101
|
Tajmiri G, Sh ME. Effect of the absorption rate of suture material on oral mucosal scar formation: A triple-blind randomized controlled trial. Heliyon 2024; 10:e23054. [PMID: 38223718 PMCID: PMC10784138 DOI: 10.1016/j.heliyon.2023.e23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/28/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction Extensive oral mucosal scar formation following LeFort-I osteotomy can pose patients with several scar-related complications in case of function as well as cosmesis. The present study aimed to evaluate the effect of the absorption rate of Vicryl Rapide and Vicryl on oral mucosal scar formation. Material and methods In a triple-blind randomized controlled trial study, Vicryl and Vicryl Rapide were used randomly for wound closure on the left and right sides of the LeFort-I incision line. Three maxillofacial surgeons evaluated mucosal scars on each side two and four months post-surgically using Mucosal Scarring Index (MSI). Results The differences in the total scores of MSI between the Vicryl and Vicryl Rapide groups were not significant, neither in the anterior nor in the posterior areas (Paired t-test, df = 25, CI = 95 %, P-value >0.05). Conclusion The results of the present study demonstrated that Vicryl Rapide is comparable to Vicryl suture material regarding the mucosal scar formation following LeFort-I osteotomy surgery; therefore, it could be considered for such oral surgical procedures.
Collapse
Affiliation(s)
- Golnaz Tajmiri
- Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Etemadi Sh
- Department of Oral and Maxillofacial Surgery, Dental Implants, Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
102
|
Dingwall HL, Tomizawa RR, Aharoni A, Hu P, Qiu Q, Kokalari B, Martinez SM, Donahue JC, Aldea D, Mendoza M, Glass IA, Wu H, Kamberov YG. Sweat gland development requires an eccrine dermal niche and couples two epidermal programs. Dev Cell 2024; 59:20-32.e6. [PMID: 38096824 PMCID: PMC10872420 DOI: 10.1016/j.devcel.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/22/2023]
Abstract
Eccrine sweat glands are indispensable for human thermoregulation and, similar to other mammalian skin appendages, form from multipotent epidermal progenitors. Limited understanding of how epidermal progenitors specialize to form these vital organs has precluded therapeutic efforts toward their regeneration. Herein, we applied single-nucleus transcriptomics to compare the expression content of wild-type, eccrine-forming mouse skin to that of mice harboring a skin-specific disruption of Engrailed 1 (En1), a transcription factor that promotes eccrine gland formation in humans and mice. We identify two concurrent but disproportionate epidermal transcriptomes in the early eccrine anlagen: one that is shared with hair follicles and one that is En1 dependent and eccrine specific. We demonstrate that eccrine development requires the induction of a dermal niche proximal to each developing gland in humans and mice. Our study defines the signatures of eccrine identity and uncovers the eccrine dermal niche, setting the stage for targeted regeneration and comprehensive skin repair.
Collapse
Affiliation(s)
- Heather L Dingwall
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Reiko R Tomizawa
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam Aharoni
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Peng Hu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Qi Qiu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Blerina Kokalari
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Joan C Donahue
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Aldea
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Meryl Mendoza
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Hao Wu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yana G Kamberov
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
103
|
Michalak-Micka K, Tenini C, Böttcher-Haberzeth S, Mazzone L, Pontiggia L, Klar AS, Moehrlen U, Biedermann T. The expression pattern of cytokeratin 6a in epithelial cells of different origin in dermo-epidermal skin substitutes in vivo. Biotechnol J 2024; 19:e2300246. [PMID: 37766482 DOI: 10.1002/biot.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Keratinocytes are the predominant cell type of skin epidermis. Through the programmed process of differentiation, they form a cornified envelope that provides a physical protective barrier against harmful external environment. Keratins are major structural proteins of keratinocytes that together with actin filaments and microtubules form the cytoskeleton of these cells. In this study, we examined the expression pattern and distribution of cytokeratin 6a (CK6a) in healthy human skin samples of different body locations, in fetal and scar skin samples, as well as in dermo-epidermal skin substitutes (DESSs). We observed that CK6a expression is significantly upregulated in fetal skin and scar tissue as well as in skin grafts after short-term transplantation. Importantly, the abundance of CK6a corresponds directly to the expression pattern of wound healing marker CK16. We postulate that CK6a is a useful marker to accurately evaluate the homeostatic state of DESSs.
Collapse
Affiliation(s)
- Katarzyna Michalak-Micka
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Celina Tenini
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Sophie Böttcher-Haberzeth
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Luca Mazzone
- Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
- Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, Zurich, Switzerland
| | - Luca Pontiggia
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
| | - Ueli Moehrlen
- Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Spina Bifida Center, University Children's Hospital Zurich, Zurich, Switzerland
- The Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center (CRC), University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
104
|
Zhou Y, Cao T, Li Z, Qiao H, Dang E, Shao S, Wang G. Fibroblasts in immune-mediated inflammatory diseases: The soil of inflammation. Clin Immunol 2024; 258:109849. [PMID: 38008146 DOI: 10.1016/j.clim.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
As one of the most abundant stromal cells, fibroblasts are primarily responsible for the production and remodeling of the extracellular matrix. Traditionally, fibroblasts have been viewed as quiescent cells. However, recent advances in multi-omics technologies have demonstrated that fibroblasts exhibit remarkable functional diversity at the single-cell level. Additionally, fibroblasts are heterogeneous in their origins, tissue locations, and transitions with stromal cells. The dynamic nature of fibroblasts is further underscored by the fact that disease stages can impact their heterogeneity and behavior, particularly in immune-mediated inflammatory diseases such as psoriasis, inflammatory bowel diseases, and rheumatoid arthritis, etc. Fibroblasts can actively contribute to the disease initiation, progression, and relapse by responding to local microenvironmental signals, secreting downstream inflammatory factors, and interacting with immune cells during the pathological process. Here we focus on the development, plasticity, and heterogeneity of fibroblasts in inflammation, emphasizing the need for a developmental and dynamic perspective on fibroblasts.
Collapse
Affiliation(s)
- Yifan Zhou
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Tianyu Cao
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhiguo Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Erle Dang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Shuai Shao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| | - Gang Wang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| |
Collapse
|
105
|
Yampolsky M, Bachelet I, Fuchs Y. Reproducible strategy for excisional skin-wound-healing studies in mice. Nat Protoc 2024; 19:184-206. [PMID: 38030941 DOI: 10.1038/s41596-023-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/28/2023] [Indexed: 12/01/2023]
Abstract
Wound healing is a complex physiological process involving various cell types and signaling pathways. The capability to observe the dynamics of wound repair offers valuable insights into the effects of genetic modifications, pharmaceutical interventions or other experimental manipulations on the skin-repair process. Here, we provide a comprehensive protocol for a full-thickness, excisional skin-wound-healing assay in mice, which can easily be performed by any scientist who has received an animal welfare course certificate and can be completed within ~3 h, depending on the number of animals. Crucially, we highlight the importance of considering key aspects of the assay that can dramatically contribute to the reliability and reproducibility of these experiments. We thoroughly discuss the experimental design, necessary preparations, wounding technique and analysis. In addition, we discuss the use of lineage-tracing techniques to monitor cell migration, differentiation and the contribution of different cell populations to the repair process. Overall, we explore key aspects of the skin-wound-healing assay, supplying a detailed procedure and guidelines essential for decreasing variability and obtaining reliable and reproducible results.
Collapse
|
106
|
Novis T, Takiya CM. Skin Resident Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:205-249. [DOI: 10.1016/b978-0-443-15289-4.00005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
107
|
Ye P, Gu R, Zhu H, Chen J, Han F, Nie X. SOX family transcription factors as therapeutic targets in wound healing: A comprehensive review. Int J Biol Macromol 2023; 253:127243. [PMID: 37806414 DOI: 10.1016/j.ijbiomac.2023.127243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The SOX family plays a vital role in determining the fate of cells and has garnered attention in the fields of cancer research and regenerative medicine. It also shows promise in the study of wound healing, as it actively participates in the healing processes of various tissues such as skin, fractures, tendons, and the cornea. However, our understanding of the mechanisms behind the SOX family's involvement in wound healing is limited compared to its role in cancer. Gaining insight into its role, distribution, interaction with other factors, and modifications in traumatized tissues could provide valuable new knowledge about wound healing. Based on current research, SOX2, SOX7, and SOX9 are the most promising members of the SOX family for future interventions in wound healing. SOX2 and SOX9 promote the renewal of cells, while SOX7 enhances the microvascular environment. The SOX family holds significant potential for advancing wound healing research. This article provides a comprehensive review of the latest research advancements and therapeutic tools related to the SOX family in wound healing, as well as the potential benefits and challenges of targeting the SOX family for wound treatment.
Collapse
Affiliation(s)
- Penghui Ye
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rifang Gu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China
| | - Huan Zhu
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jitao Chen
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
108
|
Liu H, Xu K, He Y, Huang F. Mitochondria in Multi-Directional Differentiation of Dental-Derived Mesenchymal Stem Cells. Biomolecules 2023; 14:12. [PMID: 38275753 PMCID: PMC10813276 DOI: 10.3390/biom14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The pursuit of tissue regeneration has fueled decades of research in regenerative medicine. Among the numerous types of mesenchymal stem cells (MSCs), dental-derived mesenchymal stem cells (DMSCs) have recently emerged as a particularly promising candidate for tissue repair and regeneration. In recent years, evidence has highlighted the pivotal role of mitochondria in directing and orchestrating the differentiation processes of DMSCs. Beyond mitochondrial energy metabolism, the multifaceted functions of mitochondria are governed by the mitochondrial quality control (MQC) system, encompassing biogenesis, autophagy, and dynamics. Notably, mitochondrial energy metabolism not only governs the decision to differentiate but also exerts a substantial influence on the determination of differentiation directions. Furthermore, the MQC system exerts a nuanced impact on the differentiation of DMSCs by finely regulating the quality and mass of mitochondria. The review aims to provide a comprehensive overview of the regulatory mechanisms governing the multi-directional differentiation of DMSCs, mediated by both mitochondrial energy metabolism and the MQC system. We also focus on a new idea based on the analysis of data from many research groups never considered before, namely, DMSC-based regenerative medicine applications.
