62-72. ©2017 AACR.
Collapse
Affiliation(s)
| | - Benjamin A Kansy
- Department of Otolaryngology, Essen University Hospital, Essen, Germany
| | | | | | | | | | - James Ohr
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Seungwon Kim
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Clump
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Jonas T Johnson
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Robert L Ferris
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania. .,Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
116
|
Bravo-Alegria J, McCullough LD, Liu F. Sex differences in stroke across the lifespan: The role of T lymphocytes. Neurochem Int 2017; 107:127-137. [PMID: 28131898 PMCID: PMC5461203 DOI: 10.1016/j.neuint.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
Abstract
Stroke is a sexually dimorphic disease. Ischemic sensitivity changes throughout the lifespan and outcomes depend largely on variables like age, sex, hormonal status, inflammation, and other existing risk factors. Immune responses after stroke play a central role in how these factors interact. Although the post-stroke immune response has been extensively studied, the contribution of lymphocytes to stroke is still not well understood. T cells participate in both innate and adaptive immune responses at both acute and chronic stages of stroke. T cell responses also change at different ages and are modulated by hormones and sex chromosome complement. T cells have also been implicated in the development of hypertension, one of the most important risk factors for vascular disease. In this review, we highlight recent literature on the lymphocytic responses to stroke in the context of age and sex, with a focus on T cell response and the interaction with important stroke risk factors.
Collapse
Affiliation(s)
- Javiera Bravo-Alegria
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Louise D McCullough
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Fudong Liu
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States.
| |
Collapse
|
117
|
Nguyen CB, Alsøe L, Lindvall JM, Sulheim D, Fagermoen E, Winger A, Kaarbø M, Nilsen H, Wyller VB. Whole blood gene expression in adolescent chronic fatigue syndrome: an exploratory cross-sectional study suggesting altered B cell differentiation and survival. J Transl Med 2017; 15:102. [PMID: 28494812 PMCID: PMC5426002 DOI: 10.1186/s12967-017-1201-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic fatigue syndrome (CFS) is a prevalent and disabling condition affecting adolescents. The pathophysiology is poorly understood, but immune alterations might be an important component. This study compared whole blood gene expression in adolescent CFS patients and healthy controls, and explored associations between gene expression and neuroendocrine markers, immune markers and clinical markers within the CFS group. METHODS CFS patients (12-18 years old) were recruited nation-wide to a single referral center as part of the NorCAPITAL project. A broad case definition of CFS was applied, requiring 3 months of unexplained, disabling chronic/relapsing fatigue of new onset, whereas no accompanying symptoms were necessary. Healthy controls having comparable distribution of gender and age were recruited from local schools. Whole blood samples were subjected to RNA sequencing. Immune markers were blood leukocyte counts, plasma cytokines, serum C-reactive protein and immunoglobulins. Neuroendocrine markers encompassed plasma and urine levels of catecholamines and cortisol, as well as heart rate variability indices. Clinical markers consisted of questionnaire scores for symptoms of post-exertional malaise, inflammation, fatigue, depression and trait anxiety, as well as activity recordings. RESULTS A total of 29 CFS patients and 18 healthy controls were included. We identified 176 genes as differentially expressed in patients compared to controls, adjusting for age and gender factors. Gene set enrichment analyses suggested impairment of B cell differentiation and survival, as well as enhancement of innate antiviral responses and inflammation in the CFS group. A pattern of co-expression could be identified, and this pattern, as well as single gene transcripts, was significantly associated with indices of autonomic nervous activity, plasma cortisol, and blood monocyte and eosinophil counts. Also, an association with symptoms of post-exertional malaise was demonstrated. CONCLUSION Adolescent CFS is characterized by differential gene expression pattern in whole blood suggestive of impaired B cell differentiation and survival, and enhanced innate antiviral responses and inflammation. This expression pattern is associated with neuroendocrine markers of altered HPA axis and autonomic nervous activity, and with symptoms of post-exertional malaise. Trial registration Clinical Trials NCT01040429.
Collapse
Affiliation(s)
- Chinh Bkrong Nguyen
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, 1478 Lørenskog, Norway
- Division of Medicine and Laboratory Sciences, Medical Faculty, University of Oslo, Oslo, Norway
| | - Lene Alsøe
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, and Akershus University Hospital, Lørenskog, Norway
| | - Jessica M. Lindvall
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dag Sulheim
- Department of Paediatrics, Lillehammer County Hospital, Lillehammer, Norway
| | - Even Fagermoen
- Department of Anesthesiology and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Anette Winger
- Institute of Nursing Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Mari Kaarbø
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, and Akershus University Hospital, Lørenskog, Norway
| | - Vegard Bruun Wyller
- Department of Paediatrics and Adolescent Health, Akershus University Hospital, 1478 Lørenskog, Norway
- Division of Medicine and Laboratory Sciences, Medical Faculty, University of Oslo, Oslo, Norway
| |
Collapse
|
118
|
Ma L, Han M, Keyoumu Z, Wang H, Keyoumu S. Immunotherapy of Dual-Function Vector with Both Immunostimulatory and B-Cell Lymphoma 2 (Bcl-2)-Silencing Effects on Gastric Carcinoma. Med Sci Monit 2017; 23:1980-1991. [PMID: 28439064 PMCID: PMC5412972 DOI: 10.12659/msm.900418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tumorigenesis is a kind of pathology marked by infinite proliferation and restrained apoptosis compared with normal cells. The abnormal expression of some proto-oncogenes and apoptosis inhibition are essential for tumor growth, which has been confirmed by molecular biologic and immunologic studies. The hypofunction of the host immune system also drives the development and metastasis of malignant tumors. Bcl-2, which has a critical role in regulating apoptosis, is overexpressed in several cancers. MATERIAL AND METHODS In this study, we constructed a dual-function small hairpin RNA (shRNA) vector containing an Bcl-2-silencing shRNA and a TLR7-stimulating ssRNA and examined it effect on tumor cell growth and proliferation. RESULTS Stimulation with this bi-functional vector in vitro promoted significant apoptosis of MFC cells by regulating the expression of apoptosis-related proteins and induced secretion of type I IFNs. Most importantly, this bi-functional vector more effectively inhibited subcutaneous MFC cell growth than did single shRNA and ssRNA treatment in vivo. Natural killer (NK) and CD4+ T cells were required for effective tumor suppression, and TLR7 was shown to play a helper role in the activation of NK cells and CD4+ T cells, possibly by regulating the expression of receptors or secretion of cytokines. CONCLUSIONS This bi-functional vector that contained ssRNA and shRNA may represent a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Lanying Ma
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China (mainland)
| | - Mei Han
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China (mainland)
| | - Zumureti Keyoumu
- Department of Preventive Care, Xinjiang Medical University Second Affiliated Hospital, Urumqi, Xinjiang, China (mainland)
| | - Hua Wang
- Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Saifuding Keyoumu
- Department of Digestive System, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
119
|
Pepini T, Pulichino AM, Carsillo T, Carlson AL, Sari-Sarraf F, Ramsauer K, Debasitis JC, Maruggi G, Otten GR, Geall AJ, Yu D, Ulmer JB, Iavarone C. Induction of an IFN-Mediated Antiviral Response by a Self-Amplifying RNA Vaccine: Implications for Vaccine Design. THE JOURNAL OF IMMUNOLOGY 2017; 198:4012-4024. [PMID: 28416600 DOI: 10.4049/jimmunol.1601877] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/20/2017] [Indexed: 12/28/2022]
Abstract
RNA-based vaccines have recently emerged as a promising alternative to the use of DNA-based and viral vector vaccines, in part because of the potential to simplify how vaccines are made and facilitate a rapid response to newly emerging infections. SAM vaccines are based on engineered self-amplifying mRNA (SAM) replicons encoding an Ag, and formulated with a synthetic delivery system, and they induce broad-based immune responses in preclinical animal models. In our study, in vivo imaging shows that after the immunization, SAM Ag expression has an initial gradual increase. Gene expression profiling in injection-site tissues from mice immunized with SAM-based vaccine revealed an early and robust induction of type I IFN and IFN-stimulated responses at the site of injection, concurrent with the preliminary reduced SAM Ag expression. This SAM vaccine-induced type I IFN response has the potential to provide an adjuvant effect on vaccine potency, or, conversely, it might establish a temporary state that limits the initial SAM-encoded Ag expression. To determine the role of the early type I IFN response, SAM vaccines were evaluated in IFN receptor knockout mice. Our data indicate that minimizing the early type I IFN responses may be a useful strategy to increase primary SAM expression and the resulting vaccine potency. RNA sequence modification, delivery optimization, or concurrent use of appropriate compounds might be some of the strategies to finalize this aim.
