101
|
Noman M, Aysha J, Ketehouli T, Yang J, Du L, Wang F, Li H. Calmodulin binding transcription activators: An interplay between calcium signalling and plant stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153327. [PMID: 33302232 DOI: 10.1016/j.jplph.2020.153327] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 05/18/2023]
Abstract
In plants, next to the secondary messengers lies an array of signal relaying molecules among which Calmodulins convey the unequivocal alarms of calcium influxes to Calmodulin-Binding Transcription Activators (CAMTA). Upon reception, CAMTA transcription factors decode the calcium signatures by transcribing the genes corresponding to the specific stimulus, thus have direct/indirect engagement in the complex signalling crosstalk. CAMTA transcription factors make an important contribution to the genome of all eukaryotes, including plants, from Brassica napus (18) to Carica papaya (2), the number of CAMTA genes varies across the plant species, however they exhibit a similar evolutionarily conserved domain organization including a DNA-Binding Domain (CG-1), a Transcription Factor Immunoglobulin Binding Domain (TIG), a Calmodulin-Binding Domain (CaMBD/IQ) and several Ankyrin repeats. The regulatory region of CAMTA genes possess multiple stress-responsive cis motifs including ABRE, SARE, G-box, W-box, AuXRE, DRE and others. CAMTA TFs in Arabidopsis have been studied extensively, however in other plants (with a few exceptions), the evidence merely bases upon expression analyses. CAMTAs are reported to orchestrate biotic as well as abiotic stresses including those occurring due to water and temperature fluctuations as well as heavy metals, light and salinity. Through CG-1 domain, CAMTA TFs bind the CG-box in the promoter of their target genes and modulate their expression under adverse conditions. Here we present a glimpse of how calcium signatures are coded and decoded and translated into necessary responses. In addition, we have emphasized on exploitation of the multiple-stress responsive nature of CAMTAs in engineering plants with desired traits.
Collapse
Affiliation(s)
- Muhammad Noman
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China.
| | - Jameel Aysha
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Toi Ketehouli
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Jing Yang
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Linna Du
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Fawei Wang
- College of Life Sciences, Engineering Research Centre of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, PR China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, 570228, Haikou, China.
| |
Collapse
|
102
|
Ban Z, Estelle M. CUL3 E3 ligases in plant development and environmental response. NATURE PLANTS 2021; 7:6-16. [PMID: 33452490 PMCID: PMC8932378 DOI: 10.1038/s41477-020-00833-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
Thirty years of research have revealed the fundamental role of the ubiquitin-proteasome system in diverse aspects of cellular regulation in eukaryotes. The ubiquitin-protein ligases or E3s are central to the ubiquitin-proteasome system since they determine the specificity of ubiquitylation. The cullin-RING ligases (CRLs) constitute one large class of E3s that can be subdivided based on the cullin isoform and the substrate adapter. SCF complexes, composed of CUL1 and the SKP1/F-box protein substrate adapter, are perhaps the best characterized in plants. More recently, accumulating evidence has demonstrated the essential roles of CRL3 E3s, consisting of a CUL3 protein and a BTB/POZ substrate adaptor. In this Review, we describe the variety of CRL3s functioning in plants and the wide range of processes that they regulate. Furthermore, we illustrate how different classes of E3s may cooperate to regulate specific pathways or processes.
Collapse
Affiliation(s)
- Zhaonan Ban
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
103
|
Zhang B, Li X, Li X, Lu Z, Cai X, Ou Yang Q, Ma P, Dong J. Lipopolysaccharide Enhances Tanshinone Biosynthesis via a Ca 2+-Dependent Manner in Salvia miltiorrhiza Hairy Roots. Int J Mol Sci 2020; 21:ijms21249576. [PMID: 33339149 PMCID: PMC7765610 DOI: 10.3390/ijms21249576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Tanshinones, the major bioactive components in Salvia miltiorrhiza Bunge (Danshen), are synthesized via the mevalonic acid (MVA) pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway and the downstream biosynthesis pathway. In this study, the bacterial component lipopolysaccharide (LPS) was utilized as a novel elicitor to induce the wild type hairy roots of S. miltiorrhiza. HPLC analysis revealed that LPS treatment resulted in a significant accumulation of cryptotanshinone (CT) and dihydrotanshinone I (DTI). qRT-PCR analysis confirmed that biosynthesis genes such as SmAACT and SmHMGS from the MVA pathway, SmDXS and SmHDR from the MEP pathway, and SmCPS, SmKSL and SmCYP76AH1 from the downstream pathway were markedly upregulated by LPS in a time-dependent manner. Furthermore, transcription factors SmWRKY1 and SmWRKY2, which can activate the expression of SmDXR, SmDXS and SmCPS, were also increased by LPS. Since Ca2+ signaling is essential for the LPS-triggered immune response, Ca2+ channel blocker LaCl3 and CaM antagonist W-7 were used to investigate the role of Ca2+ signaling in tanshinone biosynthesis. HPLC analysis demonstrated that both LaCl3 and W-7 diminished LPS-induced tanshinone accumulation. The downstream biosynthesis genes including SmCPS and SmCYP76AH1 were especially regulated by Ca2+ signaling. To summarize, LPS enhances tanshinone biosynthesis through SmWRKY1- and SmWRKY2-regulated pathways relying on Ca2+ signaling. Ca2+ signal transduction plays a key role in regulating tanshinone biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Bin Zhang
- College of Life Sciences, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China; (B.Z.); (X.L.); (Z.L.); (Q.O.Y.); (P.M.)
| | - Xueying Li
- College of Life Sciences, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China; (B.Z.); (X.L.); (Z.L.); (Q.O.Y.); (P.M.)
| | - Xiuhong Li
- College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China;
| | - Zhigang Lu
- College of Life Sciences, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China; (B.Z.); (X.L.); (Z.L.); (Q.O.Y.); (P.M.)
| | - Xiaona Cai
- College of Innovation and Experiment, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China;
| | - Qing Ou Yang
- College of Life Sciences, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China; (B.Z.); (X.L.); (Z.L.); (Q.O.Y.); (P.M.)
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China; (B.Z.); (X.L.); (Z.L.); (Q.O.Y.); (P.M.)
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, No.3 Taicheng Road, Yangling 712100, China; (B.Z.); (X.L.); (Z.L.); (Q.O.Y.); (P.M.)
- Correspondence: ; Tel.: +86-029-8709-2262
| |
Collapse
|
104
|
Iqbal Z, Shariq Iqbal M, Singh SP, Buaboocha T. Ca 2+/Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:598327. [PMID: 33343600 PMCID: PMC7744605 DOI: 10.3389/fpls.2020.598327] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Calcium (Ca2+) ion is a critical ubiquitous intracellular second messenger, acting as a lead currency for several distinct signal transduction pathways. Transient perturbations in free cytosolic Ca2+ ([Ca2+]cyt) concentrations are indispensable for the translation of signals into adaptive biological responses. The transient increase in [Ca2+]cyt levels is sensed by an array of Ca2+ sensor relay proteins such as calmodulin (CaM), eventually leading to conformational changes and activation of CaM. CaM, in a Ca2+-dependent manner, regulates several transcription factors (TFs) that are implicated in various molecular, physiological, and biochemical functions in cells. CAMTA (calmodulin-binding transcription activator) is one such member of the Ca2+-loaded CaM-dependent family of TFs. The present review focuses on Ca2+ as a second messenger, its interaction with CaM, and Ca2+/CaM-mediated CAMTA transcriptional regulation in plants. The review recapitulates the molecular and physiological functions of CAMTA in model plants and various crops, confirming its probable involvement in stress signaling pathways and overall plant development. Studying Ca2+/CaM-mediated CAMTA TF will help in answering key questions concerning signaling cascades and molecular regulation under stress conditions and plant growth, thus improving our knowledge for crop improvement.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
105
|
He X, Liu W, Li W, Liu Y, Wang W, Xie P, Kang Y, Liao L, Qian L, Liu Z, Guan C, Guan M, Hua W. Genome-wide identification and expression analysis of CaM/CML genes in Brassica napus under abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153251. [PMID: 33129076 DOI: 10.1016/j.jplph.2020.153251] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 05/25/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are primary calcium (Ca2+) sensors and are involved in the regulation of plant development and stress responses by converting calcium signals into transcriptional responses, protein phosphorylation, or metabolic changes. However, the characterization and expression profiling of CaM/CML genes in Brassica napus remain limited. The present study reports that 25 BnaCaM and 168 BnaCML genes were identified in B. napus. The phylogenetics, gene structures, gene motifs, gene chromosomal locations, syntenic and Ka/Ks analysis, promoter cis-acting elements, and expression characteristics in various organs and under abiotic stress were evaluated. The phylogenetic results revealed a total of 11 subgroups, including one unique clade of CaMs distinct from CMLs. Most of group I (CaM), II, III, and X members are intron rich, while members from the other seven groups are intron-less. The majority of CaM/CML proteins have four EF-hands. Syntenic analysis showed that 91.3 % orthologous CaM/CML gene pairs between B. rapa and B. oleracea were retained as homologous gene pairs in B. napus. Ka/Ks analysis indicated that the majority of BnaCaM/CML experienced purifying selection. Expression analysis showed that BnaCaMs genes are highly and ubiquitously expressed in all of the organs and tissues examined, while distinct BnaCMLs are expressed specifically in particular organs and tissues. In total, 129 BnaCaM/CML were induced by abiotic stress and phytohormones. BnaCMLs from group IV, VI, VIII, and X were strongly induced by freezing treatment, but were not or just slightly induced by chilling treatment. The present study is the first to analyze the CaM/CML gene family in B. napus, which is useful for understanding the functions of the BnaCaM/CML in modulating plant responses to abiotic stress, especially freezing stress.