Collapse
Affiliation(s)
| | | | - Yifan He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510000, China; (H.L.); (K.X.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510000, China; (H.L.); (K.X.)
| |
Collapse
|
109
|
Yang X, Li X, Guo Z, Zhang Z, Song X, Zhang M, Han X, He L, Zhou B. Generation and characterization of PDGFRα-GFP knock-in mice for visualization of PDGFRα + fibroblasts in vivo. Biochem Biophys Res Commun 2023; 687:149215. [PMID: 37949027 DOI: 10.1016/j.bbrc.2023.149215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
The platelet-derived growth factor (PDGF) and its receptor, PDGFRα, are critical for tissue development and injury repair. To track PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expresses green fluorescent protein (GFP) under the control of the PDGFRα promoter. This genetic tool enabled us to detect PDGFRα expression in various organs during both neonatal and adult stages. Additionally, we confirmed the correlation between endogenous PDGFRα and transgenic PDGFRα expression using mouse injury models, showing the potential of this genetic reporter for studying PDGFRα-mediated signaling pathways and developing therapeutic strategies. Overall, the PDGFRα-GFP knock-in mouse line serves as a valuable tool for investigating the biology of PDGFRα and its role in normal development and disease.
Collapse
Affiliation(s)
- Xueying Yang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xufeng Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihou Guo
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Zhuonan Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xin Song
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Mingjun Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ximeng Han
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China.
| | - Bin Zhou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
110
|
Hamada M, Takaya K, Wang Q, Otaki M, Imbe Y, Nakajima Y, Sakai S, Okabe K, Aramaki-Hattori N, Kishi K. Regeneration of Panniculus Carnosus Muscle in Fetal Mice Is Characterized by the Presence of Actin Cables. Biomedicines 2023; 11:3350. [PMID: 38137571 PMCID: PMC10742160 DOI: 10.3390/biomedicines11123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Mammalian skin, including human and mouse skin, does not regenerate completely after injury; it is repaired, leaving a scar. However, it is known that skin wounds up to a certain stage of embryonic development can regenerate. The mechanism behind the transition from regeneration to scar formation is not fully understood. Panniculus carnosus muscle (PCM) is present beneath the dermal fat layer and is a very important tissue for wound contraction. In rodents, PCM is present throughout the body. In humans, on the other hand, it disappears and becomes a shallow fascia on the trunk. Fetal cutaneous wounds, including PCM made until embryonic day 13 (E13), regenerate completely, but not beyond E14. We visualized the previously uncharacterized development of PCM in the fetus and investigated the temporal and spatial changes in PCM at different developmental stages, ranging from full regeneration to non-regeneration. Furthermore, we report that E13 epidermal closure occurs through actin cables, which are bundles of actomyosin formed at wound margins. The wound healing process of PCM suggests that actin cables may also be associated with PCM. Our findings reveal that PCM regenerates through a similar mechanism.
Collapse
Affiliation(s)
- Mariko Hamada
- Department of Plastic and Reconstructive Surgery, Tachikawa Hospital, 4-2-22 Nishiki-cho, Tachikawa-shi, Tokyo 190-8531, Japan;
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.T.); (M.O.); (Y.N.); (S.S.); (K.O.); (N.A.-H.)
| | - Kento Takaya
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.T.); (M.O.); (Y.N.); (S.S.); (K.O.); (N.A.-H.)
| | - Qi Wang
- Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo 105-8512, Japan; (Q.W.); (Y.I.)
| | - Marika Otaki
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.T.); (M.O.); (Y.N.); (S.S.); (K.O.); (N.A.-H.)
| | - Yuka Imbe
- Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo 105-8512, Japan; (Q.W.); (Y.I.)
| | - Yukari Nakajima
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.T.); (M.O.); (Y.N.); (S.S.); (K.O.); (N.A.-H.)
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.T.); (M.O.); (Y.N.); (S.S.); (K.O.); (N.A.-H.)
| | - Keisuke Okabe
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.T.); (M.O.); (Y.N.); (S.S.); (K.O.); (N.A.-H.)
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.T.); (M.O.); (Y.N.); (S.S.); (K.O.); (N.A.-H.)
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.T.); (M.O.); (Y.N.); (S.S.); (K.O.); (N.A.-H.)
| |
Collapse
|
111
|
Zheng Q, Ye N, Bao P, Wang T, Ma C, Chu M, Wu X, Kong S, Guo X, Liang C, Pan H, Yan P. Interpretation of the Yak Skin Single-Cell Transcriptome Landscape. Animals (Basel) 2023; 13:3818. [PMID: 38136855 PMCID: PMC10741061 DOI: 10.3390/ani13243818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The morphogenesis of hair follicle structure is accompanied by the differentiation of skin tissue. Mammalian coats are produced by hair follicles. The formation of hair follicles requires signal transmission between the epidermis and dermis. However, knowledge of the transcriptional regulatory mechanism is still lacking. We used single-cell RNA sequencing to obtain 26,573 single cells from the scapular skin of yaks at hair follicle telogen and anagen stages. With the help of known reference marker genes, 11 main cell types were identified. In addition, we further analyzed the DP cell and dermal fibroblast lineages, drew a single-cell map of the DP cell and dermal fibroblast lineages, and elaborated the key genes, signals, and functions involved in cell fate decision making. The results of this study provide a very valuable resource for the analysis of the heterogeneity of DP cells and dermal fibroblasts in the skin and provide a powerful theoretical reference for further exploring the diversity of hair follicle cell types and hair follicle morphogenesis.
Collapse
Affiliation(s)
- Qingbo Zheng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Na Ye
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tong Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chaofan Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Siyuan Kong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Q.Z.); (N.Y.); (P.B.); (T.W.); (C.M.); (M.C.); (X.W.); (X.G.); (C.L.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
112
|
Arnke K, Pfister P, Reid G, Vasella M, Ruhl T, Seitz AK, Lindenblatt N, Cinelli P, Kim BS. Impact of a High-Fat Diet at a Young Age on Wound Healing in Mice. Int J Mol Sci 2023; 24:17299. [PMID: 38139127 PMCID: PMC10743676 DOI: 10.3390/ijms242417299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of high-fat diet (HFD) chow on wound healing in wild-type or genetically manipulated animals, e.g., diabetic ob/ob and db/db mice. However, these studies have mainly been performed on adult animals. Thus, in the present study, we introduced a mouse model for a juvenile onset of obesity. We exposed 4-week-old mice to an investigational feeding period of 9 weeks with an HFD compared to a regular diet (RD). At a mouse age of 13 weeks, we performed excisional and incisional wounding and measured the healing rate. Wound healing was examined by serial photographs with daily wound size measurements of the excisional wounds. Histology from incisional wounds was performed to quantify granulation tissue (thickness, quality) and angiogenesis (number of blood vessels per mm2). The expression of extracellular matrix proteins (collagen types I/III/IV, fibronectin 1, elastin), inflammatory cytokines (MIF, MIF-2, IL-6, TNF-α), myofibroblast differentiation (α-SMA) and macrophage polarization (CD11c, CD301b) in the incisional wounds were evaluated by RT-qPCR and by immunohistochemistry. There was a marked delay of wound closure in the HFD group with a decrease in granulation tissue quality and thickness. Additionally, inflammatory cytokines (MIF, IL-6, TNF-α) were significantly up-regulated in HFD- when compared to RD-fed mice measured at day 3. By contrast, MIF-2 and blood vessel expression were significantly reduced in the HFD animals, starting at day 1. No significant changes were observed in macrophage polarization, collagen expression, and levels of TGF-β1 and PDGF-A. Our findings support that an early exposition to HFD resulted in juvenile obesity in mice with impaired wound repair mechanisms, which may be used as a murine model for obesity-related studies in the future.
Collapse
Affiliation(s)
- Kevin Arnke
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
- Center for Surgical Research, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland;
| | - Pablo Pfister
- Department of Surgery, Triemli City Hospital Zurich, 8063 Zurich, Switzerland
| | - Gregory Reid
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Ann-Kathrin Seitz
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| | - Paolo Cinelli
- Center for Surgical Research, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland;
- Department of Trauma Surgery, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, 8006 Zurich, Switzerland; (K.A.); (A.-K.S.); (N.L.); (B.-S.K.)
| |
Collapse
|
113
|
Liang NE, Griffin MF, Berry CE, Parker JB, Downer MA, Wan DC, Longaker MT. Attenuating Chronic Fibrosis: Decreasing Foreign Body Response with Acellular Dermal Matrix. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:671-680. [PMID: 37212342 DOI: 10.1089/ten.teb.2023.0060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surgical implants are increasingly used across multiple medical disciplines, with applications ranging from tissue reconstruction to improving compromised organ and limb function. Despite their significant potential for improving health and quality of life, biomaterial implant function is severely limited by the body's immune response to its presence: this is known as the foreign body response (FBR) and is characterized by chronic inflammation and fibrotic capsule formation. This response can result in life-threatening sequelae such as implant malfunction, superimposed infection, and associated vessel thrombosis, in addition to soft tissue disfigurement. Patients may require frequent medical visits, as well as repeated invasive procedures, increasing the burden on an already strained health care system. Currently, the FBR and the cells and molecular mechanisms that mediate it are poorly understood. With applications across a wide array of surgical specialties, acellular dermal matrix (ADM) has emerged as a potential solution to the fibrotic reaction seen with FBR. Although the mechanisms by which ADM decreases chronic fibrosis remain to be clearly characterized, animal studies across diverse surgical models point to its biomimetic properties that facilitate decreased periprosthetic inflammation and improved host cell incorporation. Impact Statement Foreign body response (FBR) is a significant limitation to the use of implantable biomaterials. Acellular dermal matrix (ADM) has been observed to decrease the fibrotic reaction seen with FBR, although its mechanistic details are poorly understood. This review is dedicated to summarizing the primary literature on the biology of FBR in the context of ADM use, using surgical models in breast reconstruction, abdominal and chest wall repair, and pelvic reconstruction. This article will provide readers with an overarching review of shared mechanisms for ADM across multiple surgical models and diverse anatomical applications.
Collapse
Affiliation(s)
- Norah E Liang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle F Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Charlotte E Berry
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer B Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Mauricio A Downer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
114
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
115
|
Bai R, Guo Y, Liu W, Song Y, Yu Z, Ma X. The Roles of WNT Signaling Pathways in Skin Development and Mechanical-Stretch-Induced Skin Regeneration. Biomolecules 2023; 13:1702. [PMID: 38136575 PMCID: PMC10741662 DOI: 10.3390/biom13121702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway. In light of the above, a deeper understanding of the specific mechanisms of the WNT signaling pathway in different physiological and pathological states of the skin holds the potential to significantly advance clinical treatments of skin-related diseases. In this review, we present a comprehensive analysis of the molecular and cellular mechanisms of the WNT signaling pathway in skin development, wound healing, and mechanical stretching. Our review sheds new light on the crucial role of the WNT signaling pathway in the regulation of skin physiology and pathology.