Collapse
Affiliation(s)
| | | | - Thomas Carsillo
- Novartis Institute for BioMedical Research, Cambridge, MA 02139
| | | | | | | | | | | | - Gillis R Otten
- Novartis Vaccines and Diagnostics, Cambridge, MA 02139; and
| | - Andrew J Geall
- Novartis Vaccines and Diagnostics, Cambridge, MA 02139; and
| | - Dong Yu
- GSK Vaccines, Rockville, MD 20850
| | | | | |
Collapse
|
120
|
Chen N, Xia P, Li S, Zhang T, Wang TT, Zhu J. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life 2017; 69:297-304. [PMID: 28374903 PMCID: PMC7165898 DOI: 10.1002/iub.1625] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
The innate immune system plays a critical role in pathogen recognition and initiation of protective immune response through the recognition of pathogen associated molecular patterns (PAMPs) by its pattern recognition receptors (PRRs). Nucleic acids including RNA and DNA have been recognized as very important PAMPs of pathogens especially for viruses. RNA are the major PAMPs of RNA viruses, to which most severe disease causing viruses belong thus posing a tougher challenge to human and animal health. Therefore, the understanding of the immune biology of RNA PRRs is critical for control of pathogen infections especially for RNA virus infections. RNA PRRs are comprised of TLR3, TLR7, TLR8, RIG-I, MDA5, NLRP3, NOD2, and some other minorities. This review introduces these RNA PRRs by describing the cellular localizations, ligand recognitions, activation mechanisms, cell signaling pathways, and recognition of pathogens; the cross-talks between various RNA PRRs are also reviewed. The deep insights of these RNA PRRs can be utilized to improve anti-viral immune response. © 2017 IUBMB Life, 69(5):297-304, 2017.
Collapse
Affiliation(s)
- Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| | - Pengpeng Xia
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| | - Shuangjie Li
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| | - Tangjie Zhang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| | - Tony T Wang
- Center for Infectious Diseases, Biosciences Division, SRI International, Harrisonburg, VA, 22802
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
121
|
Wei Y, Hu S, Sun B, Zhang Q, Qiao G, Wang Z, Shao R, Huang G, Qi Z. Molecular cloning and expression analysis of toll-like receptor genes (TLR7, TLR8 and TLR9) of golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2017; 63:270-276. [PMID: 28232281 DOI: 10.1016/j.fsi.2017.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/12/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Toll like receptor (TLR) 7, 8 and 9 are intracellular TLRs which play important roles in host immune defense against bacterial or virus pathogens. In this study, TLR7, 8 and 9 were identified from golden pompano (Trachinotus ovatus), a marine teleost with great economic values. Sequence analysis revealed that the three TLRs contained several conserved characteristic features, including signal peptides, 25 leucine-rich repeat (LRR) motifs, a transmembrane domain and a TIR motif. These three TLRs shared high sequence identity and similarity with their counterparts from other teleosts. The phylogenetic tree analysis showed the three TLRs were clustered well with their piscine counterparts, confirming the correctness of their nomenclatures and closed relationships during evolution. Quantitative real-time PCR revealed that the three TLRs were ubiquitously expressed in all the tested tissues from normal pompano, with high expression in spleen and head kidney, indicating their role in immune reaction. Further, pompano TLR7 and TLR8 was up-regulated in spleen and head kidney from 12 h to 48 h following polyI:C challenge, but remained no changes to Vibrio alginilyticus infection. In contrast, pompano TLR9 could be induced by V. alginilyticus infection but remained apathetic to polyI:C challenge. These results indicated that pompano TLR7, 8 and 9 might have distinct roles in response to bacterial or virus pathogens. Our results provided the basis for further study on ligand specificity and signaling pathways of fish TLRs which are required for elucidating the immune functions of fish TLRs.
Collapse
Affiliation(s)
- Youchuan Wei
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region, 53004, China; Guangxi Institute of Oceanology, Guangxi Key Laboratory of Marine Biotechnology, Guangxi Autonomous Region, 536000, China.
| | - Shu Hu
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region, 53004, China
| | - Baobao Sun
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Autonomous Region, 53004, China; Guangxi Institute of Oceanology, Guangxi Key Laboratory of Marine Biotechnology, Guangxi Autonomous Region, 536000, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Guo Qiao
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Zisheng Wang
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Rong Shao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China
| | - Guoqiang Huang
- Guangxi Institute of Oceanology, Guangxi Key Laboratory of Marine Biotechnology, Guangxi Autonomous Region, 536000, China
| | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China; Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu, 224051, China.
| |
Collapse
|
122
|
Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, Ratner N. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep 2017; 7:43315. [PMID: 28256556 PMCID: PMC5335359 DOI: 10.1038/srep43315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neurofibromas are benign peripheral nerve tumors driven by NF1 loss in Schwann cells (SCs). Macrophages are abundant in neurofibromas, and macrophage targeted interventions may have therapeutic potential in these tumors. We generated gene expression data from fluorescence-activated cell sorted (FACS) SCs and macrophages from wild-type and mutant nerve and neurofibroma to identify candidate pathways involved in SC-macrophage cross-talk. While in 1-month-old Nf1 mutant nerve neither SCs nor macrophages significantly differed from their normal counterparts, both macrophages and SCs showed significantly altered cytokine gene expression in neurofibromas. Computationally reconstructed SC-macrophage molecular networks were enriched for inflammation-associated pathways. We verified that neurofibroma SC conditioned medium contains macrophage chemo-attractants including colony stimulation factor 1 (CSF1). Network analysis confirmed previously implicated pathways and predict novel paracrine and autocrine loops involving cytokines, chemokines, and growth factors. Network analysis also predicted a central role for decreased type-I interferon signaling. We validated type-I interferon expression in neurofibroma by protein profiling, and show that treatment of neurofibroma-bearing mice with polyethylene glycolyated (PEGylated) type-I interferon-α2b reduces the expression of many cytokines overexpressed in neurofibroma. These studies reveal numerous potential targetable interactions between Nf1 mutant SCs and macrophages for further analyses.