Collapse
Affiliation(s)
- Xin He
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China; Oil Crops Research, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan, 410128, China
| | - Wei Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Wenqian Li
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yan Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Weiping Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Pan Xie
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yu Kang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Li Liao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Lunwen Qian
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhongsong Liu
- Oil Crops Research, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan, 410128, China
| | - Chunyun Guan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China; Oil Crops Research, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan, 410128, China
| | - Mei Guan
- Oil Crops Research, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan, 410128, China.
| | - Wei Hua
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan, 410128, China; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
106
|
Liu J, Peng H, Su W, Liu M, Huang W, Dai L, Peng D. HaCRT1 of Heterodera avenae Is Required for the Pathogenicity of the Cereal Cyst Nematode. FRONTIERS IN PLANT SCIENCE 2020; 11:583584. [PMID: 33329646 PMCID: PMC7717957 DOI: 10.3389/fpls.2020.583584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Cereal cyst nematodes are sedentary biotrophic endoparasites that secrete effector proteins into plant tissues to transit normal cells into specialized feeding sites and suppress plant defenses. To understand the function of nematode effectors in Heterodera avenae, here, we identified a calreticulin protein HaCRT1, which could suppress the cell death induced by Bax when expressed in Nicotiana benthamiana. HaCRT1 is synthetized in the subventral gland cells of pre-parasitic second-stage nematodes. Real-time PCR assays indicated that the expression of HaCRT1 was highest in parasitic second-stage juveniles. The expression of an HaCRT1-RFP fusion in N. benthamiana revealed that it was localized in the endoplasmic reticulum of the plant cell. The ability of H. avenae infecting plants was significantly reduced when HaCRT1 was knocked down by RNA interference in vitro. Arabidopsis thaliana plants expressing HaCRT1 were more susceptible than wild-type plants to Pseudomonas syringae. The induction of defense-related genes, PAD4, WRKY33, FRK1, and WRKY29, after treatment with flg22 was suppressed in HaCRT1-transgenic plants. Also, the ROS accumulation induced by flg22 was reduced in the HaCRT1-transgenic plants compared to wild-type plants. HaCRT1 overexpression increased the cytosolic Ca2+ concentration in A. thaliana. These data suggested that HaCRT1 may contribute to the pathogenicity of H. avenae by suppressing host basal defense.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Su
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Maoyan Liu
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangying Dai
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
107
|
Distinct Molecular Pattern-Induced Calcium Signatures Lead to Different Downstream Transcriptional Regulations via AtSR1/CAMTA3. Int J Mol Sci 2020; 21:ijms21218163. [PMID: 33142885 PMCID: PMC7662696 DOI: 10.3390/ijms21218163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Plants encrypt the perception of different pathogenic stimuli into specific intracellular calcium (Ca2+) signatures and subsequently decrypt the signatures into appropriate downstream responses through various Ca2+ sensors. Two microbe-associated molecular patterns (MAMPs), bacterial flg22 and fungal chitin, and one damage-associated molecular pattern (DAMP), AtPep1, were used to study the differential Ca2+ signatures in Arabidopsis leaves. The results revealed that flg22, chitin, and AtPep1 induced distinct changes in Ca2+ dynamics in both the cytosol and nucleus. In addition, Flg22 and chitin upregulated the expression of salicylic acid-related genes, ICS1 and EDS1, whereas AtPep1 upregulated the expression of jasmonic acid-related genes, JAZ1 and PDF1.2, in addition to ICS1 and EDS1. These data demonstrated that distinct Ca2+ signatures caused by different molecular patterns in leaf cells lead to specific downstream events. Furthermore, these changes in the expression of defense-related genes were disrupted in a knockout mutant of the AtSR1/CAMTA3 gene, encoding a calmodulin-binding transcription factor, in which a calmodulin-binding domain on AtSR1 was required for deciphering the Ca2+ signatures into downstream transcription events. These observations extend our knowledge regarding unique and intrinsic roles for Ca2+ signaling in launching and fine-tuning plant immune response, which are mediated by the AtSR1/CAMTA3 transcription factor.
Collapse
|
108
|
Comparative transcriptome analysis of Tilletia horrida infection in resistant and susceptible rice (Oryza sativa L.) male sterile lines reveals potential candidate genes and resistance mechanisms. Genomics 2020; 112:5214-5226. [PMID: 32966859 DOI: 10.1016/j.ygeno.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/21/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022]
Abstract
Rice kernel smut (RKS), caused by the basidiomycete fungus Tilletia horrida, is one of the most devastating diseases affecting the production of male sterile lines of rice (Oryza sativa) worldwide. However, the molecular mechanisms of resistance to T. horrida have not yet been explored. In the present study, RNA sequencing analysis of rice male sterile lines, that are resistant and susceptible to RKS (Jiangcheng 3A and 9311A, respectively) was conducted after T. horrida infection. Transcriptomic analysis showed that a greater number of differentially expressed gene (DEGs) was observed in Jiangcheng 3A compared with 9311A after T. horrida inoculation. Furthermore, 4, 425 DEGs were uniquely detected in Jiangcheng 3A, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of these DEGs revealed that oxidoreductase activity, peroxidase activity, cutin, suberine and wax biosynthesis, and flavonoid biosynthesis were key pathways for T. horrida resistance. In summary and based on transcriptome analysis, we suggest a preliminary regulatory mechanism for Jiangcheng 3A cultivar resistance response to T. horrida inoculation.
Collapse
|
109
|
Yang F, Dong FS, Hu FH, Liu YW, Chai JF, Zhao H, Lv MY, Zhou S. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genet 2020; 21:105. [PMID: 32928120 PMCID: PMC7491182 DOI: 10.1186/s12863-020-00916-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022] Open
Abstract
Background Plant calmodulin-binding transcription activator (CAMTA) proteins play important roles in hormone signal transduction, developmental regulation, and environmental stress tolerance. However, in wheat, the CAMTA gene family has not been systematically characterized. Results In this work, 15 wheat CAMTA genes were identified using a genome-wide search method. Their chromosome location, physicochemical properties, subcellular localization, gene structure, protein domain, and promoter cis-elements were systematically analyzed. Phylogenetic analysis classified the TaCAMTA genes into three groups (groups A, B, and C), numbered 7, 6, and 2, respectively. The results showed that most TaCAMTA genes contained stress-related cis-elements. Finally, to obtain tissue-specific and stress-responsive candidates, the expression profiles of the TaCAMTAs in various tissues and under biotic and abiotic stresses were investigated. Tissue-specific expression analysis showed that all of the 15 TaCAMTA genes were expressed in multiple tissues with different expression levels, as well as under abiotic stress, the expressions of each TaCAMTA gene could respond to at least one abiotic stress. It also found that 584 genes in wheat genome were predicted to be potential target genes by CAMTA, demonstrating that CAMTA can be widely involved in plant development and growth, as well as coping with stresses. Conclusions This work systematically identified the CAMTA gene family in wheat at the whole-genome-wide level, providing important candidates for further functional analysis in developmental regulation and the stress response in wheat.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Fu-Shuang Dong
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Fang-Hui Hu
- Agriculture and Rural Bureau of Nanhe County, Xingtai, 054400, People's Republic of China
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Jian-Fang Chai
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - He Zhao
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Meng-Yu Lv
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Shuo Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
110
|
Abstract
Drought is a severe environmental constraint, which significantly affects plant growth, productivity, and quality. Plants have developed specific mechanisms that perceive the stress signals and respond to external environmental changes via different mitigation strategies. Abscisic acid (ABA), being one of the phytohormones, serves as an important signaling mediator for plants’ adaptive response to a variety of environmental stresses. ABA triggers many physiological processes, including bud dormancy, seed germination, stomatal closure, and transcriptional and post-transcriptional regulation of stress-responsive gene expression. The site of its biosynthesis and action must be clarified to understand the signaling network of ABA. Various studies have documented multiple sites for ABA biosynthesis, their transporter proteins in the plasma membrane, and several components of ABA-dependent signaling pathways, suggesting that the ABA response to external stresses is a complex networking mechanism. Knowing about stress signals and responses will increase our ability to enhance crop stress tolerance through the use of various advanced techniques. This review will elaborate on the ABA biosynthesis, transportation, and signaling pathways at the molecular level in response to drought stress, which will add a new insight for future studies.
Collapse
|
111
|
Sun X, Pan B, Wang Y, Xu W, Zhang S. Exogenous Calcium Improved Resistance to Botryosphaeria dothidea by Increasing Autophagy Activity and Salicylic Acid Level in Pear. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1150-1160. [PMID: 32432513 DOI: 10.1094/mpmi-04-20-0101-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pear ring rot, caused by Botryosphaeria dothidea, is one of the most serious diseases in pear. Calcium (Ca2+) was reported to play a key role in the plant defense response. Here, we found that exogenous calcium could enhance resistance to B. dothidea in pear leaves. Less H2O2 and O2- but more activated reactive oxygen species scavenge enzymes accumulated in calcium-treated leaves than in H2O-treated leaves. Moreover, the increased level of more ascorbic acid-glutathione was maintained by Ca2+ treatment under pathogen infection. The expression of core autophagy-related genes and autophagosome formations were enhanced in Ca2+-treated leaves. Silencing of PbrATG5 in Pyrus betulaefolia conferred sensitivity to inoculation, which was only slightly recovered by Ca2+ treatment. Moreover, the salicylic acid (SA) level and SA-related gene expression were induced more strongly by B. dothidea in Ca2+-treated leaves than in H2O-treated leaves. Taken together, these results demonstrated that exogenous Ca2+ enhanced resistance to B. dothidea by increasing autophagic activity and SA accumulation. Our findings reveal a new mechanism of Ca2+ in increasing the tolerance of pear to B. dothidea infection.
Collapse
Affiliation(s)
- Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bisheng Pan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Xu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
112
|
Behr M, Baldacci-Cresp F, Kohler A, Morreel K, Goeminne G, Van Acker R, Veneault-Fourrey C, Mol A, Pilate G, Boerjan W, de Almeida Engler J, El Jaziri M, Baucher M. Alterations in the phenylpropanoid pathway affect poplar ability for ectomycorrhizal colonisation and susceptibility to root-knot nematodes. MYCORRHIZA 2020; 30:555-566. [PMID: 32647969 DOI: 10.1007/s00572-020-00976-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the impact of the alteration of the monolignol biosynthesis pathway on the establishment of the in vitro interaction of poplar roots either with a mutualistic ectomycorrhizal fungus or with a pathogenic root-knot nematode. Overall, the five studied transgenic lines downregulated for caffeoyl-CoA O-methyltransferase (CCoAOMT), caffeic acid O-methyltransferase (COMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD) or both COMT and CAD displayed a lower mycorrhizal colonisation percentage, indicating a lower ability for establishing mutualistic interaction than the wild-type. The susceptibility to root-knot nematode infection was variable in the five lines, and the CAD-deficient line was found to be less susceptible than the wild-type. We discuss these phenotypic differences in the light of the large shifts in the metabolic profile and gene expression pattern occurring between roots of the CAD-deficient line and wild-type. A role of genes related to trehalose metabolism, phytohormones, and cell wall construction in the different mycorrhizal symbiosis efficiency and nematode sensitivity between these two lines is suggested. Overall, these results show that the alteration of plant metabolism caused by the repression of a single gene within phenylpropanoid pathway results in significant alterations, at the root level, in the response towards mutualistic and pathogenic associates. These changes may constrain plant fitness and biomass production, which are of economic importance for perennial industrial crops such as poplar.