Collapse
Affiliation(s)
- Ruoxue Bai
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of The Cadet Team 6, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
116
|
Yao L, Jeong S, Kwon HR, Olson LE. Regulation of adipocyte dedifferentiation at the skin wound edge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568302. [PMID: 38045303 PMCID: PMC10690246 DOI: 10.1101/2023.11.22.568302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Adipocytes have diverse roles in energy storage and metabolism, inflammation, and tissue repair. Mature adipocytes have been assumed to be terminally differentiated cells. However, recent evidence suggests that adipocytes retain substantial phenotypic plasticity, with potential to dedifferentiate into fibroblast-like cells under physiological and pathological conditions. Here, we develop a two-step lineage tracing approach based on the observation that fibroblasts express platelet-derived growth factor receptor alpha ( Pdgfra ) while adipocytes express Adiponectin ( Adipoq ) but not Pdgfra . Our approach specifically traces Pdgfra + cells that originate from Adipoq + adipocytes. We find many traced adipocytes and fibroblast-like cells surrounding skin wounds, but only a few traced cells localize to the wound center. In agreement with adipocyte plasticity, traced adipocytes incorporate EdU, downregulate Plin1 and PPARγ, and upregulate αSMA. We also investigate the role of potential dedifferentiation signals using constitutively active PDGFRα mutation, Pdgfra knockout, or Tgfbr2 knockout models. We find that PDGF and TGFβ signaling both promote dedifferentiation, and PDGFRα does so independently of TGFβR2. These results demonstrate an intersectional genetic approach to trace the hybrid cell phenotype of Pdgfra + adipocytes, which may be important for wound repair, regeneration and fibrosis.
Collapse
|
117
|
Cao W, Meng X, Cao F, Wang J, Yang M. Exosomes derived from platelet-rich plasma promote diabetic wound healing via the JAK2/STAT3 pathway. iScience 2023; 26:108236. [PMID: 37953957 PMCID: PMC10637946 DOI: 10.1016/j.isci.2023.108236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/26/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetic non-healing wounds are bringing a heavy burden on patients and society. Platelet-rich plasma (PRP) has been widely applied in tissue regenerating for containing various growth factors. Recently, PRP-derived exosomes (PRP-Exos) have been proved to be more effective than PRP in tissue regeneration. However, few studies have investigated the therapeutic potential of PRP-Exos in diabetic wound healing to date. Therefore, we extracted and identified exosomes derived from PRP and tested its promoting effect on diabetic wound healing in vivo and in vitro. We found that high glucose (HG) inhibited cell proliferation and migration and induced apoptosis through ROS-dependent activation of the JNK and p38 MAPK signaling pathways. PRP-Exos can stimulate fibroblast functions and accelerate diabetic wound healing. The benefits of PRP-Exos may be attributed to its capability to prevent HG-induced ROS-dependent apoptosis via the PDGF-BB/JAK2/STAT3/Bcl-2 signaling pathway. This illustrates the therapeutic potential of PRP-Exos in diabetic wounds.
Collapse
Affiliation(s)
- Wenhai Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xiaotong Meng
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Maowei Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
118
|
Rajan AM, Rosin NL, Labit E, Biernaskie J, Liao S, Huang P. Single-cell analysis reveals distinct fibroblast plasticity during tenocyte regeneration in zebrafish. SCIENCE ADVANCES 2023; 9:eadi5771. [PMID: 37967180 PMCID: PMC10651129 DOI: 10.1126/sciadv.adi5771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Despite their importance in tissue maintenance and repair, fibroblast diversity and plasticity remain poorly understood. Using single-cell RNA sequencing, we uncover distinct sclerotome-derived fibroblast populations in zebrafish, including progenitor-like perivascular/interstitial fibroblasts, and specialized fibroblasts such as tenocytes. To determine fibroblast plasticity in vivo, we develop a laser-induced tendon ablation and regeneration model. Lineage tracing reveals that laser-ablated tenocytes are quickly regenerated by preexisting fibroblasts. By combining single-cell clonal analysis and live imaging, we demonstrate that perivascular/interstitial fibroblasts actively migrate to the injury site, where they proliferate and give rise to new tenocytes. By contrast, perivascular fibroblast-derived pericytes or specialized fibroblasts, including tenocytes, exhibit no regenerative plasticity. Active Hedgehog (Hh) signaling is required for the proliferation of activated fibroblasts to ensure efficient tenocyte regeneration. Together, our work highlights the functional diversity of fibroblasts and establishes perivascular/interstitial fibroblasts as tenocyte progenitors that promote tendon regeneration in a Hh signaling-dependent manner.
Collapse
Affiliation(s)
- Arsheen M. Rajan
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicole L. Rosin
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elodie Labit
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shan Liao
- Inflammation Research Network, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Peng Huang
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
119
|
Liao B, Cui Y, Yu S, He J, Yang X, Zou S, Li S, Zhao P, Xu H, Long M, Wang X. Histological characteristics of hair follicles at different hair cycle and in vitro modeling of hair follicle-associated cells of yak ( Bos grunniens). Front Vet Sci 2023; 10:1277586. [PMID: 38046572 PMCID: PMC10691264 DOI: 10.3389/fvets.2023.1277586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
To adapt to the extreme conditions of plateau environments, yaks have evolved thick hair, making them an ideal model for investigating the mechanisms involved in hair growth. We can gain valuable insights into how hair follicles develop and their cyclic growth in challenging environments by studying yaks. However, the lack of essential data on yak hair follicle histology and the absence of in vitro cell models for hair follicles serve as a limitation to such research objectives. In this study, we investigated the structure of skin tissue during different hair follicle cycles using the yak model. Additionally, we successfully established in vitro models of hair follicle-associated cells derived from yak skin, including dermal papilla cells (DPCs), preadipocytes, and fibroblasts. We optimized the microdissection technique for DPCs culture by simplifying the procedure and reducing the time required. Furthermore, we improved the methodology used to differentiate yak preadipocytes into mature adipocytes, thus increasing the differentiation efficiency. The introduction of yak as a natural model provides valuable research resources for exploring the mechanisms of hair growth and contributes to a deeper understanding of hair follicle biology and the development of regenerative medicine strategies.
Collapse
Affiliation(s)
- Bo Liao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Junfeng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shengnan Zou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hongwei Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
120
|
Chen FZ, Tan PC, Yang Z, Li Q, Zhou SB. Identifying characteristics of dermal fibroblasts in skin homeostasis and disease. Clin Exp Dermatol 2023; 48:1317-1327. [PMID: 37566911 DOI: 10.1093/ced/llad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Heterogeneous dermal fibroblasts are the main components that constitute the dermis. Distinct fibroblast subgroups show specific characteristics and functional plasticity that determine dermal structure during skin development and wound healing. Although researchers have described the roles of fibroblast subsets, this is not completely understood. We review recent evidence supporting understanding about the heterogeneity of fibroblasts. We summarize the origins and the identified profiles of fibroblast subpopulations. The characteristics of fibroblast subpopulations in both healthy and diseased states are highlighted, and the potential of subpopulations to be involved in wound healing in different ways was discussed. Additionally, we review the plasticity of subpopulations and the underlying signalling mechanisms. This review may provide greater insights into potential novel therapeutic targets and tissue regeneration strategies for the future.
Collapse
Affiliation(s)
- Fang-Zhou Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Poh-Ching Tan
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Zihan Yang
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
- Department of Plastic and Burn Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| |
Collapse
|
121
|
Sayed LH, Badr G, Omar HEDM, Elghaffar SKA, Sayed A. Bee gomogenat enhances the healing process of diabetic wounds by orchestrating the connexin-pannexin gap junction proteins in streptozotocin-induced diabetic mice. Sci Rep 2023; 13:19961. [PMID: 37968314 PMCID: PMC10651848 DOI: 10.1038/s41598-023-47206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
Delay in wound healing remains one of diabetes's worse side effects, which increases mortality. The proposed study sought to scrutinize the implications of bee gomogenat (BG) on diabetic's wound closure in a streptozotocin-(STZ)-enhanced type-1 diabetes model's rodents. We used 3 different mice groups: group 1 non-diabetic rodents "serving as control", group 2 diabetic rodents, and group3 BG-treated diabetic rodents. We noticed that diabetic rodents experience a delayed wound closure, which emerged as a significant (*P < 0.05) decline in the deposition of collagen as compared to control non-diabetic animals. We noticed that diabetic rodents have a delayed wound closure characterized by a significant (*P < 0.05) decrease in the CD31 expression (indicator for wound angiogenesis and neovascularization) and an apparent elevation in the expression of such markers of inflammation as MCP-1 and HSP-70 as compared to control animals. Moreover, diabetic animals displayed a significant (*P < 0.05) increase in the expression of gap junction proteins Cx43 and a significant decrease in the expression of Panx3 in the wounded skin tissues when compared to the controls. Intriguingly, topical application with BG on the diabetic wounded skin tissues contributes to a significant (#P < 0.05) enhancing in the collagen deposition, up-regulating the level of CD31 expression and a significant (#P < 0.05) down-regulation in the MCP-1 and HSP-70 expressions as compared to diabetic non-treated animals. The expression's levels of Cx43 and Panx3 were significantly (#P < 0.05) retrieved in diabetic rodents after BG treatment. Taken together, our findings showed for the first time that BG promotes the recovering process and accelerated the closure of diabetic related wounds.