Collapse
Affiliation(s)
- Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jonathan S. Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Edwin Jousma
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
123
|
Haile LA, Puig M, Polumuri SK, Ascher J, Verthelyi D. In Vivo Effect of Innate Immune Response Modulating Impurities on the Skin Milieu Using a Macaque Model: Impact on Product Immunogenicity. J Pharm Sci 2016; 106:751-760. [PMID: 27923493 DOI: 10.1016/j.xphs.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023]
Abstract
Unwanted immune responses to therapeutic proteins can severely impact their safety and efficacy. Studies show that the presence of trace amounts of host cells and process-related impurities that stimulate pattern recognition receptors (PRR) can cause local inflammation and enhance product immunogenicity. Here we used purified PRR agonists as model impurities to assess the minimal level of individual innate immune response modulating impurities (IIRMIs) that could activate a local immune response. We show that levels of endotoxin as low as 10 pg (0.01 EU), 1 ng for polyinosinic:polycytidylic acid (PolyI:C), 100 ng for synthetic diacylated liopprotein, thiazoloquinolone compound, or muramyl dipeptide, 1 μg for flagellin or β-glucan, or 5 μg for CpG-oligodeoxynucleotide increased expression of genes linked to innate immune activation and inflammatory processes in the skin of rhesus macaques. Furthermore, spiking studies using rasburicase as a model therapeutic showed that the levels of PRR agonists that induced detectable gene upregulation in the skin were associated with increased immunogenicity for rasburicase. This study underscores the need for testing multiple IIRMIs in biologics, strengthening the connection between the local mRNA induction in skin, innate immune activation, and antibody development in primates, and provides an indication of the levels of IIRMI in therapeutic products that could impact product immunogenicity.
Collapse
Affiliation(s)
- Lydia A Haile
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Montserrat Puig
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Swamy K Polumuri
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Jill Ascher
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Daniela Verthelyi
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993.
| |
Collapse
|
124
|
Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016; 120:1-14. [PMID: 27157411 PMCID: PMC5079805 DOI: 10.1016/j.bcp.2016.05.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Allergy and Immunology/history
- Allergy and Immunology/trends
- Animals
- Antigens/adverse effects
- Antigens/chemistry
- Antigens/immunology
- Antigens/therapeutic use
- Biopharmaceutics/history
- Biopharmaceutics/methods
- Biopharmaceutics/trends
- Chemistry, Pharmaceutical/history
- Chemistry, Pharmaceutical/trends
- Communicable Disease Control/history
- Communicable Disease Control/trends
- Communicable Diseases/immunology
- Communicable Diseases/veterinary
- Drug Delivery Systems/adverse effects
- Drug Delivery Systems/trends
- Drug Delivery Systems/veterinary
- Drug Design
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Nanoparticles/adverse effects
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Protein Engineering/trends
- Protein Engineering/veterinary
- Protein Folding
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Vaccines/adverse effects
- Vaccines/chemistry
- Vaccines/immunology
- Vaccines/therapeutic use
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Veterinary Drugs/adverse effects
- Veterinary Drugs/chemistry
- Veterinary Drugs/immunology
- Veterinary Drugs/therapeutic use
Collapse
Affiliation(s)
- Christopher P Karch
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States
| | - Peter Burkhard
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States; Department of Molecular and Cell Biology, 93 North Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
125
|
Dong X, Su B, Zhou S, Shang M, Yan H, Liu F, Gao C, Tan F, Li C. Identification and expression analysis of toll-like receptor genes (TLR8 and TLR9) in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 58:309-317. [PMID: 27633670 DOI: 10.1016/j.fsi.2016.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/04/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Mucosal immune system is one of the most important components in the innate immunity and constitutes the front line of host defense against infection, especially for teleost, which are living in the pathogen-rich aquatic environment. The pathogen recognition receptors (PRRs), which can recognize the conserved pathogen-associated molecular patterns (PAMPs) of bacteria, are considered as one of the most important component for pathogen recognition and immune signaling pathways activation in mucosal immunity. In this regard, we sought to identify TLR8 and TLR9 in turbot (Scophthalmus maximus), as well as their mucosal expression patterns following different bacterial infection in mucosal tissues for the first time. The full-length TLR8 transcript consists of an open reading frame (ORF) of 3108 bp encoding the putative peptide of 1035 amino acids. While the TLR9 was 6730 bp long, containing a 3168 bp ORF that encodes 1055 amino acids. The phylogenetic analysis revealed both TLR8 and TLR9 showed the closest relationship to large yellow croaker. Moreover, both TLR8 and TLR9 could be detected in all examined healthy turbot tissues, with the lowest expression level in liver and a relatively moderate expression pattern in healthy mucosal tissues. Distinct expression patterns of TLR8 and TLR9 were comparatively observed in the mucosal tissues (intestine, gill and skin) following Vibrio anguillarum and Streptococcus iniae infection, suggesting their different roles for mucosal immunity. Further functional studies are needed to better characterize TLR8 and TLR9 and their family members, to better understand the ligand specificity and to identify their roles in different mucosal tissues in protecting fish from the pathogenically hostile environment.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Mei Shang
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Hao Yan
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Fenghua Tan
- School of International Education and Exchange, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
126
|
Vu A, Calzadilla A, Gidfar S, Calderon-Candelario R, Mirsaeidi M. Toll-like receptors in mycobacterial infection. Eur J Pharmacol 2016; 808:1-7. [PMID: 27756604 DOI: 10.1016/j.ejphar.2016.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Toll-like receptors are transmembrane glycoproteins predominantly expressed in tissues with immune function. They are considered one of the most important pattern recognition receptor families discovered at the end of 20th century and a key aspect of the innate immune system response to infectious disease. Here we present a review of the current knowledge of individual Toll-like receptors, 1 through 13, with a focus on their role in the immune system response to mycobacterial infection. We present literature to date about the Toll-like receptors structure, localization and expression, signaling pathways, and function. The Toll-like receptor family may have proven an important role in the immune system response to mycobacterial infections, including M. tuberculosis and non-tuberculous (NTM) organisms.
Collapse
Affiliation(s)
- Ann Vu
- Department of Medicine, University of Miami, 1600 NW, Miami, FL 33136, USA.
| | - Andrew Calzadilla
- Department of Medicine, University of Miami, 1600 NW, Miami, FL 33136, USA.
| | - Sanaz Gidfar
- Department of Medicine, University of Miami, 1600 NW, Miami, FL 33136, USA.
| | - Rafael Calderon-Candelario
- Division of Pulmonary and Critical Care, University of Miami, 1600 NW, Miami, FL 33136, USA; Miami VA Medical Center, 1201 N.W. 16th St., Miami, FL 33125, USA.
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, 1600 NW, Miami, FL 33136, USA; Miami VA Medical Center, 1201 N.W. 16th St., Miami, FL 33125, USA.
| |
Collapse
|
127
|
Papaioannou AI, Spathis A, Kostikas K, Karakitsos P, Papiris S, Rossios C. The role of endosomal toll-like receptors in asthma. Eur J Pharmacol 2016; 808:14-20. [PMID: 27677226 DOI: 10.1016/j.ejphar.2016.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/06/2016] [Accepted: 09/23/2016] [Indexed: 01/04/2023]
Abstract
Asthma is a heterogeneous inflammatory disease caused by association of genetic and environmental factors and its incidence has significantly increased over the latest years. The clinical manifestations of asthma are the result of airway hyper-reactivity to a variety of triggers such as aeroallergens, viral and bacterial components. Toll-like receptors (TLRs) are pathogen associated molecular pattern receptors, which are also expressed in the lung tissue as well as in several cells of the innate and adaptive immune system. Ligation of TLRs results in alterations in the expression of several inflammatory and anti-inflammatory mediators, which are known to be involved in the pathogenesis of asthma. The endosomal TLRs have been shown to be associated with the induction of asthmatic inflammation (TLR3), and with disease exacerbations (TLR7, TLR8 and TLR9). Targeting these receptors seems to be an effective choice for suppressing airway inflammation, eosinophilia and airway hyperresponsiveness in asthmatic patients. In this review we provide information regarding endosomal TLRs and their role in the pathogenesis of asthma as well as their potential use as targets for the development of novel treatments for the therapy of asthma.