Collapse
Affiliation(s)
- Marc Behr
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Fabien Baldacci-Cresp
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Annegret Kohler
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRAE Grand-Est-Nancy, INRAE-Université de Lorraine, 54280, Champenoux, France
| | - Kris Morreel
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Geert Goeminne
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- VIB Metabolomics Core, 9052, Ghent, Belgium
| | - Rebecca Van Acker
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Claire Veneault-Fourrey
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRAE Grand-Est-Nancy, INRAE-Université de Lorraine, 54280, Champenoux, France
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | | | - Wout Boerjan
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | | | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium.
| |
Collapse
|
113
|
Chen J, Clinton M, Qi G, Wang D, Liu F, Fu ZQ. Reprogramming and remodeling: transcriptional and epigenetic regulation of salicylic acid-mediated plant defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5256-5268. [PMID: 32060527 DOI: 10.1093/jxb/eraa072] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/11/2020] [Indexed: 05/13/2023]
Abstract
As a plant hormone, salicylic acid (SA) plays essential roles in plant defense against biotrophic and hemibiotrophic pathogens. Significant progress has been made in understanding the SA biosynthesis pathways and SA-mediated defense signaling networks in the past two decades. Plant defense responses involve rapid and massive transcriptional reprogramming upon the recognition of pathogens. Plant transcription factors and their co-regulators are critical players in establishing a transcription regulatory network and boosting plant immunity. A multitude of transcription factors and epigenetic regulators have been discovered, and their roles in SA-mediated defense responses have been reported. However, our understanding of plant transcriptional networks is still limited. As such, novel genomic tools and bioinformatic techniques will be necessary if we are to fully understand the mechanisms behind plant immunity. Here, we discuss current knowledge, provide an update on the SA biosynthesis pathway, and describe the transcriptional and epigenetic regulation of SA-mediated plant immune responses.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, P. R. China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Michael Clinton
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Guang Qi
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, P. R. China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, P. R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, P. R. China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
114
|
Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD. HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. THE NEW PHYTOLOGIST 2020; 227:840-856. [PMID: 32201955 PMCID: PMC7383879 DOI: 10.1111/nph.16559] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
DELAY OF GERMINATION1 (DOG1) is a primary regulator of seed dormancy. Accumulation of DOG1 in seeds leads to deep dormancy and delayed germination in Arabidopsis. B3 domain-containing transcriptional repressors HSI2/VAL1 and HSL1/VAL2 silence seed dormancy and enable the subsequent germination and seedling growth. However, the roles of HSI2 and HSL1 in regulation of DOG1 expression and seed dormancy remain elusive. Seed dormancy was analysed by measurement of maximum germination percentage of freshly harvested Arabidopsis seeds. In vivo protein-protein interaction analysis, ChIP-qPCR and EMSA were performed and suggested that HSI2 and HSL1 can form dimers to directly regulate DOG1. HSI2 and HSL1 dimers interact with RY elements at DOG1 promoter. Both B3 and PHD-like domains are required for enrichment of HSI2 and HSL1 at the DOG1 promoter. HSI2 and HSL1 recruit components of polycomb-group proteins, including CURLY LEAF (CLF) and LIKE HETERCHROMATIN PROTEIN 1 (LHP1), for consequent deposition of H3K27me3 marks, leading to repression of DOG1 expression. Our findings suggest that HSI2- and HSL1-dependent histone methylation plays critical roles in regulation of seed dormancy during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Naichong Chen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| | - Hui Wang
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
| | - Haggag Abdelmageed
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Agricultural BotanyFaculty of AgricultureCairo UniversityGiza12613Egypt
| | | | - Million Tadege
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Randy D. Allen
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOK73401USA
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwater74078OKUSA
| |
Collapse
|
115
|
Blanco E, Fortunato S, Viggiano L, de Pinto MC. Cyclic AMP: A Polyhedral Signalling Molecule in Plants. Int J Mol Sci 2020; 21:E4862. [PMID: 32660128 PMCID: PMC7402341 DOI: 10.3390/ijms21144862] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotide cAMP (3',5'-cyclic adenosine monophosphate) is nowadays recognised as an important signalling molecule in plants, involved in many molecular processes, including sensing and response to biotic and abiotic environmental stresses. The validation of a functional cAMP-dependent signalling system in higher plants has spurred a great scientific interest on the polyhedral role of cAMP, as it actively participates in plant adaptation to external stimuli, in addition to the regulation of physiological processes. The complex architecture of cAMP-dependent pathways is far from being fully understood, because the actors of these pathways and their downstream target proteins remain largely unidentified. Recently, a genetic strategy was effectively used to lower cAMP cytosolic levels and hence shed light on the consequences of cAMP deficiency in plant cells. This review aims to provide an integrated overview of the current state of knowledge on cAMP's role in plant growth and response to environmental stress. Current knowledge of the molecular components and the mechanisms of cAMP signalling events is summarised.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Stefania Fortunato
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| | - Luigi Viggiano
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| | - Maria Concetta de Pinto
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| |
Collapse
|
116
|
Zhang W, Jiang L, Huang J, Ding Y, Liu Z. Loss of proton/calcium exchange 1 results in the activation of plant defense and accelerated senescence in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110472. [PMID: 32540002 DOI: 10.1016/j.plantsci.2020.110472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Cytosolic Ca2+ increases in response to many stimuli. CAX1 (H+/Ca2+ exchanger 1) maintains calcium homeostasis by transporting calcium from the cytosol to vacuoles. Here, we determined that the cax1 mutant exhibits enhanced resistance against both an avirulent biotrophic pathogen Pst-avrRpm1 (Pseudomonas syringae pv tomato DC3000 avrRpm1), and a necrotrophic pathogen, B. cinerea (Botrytis cinerea). The defense hormone SA (salicylic acid) and phytoalexin scopoletin, which fight against biotrophs and necrotrophs respectively, accumulated more in cax1 than wild-type. Moreover, the cax1 mutant exhibited early senescence after exogenous Ca2+ application. The accelerated senescence in the cax1 mutant was dependent on SID2 (salicylic acid induction deficient 2) but not on NPR1 (nonexpressor of pathogenesis-related genes1). Additionally, the introduction of CAX1 into the cax1 mutant resulted in phenotypes similar to that of wild-type in terms of Ca2+-conditioned senescence and Pst-avrRpm1 and B. cinerea infections. However, disruption of CAX3, the homolog of CAX1, did not produce an obvious phenotype. Moreover, exogenous Ca2+ application on plants resulted in increased resistance to both Pst-avrRpm1 and B. cinerea. Therefore, we conclude that the disruption of CAX1, but not CAX3, causes the activation of pathogen defense mechanisms, probably through the manipulation of calcium homeostasis or other signals.
Collapse
Affiliation(s)
- Wei Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, China
| | - Lihui Jiang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, China
| | - Jin Huang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yongqiang Ding
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
117
|
Fujikura U, Ezaki K, Horiguchi G, Seo M, Kanno Y, Kamiya Y, Lenhard M, Tsukaya H. Suppression of class I compensated cell enlargement by xs2 mutation is mediated by salicylic acid signaling. PLoS Genet 2020; 16:e1008873. [PMID: 32584819 PMCID: PMC7343186 DOI: 10.1371/journal.pgen.1008873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/08/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
The regulation of leaf size has been studied for decades. Enhancement of post-mitotic cell expansion triggered by impaired cell proliferation in Arabidopsis is an important process for leaf size regulation, and is known as compensation. This suggests a key interaction between cell proliferation and cell expansion during leaf development. Several studies have highlighted the impact of this integration mechanism on leaf size determination; however, the molecular basis of compensation remains largely unknown. Previously, we identified extra-small sisters (xs) mutants which can suppress compensated cell enlargement (CCE) via a specific defect in cell expansion within the compensation-exhibiting mutant, angustifolia3 (an3). Here we revealed that one of the xs mutants, namely xs2, can suppress CCE not only in an3 but also in other compensation-exhibiting mutants erecta (er) and fugu2. Molecular cloning of XS2 identified a deleterious mutation in CATION CALCIUM EXCHANGER 4 (CCX4). Phytohormone measurement and expression analysis revealed that xs2 shows hyper activation of the salicylic acid (SA) response pathway, where activation of SA response can suppress CCE in compensation mutants. All together, these results highlight the regulatory connection which coordinates compensation and SA response. Leaves are determinate organ and size of leaves are determined by intrinsic and extrinsic cues. Cell proliferation and post-mitotic cell expansion should be coordinated during leaf morphogenesis to develop appropriate size depending on its developmental programs. Recent studies highlighted the existence of integrated mechanism which coordinates cell proliferation and cell expansion during leaf development. Compensation, which is enhanced post-mitotic cell expansion accompanied by a significant decrease in cell number during leaf organogenesis, is one of the clues for such coordination. However, the molecular mechanisms linking cell proliferation and cell expansion are still poorly understood. Previously, we reported extra-small sisters 2 (xs2) mutation caused specific defect in cell expansion and it suppressed increased post-mitotic cell enlargement in angustifolia3 (an3) mutant, which exhibits typical compensation. Here we identify the affected gene of xs2 mutant encodes a member of cation calcium exchanger which is believed to be involved in cation homeostasis within cells. Loss of function of this protein causes hyper accumulation of salicylic acid (SA) and increased expression of pathogen related genes. Physiological and genetic studies revealed activated SA signal transduction reduced cell size. It suppressed post-mitotic cell expansion in several compensation mutants not only an3 but partially suppressed in another type of compensation mutant which increases size of mitotic cells. This finding suggests post-mitotic cell expansion pathway is regulated in common by SA-dependent signaling and by compensation signaling during leaf development.
Collapse
Affiliation(s)
- Ushio Fujikura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
- * E-mail:
| | - Kazune Ezaki
- Graduate School of Science, The University of Tokyo, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, Japan
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Potsdam-Golm, Germany
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Japan
| |
Collapse
|
118
|
CaCML13 Acts Positively in Pepper Immunity Against Ralstonia solanacearum Infection Forming Feedback Loop with CabZIP63. Int J Mol Sci 2020; 21:ijms21114186. [PMID: 32545368 PMCID: PMC7312559 DOI: 10.3390/ijms21114186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023] Open
Abstract
Ca2+-signaling—which requires the presence of calcium sensors such as calmodulin (CaM) and calmodulin-like (CML) proteins—is crucial for the regulation of plant immunity against pathogen attack. However, the underlying mechanisms remain elusive, especially the roles of CMLs involved in plant immunity remains largely uninvestigated. In the present study, CaCML13, a calmodulin-like protein of pepper that was originally found to be upregulated by Ralstonia solanacearum inoculation (RSI) in RNA-seq, was functionally characterized in immunity against RSI. CaCML13 was found to target the whole epidermal cell including plasma membrane, cytoplasm and nucleus. We also confirmed that CaCML13 was upregulated by RSI in pepper roots by quantitative real-time PCR (qRT-PCR). The silencing of CaCML13 significantly enhanced pepper plants’ susceptibility to RSI accompanied with downregulation of immunity-related CaPR1, CaNPR1, CaDEF1 and CabZIP63. In contrast, CaCML13 transient overexpression induced clear hypersensitivity-reaction (HR)-mimicked cell death and upregulation of the tested immunity-related genes. In addition, we also revealed that the G-box-containing CaCML13 promoter was bound by CabZIP63 and CaCML13 was positively regulated by CabZIP63 at transcriptional level. Our data collectively indicate that CaCML13 act as a positive regulator in pepper immunity against RSI forming a positive feedback loop with CabZIP63.