Collapse
Affiliation(s)
- Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | | | - Sary Khaleel Abd Elghaffar
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
- School of Veterinary Medicine, Badr University, Assiut, Egypt
| | - Aml Sayed
- Mallawi Specialized Hospital, 26Th of July Street, Mallawi, Minia, Egypt
| |
Collapse
|
122
|
Anastasiou IA, Sarantis P, Eleftheriadou I, Tentolouris KN, Mourouzis I, Karamouzis MV, Pantos K, Tentolouris N. Effects of Hypericin on Cultured Primary Normal Human Dermal Fibroblasts Under Increased Oxidative Stress. INT J LOW EXTR WOUND 2023:15347346231212332. [PMID: 37956650 DOI: 10.1177/15347346231212332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Wound healing is a dynamic process that begins with inflammation, proliferation, and cell migration of a variety of fibroblast cells. As a result, identifying possible compounds that may improve fibroblast cell wound healing capacity is crucial. Hypericin is a natural quinine that has been reported to possess a wide range of pharmacological profiles, including antioxidant and anti-inflammatory, activities. Herein we examined for the first time the effect of hypericin on normal human dermal fibroblasts (NHDFs) under oxidative stress. METHODS NHDF were exposed to different concentrations of hypericin (0-20 μg/mL) for 24 h. For the oxidative stress evaluation, H2O2 was used as a stressor factor. Cell viability and proliferation levels were evaluated. Immunohistochemistry and flow cytometry were performed to assess cell apoptosis levels and with confocal microscopy we identified the mitochondrial superoxide production under oxidative stress and after the treatment with hypericin. Scratch assay was performed under oxidative stress to evaluate the efficacy of hypericin in wound closure. To gain an insight into the molecular mechanisms of hypericin bioactivity, we analyzed the relative expression levels of genes involved in oxidative response and in wound healing process. RESULTS We found that the exposure of NHDF to hypericin under oxidative stress resulted in an increase in cell viability and ATP levels. We found a decrease in apoptosis and mitochondrial superoxide levels after treatment with hypericin. Moreover, treatment with hypericin reduced wound area and promoted wound closure. The levels of selected genes showed that hypericin upregulated the levels of antioxidants genes. Moreover, treatment with hypericin in wound under oxidative stress downregulated the levels of proinflammatory cytokines, and metalloproteinases; and upregulated transcription factors and extracellular matrix genes. CONCLUSION These findings indicated that hypericin possesses significant in vitro antioxidant activity on NHDF and provide new insights into its potential beneficial role in the management of diabetic ulcers.
Collapse
Affiliation(s)
- Ioanna A Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Konstantinos N Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
123
|
Rahmawati M, Stadler KM, Lopez-Biladeau B, Hoisington TM, Law NC. Core binding factor subunit β plays diverse and essential roles in the male germline. Front Cell Dev Biol 2023; 11:1284184. [PMID: 38020932 PMCID: PMC10653448 DOI: 10.3389/fcell.2023.1284184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Much of the foundation for lifelong spermatogenesis is established prior to puberty, and disruptions during this developmental window negatively impact fertility long into adulthood. However, the factors that coordinate prepubertal germline development are incompletely understood. Here, we report that core-binding factor subunit-β (CBFβ) plays critical roles in prepubertal development and the onset of spermatogenesis. Using a mouse conditional knockout (cKO) approach, inactivation of Cbfb in the male germline resulted in rapid degeneration of the germline during the onset of spermatogenesis, impaired overall sperm production, and adult infertility. Utilizing a different Cre driver to generate another Cbfb cKO model, we determined that the function of CBFβ in the male germline is likely limited to undifferentiated spermatogonia despite expression in other germ cell types. Within undifferentiated spermatogonia, CBFβ regulates proliferation, survival, and overall maintenance of the undifferentiated spermatogonia population. Paradoxically, we discovered that CBFβ also distally regulates meiotic progression and spermatid formation but only with Cbfb cKO within undifferentiated spermatogonia. Spatial transcriptomics revealed that CBFβ modulates cell cycle checkpoint control genes associated with both proliferation and meiosis. Taken together, our findings demonstrate that core programs established within the prepubertal undifferentiated spermatogonia population are necessary for both germline maintenance and sperm production.
Collapse
Affiliation(s)
- Mustika Rahmawati
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kassie M. Stadler
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Blanca Lopez-Biladeau
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Tia M. Hoisington
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Nathan C. Law
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
124
|
Itai E, Atsugi T, Inomata K, Yamashita M, Kaji K, Nanba D, Naru E. Single-cell analysis of human dermal fibroblasts isolated from a single male donor over 35 years. Exp Dermatol 2023; 32:1982-1995. [PMID: 37727050 DOI: 10.1111/exd.14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/21/2023]
Abstract
The aim of this study is to examine the effects of ageing on dermal fibroblast heterogeneity based on samples obtained from the same donor. We used a dermal fibroblast lineage (named ASF-4 cell lines) isolated from the inner side of the upper arm of a healthy male donor over a 35-year period, beginning at 36 years of age. Because clonal analysis of ASF-4 cell lines demonstrated a donor age-dependent loss of proliferative capacity and acquisition of senescent traits at the single-cell level, cultured cells frozen at passage 10 at ages 36 and 72 years were subjected to single-cell RNA sequencing. Transcriptome analysis revealed an increase in senescent fibroblasts and downregulation of genes associated with extracellular matrix remodelling with ageing. In addition, two putative differentiation pathways, with one endpoint consisting of senescent fibroblasts and the other without, were speculated using a pseudo-time analysis. Knockdown of the characteristic gene of the non-senescent fibroblast cluster endpoint, EFEMP2, accelerated cellular senescence. This was also confirmed in two other normal human dermal fibroblast cell lines. The detection of a common cellular senescence-related gene from single-donor analysis is notable. This study provides new insights into the behaviour of dermal fibroblasts during skin ageing.
Collapse
Affiliation(s)
- Eriko Itai
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Toru Atsugi
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Ken Inomata
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | | | - Kazuhiko Kaji
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| | - Daisuke Nanba
- Division of Aging and Regeneration, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eiji Naru
- Research Laboratories, KOSÉ Corporation, Tokyo, Japan
| |
Collapse
|
125
|
Helm M, Schmidt M, Del Duca E, Liu Y, Mortensen LS, Loui J, Zheng Y, Binder H, Guttman-Yassky E, Cotsarelis G, Simon JC, Ferrer RA. Repurposing DPP4 Inhibition to Improve Hair Follicle Activation and Regeneration. J Invest Dermatol 2023; 143:2132-2144.e15. [PMID: 37236597 DOI: 10.1016/j.jid.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Skin injury and several diseases elicit fibrosis and induce hair follicle (HF) growth arrest and loss. The resulting alopecia and disfiguration represent a severe burden for patients, both physically and psychologically. Reduction of profibrotic factors such as dipeptidyl peptidase 4 (DPP4) might be a strategy to tackle this issue. We show DPP4 overrepresentation in settings with HF growth arrest (telogen), HF loss, and nonregenerative wound areas in mouse skin and human scalp. Topical DPP4 inhibition with Food and Drug Administration/European Medicines Agency-approved sitagliptin on preclinical models of murine HF activation/regeneration results in accelerated anagen progress, whereas treatment of wounds with sitagliptin results in reduced expression of fibrosis markers, increased induction of anagen around wounds, and HF regeneration in the wound center. These effects are associated with higher expression of Wnt target Lef1, known to be required for HF anagen/HF-activation and regeneration. Sitagliptin treatment decreases profibrotic signaling in the skin, induces a differentiation trajectory of HF cells, and activates Wnt targets related to HF activation/growth but not those supporting fibrosis. Taken together, our study shows a role for DPP4 in HF biology and shows how DPP4 inhibition, currently used as oral medication to treat diabetes, could be repurposed into a topical treatment agent to potentially reverse HF loss in alopecia and after injury.
Collapse
Affiliation(s)
- Maria Helm
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - Lena Sünke Mortensen
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Juliane Loui
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Ying Zheng
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York City, New York, USA
| | - George Cotsarelis
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany
| | - Rubén A Ferrer
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Center, University Leipzig, Leipzig, Germany.
| |
Collapse
|
126
|
Sawant M, Wang F, Koester J, Niehoff A, Nava MM, Lundgren-Akerlund E, Gullberg D, Leitinger B, Wickström S, Eckes B, Krieg T. Ablation of integrin-mediated cell-collagen communication alleviates fibrosis. Ann Rheum Dis 2023; 82:1474-1486. [PMID: 37479494 DOI: 10.1136/ard-2023-224129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVES Activation of fibroblasts is a hallmark of fibrotic processes. Besides cytokines and growth factors, fibroblasts are regulated by the extracellular matrix environment through receptors such as integrins, which transduce biochemical and mechanical signals enabling cells to mount appropriate responses according to biological demands. The aim of this work was to investigate the in vivo role of collagen-fibroblast interactions for regulating fibroblast functions and fibrosis. METHODS Triple knockout (tKO) mice with a combined ablation of integrins α1β1, α2β1 and α11β1 were created to address the significance of integrin-mediated cell-collagen communication. Properties of primary dermal fibroblasts lacking collagen-binding integrins were delineated in vitro. Response of the tKO mice skin to bleomycin induced fibrotic challenge was assessed. RESULTS Triple integrin-deficient mice develop normally, are transiently smaller and reveal mild alterations in mechanoresilience of the skin. Fibroblasts from these mice in culture show defects in cytoskeletal architecture, traction stress generation, matrix production and organisation. Ablation of the three integrins leads to increased levels of discoidin domain receptor 2, an alternative receptor recognising collagens in vivo and in vitro. However, this overexpression fails to compensate adhesion and spreading defects on collagen substrates in vitro. Mice lacking collagen-binding integrins show a severely attenuated fibrotic response with impaired mechanotransduction, reduced collagen production and matrix organisation. CONCLUSIONS The data provide evidence for a crucial role of collagen-binding integrins in fibroblast force generation and differentiation in vitro and for matrix deposition and tissue remodelling in vivo. Targeting fibroblast-collagen interactions might represent a promising therapeutic approach to regulate connective tissue deposition in fibrotic diseases.
Collapse
Affiliation(s)
- Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Fang Wang
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Janis Koester
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Medical Faculty, Cologne, Germany
| | - Michele M Nava
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Sara Wickström
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, Helsinki, Finland
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
127
|
Correia M, Lopes J, Lopes D, Melero A, Makvandi P, Veiga F, Coelho JFJ, Fonseca AC, Paiva-Santos AC. Nanotechnology-based techniques for hair follicle regeneration. Biomaterials 2023; 302:122348. [PMID: 37866013 DOI: 10.1016/j.biomaterials.2023.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The hair follicle (HF) is a multicellular complex structure of the skin that contains a reservoir of multipotent stem cells. Traditional hair repair methods such as drug therapies, hair transplantation, and stem cell therapy have limitations. Advances in nanotechnology offer new approaches for HF regeneration, including controlled drug release and HF-specific targeting. Until recently, embryogenesis was thought to be the only mechanism for forming hair follicles. However, in recent years, the phenomenon of wound-induced hair neogenesis (WIHN) or de novo HF regeneration has gained attention as it can occur under certain conditions in wound beds. This review covers HF-specific targeting strategies, with particular emphasis on currently used nanotechnology-based strategies for both hair loss-related diseases and HF regeneration. HF regeneration is discussed in several modalities: modulation of the hair cycle, stimulation of progenitor cells and signaling pathways, tissue engineering, WIHN, and gene therapy. The HF has been identified as an ideal target for nanotechnology-based strategies for hair regeneration. However, some regulatory challenges may delay the development of HF regeneration nanotechnology based-strategies, which will be lastly discussed.