Collapse
Affiliation(s)
- Andriana I Papaioannou
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| | - Aris Spathis
- Department of Cytopathology, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Konstantinos Kostikas
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Petros Karakitsos
- Department of Cytopathology, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Spyros Papiris
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece
| | - Christos Rossios
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
128
|
Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4:56. [PMID: 27660710 PMCID: PMC5028954 DOI: 10.1186/s40425-016-0160-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Hiep Khong
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
129
|
Sauter MM, Brandt CR. Primate neural retina upregulates IL-6 and IL-10 in response to a herpes simplex vector suggesting the presence of a pro-/anti-inflammatory axis. Exp Eye Res 2016; 148:12-23. [PMID: 27170050 DOI: 10.1016/j.exer.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types. RNA in situ hybridization confirmed that IL-6 was expressed in photoreceptor and Muller cells. The IL-10 positive cells in the inner nuclear layer were identified as amacrine cells by immunofluorescence staining with calretinin antibody. hrR3 challenge resulted in activation of NFκB (p65) in Muller glial cells, but not in cone photoreceptors, suggesting a novel regulatory mechanism for IL-6 expression in cone cells. hrR3 replication was not required for IL-6 induction or NFκB (p65) activation. These data suggest a pro-inflammatory (IL-6)/anti-inflammatory (IL-10) axis exists in neural retina and the severity of acute posterior uveitis may be determined by this interaction. Further studies are needed to identify the trigger for IL-6 and IL-10 induction and the mechanism of IL-6 induction in cone cells.
Collapse
Affiliation(s)
- Monica M Sauter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
130
|
Xu C, Evensen Ø, Munang'andu H. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells. Viruses 2016; 8:114. [PMID: 27110808 PMCID: PMC4848607 DOI: 10.3390/v8040114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
A fundamental step in cellular defense mechanisms is the recognition of “danger signals” made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.
Collapse
Affiliation(s)
- Cheng Xu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| | - Hetron Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, P.O. Box 8146 Dep NO-0033 Oslo, Norway.
| |
Collapse
|
131
|
Ohto U, Shimizu T. Structural aspects of nucleic acid-sensing Toll-like receptors. Biophys Rev 2016; 8:33-43. [PMID: 28510149 DOI: 10.1007/s12551-015-0187-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/03/2015] [Indexed: 02/25/2023] Open
Abstract
Invading pathogens elicit potent immune responses in cells through interactions between structurally conserved molecules derived from the pathogens and specialized innate immune receptors such as the Toll-like receptors (TLRs). Nucleic acid is one of the principal TLR ligands. Nucleic acid-sensing TLRs recognize an array of nucleic acids, including double-stranded RNA, single-stranded RNA, and DNAs with specific sequence motifs. Although ligand-induced dimerization is commonly observed followed by TLR activation, both the specific recognition mechanisms and the ligand-receptor interactions vary among different TLRs. In this review, we highlight our current understanding of how these receptors recognize their cognate ligands based on the recent advances in structural biology.
Collapse
Affiliation(s)
- Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
132
|
Abstract
New insights into the biological mechanisms involved in modulating periodontal inflammation and alveolar bone loss are paving the way for novel therapeutic strategies for periodontitis. The neutrophil adhesion cascade for transmigration in response to infection or inflammation is a key paradigm in immunity. Developmental endothelial locus-1 (Del-1) is one of several newly identified endogenous inhibitors of the leukocyte adhesion cascade. Del-1 competes with intercellular adhesion molecule-1 (ICAM-1) on endothelial cells for binding to the LFA-1 integrin on neutrophils, thereby regulating neutrophil recruitment and local inflammation. In animal periodontitis models, Del-1 deficiency resulted in severe inflammation and alveolar bone loss, but local treatment with recombinant Del-1 prevented neutrophil infiltration and bone loss. The expression of Del-1 is inhibited by the pro-inflammatory cytokine IL-17. Nucleic-acid-receptor-mediated inflammatory responses may be important in periodontal disease pathogenesis. Bacterial nucleic acids released during inflammation are detected by host microbial DNA sensors, e.g., Toll-like receptor-9 (TLR-9), leading to the activation of pro- and/or anti-inflammatory signaling pathways. DNA from periodontitis-associated bacteria induced pro-inflammatory cytokine production in human macrophage-like cells through the TLR-9 and NF-κB signaling pathways, but had less effect on human osteoblasts. Inhibition of TLR-9 signaling in human macrophages reduced cytokine production in response to P. gingivalis DNA. Differential expression of a polymorphic site in the TLR-9 gene promoter region and increased TLR-9 gene and protein expression were reported in chronic periodontitis. Further research to confirm that periodontal bacterial DNA contributes to destructive inflammation in vivo could provide alternative therapeutic targets to control periodontitis.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, University of Pennsylvania Dental School, Philadelphia, PA, USA
| | | |
Collapse
|
133
|
Al-Quraishy S, Dkhil MA, Alomar S, Abdel-Baki AAS, Delic D, Wunderlich F, Araúzo-Bravo MJ. Blood-stage malaria of Plasmodium chabaudi induces differential Tlr expression in the liver of susceptible and vaccination-protected Balb/c mice. Parasitol Res 2016; 115:1835-43. [DOI: 10.1007/s00436-016-4923-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
|
134
|
Li T, He X, Jia H, Chen G, Zeng S, Fang Y, Jin Q, Jing Z. Molecular cloning and functional characterization of murine toll‑like receptor 8. Mol Med Rep 2015; 13:1119-26. [PMID: 26676274 PMCID: PMC4732850 DOI: 10.3892/mmr.2015.4668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 11/05/2015] [Indexed: 01/26/2023] Open
Abstract
Toll-like receptors (TLRs) are a large family of germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns and evoke the relevant innate immune responses. TLR8 is a member of several endosome nucleic acid-sensing TLRs; however little attention has been paid to murine TLR8 (mTLR8) compared with other endosome nucleic acid-sensing TLRs. In the present study, mTLR8 was cloned using reverse transcription-polymerase chain reaction from murine peripheral blood mononuclear cells and its function in regulating innate immune response was characterized. The open reading frame of mTLR8 consists of 3,099 bps and encodes 1,032 amino acids. It contains typical leucine-rich repeats, a transmembrane domain and a Toll/interleukin-1 receptor domain, and it shares a high level of identity with other mammalian species. The expression of mTLR8 has been widely observed in different tissues, and higher expression levels of mTLR8 have mainly been detected in the heart, spleen and lung. Overexpression of mTLR8 is required for the activation of transcription factor nuclear factor-κB and the production of tumor necrosis factor-α. However, mTLR8 is not able to activate interferon regulatory factor 3 or activator protein 1, nor can it induce interferon-α in HEK293T cells. These results indicate that mTLR8, as an important PRR, is indeed functional and is vital role in the activation of innate immune responses. This study may aid in determining the molecular basis of the interactions between mTLR8 and pathogens.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Guohua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Shuang Zeng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Qiwang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