Collapse
|
119
|
Liu N, Zhu L. Metabolomic and Transcriptomic Investigation of Metabolic Perturbations in Oryza sativa L. Triggered by Three Pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6115-6124. [PMID: 32227873 DOI: 10.1021/acs.est.0c00425] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inappropriate application of pesticides often triggers molecular alterations in crops, which inadvertently disturbs metabolites and finally affects crop quality. Therefore, understanding the mechanism of action of pesticides on crops is essential for evaluating the potential environmental impact of pesticides. Our findings indicated that three typical pesticides, including herbicide butachlor, insecticide chlorpyrifos, and fungicide tricyclazole, induced the expression regulation of different key genes, exhibiting considerable distinction on metabolic responses in rice (Oryza sativa L.). Butachlor mainly affected five carbohydrate metabolism pathways (38.5%), and more than 48.0% of differentially expressed genes (DEGs) were involved in the starch and sucrose metabolism as well as photosynthesis, thereby disturbing the distribution of starch-sucrose. Chlorpyrifos dramatically affected six amino acid metabolism pathways (60.0%), and key DEGs mainly enriched in the aspartate and glutamate metabolism, inducing an increase in free amino acid contents (up to 29.02% of the control) and degradation of soluble proteins (down to 48.72% of the control). Tricyclazole remarkably affected six fatty acid metabolism pathways (53.9%) and significantly upregulated DEGs which primarily code oil-body membrane proteins, which resulted in the decline of saturated fatty acids (palmitic acid and stearic acid) and the increase of unsaturated fatty acids (linolenic acid and octadecadienoic acid). These findings provide a molecular-scale perspective on the response of crops to pesticides.
Collapse
Affiliation(s)
- Na Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
120
|
Maurya R, Srivastava D, Singh M, Sawant SV. Envisioning the immune interactome in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:486-507. [PMID: 32345431 DOI: 10.1071/fp19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
During plant-pathogen interaction, immune targets were regulated by protein-protein interaction events such as ligand-receptor/co-receptor, kinase-substrate, protein sequestration, activation or repression via post-translational modification and homo/oligo/hetro-dimerisation of proteins. A judicious use of molecular machinery requires coordinated protein interaction among defence components. Immune signalling in Arabidopsis can be broadly represented in successive or simultaneous steps; pathogen recognition at cell surface, Ca2+ and reactive oxygen species signalling, MAPK signalling, post-translational modification, transcriptional regulation and phyto-hormone signalling. Proteome wide interaction studies have shown the existence of interaction hubs associated with physiological function. So far, a number of protein interaction events regulating immune targets have been identified, but their understanding in an interactome view is lacking. We focussed specifically on the integration of protein interaction signalling in context to plant-pathogenesis and identified the key targets. The present review focuses towards a comprehensive view of the plant immune interactome including signal perception, progression, integration and physiological response during plant pathogen interaction.
Collapse
Affiliation(s)
- Rashmi Maurya
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Department of Botany, Lucknow University, Lucknow. 226007
| | - Deepti Srivastava
- Integral Institute of Agricultural Science and Technology (IIAST) Integral University, Kursi Road, Dashauli, Uttar Pradesh. 226026
| | - Munna Singh
- Department of Botany, Lucknow University, Lucknow. 226007
| | - Samir V Sawant
- Plant Molecular Biology Lab, National Botanical Research Institute, Lucknow. 226001; and Corresponding author.
| |
Collapse
|
121
|
Abdel-Hameed AAE, Prasad KVSK, Jiang Q, Reddy ASN. Salt-Induced Stability of SR1/CAMTA3 mRNA Is Mediated by Reactive Oxygen Species and Requires the 3' End of Its Open Reading Frame. PLANT & CELL PHYSIOLOGY 2020; 61:748-760. [PMID: 31917443 DOI: 10.1093/pcp/pcaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Soil salinity, a prevalent abiotic stress, causes enormous losses in global crop yields annually. Previous studies have shown that salt stress-induced reprogramming of gene expression contributes to the survival of plants under this stress. However, mechanisms regulating gene expression in response to salt stress at the posttranscriptional level are not well understood. In this study, we show that salt stress increases the level of Signal Responsive 1 (SR1) mRNA, a member of signal-responsive Ca2+/calmodulin-regulated transcription factors, by enhancing its stability. We present multiple lines of evidence indicating that reactive oxygen species generated by NADPH oxidase activity mediate salt-induced SR1 transcript stability. Using mutants impaired in either nonsense-mediated decay, XRN4 or mRNA decapping pathways, we show that neither the nonsense-mediated mRNA decay pathway, XRN4 nor the decapping of SR1 mRNA is required for its decay. We analyzed the salt-induced accumulation of eight truncated versions of the SR1 coding region (∼3 kb) in the sr1 mutant background. This analysis identified a 500-nt region at the 3' end of the SR1 coding region to be required for the salt-induced stability of SR1 mRNA. Potential mechanisms by which this region confers SR1 transcript stability in response to salt are discussed.
Collapse
Affiliation(s)
- Amira A E Abdel-Hameed
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Kasavajhala V S K Prasad
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Qiyan Jiang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
122
|
Rahman H, Wang XY, Xu YP, He YH, Cai XZ. Characterization of tomato protein kinases embedding guanylate cyclase catalytic center motif. Sci Rep 2020; 10:4078. [PMID: 32139792 PMCID: PMC7057975 DOI: 10.1038/s41598-020-61000-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/19/2020] [Indexed: 11/09/2022] Open
Abstract
Guanylate cyclases (GCs) are enzymes that catalyze the reaction to produce cyclic GMP (cGMP), a key signaling molecule in eukaryotes. Nevertheless, systemic identification and functional analysis of GCs in crop plant species have not yet been conducted. In this study, we systematically identified GC genes in the economically important crop tomato (Solanum lycopersicum L.) and analyzed function of two putative tomato GC genes in disease resistance. Ninety-nine candidate GCs containing GC catalytic center (GC-CC) motif were identified in tomato genome. Intriguingly, all of them were putative protein kinases embedding a GC-CC motif within the protein kinase domain, which was thus tentatively named as GC-kinases here. Two homologs of Arabidopsis PEPRs, SlGC17 and SlGC18 exhibited in vitro GC activity. Co-silencing of SlGC17 and SlGC18 genes significantly reduced resistance to tobacco rattle virus, fungus Sclerotinia sclerotiorum, and bacterium Pseudomonas syringae pv. tomato (Pst) DC3000. Moreover, co-silencing of these two genes attenuated PAMP and DAMP-triggered immunity as shown by obvious decrease of flg22, chitin and AtPep1-elicited Ca2+ and H2O2 burst in SlGC-silenced plants. Additionally, silencing of these genes altered the expression of a set of Ca2+ signaling genes. Furthermore, co-silencing of these GC-kinase genes exhibited stronger effects on all above regulations in comparison with individual silencing. Collectively, our results suggest that GC-kinases might widely exist in tomato and the two SlPEPR-GC genes redundantly play a positive role in resistance to diverse pathogens and PAMP/DAMP-triggered immunity in tomato. Our results provide insights into composition and functions of GC-kinases in tomato.
Collapse
Affiliation(s)
- Hafizur Rahman
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yao Wang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Han He
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
123
|
Genotypic Variation in Resistance Gene-Mediated Calcium Signaling and Hormonal Signaling Involved in Effector-Triggered Immunity or Disease Susceptibility in the Xanthomonas campestris pv. Campestris- Brassica napus Pathosystem. PLANTS 2020; 9:plants9030303. [PMID: 32121557 PMCID: PMC7154883 DOI: 10.3390/plants9030303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
To characterize cultivar variation in resistance gene (R-gene)-mediated calcium signaling and hormonal regulation in effector-triggered immunity (ETI) and disease susceptibility, Xanthomonas campestris pv. campestris (Xcc) was inoculated in two Brassica napus cultivars (cvs. Capitol and Mosa). At 14 days post inoculation (DPI) with Xcc, there was a necrotic lesion in cv. Mosa along with the significant accumulation of H2O2 and malondialdehyde (MDA), whereas no visual symptom was observed in cv. Capitol. The cultivar variations in the R-gene expressions were found in response to Xcc. ZAR1 is a coiled-coil-nucleotide binding site-leucine-rich repeat (CC-NB-LRR)-type R-gene that is significantly induced in cv. Capitol, whereas toll/interleukin-1 receptor-nucleotide binding site-leucine-rich repeat (TIR-NB-LRR)-type R-gene, TAO1, is significantly upregulated in cv. Mosa Xcc-inoculated plants. The defense-related gene's non-race-specific disease resistance 1 (NDR1) and mitogen-activated protein kinase 6 (MAPK6) were enhanced, whereas calcium-dependent protein kinase (CDPK5) and calcium-sensing protein 60g (CBP60g) were depressed in cv. Capitol Xcc inoculated plants, and opposite results were found in cv. Mosa. The calcium-sensing receptor (CAS), calmodulin (CaM), expression was induced in both the cultivars. However, the CAS induction rate was much higher in cv. Mosa than in cv. Capitol in response to Xcc. The phytohormone salicylic acid (SA) and jasmonic acid (JA) levels were significantly higher in cv. Capitol along with the enhanced SA receptors (NPR3 and NPR4) and JA synthesis and signaling-related gene expression (LOX2, PDF1.2), whereas the JA level was significantly lower in cv. Mosa Xcc inoculated plants. The SA synthesis and signaling-related genes (ICS1, NPR1) and SA were present at higher levels in cv. Mosa; additionally, the SA level present was much higher in the susceptible cultivar (cv. Mosa) than in the resistant cultivar (cv. Capitol) in response to Xcc. These results indicate that ZAR1 mediated the coordinated action of SA and JA synthesis and signaling to confirm ETI, whereas TAO1 enhanced the synthesis of SA through CAS and CBP60g to antagonize JA synthesis and signaling to cause disease susceptibility in the Brassica napus-Xcc pathosystem.
Collapse
|
124
|
Warmerdam S, Sterken MG, Sukarta OCA, van Schaik CC, Oortwijn MEP, Lozano-Torres JL, Bakker J, Smant G, Goverse A. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita. BMC PLANT BIOLOGY 2020; 20:73. [PMID: 32054439 PMCID: PMC7020509 DOI: 10.1186/s12870-020-2285-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/07/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Root-knot nematodes transform vascular host cells into permanent feeding structures to withdraw nutrients from the host plant. Ecotypes of Arabidopsis thaliana can display large quantitative variation in susceptibility to the root-knot nematode Meloidogyne incognita, which is thought to be independent of dominant major resistance genes. However, in an earlier genome-wide association study of the interaction between Arabidopsis and M. incognita we identified a quantitative trait locus harboring homologs of dominant resistance genes but with minor effect on susceptibility to the M. incognita population tested. RESULTS Here, we report on the characterization of two of these genes encoding the TIR-NB-LRR immune receptor DSC1 (DOMINANT SUPPRESSOR OF Camta 3 NUMBER 1) and the TIR-NB-LRR-WRKY-MAPx protein WRKY19 in nematode-infected Arabidopsis roots. Nematode infection studies and whole transcriptome analyses using the Arabidopsis mutants showed that DSC1 and WRKY19 co-regulate susceptibility of Arabidopsis to M. incognita. CONCLUSION Given the head-to-head orientation of DSC1 and WRKY19 in the Arabidopsis genome our data suggests that both genes may function as a TIR-NB-LRR immune receptor pair. Unlike other TIR-NB-LRR pairs involved in dominant disease resistance in plants, DSC1 and WRKY19 most likely regulate basal levels of immunity to root-knot nematodes.