Collapse
Affiliation(s)
- Mafalda Correia
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia (Campus de Burjassot), Av. Vicente A. Estelles s/n, 46100, Burjassot, Valencia, Spain
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
128
|
Correa-Gallegos D, Ye H, Dasgupta B, Sardogan A, Kadri S, Kandi R, Dai R, Lin Y, Kopplin R, Shenai DS, Wannemacher J, Ichijo R, Jiang D, Strunz M, Ansari M, Angelidis I, Schiller HB, Volz T, Machens HG, Rinkevich Y. CD201 + fascia progenitors choreograph injury repair. Nature 2023; 623:792-802. [PMID: 37968392 PMCID: PMC10665192 DOI: 10.1038/s41586-023-06725-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/09/2023] [Indexed: 11/17/2023]
Abstract
Optimal tissue recovery and organismal survival are achieved by spatiotemporal tuning of tissue inflammation, contraction and scar formation1. Here we identify a multipotent fibroblast progenitor marked by CD201 expression in the fascia, the deepest connective tissue layer of the skin. Using skin injury models in mice, single-cell transcriptomics and genetic lineage tracing, ablation and gene deletion models, we demonstrate that CD201+ progenitors control the pace of wound healing by generating multiple specialized cell types, from proinflammatory fibroblasts to myofibroblasts, in a spatiotemporally tuned sequence. We identified retinoic acid and hypoxia signalling as the entry checkpoints into proinflammatory and myofibroblast states. Modulating CD201+ progenitor differentiation impaired the spatiotemporal appearances of fibroblasts and chronically delayed wound healing. The discovery of proinflammatory and myofibroblast progenitors and their differentiation pathways provide a new roadmap to understand and clinically treat impaired wound healing.
Collapse
Affiliation(s)
| | - Haifeng Ye
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Bikram Dasgupta
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Aydan Sardogan
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Safwen Kadri
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Ravinder Kandi
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Yue Lin
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Robert Kopplin
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Disha Shantaram Shenai
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Juliane Wannemacher
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Ryo Ichijo
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany
| | - Maximilian Strunz
- Member of the German Centre for Lung Research (DZL), Comprehensive Pneumology Center (CPC) and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
| | - Meshal Ansari
- Member of the German Centre for Lung Research (DZL), Comprehensive Pneumology Center (CPC) and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
| | - Illias Angelidis
- Member of the German Centre for Lung Research (DZL), Comprehensive Pneumology Center (CPC) and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
| | - Herbert B Schiller
- Member of the German Centre for Lung Research (DZL), Comprehensive Pneumology Center (CPC) and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Munich, Germany
- Institute of Experimental Pneumology, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Thomas Volz
- Klinikum rechts der Isar, Department of Dermatology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Günther Machens
- Klinikum rechts der Isar, Department of Plastic and Hand Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine (IRBM), Helmholtz Munich, Munich, Germany.
| |
Collapse
|
129
|
Padmanabhan J, Chen K, Sivaraj D, Henn D, Kuehlmann BA, Kussie HC, Zhao ET, Kahn A, Bonham CA, Dohi T, Beck TC, Trotsyuk AA, Stern-Buchbinder ZA, Than PA, Hosseini HS, Barrera JA, Magbual NJ, Leeolou MC, Fischer KS, Tigchelaar SS, Lin JQ, Perrault DP, Borrelli MR, Kwon SH, Maan ZN, Dunn JCY, Nazerali R, Januszyk M, Prantl L, Gurtner GC. Allometrically scaling tissue forces drive pathological foreign-body responses to implants via Rac2-activated myeloid cells. Nat Biomed Eng 2023; 7:1419-1436. [PMID: 37749310 PMCID: PMC10651488 DOI: 10.1038/s41551-023-01091-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Small animals do not replicate the severity of the human foreign-body response (FBR) to implants. Here we show that the FBR can be driven by forces generated at the implant surface that, owing to allometric scaling, increase exponentially with body size. We found that the human FBR is mediated by immune-cell-specific RAC2 mechanotransduction signalling, independently of the chemistry and mechanical properties of the implant, and that a pathological FBR that is human-like at the molecular, cellular and tissue levels can be induced in mice via the application of human-tissue-scale forces through a vibrating silicone implant. FBRs to such elevated extrinsic forces in the mice were also mediated by the activation of Rac2 signalling in a subpopulation of mechanoresponsive myeloid cells, which could be substantially reduced via the pharmacological or genetic inhibition of Rac2. Our findings provide an explanation for the stark differences in FBRs observed in small animals and humans, and have implications for the design and safety of implantable devices.
Collapse
Affiliation(s)
- Jagannath Padmanabhan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Dharshan Sivaraj
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Dominic Henn
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Britta A Kuehlmann
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hudson C Kussie
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Eric T Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Anum Kahn
- Cell Sciences Imaging Facility (CSIF), Beckman Center, Stanford University, Stanford, CA, USA
| | - Clark A Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Teruyuki Dohi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas C Beck
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Artem A Trotsyuk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zachary A Stern-Buchbinder
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter A Than
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hadi S Hosseini
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Janos A Barrera
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah J Magbual
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa C Leeolou
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Katharina S Fischer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Seth S Tigchelaar
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - John Q Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David P Perrault
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun Hyung Kwon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rahim Nazerali
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lukas Prantl
- Department of Plastic and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
130
|
Sikking MA, Stroeks SL, Marelli-Berg F, Heymans SR, Ludewig B, Verdonschot JA. Immunomodulation of Myocardial Fibrosis. JACC Basic Transl Sci 2023; 8:1477-1488. [PMID: 38093747 PMCID: PMC10714184 DOI: 10.1016/j.jacbts.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/27/2024]
Abstract
Immunotherapy is a potential cornerstone in the treatment of myocardial fibrosis. During a myocardial insult or heart failure, danger signals stimulate innate immune cells to produce chemokines and profibrotic cytokines, which initiate self-escalating inflammatory processes by attracting and stimulating adaptive immune cells. Stimulation of fibroblasts by inflammatory processes and the need to replace damaged cardiomyocytes fosters reshaping of the cardiac fibroblast landscape. In this review, we discuss new immunomodulatory strategies that manipulate and direct cardiac fibroblast activation and differentiation. In particular, we highlight immunomodulatory strategies that target fibroblasts such as chimeric antigen receptor T cells, interleukin-11, and invariant natural killer T-cells. Moreover, we discuss the potential of manipulating both innate and adaptive immune system components for the translation into clinical validation. Clearly, multiple pathways should be considered to develop innovative approaches to ameliorate myocardial fibrosis and hence to reduce the risk of heart failure.
Collapse
Affiliation(s)
- Maurits A. Sikking
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Sophie L.V.M. Stroeks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Federica Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Stephane R.B. Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
- Department of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Job A.J. Verdonschot
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| |
Collapse
|
131
|
Wang Y, Wu J, Chen J, Lu C, Liang J, Shan Y, Liu J, Li Q, Miao L, He M, Wang X, Zhang J, Wu Z. Mesenchymal stem cells paracrine proteins from three-dimensional dynamic culture system promoted wound healing in third-degree burn models. Bioeng Transl Med 2023; 8:e10569. [PMID: 38023693 PMCID: PMC10658564 DOI: 10.1002/btm2.10569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 12/01/2023] Open
Abstract
Recovery of skin function remains a significant clinical challenge for deep burns owing to the severe scar formation and poor appendage regeneration, and stem cell therapy has shown great potential for injured tissue regeneration. Here, a cell-free therapy system for deep burn skin was explored using mesenchymal stem cell paracrine proteins (MSC-PP) and polyethylene glycol (PEG) temperature-sensitive hydrogels. A three-dimensional (3D) dynamic culture system for MSCs' large-scale expansion was established using a porous gelatin microcarrier crosslinked with hyaluronic acid (PGM-HA), and the purified MSC-PP from culture supernatant was characterized by mass spectrometric analysis. The results showed the 3D dynamic culture system regulated MSCs cell cycle, reduced apoptosis, and decreased lactic acid content, and the MSC-PP produced in 3D group can promote cell proliferation, migration, and adhesion. The MSC-PP + PEG system maintained stable release in 28 days of observation in vitro. The in vivo therapeutic efficacy was investigated in the rabbit's third-degree burn model, and saline, PEG, MSC-PP, and MSC-PP + PEG treatments groups were set. The in vivo results showed that the MSC-PP + PEG group significantly improved wound healing, inhibited scar formation, and facilitated skin appendage regeneration. In conclusion, the MSC-PP + PEG sustained-release system provides a potentially effective treatment for deep burn skin healing.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of OphthalmologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Cheng Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jinchao Liang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Yingyi Shan
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| | - Liang Miao
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Mu He
- Burn plastic surgeryLonggang Central HospitalShenzhenChina
| | - Xiaoying Wang
- Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Jianhua Zhang
- Special WardsThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
132
|
Zhuang Q, Chao T, Wu Y, Wei T, Ren J, Cao Z, Peng R, Liu Z. Fluorocarbon Modified Chitosan to Enable Transdermal Immunotherapy for Melanoma Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303634. [PMID: 37467294 DOI: 10.1002/smll.202303634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Despite the rapid development of the immune checkpoint blockade (ICB) in melanoma treatment, the immunosuppressive tumor microenvironment (TME) still hinders the efficacy of immunotherapy. Recently, using agonists to modulate the TME have presented promising clinical responses in combination with ICB therapies. However, local intratumoral injection as the commonly used administration route for immune agonists would lead to low patient compliance. Herein, it is demonstrated that fluorocarbon modified chitosan (FCS) can self-assemble with immune adjuvant polyriboinosinic:polyribocytidylic acid (poly(I:C)), forming nanoparticles that can penetrate through cutaneous barriers to enable transdermal delivery. FCS/poly(I:C) can efficiently activate various types of cells presented on the transdermal route (through the skin into the TME), leading to IRF3-mediated IFN-β induction in the activated cells for tumor repression. Furthermore, transdermal FCS/poly(I:C) treatment can significantly magnify the efficacy of the programmed cell death protein 1 (PD-1) blockade in melanoma treatment through activating the immunosuppressive TME. This study approach offered an attractive transdermal approach in combined with ICB therapy for combined immunotherapy, particularly suitable for melanoma treatment.