135
|
Fernández-Rodríguez A, Berenguer J, Jiménez-Sousa MA, García-Álvarez M, Aldámiz-Echevarría T, Pineda-Tenor D, Diez C, de la Barrera J, Bellon JM, Briz V, Resino S. Toll-like receptor 8 (TLR8) polymorphisms are associated with non-progression of chronic hepatitis C in HIV/HCV coinfected patients. INFECTION GENETICS AND EVOLUTION 2015; 36:339-344. [PMID: 26455634 DOI: 10.1016/j.meegid.2015.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
Toll-like receptor 8 (TLR8) polymorphisms have been related to hepatitis C virus (HCV) infection. The aim was to estimate the association of TLR8 polymorphisms with HCV-related outcomes in HIV/HCV coinfected patients. We performed a cross-sectional study of 220 patients who underwent a liver biopsy. TLR8 polymorphisms were genotyped using GoldenGate® assay. The outcome variables were non-fibrosis (F0), mild-inflammation (A0/A1), and non-steatosis [fatty hepatocytes (FH) <10%]. Logistic regression analysis was used to compare the outcome variables according to TLR8 polymorphisms. Four polymorphisms were analyzed (rs1013151, rs5744069, rs17256081 and rs3764880rs1013151). Female patients had higher frequency of TLR8 major alleles at rs17256081 and rs101315, and minor alleles at rs3764880 and rs5744069. Male patients had higher frequency of TLR8 minor alleles except for rs3764880, where major alleles were higher (p<0.01). Two TLR8 polymorphisms (rs1013151 and rs5744069) were significantly associated with non-fibrosis (F0) [adjusted odds ratio (aOR)=4.42 (95% of confidence interval (95%CI)=1.54; 12.68) (p=0.006) and aOR=4.76 (95%CI=1.69; 13.37) (p=0.003); respectively]. When data were stratified by gender, rs1013151 and rs5744069 polymorphisms remained significant for male patients [adjusted odds ratio (aOR)=4.49 (95%CI=1.08; 18.62) (p=0.039) and aOR=6.17 (95%CI=1.45; 26.20) (p=0.014); respectively]. When data were stratified by major HCV genotypes, patients infected with HCV genotype 1 (GT1) had significant values for both rs1013151 and rs5744069 polymorphisms [aOR=5.79 (95%CI=1.44; 23.32) (p=0.013) and aOR=8.01 (95%CI=2.16; 35.65) (p=0.005); respectively]. Finally, none of the TLR8 polymorphisms were significantly associated with mild-inflammation or non-steatosis. In conclusion, TLR8 polymorphisms seem to be related to non-progression of liver fibrosis in HIV/HCV coinfected patients, particularly in males and those patients infected with GT1.
Collapse
Affiliation(s)
- Amanda Fernández-Rodríguez
- Viral Infection and Immunity Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Berenguer
- Infectious Diseases and HIV Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María A Jiménez-Sousa
- Viral Infection and Immunity Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mónica García-Álvarez
- Viral Infection and Immunity Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Teresa Aldámiz-Echevarría
- Infectious Diseases and HIV Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Daniel Pineda-Tenor
- Viral Infection and Immunity Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Diez
- Infectious Diseases and HIV Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jorge de la Barrera
- Bioinformatics Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jose Mª Bellon
- Biomedical Research Foundation, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
| | - Verónica Briz
- Viral Infection and Immunity Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Viral Infection and Immunity Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
136
|
Jamin A, Dehoux L, Dossier C, Fila M, Heming N, Monteiro RC, Deschênes G. Toll-like receptor 3 expression and function in childhood idiopathic nephrotic syndrome. Clin Exp Immunol 2015; 182:332-45. [PMID: 26123900 DOI: 10.1111/cei.12659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
The efficacy of steroids and immunosuppressive treatments in idiopathic nephrotic syndrome (INS) hints at the implication of immune cells in the pathophysiology of the disease. Toll-like receptor (TLR) dysfunctions are involved in many kidney diseases of immune origin, but remain little described in INS. We investigated the expression and function of TLRs in peripheral blood mononuclear cells (PBMC) of INS children, including 28 in relapse, 23 in remission and 40 controls. No child had any sign of infection, but a higher Epstein-Barr virus viral load was measured in the PBMC of relapsing patients. TLR-3 expression was increased in B cells only during INS remission. There was a negative correlation between proteinuria and TLR-3 expression in total and the main subsets of PBMC from INS patients. The expression of TLR-8 was also increased in both CD4(+) T cells and B cells in INS remission. There was a negative correlation between proteinuria and TLR-8 expression in total PBMC, CD4(+) T cells and B cells of INS patients. Nevertheless, TLR-3 and TLR-8 expression was normalized in all PBMC subsets in an additional group of 15 INS patients in remission with B cell repletion after rituximab therapy. Paradoxically, interferon (IFN) regulatory factor 3 transactivation was increased in PBMC of all INS patients. In-vitro secretion of IFN-α and interleukin 6 were increased spontaneously in PBMC of INS remission patients, whereas PBMC from all INS patients displayed an impaired IFN-α secretion after TLR-3 stimulation. Thus, TLR-3 pathway dysfunctions may be closely involved in INS pathogenesis.
Collapse
Affiliation(s)
- A Jamin
- INSERM U1149, CNRS ERL8252, Center for Research on Inflammation, Bichat Medical School, Paris, France.,Paris Diderot, Sorbonne Paris Cité University, Inflamex Laboratory of Excellence, Paris, France.,DHU Fire, Paris, France.,Department of Pediatric Nephrology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - L Dehoux
- INSERM U1149, CNRS ERL8252, Center for Research on Inflammation, Bichat Medical School, Paris, France.,Paris Diderot, Sorbonne Paris Cité University, Inflamex Laboratory of Excellence, Paris, France.,DHU Fire, Paris, France.,Department of Pediatric Nephrology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Dossier
- DHU Fire, Paris, France.,Department of Pediatric Nephrology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Fila
- DHU Fire, Paris, France.,Department of Pediatric Nephrology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - N Heming
- INSERM U1149, CNRS ERL8252, Center for Research on Inflammation, Bichat Medical School, Paris, France.,Paris Diderot, Sorbonne Paris Cité University, Inflamex Laboratory of Excellence, Paris, France.,DHU Fire, Paris, France
| | - R C Monteiro
- INSERM U1149, CNRS ERL8252, Center for Research on Inflammation, Bichat Medical School, Paris, France.,Paris Diderot, Sorbonne Paris Cité University, Inflamex Laboratory of Excellence, Paris, France.,DHU Fire, Paris, France.,Immunology Laboratory, Xavier Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - G Deschênes
- INSERM U1149, CNRS ERL8252, Center for Research on Inflammation, Bichat Medical School, Paris, France.,Paris Diderot, Sorbonne Paris Cité University, Inflamex Laboratory of Excellence, Paris, France.,DHU Fire, Paris, France.,Department of Pediatric Nephrology, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
137
|
Assil S, Webster B, Dreux M. Regulation of the Host Antiviral State by Intercellular Communications. Viruses 2015; 7:4707-33. [PMID: 26295405 PMCID: PMC4576201 DOI: 10.3390/v7082840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022] Open
Abstract
Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic.