Collapse
Affiliation(s)
- Sonja Warmerdam
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Octavina C. A. Sukarta
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Casper C. van Schaik
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian E. P. Oortwijn
- Laboratory of Plant breeding, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L. Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
125
|
Huang W, Wang Y, Li X, Zhang Y. Biosynthesis and Regulation of Salicylic Acid and N-Hydroxypipecolic Acid in Plant Immunity. MOLECULAR PLANT 2020; 13:31-41. [PMID: 31863850 DOI: 10.1016/j.molp.2019.12.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) has long been known to be essential for basal defense and systemic acquired resistance (SAR). N-Hydroxypipecolic acid (NHP), a recently discovered plant metabolite, also plays a key role in SAR and to a lesser extent in basal resistance. Following pathogen infection, levels of both compounds are dramatically increased. Analysis of SA- or SAR-deficient mutants has uncovered how SA and NHP are biosynthesized. The completion of the SA and NHP biosynthetic pathways in Arabidopsis allowed better understanding of how they are regulated. In this review, we discuss recent progress on SA and NHP biosynthesis and their regulation in plant immunity.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yiran Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
126
|
Sun T, Huang J, Xu Y, Verma V, Jing B, Sun Y, Ruiz Orduna A, Tian H, Huang X, Xia S, Schafer L, Jetter R, Zhang Y, Li X. Redundant CAMTA Transcription Factors Negatively Regulate the Biosynthesis of Salicylic Acid and N-Hydroxypipecolic Acid by Modulating the Expression of SARD1 and CBP60g. MOLECULAR PLANT 2020; 13:144-156. [PMID: 31733371 DOI: 10.1016/j.molp.2019.10.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Two signal molecules, salicylic acid (SA) and N-hydroxypipecolic acid (NHP), play critical roles in plant immunity. The biosynthetic genes of both compounds are positively regulated by master immune-regulating transcription factors SARD1 and CBP60g. However, the relationship between the SA and NHP pathways is unclear. CALMODULIN-BINDING TRANSCRIPTION FACTOR 1 (CAMTA1), CAMTA2, and CAMTA3 are known redundant negative regulators of plant immunity, but the underlying mechanism also remains largely unknown. In this study, through chromatin immunoprecipitation and electrophoretic mobility shift assays, we uncovered that CBP60g is a direct target of CAMTA3, which also negatively regulates the expression of SARD1, presumably via an indirect effect. The autoimmunity of camta3-1 is suppressed by sard1 cbp60g double mutant as well as ald1 and fmo1, two single mutants defective in NHP biosynthesis. Interestingly, a suppressor screen conducted in the camta1/2/3 triple mutant background yielded various mutants blocking biosynthesis or signaling of either SA or NHP, leading to nearly complete suppression of the extreme autoimmunity of camta1/2/3, suggesting that the SA and NHP pathways can mutually amplify each other. Together, these results reveal that CAMTAs repress the biosynthesis of SA and NHP by modulating the expression of SARD1 and CBP60g, and that the SA and NHP pathways are coordinated to optimize plant immune response.
Collapse
Affiliation(s)
- Tongjun Sun
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Vani Verma
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Beibei Jing
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alberto Ruiz Orduna
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hainan Tian
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Xingchuan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Laurel Schafer
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
127
|
Kim Y, Gilmour SJ, Chao L, Park S, Thomashow MF. Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. MOLECULAR PLANT 2020; 13:157-168. [PMID: 31733370 DOI: 10.1016/j.molp.2019.11.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 05/24/2023]
Abstract
The Arabidopsis thaliana Calmodulin-binding Transcription Activator (CAMTA) transcription factors CAMTA1, CAMTA2, and CAMTA3 (CAMTA123) serve as master regulators of salicylic acid (SA)-mediated immunity, repressing the biosynthesis of SA in healthy plants. Here, we show that CAMTA123 also repress the biosynthesis of pipecolic acid (Pip) in healthy plants. Loss of CAMTA123 function resulted in the induction of AGD2-like defense response protein 1 (ALD1), which encodes an enzyme involved in Pip biosynthesis. Induction of ALD1 resulted in the accumulation of high levels of Pip, which brought about increased levels of the SA receptor protein NPR1 without induction of NPR1 expression or requirement for an increase in SA levels. Pip-mediated induction of ALD1 and genes regulating the biosynthesis of SA-CBP60g, SARD1, PAD4, and EDS1-was largely dependent on NPR1. Furthermore, Pip-mediated increase in NPR1 protein levels was associated with priming of Pip and SA biosynthesis genes to induction by low levels of SA. Taken together, our findings expand the role for CAMTA123 in regulating key immunity genes and suggest a working model whereby loss of CAMTA123 repression leads to the induction of plant defense genes and initiation of SAR.
Collapse
Affiliation(s)
- Yongsig Kim
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah J Gilmour
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Lumen Chao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Sunchung Park
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F Thomashow
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; MSU Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
128
|
Saijo Y, Loo EPI. Plant immunity in signal integration between biotic and abiotic stress responses. THE NEW PHYTOLOGIST 2020; 225:87-104. [PMID: 31209880 DOI: 10.1111/nph.15989] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/04/2019] [Indexed: 05/20/2023]
Abstract
Plants constantly monitor and cope with the fluctuating environment while hosting a diversity of plant-inhabiting microbes. The mode and outcome of plant-microbe interactions, including plant disease epidemics, are dynamically and profoundly influenced by abiotic factors, such as light, temperature, water and nutrients. Plants also utilize associations with beneficial microbes during adaptation to adverse conditions. Elucidation of the molecular bases for the plant-microbe-environment interactions is therefore of fundamental importance in the plant sciences. Following advances into individual stress signaling pathways, recent studies are beginning to reveal molecular intersections between biotic and abiotic stress responses and regulatory principles in combined stress responses. We outline mechanisms underlying environmental modulation of plant immunity and emerging roles for immune regulators in abiotic stress tolerance. Furthermore, we discuss how plants coordinate conflicting demands when exposed to combinations of different stresses, with attention to a possible determinant that links initial stress response to broad-spectrum stress tolerance or prioritization of specific stress tolerance.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
129
|
Kamle M, Borah R, Bora H, Jaiswal AK, Singh RK, Kumar P. Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
130
|
Lin J, Dang F, Chen Y, Guan D, He S. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:43-51. [PMID: 31665666 DOI: 10.1016/j.plaphy.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
WRKY transcription factors are key regulatory components of plant responses to both biotic and abiotic stresses. In pepper (Capsicum annuum), CaWRKY27 positively regulates resistance to the pathogenic bacterium Ralstonia solanacearum and negatively regulates thermotolerance. Here, we report that CaWRKY27 functions in the response to salinity and osmotic stress. CaWRKY27 transcription was induced by salinity, osmotic, and abscisic acid (ABA) treatments, as determined using qPCR and GUS assays. Transgenic Arabidopsis thaliana and tobacco (Nicotiana tabacum) plants heterologously expressing CaWRKY27 had an increased sensitivity to salinity and osmotic stress, with a higher inhibition of both root elongation and whole plant growth, more severe chlorosis and wilting, lower germination rates, and an enhanced germination sensitivity to ABA than the corresponding wild-type plants. Furthermore, most marker genes associated with reactive oxygen species (ROS) detoxification and polyamine and ABA biosynthesis, as well as stress-responsive genes NtDREB3, were downregulated in plants transgenically expressing CaWRKY27 upon exposure to salinity or osmotic stress. Consistently, silencing of CaWRKY27 using virus-induced gene silencing conferred tolerance to salinity and osmotic stress in pepper plants. These findings suggest that CaWRKY27 acts as a molecular link in the antagonistic crosstalk regulating the expression of defense-related genes in the responses to both abiotic and biotic stresses by acting either as a transcriptional activator or repressor in pepper.
Collapse
Affiliation(s)
- Jinhui Lin
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fengfeng Dang
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yongping Chen
- College of Horticulture Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Deyi Guan
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuilin He
- Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization of the Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
131
|
Zhang Y, Shi Y, Zhao L, Wei F, Feng Z, Feng H. Phosphoproteomics Profiling of Cotton ( Gossypium hirsutum L.) Roots in Response to Verticillium dahliae Inoculation. ACS OMEGA 2019; 4:18434-18443. [PMID: 31720547 PMCID: PMC6844108 DOI: 10.1021/acsomega.9b02634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Verticillium wilt is a plant vascular disease causing severe yield and quality losses in many crops and is caused by the soil-borne plant pathogenic fungus Verticillium dahliae. To investigate the molecular mechanisms of the cotton-V. dahliae interaction, a time-course phosphoproteomic analysis of roots of susceptible and resistant cotton lines in response to V. dahliae was performed. In total, 1716 unique phosphoproteins were identified in the susceptible (S) and resistant (R) cotton lines. Of these, 359 phosphoproteins were significantly different in R1 (1 day after V. dahliae inoculation) vs R0 (mock) group and 287 phosphoproteins in R2 (3 days after V. dahliae inoculation) vs R0 group. Moreover, 263 proteins of V. dahliae-regulated phosphoproteins were significantly changed in S1 (1 day after V. dahliae inoculation) vs S0 (mock) group and 197 proteins in S2 (3 days after V. dahliae inoculation) vs S0 group. Thirty phosphoproteins were significantly changed and common to the resistant and susceptible cotton lines following inoculation with V. dahliae. Specifically, 92 phosphoproteins were shared in both in R1 vs R0 and R2 vs R0 but not in susceptible cotton lines. There were 38 common phosphoproteins shared in both S1 vs S0 and S2 vs S0 but not in resistant cotton lines. GO terms and Kyoto Encyclopedia of Genes and Genomes pathway analyses displayed an abundance of known and novel phosphoproteins related to plant-pathogen interactions, signal transduction, and metabolic processes, which were correlated with resistance against fungal infection. These data provide new perspectives and inspiration for understanding molecular defense mechanisms of cotton roots against V. dahliae infection.