Collapse
Affiliation(s)
- Qi Zhuang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, China
| | - Ting Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, China
| | - Yuanyuan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, China
| | - Ting Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
- InnoBM Pharmaceuticals, Suzhou, Jiangsu, 215123, China
| | - Jiacheng Ren
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, China
| | - Zhiqing Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Rd, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
133
|
Rauchenwald T, Handle F, Connolly CE, Degen A, Seifarth C, Hermann M, Tripp CH, Wilflingseder D, Lobenwein S, Savic D, Pölzl L, Morandi EM, Wolfram D, Skvortsova II, Stoitzner P, Haybaeck J, Konschake M, Pierer G, Ploner C. Preadipocytes in human granulation tissue: role in wound healing and response to macrophage polarization. Inflamm Regen 2023; 43:53. [PMID: 37904253 PMCID: PMC10617061 DOI: 10.1186/s41232-023-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment. METHODS We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR. RESULTS CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs. CONCLUSION Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.
Collapse
Affiliation(s)
- Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Catherine E Connolly
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia Degen
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Lobenwein
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Marko Konschake
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
134
|
Lim C, Lim J, Choi S. Wound-Induced Hair Follicle Neogenesis as a Promising Approach for Hair Regeneration. Mol Cells 2023; 46:573-578. [PMID: 37650216 PMCID: PMC10590709 DOI: 10.14348/molcells.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
The mammalian skin contains hair follicles, which are epidermal appendages that undergo periodic cycles and exhibit mini-organ features, such as discrete stem cell compartments and different cellular components. Wound-induced hair follicle neogenesis (WIHN) is the remarkable ability to regenerate hair follicles after large-scale wounding and occurs in several adult mammals. WIHN is comparable to embryonic hair follicle development in its processes. Researchers are beginning to identify the stem cells that, in response to wounding, develop into neogenic hair follicles, as well as to understand the functions of immune cells, mesenchymal cells, and several signaling pathways that are essential for this process. WIHN represents a promising therapeutic approach to the reprogramming of cellular states for promoting hair follicle regeneration and preventing scar formation. In the scope of this review, we investigate the contribution of several cell types and molecular mechanisms to WIHN.
Collapse
Affiliation(s)
- Chaeryeong Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jooyoung Lim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- School of Medical Science and Engineering, POSTECH, Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon 21983, Korea
| |
Collapse
|
135
|
Wyles SP, Carruthers JD, Dashti P, Yu G, Yap JQ, Gingery A, Tchkonia T, Kirkland JL. Cellular Senescence in Human Skin Aging: Leveraging Senotherapeutics. Gerontology 2023; 70:7-14. [PMID: 37879300 PMCID: PMC10873061 DOI: 10.1159/000534756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND As the largest organ in the human body, the skin is continuously exposed to intrinsic and extrinsic stimuli that impact its functionality and morphology with aging. Skin aging entails dysregulation of skin cells and loss, fragmentation, or fragility of extracellular matrix fibers that are manifested macroscopically by wrinkling, laxity, and pigmentary abnormalities. Age-related skin changes are the focus of many surgical and nonsurgical treatments aimed at improving overall skin appearance and health. SUMMARY As a hallmark of aging, cellular senescence, an essentially irreversible cell cycle arrest with apoptosis resistance and a secretory phenotype, manifests across skin layers by affecting epidermal and dermal cells. Knowledge of skin-specific senescent cells, such as melanocytes (epidermal aging) and fibroblasts (dermal aging), will promote our understanding of age-related skin changes and how to optimize patient outcomes in esthetic procedures. KEY MESSAGES This review provides an overview of skin aging in the context of cellular senescence and discusses senolytic intervention strategies to selectively target skin senescent cells that contribute to premature skin aging.
Collapse
Affiliation(s)
- Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, MN, United States
| | - Jean D. Carruthers
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Dashti
- Department of Dermatology, Mayo Clinic, Rochester, MN, United States
| | - Grace Yu
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, and Mayo Clinic Medical Scientist Training Program, Rochester, MN
| | - Jane Q. Yap
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN United States
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
136
|
Jacob T, Annusver K, Czarnewski P, Dalessandri T, Kalk C, Levra Levron C, Campamà Sanz N, Kastriti ME, Mikkola ML, Rendl M, Lichtenberger BM, Donati G, Björklund ÅK, Kasper M. Molecular and spatial landmarks of early mouse skin development. Dev Cell 2023; 58:2140-2162.e5. [PMID: 37591247 PMCID: PMC11088744 DOI: 10.1016/j.devcel.2023.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
A wealth of specialized cell populations within the skin facilitates its hair-producing, protective, sensory, and thermoregulatory functions. How the vast cell-type diversity and tissue architecture develops is largely unexplored. Here, with single-cell transcriptomics, spatial cell-type assignment, and cell-lineage tracing, we deconstruct early embryonic mouse skin during the key transitions from seemingly uniform developmental precursor states to a multilayered, multilineage epithelium, and complex dermal identity. We identify the spatiotemporal emergence of hair-follicle-inducing, muscle-supportive, and fascia-forming fibroblasts. We also demonstrate the formation of the panniculus carnosus muscle (PCM), sprouting blood vessels without pericyte coverage, and the earliest residence of mast and dendritic immune cells in skin. Finally, we identify an unexpected epithelial heterogeneity within the early single-layered epidermis and a signaling-rich periderm layer. Overall, this cellular and molecular blueprint of early skin development-which can be explored at https://kasperlab.org/tools-establishes histological landmarks and highlights unprecedented dynamic interactions among skin cells.
Collapse
Affiliation(s)
- Tina Jacob
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, 17165 Stockholm, Sweden
| | - Tim Dalessandri
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christina Kalk
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chiara Levra Levron
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Michael Rendl
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beate M Lichtenberger
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
137
|
Chien WC, Tsai TF. The Pressurized Skin: A Review on the Pathological Effect of Mechanical Pressure on the Skin from the Cellular Perspective. Int J Mol Sci 2023; 24:15207. [PMID: 37894888 PMCID: PMC10607711 DOI: 10.3390/ijms242015207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Since human skin is the primary interface responding to external mechanical stimuli, extrinsic forces can disrupt its balanced microenvironment and lead to cutaneous lesions. We performed this review to delve into the pathological effects of mechanical pressure on skin from the cellular perspective. Fibroblasts of different subsets act as heterogeneous responders to mechanical load and express diverse functionalities. Keratinocytes relay mechanical signals through mechanosensitive receptors and the ensuing neurochemical cascades to work collaboratively with other cells and molecules in response to pressure. Mast cells release cytokines and neuropeptides, promoting inflammation and facilitating interaction with sensory neurons, while melanocytes can be regulated by pressure through cellular and molecular crosstalk. Adipocytes and stem cells sense pressure to fine-tune their regulations of mechanical homeostasis and cell differentiation. Applying mechanical pressure to the skin can induce various changes in its microenvironment that potentially lead to pathological alterations, such as ischemia, chronic inflammation, proliferation, regeneration, degeneration, necrosis, and impaired differentiation. The heterogeneity of each cellular lineage and subset from different individuals with various underlying skin conditions must be taken into consideration when discussing the pathological effects of pressure on the skin. Thus, elucidating the mechanotransduction and mechanoresponsive pathways from the cellular viewpoint is crucial in diagnosing and managing relevant dermatological disorders.
Collapse
Affiliation(s)
- Wei-Chen Chien
- Department of Medical Education, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
138
|
Phan QM, Salz L, Kindl SS, Lopez JS, Thompson SM, Makkar J, Driskell IM, Driskell RR. Lineage commitment of dermal fibroblast progenitors is controlled by Kdm6b-mediated chromatin demethylation. EMBO J 2023; 42:e113880. [PMID: 37602956 PMCID: PMC10548174 DOI: 10.15252/embj.2023113880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the epigenetic mechanisms that regulate DFP differentiation are not known. Our objective was to use multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanism that governs its differentiation potential. Our initial results indicated that the overall transcription profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage-specific genes. Surprisingly, the repressive chromatin profile of DFPs renders them unable to reform the skin in allograft assays despite their multipotent potential. We hypothesized that chromatin derepression was modulated by the H3K27me3 demethylase, Kdm6b/Jmjd3. Dermal fibroblast-specific deletion of Kdm6b/Jmjd3 in mice resulted in adipocyte compartment ablation and inhibition of mature dermal papilla functions, confirmed by additional single-cell RNA-seq, ChIP-seq, and allografting assays. We conclude that DFPs are functionally derepressed during murine skin development by Kdm6b/Jmjd3. Our studies therefore reveal a multimodal understanding of how DFPs differentiate into distinct fibroblast lineages and provide a novel publicly available multiomics search tool.
Collapse
Affiliation(s)
- Quan M Phan
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Lucia Salz
- North Rhine‐Westphalia Technical University of AachenAachenGermany
| | - Sam S Kindl
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Jayden S Lopez
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Sean M Thompson
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Jasson Makkar
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Iwona M Driskell
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
| | - Ryan R Driskell
- School of Molecular BiosciencesWashington State UniversityPullmanWAUSA
- Center for Reproductive BiologyWashington State UniversityPullmanWAUSA
| |
Collapse
|
139
|
Ramadoss T, Weimer DS, Mayrovitz HN. Topical Iron Chelator Therapy: Current Status and Future Prospects. Cureus 2023; 15:e47720. [PMID: 38022031 PMCID: PMC10675985 DOI: 10.7759/cureus.47720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Systemic iron chelation therapy has long been used for iron overload, providing a role in returning iron levels to proper homeostatic concentrations. Recently, topical iron chelation therapy has emerged as a potential strategy for treating skin damage. This narrative review explores the current status and future prospects of topical iron chelation therapy for treating ultraviolet (UV) and non-UV skin damage, as well as its potential application in wound healing. The review was conducted through a literature search across PubMed, Web of Science, and EMBASE databases, spanning publications from 1990 to 2023. The selection of articles was focused on primary research studies, either experimental or clinical, that explored the implications and formulations of topical iron chelators used alone or in conjunction with another therapeutic agent. The search strategy employed a combination of terms, including "topical iron chelation", "topical deferoxamine", "UV", "wound healing", "skin inflammation", "radiation-induced fibrosis", and "skin cancer". Relevant studies, including methods, intervention strategies, measured outcomes, and findings, are summarized. The review also considered the potential challenges in translating research findings into clinical practice. Results indicate that topical iron chelators, such as deferoxamine, are effective in mitigating UV-induced skin damage, reducing tumorigenesis, and decreasing oxidative damage. In addition, the use of these agents in radiation-induced fibrosis has been shown to significantly increase skin elasticity and reduce dermal fibrosis. Several studies also highlight the use of topical iron chelators in difficult-to-treat chronic wounds, such as diabetic neuropathic ulcers and sickle cell ulcers. In conclusion, topical iron chelation therapy represents a novel and promising approach for skin protection and wound healing. Its potential makes it a promising area of future research.