Collapse
Affiliation(s)
- Sonia Assil
- CIRI, Université de Lyon, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, LabEx Ecofect, Université de Lyon, Lyon F-69007, France.
| | - Brian Webster
- CIRI, Université de Lyon, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, LabEx Ecofect, Université de Lyon, Lyon F-69007, France.
| | - Marlène Dreux
- CIRI, Université de Lyon, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, LabEx Ecofect, Université de Lyon, Lyon F-69007, France.
| |
Collapse
|
138
|
Kobold S, Wiedemann G, Rothenfußer S, Endres S. Modes of action of TLR7 agonists in cancer therapy. Immunotherapy 2015; 6:1085-95. [PMID: 25428647 DOI: 10.2217/imt.14.75] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
From the numerous Toll-like receptor agonists, only TLR7 agonists have been approved for cancer treatment, although they are current restricted to topical application. The main target cells of TLR7 agonists are plasmacytoid dendritic cells, producing IFN-α and thus acting on other immune cells. Thereby dendritic cells acquire enhanced costimulatory and antigen-presenting capacity, priming an adaptive immune response. Besides NK cells, antigen-specific T cells are the main terminal effectors of TLR7 agonists in tumor therapy. This qualifies TLR7 agonists as vaccine adjuvants, which is currently being tested in clinical trials. However, the systemic application of TLR7 agonists shows insufficient efficacy, most likely owing to toxicity-limited dosing. The use of TLR7 agonists in combinational therapy holds the promise of synergistic activity and lower required doses.
Collapse
Affiliation(s)
- Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) & Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
139
|
Abstract
Infections with several types of viral and bacterial pathogens are able to cause arthritic disease. Arthropod vectors such as ticks and mosquitoes transmit a number of these arthritis-causing pathogens, and as these vectors increase their global distribution, so too do the diseases they spread. The typical clinical manifestations of infectious arthritis are often similar in presentation to rheumatoid arthritis. Hence, care needs to be taken in the diagnoses and management of these conditions. Additionally, clinical reports suggest that prolonged arthropathies may result from infection, highlighting the need for careful clinical management and further research into underlying disease mechanisms.
Collapse
Affiliation(s)
- Lara J Herrero
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, QLD 4222, Australia.
| | - Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, QLD 4222, Australia.
| | - Stefan Wolf
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, QLD 4222, Australia.
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, QLD 4222, Australia.
| |
Collapse
|
140
|
Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
141
|
Su J, Su J, Shang X, Wan Q, Chen X, Rao Y. SNP detection of TLR8 gene, association study with susceptibility/resistance to GCRV and regulation on mRNA expression in grass carp, Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2015; 43:1-12. [PMID: 25514376 DOI: 10.1016/j.fsi.2014.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/17/2014] [Accepted: 12/06/2014] [Indexed: 05/10/2023]
Abstract
Toll-like receptor 8 (TLR8), a prototypical intracellular member of TLR family, is generally linked closely to antiviral innate immune through recognizing viral nucleic acid. In this study, 5'-flanking region of Ctenopharyngodon idella TLR8 (CiTLR8), 671bp in length, was amplified and eight SNPs containing one SNP in the intron, three SNPs in the coding region (CDS) and four SNPs in the 3'-untranslated region (UTR) were identified and characterized. Of which 4062 A/T was significantly associated with the susceptibility/resistance to GCRV both in genotype and allele (P < 0.05), while 4168 C/T was extremely significantly associated with that (P < 0.01) according to the case (susceptibility)-control (resistance) analysis. Following the verification experiment, further analyses of mRNA expression, linkage disequilibrium (LD), haplotype and microRNA (miRNA) target site indicated that 4062 A/T and 4168 C/T in 3'-UTR might affect the miRNA regulation, while the exertion of antiviral effects of 4062 A/T might rely on its interaction with other SNPs. Additionally, the high-density of SNPs in 3'-UTR might reflect the specific biological functions of 3'-UTR. And also, the mutation of 747 A/G in intron changing the potential transcriptional factor-binding sites (TFBS) nearby might affect the expression of CiTLR8 transcriptionally or post-transcriptionally. Moreover, as predicted, the A/G transition of the only non-synonymous SNP (3846 A/G) in CDS causing threonine/alanine variation, could shorten the length of the α-helix and ultimately affect the integrity of the Toll-IL-1 receptor (TIR) domain. The functional mechanism of 3846 A/G might also involve a threonine phosphorylation signaling. This study may broaden the knowledge of TLR polymorphisms, lay the foundation for further functional research of CiTLR8 and provide potential markers as well as theoretical basis for resistance molecular breeding of grass carp against GCRV.
Collapse
Affiliation(s)
- Juanjuan Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Xueying Shang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Quanyuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Youliang Rao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
142
|
Chatillon JF, Hamieh M, Bayeux F, Abasq C, Fauquembergue E, Drouet A, Guisier F, Latouche JB, Musette P. Direct Toll-Like Receptor 8 signaling increases the functional avidity of human CD8+ T lymphocytes generated for adoptive T cell therapy strategies. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:1-13. [PMID: 25866635 PMCID: PMC4386909 DOI: 10.1002/iid3.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/25/2014] [Accepted: 09/13/2014] [Indexed: 11/14/2022]
Abstract
Adoptive transfer of in vitro activated and expanded antigen-specific cytotoxic T lymphocytes (CTLs) is a promising therapeutic strategy for infectious diseases and cancers. Obtaining in vitro a sufficient amount of highly specific cytotoxic cells and capable of retaining cytotoxic activity in vivo remains problematic. We studied the role of Toll-Like Receptor-8 (TLR8) engagement on peripheral CTLs activated with melanoma antigen MART-1-expressing artificial antigen-presenting cells (AAPCs). After a 3-week co-culture, 3–27% of specific CTLs were consistently obtained. CTLs expressed TLR8 in the intracellular compartment and at the cell surface. Specific CTLs activated with a TLR8 agonist (CL075) 24 h before the end of the culture displayed neither any change in their production levels of molecules involved in cytotoxicity (IFN-γ, Granzyme B, and TNF-α) nor major significant change in their cell surface phenotype. However, these TLR8-stimulated lymphocytes displayed increased cytotoxic activity against specific peptide-pulsed target cells related to an increase in specific anti-melanoma CTL functional avidity. TLR8 engagement on CTLs could, therefore, be useful in different immunotherapy strategies.
Collapse
Affiliation(s)
- Jean-François Chatillon
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France
| | - Mohamad Hamieh
- University of Rouen Rouen, France ; INSERM U1079 Rouen, France
| | - Florence Bayeux
- Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France
| | - Claire Abasq
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| | | | | | - Florian Guisier
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| | - Jean-Baptiste Latouche
- University of Rouen Rouen, France ; INSERM U1079 Rouen, France ; Rouen University Hospital Rouen, France
| | - Philippe Musette
- University of Rouen Rouen, France ; Institut National de la Santé et de la Recherche Médicale (INSERM) U905 Rouen, France ; Rouen University Hospital Rouen, France
| |
Collapse
|
143
|
Xu C, Evensen Ø, Munang'andu HM. De novo assembly and transcriptome analysis of Atlantic salmon macrophage/dendritic-like TO cells following type I IFN treatment and Salmonid alphavirus subtype-3 infection. BMC Genomics 2015; 16:96. [PMID: 25765343 PMCID: PMC4337061 DOI: 10.1186/s12864-015-1302-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022] Open
Abstract
Background Interferons (IFN) are cytokines secreted by vertebrate cells involved in activation of signaling pathways that direct the synthesis of antiviral genes. To gain a global understanding of antiviral genes induced by type I IFNs in salmonids, we used RNA-seq to characterize the transcriptomic changes induced by type I IFN treatment and salmon alphavirus subtype 3 (SAV-3) infection in TO-cells, a macrophage/dendritic like cell-line derived from Atlantic salmon (Salmo salar L) head kidney leukocytes. Results More than 23 million reads generated by RNA-seq were de novo assembled into 58098 unigenes used to generate a total of 3149 and 23289 differentially expressed genes (DEGs) from TO-cells exposed to type I IFN treatment and SAV-3 infection, respectively. Although the DEGs were classified into genes associated with biological processes, cellular components and molecular function based on gene ontology classification, transcriptomic changes reported here show upregulation of genes belonging to the canonical type I IFN signaling pathways together with a broad spectrum of antiviral genes that block virus replication in host cells. In addition, the transcriptome shows a profile of genes associated with apoptosis as well as genes that activate adaptive immunity. Further, our findings show that the profile of genes expressed by TO-cells is comparable to orthologous genes expressed by mammalian macrophages and dendritic cells in response to type I IFNs. Twenty DEGs randomly selected for qRT-PCR confirmed the validity of the transcriptomic changes detected by RNA-seq by showing that the genes upregulated by RNA-seq were also upregulated by qRT-PCR and that genes downregulated by RNA-seq were also downregulated by qRT-PCR. Conclusions The de novo assembled transcriptome presented here provides a global description of genes induced by type I IFNs in TO-cells that could serve as a repository for future studies in fish cells. Transcriptome analysis shows that a large proportion of IFN genes expressed in this study are comparable to IFNs genes expressed in mammalia. In addition, the study shows that SAV-3 is a potent inducer of type I IFNs and that the responses it induces in TO-cells could serve as a model for studying IFN responses in salmonids.