Collapse
Affiliation(s)
- Yihao Zhang
- Zhengzhou
Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqiang Shi
- State
Key Laboratory of Cotton Biology, Institute
of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Lihong Zhao
- State
Key Laboratory of Cotton Biology, Institute
of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- Zhengzhou
Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State
Key Laboratory of Cotton Biology, Institute
of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State
Key Laboratory of Cotton Biology, Institute
of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongjie Feng
- Zhengzhou
Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- State
Key Laboratory of Cotton Biology, Institute
of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| |
Collapse
|
132
|
Pi E, Xu J, Li H, Fan W, Zhu C, Zhang T, Jiang J, He L, Lu H, Wang H, Poovaiah BW, Du L. Enhanced Salt Tolerance of Rhizobia-inoculated Soybean Correlates with Decreased Phosphorylation of the Transcription Factor GmMYB183 and Altered Flavonoid Biosynthesis. Mol Cell Proteomics 2019; 18:2225-2243. [PMID: 31467032 PMCID: PMC6823849 DOI: 10.1074/mcp.ra119.001704] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Indexed: 01/15/2023] Open
Abstract
Soybean (Glycine max (L.) Merrill) is an important component of the human diet and animal feed, but soybean production is limited by abiotic stresses especially salinity. We recently found that rhizobia inoculation enhances soybean tolerance to salt stress, but the underlying mechanisms are unaddressed. Here, we used quantitative phosphoproteomic and metabonomic approaches to identify changes in phosphoproteins and metabolites in soybean roots treated with rhizobia inoculation and salt. Results revealed differential regulation of 800 phosphopeptides, at least 32 of these phosphoproteins or their homologous were reported be involved in flavonoid synthesis or trafficking, and 27 out of 32 are transcription factors. We surveyed the functional impacts of all these 27 transcription factors by expressing their phospho-mimetic/ablative mutants in the roots of composite soybean plants and found that phosphorylation of GmMYB183 could affect the salt tolerance of the transgenic roots. Using data mining, ChIP and EMSA, we found that GmMYB183 binds to the promoter of the soybean GmCYP81E11 gene encoding for a Cytochrome P450 monooxygenase which contributes to the accumulation of ononin, a monohydroxy B-ring flavonoid that negatively regulates soybean tolerance to salinity. Phosphorylation of GmMYB183 was inhibited by rhizobia inoculation; overexpression of GmMYB183 enhanced the expression of GmCYP81E11 and rendered salt sensitivity to the transgenic roots; plants deficient in GmMYB183 function are more tolerant to salt stress as compared with wild-type soybean plants, these results correlate with the transcriptional induction of GmCYP81E11 by GmMYB183 and the subsequent accumulation of ononin. Our findings provide molecular insights into how rhizobia enhance salt tolerance of soybean plants.
Collapse
Affiliation(s)
- Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants.
| | - Jia Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Huihui Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Wei Fan
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, PR China
| | - Chengmin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Tongyao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Jiachen Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Litao He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - Hongfei Lu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants
| | - B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China; Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants.
| |
Collapse
|
133
|
Noman M, Jameel A, Qiang WD, Ahmad N, Liu WC, Wang FW, Li HY. Overexpression of GmCAMTA12 Enhanced Drought Tolerance in Arabidopsis and Soybean. Int J Mol Sci 2019; 20:E4849. [PMID: 31569565 PMCID: PMC6801534 DOI: 10.3390/ijms20194849] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Fifteen transcription factors in the CAMTA (calmodulin binding transcription activator) family of soybean were reported to differentially regulate in multiple stresses; however, their functional analyses had not yet been attempted. To characterize their role in stresses, we first comprehensively analyzed the GmCAMTA family in silico and thereafter determined their expression pattern under drought. The bioinformatics analysis revealed multiple stress-related cis-regulatory elements including ABRE, SARE, G-box and W-box, 10 unique miRNA (microRNA) targets in GmCAMTA transcripts and 48 proteins in GmCAMTAs' interaction network. We then cloned the 2769 bp CDS (coding sequence) of GmCAMTA12 in an expression vector and overexpressed in soybean and Arabidopsis through Agrobacterium-mediated transformation. The T3 (Transgenic generation 3) stably transformed homozygous lines of Arabidopsis exhibited enhanced tolerance to drought in soil as well as on MS (Murashige and Skoog) media containing mannitol. In their drought assay, the average survival rate of transgenic Arabidopsis lines OE5 and OE12 (Overexpression Line 5 and Line 12) was 83.66% and 87.87%, respectively, which was ~30% higher than that of wild type. In addition, the germination and root length assays as well as physiological indexes such as proline and malondialdehyde contents, catalase activity and leakage of electrolytes affirmed the better performance of OE lines. Similarly, GmCAMTA12 overexpression in soybean promoted drought-efficient hairy roots in OE chimeric plants as compare to that of VC (Vector control). In parallel, the improved growth performance of OE in Hoagland-PEG (polyethylene glycol) and on MS-mannitol was revealed by their phenotypic, physiological and molecular measures. Furthermore, with the overexpression of GmCAMTA12, the downstream genes including AtAnnexin5, AtCaMHSP, At2G433110 and AtWRKY14 were upregulated in Arabidopsis. Likewise, in soybean hairy roots, GmELO, GmNAB and GmPLA1-IId were significantly upregulated as a result of GmCAMTA12 overexpression and majority of these upregulated genes in both plants possess CAMTA binding CGCG/CGTG motif in their promoters. Taken together, we report that GmCAMTA12 plays substantial role in tolerance of soybean against drought stress and could prove to be a novel candidate for engineering soybean and other plants against drought stress. Some research gaps were also identified for future studies to extend our comprehension of Ca-CaM-CAMTA-mediated stress regulatory mechanisms.
Collapse
Affiliation(s)
- Muhammad Noman
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Aysha Jameel
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wei-Dong Qiang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Wei-Can Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Fa-Wei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China.
| | - Hai-Yan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
134
|
Arabidopsis NDL-AGB1 modules Play Role in Abiotic Stress and Hormonal Responses Along with Their Specific Functions. Int J Mol Sci 2019; 20:ijms20194736. [PMID: 31554237 PMCID: PMC6801982 DOI: 10.3390/ijms20194736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Arabidopsis N-MYC Downregulated Like Proteins (NDLs) are interacting partners of G-Protein core components. Animal homologs of the gene family N-myc downstream regulated gene (NDRG) has been found to be induced during hypoxia, DNA damage, in presence of reducing agent, increased intracellular calcium level and in response to metal ions like nickel and cobalt, which indicates the involvement of the gene family during stress responses. ArabidopsisNDL gene family contains three homologs NDL1, NDL2 and NDL3 which share up to 75% identity at protein level. Previous studies on NDL proteins involved detailed characterization of the role of NDL1; roles of other two members were also established in root and shoot development using miRNA knockdown approach. Role of entire family in development has been established but specific functions of NDL2 and NDL3 if any are still unknown. Our in-silico analysis of NDLs promoters reveled that all three members share some common and some specific transcription factors (TFs) binding sites, hinting towards their common as well as specific functions. Based on promoter elements characteristics, present study was designed to carry out comparative analysis of the Arabidopsis NDL family during different stages of plant development, under various abiotic stresses and plant hormonal responses, in order to find out their specific and combined roles in plant growth and development. Developmental analysis using GUS fusion revealed specific localization/expression during different stages of development for all three family members. Stress analysis after treatment with various hormonal and abiotic stresses showed stress and tissue-specific differential expression patterns for all three NDL members. All three NDL members were collectively showed role in dehydration stress along with specific responses to various treatments. Their specific expression patterns were affected by presence of interacting partner the Arabidopsis heterotrimeric G-protein β subunit 1 (AGB1). The present study will improve our understanding of the possible molecular mechanisms of action of the independent NDL–AGB1 modules during stress and hormonal responses. These findings also suggest potential use of this knowledge for crop improvement.
Collapse
|
135
|
A Ca 2+/CaM-regulated transcriptional switch modulates stomatal development in response to water deficit. Sci Rep 2019; 9:12282. [PMID: 31439865 PMCID: PMC6706580 DOI: 10.1038/s41598-019-47529-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/09/2019] [Indexed: 02/01/2023] Open
Abstract
Calcium (Ca2+) signals are decoded by the Ca2+-sensor protein calmodulin (CaM) and are transduced to Ca2+/CaM-binding transcription factors to directly regulate gene expression necessary for acclimation responses in plants. The molecular mechanisms of Ca2+/CaM signal transduction processes and their functional significance remains enigmatic. Here we report a novel Ca2+/CaM signal transduction mechanism that allosterically regulates DNA-binding activity of GT2-LIKE 1 (GTL1), a transrepressor of STOMATAL DENSITY AND DISTRIBUTION 1 (SDD1), to repress stomatal development in response to water stress. We demonstrated that Ca2+/CaM interaction with the 2nd helix of the GTL1 N-terminal trihelix DNA-binding domain (GTL1N) destabilizes a hydrophobic core of GTL1N and allosterically inhibits 3rd helix docking to the SDD1 promoter, leading to osmotic stress-induced Ca2+/CaM-dependent activation (de-repression) of SDD1 expression. This resulted in GTL1-dependent repression of stomatal development in response to water-deficit stress. Together, our results demonstrate that a Ca2+/CaM-regulated transcriptional switch on a trihelix transrepressor directly transduces osmotic stress to repress stomatal development to improve plant water-use efficiency as an acclimation response.
Collapse
|
136
|
Huang J, Sun Y, Orduna AR, Jetter R, Li X. The Mediator kinase module serves as a positive regulator of salicylic acid accumulation and systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:842-852. [PMID: 30739357 DOI: 10.1111/tpj.14278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 05/20/2023]
Abstract
In plants, the calmodulin-binding transcription activators (CAMTAs) are required for transcriptional regulation of abiotic and biotic stress responses. Among them, CAMTA3 in Arabidopsis has been intensively studied and shown to function redundantly with CAMTA1 and CAMTA2 to negatively regulate plant immunity. The camta1/2/3 triple mutant accordingly exhibits severe dwarfism due to autoimmunity. Here, through a suppressor screen using camta1/2/3 triple mutant, we found that a mutation in Cyclin-Dependent Kinase 8 (CDK8) partially suppresses the dwarfism and constitutive resistance phenotypes of camta1/2/3. CDK8 positively regulates steady-state salicylic acid (SA) levels and systemic required resistance (SAR). The expression of SA biosynthesis genes such as ICS1 and EDS5 is down-regulated in cdk8 mutants under uninfected conditions, suggesting that CDK8 contributes to the transcriptional regulation of these SA pathway genes. Knocking out another Mediator kinase module member MED12 yielded similar defects including decreased steady-state SA level and compromised SAR, suggesting that the whole Mediator kinase module contributes to the transcriptional regulation of SA levels and SAR.