Collapse
Affiliation(s)
- Tanya Ramadoss
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Derek S Weimer
- Medical School, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Harvey N Mayrovitz
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
140
|
Bernabé-Rubio M, Ali S, Bhosale PG, Goss G, Mobasseri SA, Tapia-Rojo R, Zhu T, Hiratsuka T, Battilocchi M, Tomás IM, Ganier C, Garcia-Manyes S, Watt FM. Myc-dependent dedifferentiation of Gata6 + epidermal cells resembles reversal of terminal differentiation. Nat Cell Biol 2023; 25:1426-1438. [PMID: 37735598 PMCID: PMC10567550 DOI: 10.1038/s41556-023-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Dedifferentiation is the process by which terminally differentiated cells acquire the properties of stem cells. During mouse skin wound healing, the differentiated Gata6-lineage positive cells of the sebaceous duct are able to dedifferentiate. Here we have integrated lineage tracing and single-cell mRNA sequencing to uncover the underlying mechanism. Gata6-lineage positive and negative epidermal stem cells in wounds are transcriptionally indistinguishable. Furthermore, in contrast to reprogramming of induced pluripotent stem cells, the same genes are expressed in the epidermal dedifferentiation and differentiation trajectories, indicating that dedifferentiation does not involve adoption of a new cell state. We demonstrate that dedifferentiation is not only induced by wounding, but also by retinoic acid treatment or mechanical expansion of the epidermis. In all three cases, dedifferentiation is dependent on the master transcription factor c-Myc. Mechanotransduction and actin-cytoskeleton remodelling are key features of dedifferentiation. Our study elucidates the molecular basis of epidermal dedifferentiation, which may be generally applicable to adult tissues.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Shahnawaz Ali
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Priyanka G Bhosale
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Georgina Goss
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | | | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Tong Zhu
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Toru Hiratsuka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
- Department of Oncogenesis and Growth Regulation, Research Center, Osaka International Cancer Institute, Chuoku, Japan
| | - Matteo Battilocchi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Inês M Tomás
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Fiona M Watt
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK.
- Directors' Unit, EMBL Heidelberg, Heidelberg, Germany.
| |
Collapse
|
141
|
Guo Y, Hu Z, Chen J, Zhang J, Fan Z, Qu Q, Miao Y. Feasibility of adipose-derived therapies for hair regeneration: Insights based on signaling interplay and clinical overview. J Am Acad Dermatol 2023; 89:784-794. [PMID: 34883154 DOI: 10.1016/j.jaad.2021.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Dermal white adipose tissue (dWAT) is a dynamic component of the skin and closely interacts with the hair follicle. Interestingly, dWAT envelops the hair follicle during anagen and undergoes fluctuations in volume throughout the hair cycle. dWAT-derived extracellular vesicles can significantly regulate the hair cycle, and this provides a theoretical basis for utilizing adipose tissue as a feasible clinical strategy to treat hair loss. However, the amount and depth of the available literature are far from enough to fully elucidate the prominent role of dWAT in modulating the hair growth cycle. This review starts by investigating the hair cycle-coupled dWAT remodeling and the reciprocal signaling interplay underneath. Then, it summarizes the current literature and assesses the advantages and limitations of clinical research utilizing adipose-derived therapies for hair regeneration.
Collapse
Affiliation(s)
- Yilong Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jian Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
142
|
Walendzik K, Kopcewicz M, Wiśniewska J, Opyd P, Machcińska-Zielińska S, Gawrońska-Kozak B. Dermal white adipose tissue development and metabolism: The role of transcription factor Foxn1. FASEB J 2023; 37:e23171. [PMID: 37682531 DOI: 10.1096/fj.202300873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Intradermal adipocytes form dermal white adipose tissue (dWAT), a unique fat depot localized in the lower layer of the dermis. However, recognition of molecular factors regulating dWAT development, homeostasis, and bioactivity is limited. Using Foxn1-/- and Foxn1+/+ mice, we demonstrated that epidermally expressed Foxn1 regulates dWAT development and defines the adipogenic capacity of dermal fibroblasts. In intact and post-wounded skin, Foxn1 contributes to the initial stimulation of dWAT adipogenesis and participates in the modulation of lipid metabolism processes. Furthermore, Foxn1 activity strengthens adipogenic processes through Bmp2 and Igf2 signaling and regulates lipid metabolism in differentiated dermal fibroblasts. The results reveal the contribution of Foxn1 to dWAT metabolism, thus identifying possible targets for modulation and regulation of dWAT in physiological and pathological processes in the skin.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Wiśniewska
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paulina Opyd
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Sylwia Machcińska-Zielińska
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
143
|
Gawronska-Kozak B, Kopcewicz M, Machcinska-Zielinska S, Walendzik K, Wisniewska J, Drukała J, Wasniewski T, Rutkowska J, Malinowski P, Pulinski M. Gender Differences in Post-Operative Human Skin. Biomedicines 2023; 11:2653. [PMID: 37893027 PMCID: PMC10604277 DOI: 10.3390/biomedicines11102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Tomasz Wasniewski
- Department of Obstetrics, Perinatology and Gynecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Joanna Rutkowska
- Department of Internal Medicine, Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Malinowski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Michał Pulinski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
144
|
Yang Y, Chu C, Liu L, Wang C, Hu C, Rung S, Man Y, Qu Y. Tracing immune cells around biomaterials with spatial anchors during large-scale wound regeneration. Nat Commun 2023; 14:5995. [PMID: 37752124 PMCID: PMC10522601 DOI: 10.1038/s41467-023-41608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Skin scarring devoid of dermal appendages after severe trauma has unfavorable effects on aesthetic and physiological functions. Here we present a method for large-area wound regeneration using biodegradable aligned extracellular matrix scaffolds. We show that the implantation of these scaffolds accelerates wound coverage and enhances hair follicle neogenesis. We perform multimodal analysis, in combination with single-cell RNA sequencing and spatial transcriptomics, to explore the immune responses around biomaterials, highlighting the potential role of regulatory T cells in mitigating tissue fibrous by suppressing excessive type 2 inflammation. We find that immunodeficient mice lacking mature T lymphocytes show the typical characteristic of tissue fibrous driven by type 2 macrophage inflammation, validating the potential therapeutic effect of the adaptive immune system activated by biomaterials. These findings contribute to our understanding of the coordination of immune systems in wound regeneration and facilitate the design of immunoregulatory biomaterials in the future.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenyu Chu
- Department of Oral Implantology & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Department of Oral Implantology & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chenbing Wang
- Department of Oral Implantology & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chen Hu
- Department of Oral Implantology & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shengan Rung
- Department of Oral Implantology & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Man
- Department of Oral Implantology & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yili Qu
- Department of Prosthodontics & State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
145
|
Anderson-Crannage M, Ascensión AM, Ibanez-Solé O, Zhu H, Schaefer E, Ottomanelli D, Hochberg B, Pan J, Luo W, Tian M, Chu Y, Cairo MS, Izeta A, Liao Y. Inflammation-mediated fibroblast activation and immune dysregulation in collagen VII-deficient skin. Front Immunol 2023; 14:1211505. [PMID: 37809094 PMCID: PMC10557493 DOI: 10.3389/fimmu.2023.1211505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023] Open
Abstract
Inflammation is known to play a critical role in all stages of tumorigenesis; however, less is known about how it predisposes the tissue microenvironment preceding tumor formation. Recessive dystrophic epidermolysis bullosa (RDEB), a skin-blistering disease secondary to COL7A1 mutations and associated with chronic wounding, inflammation, fibrosis, and cutaneous squamous cell carcinoma (cSCC), models this dynamic. Here, we used single-cell RNA sequencing (scRNAseq) to analyze gene expression patterns in skin cells from a mouse model of RDEB. We uncovered a complex landscape within the RDEB dermal microenvironment that exhibited altered metabolism, enhanced angiogenesis, hyperproliferative keratinocytes, infiltration and activation of immune cell populations, and inflammatory fibroblast priming. We demonstrated the presence of activated neutrophil and Langerhans cell subpopulations and elevated expression of PD-1 and PD-L1 in T cells and antigen-presenting cells, respectively. Unsupervised clustering within the fibroblast population further revealed two differentiation pathways in RDEB fibroblasts, one toward myofibroblasts and the other toward a phenotype that shares the characteristics of inflammatory fibroblast subsets in other inflammatory diseases as well as the IL-1-induced inflammatory cancer-associated fibroblasts (iCAFs) reported in various cancer types. Quantitation of inflammatory cytokines indicated dynamic waves of IL-1α, TGF-β1, TNF, IL-6, and IFN-γ concentrations, along with dermal NF-κB activation preceding JAK/STAT signaling. We further demonstrated the divergent and overlapping roles of these cytokines in inducing inflammatory phenotypes in RDEB patients as well as RDEB mouse-derived fibroblasts together with their healthy controls. In summary, our data have suggested a potential role of inflammation, driven by the chronic release of inflammatory cytokines such as IL-1, in creating an immune-suppressed dermal microenvironment that underlies RDEB disease progression.