Collapse
Affiliation(s)
- Cheng Xu
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| | - Øystein Evensen
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| | - Hetron Mweemba Munang'andu
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, P.O. Box 8146, Dep. NO-0033, Oslo, Norway.
| |
Collapse
|
144
|
Rosadini CV, Kagan JC. Microbial strategies for antagonizing Toll-like-receptor signal transduction. Curr Opin Immunol 2015; 32:61-70. [PMID: 25615700 PMCID: PMC4336813 DOI: 10.1016/j.coi.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022]
Abstract
Within a few years of the discovery of Toll-like receptors (TLRs) and their role in innate immunity, viral and bacterial proteins were recognized to antagonize TLR signal transduction. Since then, as TLR signaling networks were unraveled, microbial systems have been discovered that target nearly every component within these pathways. However, recent findings as well as some notable exceptions promote the idea that more of these systems have yet to be discovered. For example, we know very little about microbial systems for directly targeting non-cytoplasmic portions of TLR signaling pathways, that is, the ligand interacting portions of the receptor itself. In this review, we compare and contrast strategies by which bacteria and viruses antagonize TLR signaling networks to identify potential areas for future research.
Collapse
Affiliation(s)
- Charles V Rosadini
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
145
|
Kornblit B, Enevold C, Wang T, Spellman S, Haagenson M, Lee SJ, Müller K. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2015; 21:259-65. [PMID: 25464115 PMCID: PMC4297590 DOI: 10.1016/j.bbmt.2014.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni-corrected level P ≤ .001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease-free survival (hazard ratio [HR], 1.47 [95% confidence interval {CI}, 1.16 to 1.85]; P = .001). Further analysis stratified by donor sex due to confounding by sex was suggestive for associations with overall survival (male donor: HR, 1.41 [95% CI, 1.09 to 1.83], P = .010; female donor: HR, 2.78 [95% CI, 1.43 to 5.41], P = .003), disease-free survival (male donor: HR, 1.45 [95% CI, 1.12 to 1.87], P = .005; female donor: HR, 2.34 [95% CI, 1.18 to 4.65], P = .015), and treatment-related mortality (male donor: HR, 1.49 [95% CI, 1.09 to 2.04], P = .012; female donor: HR, 3.12 [95% CI, 1.44 to 6.74], P = .004). In conclusion, our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT.
Collapse
Affiliation(s)
- Brian Kornblit
- The Laboratory for Allogeneic Hematopoietic Cell Transplantation, Department of Hematology, Rigshospitalet, Copehnhagen, Denmark.
| | - Christian Enevold
- Department of Infectious Diseases and Rheumatology, Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark
| | - Tao Wang
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephen Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Mike Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephanie J Lee
- Clinical Transplant Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Klaus Müller
- Department of Infectious Diseases and Rheumatology, Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark; Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
146
|
Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res 2015; 4:23-45. [PMID: 25648619 PMCID: PMC4313107 DOI: 10.7774/cevr.2015.4.1.23] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 11/24/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022] Open
Abstract
Adjuvants improve the adaptive immune response to a vaccine antigen by modulating innate immunity or facilitating transport and presentation. The selection of an appropriate adjuvant has become vital as new vaccines trend toward narrower composition, expanded application, and improved safety. Functionally, adjuvants act directly or indirectly on antigen presenting cells (APCs) including dendritic cells (DCs) and are perceived as having molecular patterns associated either with pathogen invasion or endogenous cell damage (known as pathogen associated molecular patterns [PAMPs] and damage associated molecular patterns [DAMPs]), thereby initiating sensing and response pathways. PAMP-type adjuvants are ligands for toll-like receptors (TLRs) and can directly affect DCs to alter the strength, potency, speed, duration, bias, breadth, and scope of adaptive immunity. DAMP-type adjuvants signal via proinflammatory pathways and promote immune cell infiltration, antigen presentation, and effector cell maturation. This class of adjuvants includes mineral salts, oil emulsions, nanoparticles, and polyelectrolytes and comprises colloids and molecular assemblies exhibiting complex, heterogeneous structures. Today innovation in adjuvant technology is driven by rapidly expanding knowledge in immunology, cross-fertilization from other areas including systems biology and materials sciences, and regulatory requirements for quality, safety, efficacy and understanding as part of the vaccine product. Standardizations will aid efforts to better define and compare the structure, function and safety of adjuvants. This article briefly surveys the genesis of adjuvant technology and then re-examines polyionic macromolecules and polyelectrolyte materials, adjuvants currently not known to employ TLR. Specific updates are provided for aluminum-based formulations and polyelectrolytes as examples of improvements to the oldest and emerging classes of vaccine adjuvants in use.
Collapse
Affiliation(s)
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
147
|
Sabado RL, Pavlick A, Gnjatic S, Cruz CM, Vengco I, Hasan F, Spadaccia M, Darvishian F, Chiriboga L, Holman RM, Escalon J, Muren C, Escano C, Yepes E, Sharpe D, Vasilakos JP, Rolnitzsky L, Goldberg J, Mandeli J, Adams S, Jungbluth A, Pan L, Venhaus R, Ott PA, Bhardwaj N. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol Res 2015; 3:278-287. [PMID: 25633712 DOI: 10.1158/2326-6066.cir-14-0202] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Toll-like receptor (TLR) 7/8 agonist resiquimod has been used as an immune adjuvant in cancer vaccines. We evaluated the safety and immunogenicity of the cancer testis antigen NY-ESO-1 given in combination with Montanide (Seppic) with or without resiquimod in patients with high-risk melanoma. In part I of the study, patients received 100 μg of full-length NY-ESO-1 protein emulsified in 1.25 mL of Montanide (day 1) followed by topical application of 1,000 mg of 0.2% resiquimod gel on days 1 and 3 (cohort 1) versus days 1, 3, and 5 (cohort 2) of a 21-day cycle. In part II, patients were randomized to receive 100-μg NY-ESO-1 protein plus Montanide (day 1) followed by topical application of placebo gel [(arm A; n = 8) or 1,000 mg of 0.2% resiquimod gel (arm B; n = 12)] using the dosing regimen established in part I. The vaccine regimens were generally well tolerated. NY-ESO-1-specific humoral responses were induced or boosted in all patients, many of whom had high titer antibodies. In part II, 16 of 20 patients in both arms had NY-ESO-1-specific CD4⁺ T-cell responses. CD8⁺ T-cell responses were only seen in 3 of 12 patients in arm B. Patients with TLR7 SNP rs179008 had a greater likelihood of developing NY-ESO-1-specific CD8⁺ responses. In conclusion, NY-ESO-1 protein in combination with Montanide with or without topical resiquimod is safe and induces both antibody and CD4⁺ T-cell responses in the majority of patients; the small proportion of CD8⁺ T-cell responses suggests that the addition of topical resiquimod to Montanide is not sufficient to induce consistent NY-ESO-1-specific CD8⁺ T-cell responses.