Collapse
Affiliation(s)
- Jianhua Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Alberto R Orduna
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
137
|
Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. THE NEW PHYTOLOGIST 2019; 222:1690-1704. [PMID: 30664232 DOI: 10.1111/nph.15696] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
Contents Summary I. Introduction II. Cold stress and physiological responses in plants III. Sensing of cold signals in plants IV. Messenger molecules involved in cold signal transduction V. Cold signal transduction in plants VI. Conclusions and perspectives Acknowledgements References SUMMARY: Cold stress is a major environmental factor that seriously affects plant growth and development, and influences crop productivity. Plants have evolved a series of mechanisms that allow them to adapt to cold stress at both the physiological and molecular levels. Over the past two decades, much progress has been made in identifying crucial components involved in cold-stress tolerance and dissecting their regulatory mechanisms. In this review, we summarize recent major advances in our understanding of cold signalling and put forward open questions in the field of plant cold-stress responses. Answering these questions should help elucidate the molecular mechanisms underlying plant tolerance to cold stress.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
138
|
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. Mutual interplay of Ca 2+ and ROS signaling in plant immune response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:343-354. [PMID: 31128705 DOI: 10.1016/j.plantsci.2019.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/20/2023]
Abstract
Second messengers are cellular chemicals that act as "language codes", allowing cells to pass outside information to the cell interior. The cells then respond through triggering downstream reactions, including transcriptional reprograming to affect appropriate adaptive responses. The spatiotemporal patterning of these stimuli-induced signal changes has been referred to as a "signature", which is detected, decoded, and transmitted to elicit these downstream cellular responses. Recent studies have suggested that dynamic changes in second messengers, such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO), serve as signatures for both intracellular signaling and cell-to-cell communications. These second messenger signatures work in concert with physical signal signatures (such as electrical and hydraulic waves) to create a "lock and key" mechanism that triggers appropriate response to highly varied stresses. In plants, detailed information of how these signatures deploy their downstream signaling networks remains to be elucidated. Recent evidence suggests a mutual interplay between Ca2+ and ROS signaling has important implications for fine-tuning cellular signaling networks in plant immunity. These two signaling mechanisms amplify each other and this interaction may be a critical element of their roles in information processing for plant defense responses.
Collapse
Affiliation(s)
- Matthew J Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - B W Poovaiah
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA; Molecular Plant Sciences Program, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
139
|
Sabetta W, Vandelle E, Locato V, Costa A, Cimini S, Bittencourt Moura A, Luoni L, Graf A, Viggiano L, De Gara L, Bellin D, Blanco E, de Pinto MC. Genetic buffering of cyclic AMP in Arabidopsis thaliana compromises the plant immune response triggered by an avirulent strain of Pseudomonas syringae pv. tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:590-606. [PMID: 30735606 DOI: 10.1111/tpj.14275] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/23/2018] [Accepted: 01/24/2019] [Indexed: 05/21/2023]
Abstract
Cyclic AMP plays important roles in different physiological processes, including plant defence responses. However, as little information is known on plant enzymes responsible for cAMP production/degradation, studies of cAMP functions have relied, to date, on non-specific pharmacological approaches. We therefore developed a more reliable approach, producing transgenic Arabidopsis thaliana lines overexpressing the 'cAMP-sponge' (cAS), a genetic tool that specifically buffers cAMP levels. In response to an avirulent strain of Pseudomonas syringae pv. tomato (PstAvrB), cAS plants showed a higher bacterial growth and a reduced hypersensitive cell death in comparison with wild-type (WT) plants. The low cAMP availability after pathogen infection delayed cytosolic calcium elevation, as well as hydrogen peroxide increase and induction of redox systems. The proteomic analysis, performed 24 h post-infection, indicated that a core of 49 proteins was modulated in both genotypes, while 16 and 42 proteins were uniquely modulated in WT and cAS lines, respectively. The involvement of these proteins in the impairment of defence response in cAS plants is discussed in this paper. Moreover, in silico analysis revealed that the promoter regions of the genes coding for proteins uniquely accumulating in WT plants shared the CGCG motif, a target of the calcium-calmodulin-binding transcription factor AtSR1 (Arabidopsis thaliana signal responsive1). Therefore, following pathogen perception, the low free cAMP content, altering timing and levels of defence signals, and likely acting in part through the mis-regulation of AtSR1 activity, affected the speed and strength of the immune response.
Collapse
Affiliation(s)
- Wilma Sabetta
- Institute of Biosciences and Bioresources, CNR, Research Division Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | | | - Laura Luoni
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milano, Italy
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Luigi Viggiano
- Department of Biology, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, University Camps Bio-Medico of Rome, via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, CNR, Research Division Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Maria C de Pinto
- Department of Biology, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
140
|
Genome-wide identification of CAMTA gene family members in Phaseolus vulgaris L. and their expression profiling during salt stress. Mol Biol Rep 2019; 46:2721-2732. [PMID: 30843175 DOI: 10.1007/s11033-019-04716-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/23/2019] [Indexed: 12/23/2022]
Abstract
The calmodulin-binding transcriptional activator (CAMTA) family was first observed in tobacco (NtER1) during a screening for the CaM-binding proteins, which are known to be one of the fast response stress proteins. Due to the increased importance of plant transcription factors in recent years; genome-wide identification of CAMTA genes has been performed in several plant species, except for Phaseolus vulgaris. Therefore, our aim was to identify and characterize CAMTA genes in P. vulgaris via in silico genome-wide analysis approach. Our results showed a total of eight CAMTA genes that were identified and observed on five out of 11 chromosomes of P. vulgaris. Four gene couples were found to be segmentally-duplicated and these segmental duplication events were shown to occur from 29.97 to 92.06 MYA. The phylogenetic tree of CAMTA homologs from P. vulgaris, A. thaliana, and G. max. revealed three groups based on their homology and the intron numbers of Pvul-CAMTA genes, ranged from 11 to 12. According to the syteny analysis; CAMTA genes of P. vulgaris and G. max revealed higher similarity, because they have highly similar genomes compared to A. thaliana. All Pvul-CAMTA genes were targeted by miRNAs, which play a role in response mechanism of salt stress. To detect expression levels in different plant tissues, mRNA analysis of Pvul-CAMTA genes were performed using publicly available expression data in Phytozome v12.1. In addition, responses of Pvul-CAMTA genes to salt stress, were also examined via both RNAseq and qRT-PCR analysis. To identify and to obtain insight into biological functions of CAMTA genes in the genome of P. vulgaris, several analyses were conducted using many online and offline bioinformatic tools, genome databases and qRT-PCR analyses. Due to this study being the first in the identification of CAMTA genes in P. vulgaris, this study could be considered as an useful source for future CAMTA genes studies in either P. vulgaris or comparative different plant species.
Collapse
|
141
|
Hake K, Romeis T. Protein kinase-mediated signalling in priming: Immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. PLANT, CELL & ENVIRONMENT 2019; 42:904-917. [PMID: 30151921 DOI: 10.1111/pce.13429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 05/03/2023]
Abstract
"Priming" in plant phytopathology describes a phenomenon where the "experience" of primary infection by microbial pathogens leads to enhanced and beneficial protection of the plant against secondary infection. The plant is able to establish an immune memory, a state of systemic acquired resistance (SAR), in which the information of "having been attacked" is integrated with the action of "being prepared to defend when it happens again." Accordingly, primed plants are often characterized by faster and stronger activation of immune reactions that ultimately result in a reduction of pathogen spread and growth. Prerequisites for SAR are (a) the initiation of immune signalling subsequent to pathogen recognition, (b) a rapid defence signal propagation from a primary infected local site to uninfected distal parts of the plant, and (c) a switch into an immune signal-dependent establishment and subsequent long-lasting maintenance of phytohormone salicylic acid-based systemic immunity. Here, we provide a summary on protein kinases that contribute to these three conceptual aspects of "priming" in plant phytopathology, complemented by data addressing the role of protein kinases crucial for immune signal initiation also for signal propagation and SAR.
Collapse
Affiliation(s)
- Katharina Hake
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
142
|
Wang Y, Wei F, Zhou H, Liu N, Niu X, Yan C, Zhang L, Han S, Hou C, Wang D. TaCAMTA4, a Calmodulin-Interacting Protein, Involved in Defense Response of Wheat to Puccinia triticina. Sci Rep 2019; 9:641. [PMID: 30679453 PMCID: PMC6345913 DOI: 10.1038/s41598-018-36385-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Leaf rust caused by Puccinia triticina is one of the main diseases affecting wheat (Triticum aestivum) production worldwide. Calmodulin (CaM) was found involved in the early stage of signal transduction pathway in response to P. triticina in wheat. To study the function and molecular mechanism of calmodulin (CaM) in signal transduction of wheat against P. triticina, we cloned a putative calmodulin-binding transcription activator (TaCAMTA4), and characterized its molecular structure and functions by using the CaM-encoding gene (TaCaM4-1) as a bait to screen the cDNA library from P. triticina infected wheat leaves. The open reading frame of TaCAMTA4 was 2505 bp encoding a protein of 834 aa, which contained all the four conserved domains of family (CG-1 domain, TIG domain, ANK repeats and CaM-binding domain). TaCaM4-1 bound to TaCAMTA4 by the C-terminal CaM-binding domain in Ca2+-dependent manner in the electrophoretic mobility shift assay (EMSA). Bimolecular fluorescence complementation (BiFC) analysis indicated that the interaction of TaCAMTA4 and TaCaM4-1 took place in the cytoplasm and nucleus of epidermal leaf cells in N. benthamiana. The expression level of TaCAMTA4 genes was down-regulated in incompatible combination after P. triticina infection. Furthermore, virus-induced gene silencing (VIGS)-based knockdown of TaCAMTA4 and disease assays verified that silencing of TaCAMTA4 resulted in enhanced resistance to P. triticina race 165. These results suggested that TaCAMTA4 function as negative regulator of defense response against P. triticina.
Collapse
Affiliation(s)
- Yuelin Wang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Fengju Wei
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China.
| | - Hui Zhou
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Na Liu
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Xiaonan Niu
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Chao Yan
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Lifeng Zhang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Shengfang Han
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China
| | - Chunyan Hou
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China.
| | - Dongmei Wang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, 071001, China.
| |
Collapse
|
143
|
Yan C, Fan M, Yang M, Zhao J, Zhang W, Su Y, Xiao L, Deng H, Xie D. Injury Activates Ca 2+/Calmodulin-Dependent Phosphorylation of JAV1-JAZ8-WRKY51 Complex for Jasmonate Biosynthesis. Mol Cell 2019; 70:136-149.e7. [PMID: 29625034 DOI: 10.1016/j.molcel.2018.03.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/25/2018] [Accepted: 03/09/2018] [Indexed: 12/23/2022]
Abstract
Insect herbivory causes severe damage to plants and threatens the world's food production. During evolutionary adaptation, plants have evolved sophisticated mechanisms to rapidly accumulate a key defense hormone, jasmonate (JA), that triggers plant defense against herbivory. However, little is known about how plants initially activate JA biosynthesis at encounter with herbivory. Here, we uncover that a novel JAV1-JAZ8-WRKY51 (JJW) complex controls JA biosynthesis to defend against insect attack. In healthy plants, the JJW complex represses JA biosynthesis to restrain JA at a low basal level to ensure proper plant growth. When plants are injured by insect attack, injury rapidly triggers calcium influxes to activate calmodulin-dependent phosphorylation of JAV1, which disintegrates JJW complex and activates JA biosynthesis, giving rise to the rapid burst of JA for plant defense. Our findings offer new insights into the highly sophisticated defense systems evolved by plants to defend against herbivory.