Collapse
Affiliation(s)
- Morgan Anderson-Crannage
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| | - Alex M. Ascensión
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Olga Ibanez-Solé
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
| | - Hongwen Zhu
- Department of Research & Development, Guizhou Atlasus Technology Co., Ltd., Guiyang, China
| | - Edo Schaefer
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Darcy Ottomanelli
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Bruno Hochberg
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Jian Pan
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
- Department of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ander Izeta
- Biodonostia Health Research Institute, Tissue Engineering Group, San Sebastian, Spain
- Department of Biomedical Engineering and Science, School of Engineering, Tecnun University of Navarra, San Sebastian, Spain
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
146
|
Ko J, Noviani M, Chellamuthu VR, Albani S, Low AHL. The Pathogenesis of Systemic Sclerosis: The Origin of Fibrosis and Interlink with Vasculopathy and Autoimmunity. Int J Mol Sci 2023; 24:14287. [PMID: 37762589 PMCID: PMC10532389 DOI: 10.3390/ijms241814287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease associated with increased mortality and poor morbidity, impairing the quality of life in patients. Whilst we know that SSc affects multiple organs via vasculopathy, inflammation, and fibrosis, its exact pathophysiology remains elusive. Microvascular injury and vasculopathy are the initial pathological features of the disease. Clinically, the vasculopathy in SSc is manifested as Raynaud's phenomenon (reversible vasospasm in reaction to the cold or emotional stress) and digital ulcers due to ischemic injury. There are several reports that medications for vasculopathy, such as bosentan and soluble guanylate cyclase (sGC) modulators, improve not only vasculopathy but also dermal fibrosis, suggesting that vasculopathy is important in SSc. Although vasculopathy is an important initial step of the pathogenesis for SSc, it is still unclear how vasculopathy is related to inflammation and fibrosis. In this review, we focused on the clinical evidence for vasculopathy, the major cellular players for the pathogenesis, including pericytes, adipocytes, endothelial cells (ECs), and myofibroblasts, and their signaling pathway to elucidate the relationship among vasculopathy, inflammation, and fibrosis in SSc.
Collapse
Affiliation(s)
- Junsuk Ko
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
| | - Maria Noviani
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608, Singapore
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Vasuki Ranjani Chellamuthu
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Salvatore Albani
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Andrea Hsiu Ling Low
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
147
|
Xu Y, Li W, Lin S, Liu B, Wu P, Li L. Fibroblast diversity and plasticity in the tumor microenvironment: roles in immunity and relevant therapies. Cell Commun Signal 2023; 21:234. [PMID: 37723510 PMCID: PMC10506315 DOI: 10.1186/s12964-023-01204-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 09/20/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), enriched in the tumor stroma, have received increasing attention because of their multifaceted effects on tumorigenesis, development, metastasis, and treatment resistance in malignancies. CAFs contributed to suppressive microenvironment via different mechanisms, while CAFs also exerted some antitumor effects. Therefore, CAFs have been considered promising therapeutic targets for their remarkable roles in malignant tumors. However, patients with malignancies failed to benefit from current CAFs-targeted drugs in many clinical trials, which suggests that further in-depth investigation into CAFs is necessary. Here, we summarize and outline the heterogeneity and plasticity of CAFs mainly by exploring their origin and activation, highlighting the regulation of CAFs in the tumor microenvironment during tumor evolution, as well as the critical roles performed by CAFs in tumor immunity. In addition, we summarize the current immunotherapies targeting CAFs, and conclude with a brief overview of some prospects for the future of CAFs research in the end. Video Abstract.
Collapse
Affiliation(s)
- Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National Clinical Research Center for Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
148
|
Mauroux A, Joncour P, Brassard-Jollive N, Bacar H, Gillet B, Hughes S, Ardidie-Robouant C, Marchand L, Liabotis A, Mailly P, Monnot C, Germain S, Bordes S, Closs B, Ruggiero F, Muller L. Papillary and reticular fibroblasts generate distinct microenvironments that differentially impact angiogenesis. Acta Biomater 2023; 168:210-222. [PMID: 37406716 DOI: 10.1016/j.actbio.2023.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Papillary and reticular dermis show distinct extracellular matrix (ECM) and vascularization corresponding to their specific functions. These characteristics are associated with gene expression patterns of fibroblasts freshly isolated from their native microenvironment. In order to assess the relevance of these fibroblast subpopulations in a tissue engineering context, we investigated their contribution to matrix production and vascularization using cell sheet culture conditions. We first performed RNA-seq differential expression analysis to determine whether several rounds of cell amplification and high-density culture affected their gene expression profile. Bioinformatics analysis revealed that expression of angiogenesis-related and matrisome gene signatures were maintained, resulting in papillary and reticular ECMs that differ in composition and structure. The impact of secreted or ECM-associated factors was then assessed using two independent 3D angiogenesis assays: -1/ a fibrin hydrogel-based assay allowing investigation of diffusible secreted factors, -2/ a scaffold-free cell-sheet based assay for investigation of fibroblast-produced microenvironment. These analyses revealed that papillary fibroblasts secrete highly angiogenic factors and produce a microenvironment characterised by ECM remodelling capacity and dense and branched microvascular network, whereas reticular fibroblasts produced more structural core components of the ECM associated with less branched and larger vessels. These features mimick the characteristics of both the ECM and the vasculature of dermis subcompartments. In addition to showing that skin fibroblast populations differentially regulate angiogenesis via both secreted and ECM factors, our work emphasizes the importance of papillary and reticular fibroblasts for engineering and modelling dermis microenvironment and vascularization. STATEMENT OF SIGNIFICANCE: Recent advances have brought to the forefront the central role of microenvironment and vascularization in tissue engineering for regenerative medicine and microtissue modelling. We have investigated the role of papillary and reticular fibroblast subpopulations using scaffold-free cell sheet culture. This approach provides differentiated cells conditions allowing the production of their own microenvironment. Analysis of gene expression profiles and characterisation of the matrix produced revealed strong and specific angiogenic properties that we functionally characterized using 3D angiogenesis models targeting the respective role of either secreted or matrix-bound factors. This study demonstrates the importance of cell-generated extracellular matrix and questions the importance of cell source and the relevance of hydrogels for developing physio-pathologically relevant tissue engineered substitutes.
Collapse
Affiliation(s)
- Adèle Mauroux
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France; R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Pauline Joncour
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Noémie Brassard-Jollive
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Hisoilat Bacar
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France
| | - Corinne Ardidie-Robouant
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | | | - Athanasia Liabotis
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France; Sorbonne Université, Collège Doctoral, 15 rue de l'Ecole de Médecine, Paris 75006, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France
| | - Sylvie Bordes
- R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France
| | - Brigitte Closs
- R&D Department, SILAB, ZI de la Nau, Saint Viance 19240, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon (IGFL), ENS de Lyon, CNRS, Univ Lyon 1, 32-34 Avenue Tony Garnier, Lyon 69007, France.
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology (CIRB), College de France - CNRS, INSERM, Université PSL, 11 Place Marcelin Berthelot, Paris 75005, France.
| |
Collapse
|
149
|
Srivastava R, Singh K, Abouhashem AS, Kumar M, Kacar S, Verma SS, Mohanty SK, Sinha M, Ghatak S, Xuan Y, Sen CK. Human fetal dermal fibroblast-myeloid cell diversity is characterized by dominance of pro-healing Annexin1-FPR1 signaling. iScience 2023; 26:107533. [PMID: 37636079 PMCID: PMC10450526 DOI: 10.1016/j.isci.2023.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/06/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Fetal skin achieves scarless wound repair. Dermal fibroblasts play a central role in extracellular matrix deposition and scarring outcomes. Both fetal and gingival wound repair share minimal scarring outcomes. We tested the hypothesis that compared to adult skin fibroblasts, human fetal skin fibroblast diversity is unique and partly overlaps with gingival skin fibroblasts. Human fetal skin (FS, n = 3), gingiva (HGG, n = 13), and mature skin (MS, n = 13) were compared at single-cell resolution. Dermal fibroblasts, the most abundant cluster, were examined to establish a connectome with other skin cells. Annexin1-FPR1 signaling pathway was dominant in both FS as well as HGG fibroblasts and related myeloid cells while scanty in MS fibroblasts. Myeloid-specific FPR1-ORF delivered in murine wound edge using tissue nanotransfection (TNT) technology significantly enhanced the quality of healing. Pseudotime analyses identified the co-existence of an HGG fibroblast subset with FPR1high myeloid cells of fetal origin indicating common underlying biological processes.
Collapse
Affiliation(s)
- Rajneesh Srivastava
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ahmed S. Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Sharkia Clinical Research Department, Ministry of Health, Zagazig, Egypt
| | - Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S. Verma
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujit K. Mohanty
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mithun Sinha
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yi Xuan
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K. Sen
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
150
|
Odell ID, Agrawal K, Sefik E, Odell AV, Caves E, Kirkiles-Smith NC, Horsley V, Hinchcliff M, Pober JS, Kluger Y, Flavell RA. IL-6 trans-signaling in a humanized mouse model of scleroderma. Proc Natl Acad Sci U S A 2023; 120:e2306965120. [PMID: 37669366 PMCID: PMC10500188 DOI: 10.1073/pnas.2306965120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Fibrosis is regulated by interactions between immune and mesenchymal cells. However, the capacity of cell types to modulate human fibrosis pathology is poorly understood due to lack of a fully humanized model system. MISTRG6 mice were engineered by homologous mouse/human gene replacement to develop an immune system like humans when engrafted with human hematopoietic stem cells (HSCs). We utilized MISTRG6 mice to model scleroderma by transplantation of healthy or scleroderma skin from a patient with pansclerotic morphea to humanized mice engrafted with unmatched allogeneic HSC. We identified that scleroderma skin grafts contained both skin and bone marrow-derived human CD4 and CD8 T cells along with human endothelial cells and pericytes. Unlike healthy skin, fibroblasts in scleroderma skin were depleted and replaced by mouse fibroblasts. Furthermore, HSC engraftment alleviated multiple signatures of fibrosis, including expression of collagen and interferon genes, and proliferation and activation of human T cells. Fibrosis improvement correlated with reduced markers of T cell activation and expression of human IL-6 by mesenchymal cells. Mechanistic studies supported a model whereby IL-6 trans-signaling driven by CD4 T cell-derived soluble IL-6 receptor complexed with fibroblast-derived IL-6 promoted excess extracellular matrix gene expression. Thus, MISTRG6 mice transplanted with scleroderma skin demonstrated multiple fibrotic responses centered around human IL-6 signaling, which was improved by the presence of healthy bone marrow-derived immune cells. Our results highlight the importance of IL-6 trans-signaling in pathogenesis of scleroderma and the ability of healthy bone marrow-derived immune cells to mitigate disease.
Collapse
Affiliation(s)
- Ian D. Odell
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Kriti Agrawal
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT06511
- Program in Applied Mathematics, Yale University, New Haven, CT06511
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Anahi V. Odell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Elizabeth Caves
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06520
| | | | - Valerie Horsley
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06520
| | - Monique Hinchcliff
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, New Haven, CT06520
| | - Jordan S. Pober
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
- Department of Pathology, Yale University, New Haven, CT06511
| | - Yuval Kluger
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT06511
- Program in Applied Mathematics, Yale University, New Haven, CT06511
- Department of Pathology, Yale University, New Haven, CT06511
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD20815
| |
Collapse
|