Collapse
Affiliation(s)
- Rachel Lubong Sabado
- Cancer Institute, New York University School of Medicine, New York.,Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, Harvard Medical School, New York
| | - Anna Pavlick
- Cancer Institute, New York University School of Medicine, New York
| | - Sacha Gnjatic
- Ludwig Institute for Cancer Research, Harvard Medical School, New York.,Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, Harvard Medical School, New York
| | - Crystal M Cruz
- Cancer Institute, New York University School of Medicine, New York
| | - Isabelita Vengco
- Cancer Institute, New York University School of Medicine, New York
| | - Farah Hasan
- Cancer Institute, New York University School of Medicine, New York
| | | | - Farbod Darvishian
- Department of Pathology, New York University School of Medicine, New York
| | - Luis Chiriboga
- Department of Pathology, New York University School of Medicine, New York
| | | | - Juliet Escalon
- Cancer Institute, New York University School of Medicine, New York
| | - Caroline Muren
- Cancer Institute, New York University School of Medicine, New York
| | - Crystal Escano
- Cancer Institute, New York University School of Medicine, New York
| | - Ethel Yepes
- Cancer Institute, New York University School of Medicine, New York
| | - Dunbar Sharpe
- Cancer Institute, New York University School of Medicine, New York
| | - John P Vasilakos
- 3M Drug Delivery Systems Division, Harvard Medical School, New York
| | - Linda Rolnitzsky
- Cancer Institute, New York University School of Medicine, New York
| | - Judith Goldberg
- Cancer Institute, New York University School of Medicine, New York
| | - John Mandeli
- 3M Drug Delivery Systems Division, Harvard Medical School, New York
| | - Sylvia Adams
- Cancer Institute, New York University School of Medicine, New York
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York
| | - Linda Pan
- Ludwig Institute for Cancer Research, Harvard Medical School, New York
| | - Ralph Venhaus
- Ludwig Institute for Cancer Research, Harvard Medical School, New York
| | - Patrick A Ott
- Cancer Institute, New York University School of Medicine, New York.,Dana-Farber Cancer Institute, Harvard Medical School, New York
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York.,Department of Pathology, New York University School of Medicine, New York.,Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, Harvard Medical School, New York
| |
Collapse
|
148
|
Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun 2015; 6:6061. [PMID: 25616107 DOI: 10.1038/ncomms7061] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/09/2014] [Indexed: 12/24/2022] Open
Abstract
Controversy currently exists about the ability of human neutrophils to produce IL-6. Here, we show that the chromatin organization of the IL-6 genomic locus in human neutrophils is constitutively kept in an inactive configuration. However, we also show that upon exposure to stimuli that trigger chromatin remodelling at the IL-6 locus, such as ligands for TLR8 or, less efficiently, TLR4, highly purified neutrophils express and secrete IL-6. In TLR8-activated neutrophils, but not monocytes, IL-6 expression is preceded by the induction of a latent enhancer located 14 kb upstream of the IL-6 transcriptional start site. In addition, IL-6 induction is potentiated by endogenous TNFα, which prolongs the synthesis of the IκBζ co-activator and sustains C/EBPβ recruitment and histone acetylation at IL-6 regulatory regions. Altogether, these data clarify controversial literature on the ability of human neutrophils to generate IL-6 and uncover chromatin-dependent layers of regulation of IL-6 in these cells.
Collapse
|
149
|
Zhang J, Kong X, Zhou C, Li L, Nie G, Li X. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. FISH & SHELLFISH IMMUNOLOGY 2014; 41:380-8. [PMID: 25241605 DOI: 10.1016/j.fsi.2014.09.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/05/2014] [Accepted: 09/14/2014] [Indexed: 05/22/2023]
Abstract
Pattern recognition receptors (PRRs) recognize the conserved molecular structure of pathogens and trigger the signaling pathways that activate immune cells in response to pathogen infection. Toll-like receptors (TLRs) are the first and best characterized innate immune receptors. To date, at least 20 TLR types (TLR1, 2, 3, 4, 5M, 5S, 7, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, and 26) have been found in more than a dozen of fish species. However, of the TLRs identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S, TLR9, TLR21, and TLR22. Some studies have suggested that TLR2, TLR5M, TLR5S, TLR9, and TLR21 could specifically recognize PAMPs from bacteria. In addition, other TLRs including TLR1, TLR4, TLR14, TLR18, and TLR25 may also be sensors of bacteria. TLR signaling pathways in fish exhibit some particular features different from that in mammals. In this review, the ligand specificity and signal pathways of TLRs that recognize bacteria in fish are summarized. References for further studies on the specificity for recognizing bacteria using TLRs and the following reactions triggered are discussed. In-depth studies should be continuously performed to identify the ligand specificity of all TLRs in fish, particularly non-mammalian TLRs, and their signaling pathways. The discovery of TLRs and their functions will contribute to the understanding of disease resistance mechanisms in fish and provide new insights for drug intervention to manipulate immune responses.
Collapse
Affiliation(s)
- Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Xianghui Kong
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Chuanjiang Zhou
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
150
|
Wunderlich F, Al-Quraishy S, Dkhil MA. Liver-inherent immune system: its role in blood-stage malaria. Front Microbiol 2014; 5:559. [PMID: 25408684 PMCID: PMC4219477 DOI: 10.3389/fmicb.2014.00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
The liver is well known as that organ which is obligately required for the intrahepatocyte development of the pre-erythrocytic stages of the malaria-causative agent Plasmodium. However, largely neglected is the fact that the liver is also a central player of the host defense against the morbidity- and mortality-causing blood stages of the malaria parasites. Indeed, the liver is equipped with a unique immune system that acts locally, however, with systemic impact. Its main “antipodal” functions are to recognize and to generate effective immunoreactivity against pathogens on the one hand, and to generate tolerance to avoid immunoreactivity with “self” and harmless substances as dietary compounds on the other hand. This review provides an introductory survey of the liver-inherent immune system: its pathogen recognition receptors including Toll-like receptors (TLRs) and its major cell constituents with their different facilities to fight and eliminate pathogens. Then, evidence is presented that the liver is also an essential organ to overcome blood-stage malaria. Finally, we discuss effector responses of the liver-inherent immune system directed against blood-stage malaria: activation of TLRs, acute phase response, phagocytic activity, cytokine-mediated pro- and anti-inflammatory responses, generation of “protective” autoimmunity by extrathymic T cells and B-1 cells, and T cell-mediated repair of liver injuries mainly produced by malaria-induced overreactions of the liver-inherent immune system.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University , Düsseldorf, Germany
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University , Riyadh, Saudi Arabia ; Department of Zoology and Entomology, Faculty of Science, Helwan University , Cairo, Egypt
| |
Collapse
|