Collapse
Affiliation(s)
- Chun Yan
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Fan
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mai Yang
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinping Zhao
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Su
- Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China
| | - Haiteng Deng
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Joint Center for Life Sciences, and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
144
|
Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert PR, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. THE NEW PHYTOLOGIST 2019; 221:919-934. [PMID: 30218535 DOI: 10.1111/nph.15435] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/02/2018] [Indexed: 05/17/2023]
Abstract
UBC13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity remain to be defined. Here we used genetic and pathological methods to evaluate roles of Arabidopsis UBC13 in response to pathogens and environmental stresses. Loss of UBC13 failed to activate the expression of numerous cold-responsive genes and resulted in hypersensitivity to low-temperature stress, indicating that UBC13 is involved in plant response to low-temperature stress. Furthermore, the ubc13 mutant displayed low-temperature-induced and salicylic acid-dependent lesion mimic phenotypes. Unlike typical lesion mimic mutants, ubc13 did not enhance disease resistance against virulent bacterial and fungal pathogens, but diminished hypersensitive response and compromised effector-triggered immunity against avirulent bacterial pathogens. UBC13 differently regulates two types of programmed cell death in response to low temperature and pathogen. The lesion mimic phenotype in the ubc13 mutant is partially dependent on SNC1. UBC13 interacts with an F-box protein CPR1 that regulates the homeostasis of SNC1. However, the SNC1 protein level was not altered in the ubc13 mutant, implying that UBC13 is not involved in CPR1-regulated SNC1 protein degradation. Taken together, our results revealed that UBC13 is a key regulator in plant response to low temperature and pathogens.
Collapse
Affiliation(s)
- Lipu Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Jinghe Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zheng Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Shuai Huang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Pierre R Fobert
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
145
|
Yu D, Qanmber G, Lu L, Wang L, Li J, Yang Z, Liu Z, Li Y, Chen Q, Mendu V, Li F, Yang Z. Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. BMC PLANT BIOLOGY 2018; 18:350. [PMID: 30541440 PMCID: PMC6291927 DOI: 10.1186/s12870-018-1545-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/20/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Auxin-induced genes regulate many aspects of plant growth and development. The Gretchen Hagen 3 (GH3) gene family, one of three major early auxin-responsive families, is ubiquitous in the plant kingdom and its members function as regulators in modulating hormonal homeostasis, and stress adaptations. Specific Auxin-amido synthetase activity of GH3 subfamily II genes is reported to reversibly inactivate or fully degrade excess auxin through the formation of amino acid conjugates. Despite these crucial roles, to date, genome-wide analysis of the GH3 gene family has not been reported in cotton. RESULTS We identified a total of 10 GH3 subfamily II genes in G. arboreum, 10 in G. raimondii, and 20 in G. hirsutum, respectively. Bioinformatic analysis showed that cotton GH3 genes are conserved with the established GH3s in plants. Expression pattern analysis based on RNA-seq data and qRT-PCR revealed that 20 GhGH3 genes were differentially expressed in a temporally and spatially specific manner, indicating their diverse functions in growth and development. We further summarized the organization of promoter regulatory elements and monitored their responsiveness to treatment with IAA (indole-3-acetic acid), SA (salicylic acid), GA (gibberellic acid) and BL (brassinolide) by qRT-PCR in roots and stems. These hormones seemed to regulate the expression of GH3 genes in both a positive and a negative manner while certain members likely have higher sensitivity to all four hormones. Further, we tested the expression of GhGH3 genes in the BR-deficient mutant pag1 and the corresponding wild-type (WT) of CCRI24. The altered expression reflected the true responsiveness to BL and further suggested possible reasons, at least in part, responsible for the dramatic dwarf and shriveled phenotypes of pag1. CONCLUSION We comprehensively identified GH3 subfamily II genes in cotton. GhGH3s are differentially expressed in various tissues/organs/stages. Their response to IAA, SA, BL and GA and altered expression in pag1 suggest that some GhGH3 genes might be simultaneously involved in multiple hormone signaling pathways. Taken together, our results suggest that members of the GhGH3 gene family could be possible candidate genes for mechanistic study and applications in cotton fiber development in addition to the reconstruction of plant architecture.
Collapse
Affiliation(s)
- Daoqian Yu
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Lili Lu
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Lingling Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Jie Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Zhaoen Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Yi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Quanjia Chen
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
| | - Venugopal Mendu
- Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409 USA
| | - Fuguang Li
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
| | - Zuoren Yang
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830052 China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000 China
| |
Collapse
|
146
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
147
|
Calcium Signaling-Mediated Plant Response to Cold Stress. Int J Mol Sci 2018; 19:ijms19123896. [PMID: 30563125 PMCID: PMC6320992 DOI: 10.3390/ijms19123896] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
Low temperatures have adverse impacts on plant growth, developmental processes, crop productivity and food quality. It is becoming clear that Ca2+ signaling plays a crucial role in conferring cold tolerance in plants. However, the role of Ca2+ involved in cold stress response needs to be further elucidated. Recent studies have shown how the perception of cold signals regulate Ca2+ channels to induce Ca2+ transients. In addition, studies have shown how Ca2+ signaling and its cross-talk with nitric oxide (NO), reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling pathways ultimately lead to establishing cold tolerance in plants. Ca2+ signaling also plays a key role through Ca2+/calmodulin-mediated Arabidopsis signal responsive 1 (AtSR1/CAMTA3) when temperatures drop rapidly. This review highlights the current status in Ca2+ signaling-mediated cold tolerance in plants.
Collapse
|
148
|
Prasad KVSK, Xing D, Reddy ASN. Vascular Plant One-Zinc-Finger (VOZ) Transcription Factors Are Positive Regulators of Salt Tolerance in Arabidopsis. Int J Mol Sci 2018; 19:ijms19123731. [PMID: 30477148 PMCID: PMC6321167 DOI: 10.3390/ijms19123731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
Abstract
Soil salinity, a significant problem in agriculture, severely limits the productivity of crop plants. Plants respond to and cope with salt stress by reprogramming gene expression via multiple signaling pathways that converge on transcription factors. To develop strategies to generate salt-tolerant crops, it is necessary to identify transcription factors that modulate salt stress responses in plants. In this study, we investigated the role of VOZ (VASCULAR PLANT ONE-ZINC FINGER PROTEIN) transcription factors (VOZs) in salt stress response. Transcriptome analysis in WT (wild-type), voz1-1, voz2-1 double mutant and a VOZ2 complemented line revealed that many stress-responsive genes are regulated by VOZs. Enrichment analysis for gene ontology terms in misregulated genes in voz double mutant confirmed previously identified roles of VOZs and suggested a new role for them in salt stress. To confirm VOZs role in salt stress, we analyzed seed germination and seedling growth of WT, voz1, voz2-1, voz2-2 single mutants, voz1-1voz2-1 double mutant and a complemented line under different concentrations of NaCl. Only the double mutant exhibited hypersensitivity to salt stress as compared to WT, single mutants, and a complemented line. Expression analysis showed that hypersensitivity of the double mutant was accompanied by reduced expression of salt-inducible genes. These results suggest that VOZ transcription factors act as positive regulators of several salt-responsive genes and that the two VOZs are functionally redundant in salt stress.
Collapse
Affiliation(s)
- Kasavajhala V S K Prasad
- Department of Biology and Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
| | - Denghui Xing
- Department of Biology and Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
- Genomics Core Lab, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Anireddy S N Reddy
- Department of Biology and Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
149
|
Bernal-Vicente A, Cantabella D, Hernández JA, Diaz-Vivancos P. The effect of mandelonitrile, a recently described salicylic acid precursor, on peach plant response against abiotic and biotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:986-994. [PMID: 30098127 DOI: 10.1111/plb.12894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
In a previous work, we observed that mandelonitrile (MD), which controls cyanogenic glycoside turnover, is involved in salicylic acid (SA) biosynthesis in peach plants. In order to gain knowledge about the possible roles of this SA biosynthetic pathway, this current study looks at the effect of MD and phenylalanine (Phe; MD precursor) treatments on peach plant performance from an agronomic point of view. Abiotic (2 g·l-1 NaCl) and biotic (Plum pox virus, PPV) stresses were assayed. We recorded the following chlorophyll fluorescence parameters: quantum yield of photochemical energy conversion in PSII [Y(II)], photochemical quenching (qP) and quantum yield of regulated non-photochemical energy loss in PSII and its coefficient [Y(NPQ) and qN]. In addition, considering that environmental stresses lead to nutritional disorders, we determined the soluble K+ , Ca2+ , Na+ and Cl- concentrations in NaCl-stressed seedlings. In PPV-infected seedlings, we recorded the Ca2+ level, which has been suggested to play critical roles in regulating SA-related plant defence responses against pathogens. The MD treatment lessened the effect of both stresses on plant development. In addition, an increase in non-photochemical quenching parameters was observed in MD-treated seedlings, suggesting a safer dissipation of excess energy under stress conditions. In NaCl-stressed peach seedlings both treatments stimulated the accumulation of phytotoxic ions in roots, whereas in PPV-infected seedlings MD increased Ca2+ content. Our results suggest that MD and Phe influence the response of peach seedlings to the deleterious effects of salt and PPV infection stresses.
Collapse
Affiliation(s)
- A Bernal-Vicente
- Department of Plant Breeding, Group of Fruit Tree Biotechnology, CEBAS-CSIC, Murcia, Spain
| | - D Cantabella
- Department of Plant Breeding, Group of Fruit Tree Biotechnology, CEBAS-CSIC, Murcia, Spain
| | - J A Hernández
- Department of Plant Breeding, Group of Fruit Tree Biotechnology, CEBAS-CSIC, Murcia, Spain
| | - P Diaz-Vivancos
- Department of Plant Breeding, Group of Fruit Tree Biotechnology, CEBAS-CSIC, Murcia, Spain
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
150
|
Wang A, Shu X, Niu X, Zhao W, Ai P, Li P, Zheng A. Comparison of gene co-networks analysis provide a systems view of rice (Oryza sativa L.) response to Tilletia horrida infection. PLoS One 2018; 13:e0202309. [PMID: 30372430 PMCID: PMC6205584 DOI: 10.1371/journal.pone.0202309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
The biotrophic soil-borne fungus Tilletia horrida causes rice kernel smut, an important disease affecting the production of rice male sterile lines in most hybrid rice growing regions of the world. There are no successful ways of controlling this disease and there has been little study of mechanisms of resistance to T. horrida. Based on transcriptional data of different infection time points, we found 23, 782 and 23, 718 differentially expressed genes (fragments per kilobase of transcript sequence per million, FPKM >1) in Jiangcheng 3A (resistant to T. horrida) and 9311A (susceptible to T. horrida), respectively. In order to illuminate the differential responses of the two rice male sterile lines to T. horrida, we identified gene co-expression modules using the method of weighted gene co-expression network analysis (WGCNA) and compared the different biological functions of gene co-expression networks in key modules at different infection time points. The results indicated that gene co-expression networks in the two rice genotypes were different and that genes contained in some modules of the two groups may play important roles in resistance to T. horrida, such as DTH8 and OsHop/Sti1a. Furthermore, these results provide a global view of the responses of two different phenotypes to T. horrida, and assist our understanding of the regulation of expression changes after T. horrida infection.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Xinyue Shu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Xianyu Niu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Wenjuan Zhao
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Peng Ai
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Ya’ an, Sichuan, China
| |
Collapse
|