101
|
Choi YW, Kim YG, Song MY, Moon JY, Jeong KH, Lee TW, Ihm CG, Park KS, Lee SH. Potential urine proteomics biomarkers for primary nephrotic syndrome. Clin Proteomics 2017; 14:18. [PMID: 28522940 PMCID: PMC5434615 DOI: 10.1186/s12014-017-9153-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/06/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS) is a nonspecific kidney disorder, commonly caused by minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), and membranous nephropathy (MN). Here we analyzed urinary protein profiles, aiming to discover disease-specific biomarkers of these three common diseases in NS. METHODS Sixteen urine samples were collected from patients with biopsy-proven NS and healthy controls. After removal of high-abundance proteins, the urinary protein profile was analyzed by LC-MS/MS to generate a discovery set. For validation, ELISA was used to analyze the selected proteins in 61 urine samples. RESULTS The discovery set included 228 urine proteins, of which 22 proteins were differently expressed in MCD, MN, and FSGS. Among these, C9, CD14, and SERPINA1 were validated by ELISA. All three proteins were elevated in MCD, MN, and FSGS groups compared with in IgA nephropathy and healthy controls. When a regression model was applied, receiver operating characteristic analysis clearly discriminated MCD from the other causative diseases in NS. CONCLUSIONS We developed a disease-specific protein panel that discriminated between three main causes of NS. Through this pilot study, we suggest that urine proteomics could be a non-invasive and clinically available tool to discriminate MCD from MN and FSGS.
Collapse
Affiliation(s)
- Young Wook Choi
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 892 Dongnam-ro, Gangdong-gu, Seoul, Korea
| | - Yang Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 892 Dongnam-ro, Gangdong-gu, Seoul, Korea
| | - Min-Young Song
- Department of Physiology, Kyung Hee University School of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 892 Dongnam-ro, Gangdong-gu, Seoul, Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 892 Dongnam-ro, Gangdong-gu, Seoul, Korea
| | - Tae-Won Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 892 Dongnam-ro, Gangdong-gu, Seoul, Korea
| | - Chun-Gyoo Ihm
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 892 Dongnam-ro, Gangdong-gu, Seoul, Korea
| | - Kang-Sik Park
- Department of Physiology, Kyung Hee University School of Medicine, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, 892 Dongnam-ro, Gangdong-gu, Seoul, Korea
| |
Collapse
|
102
|
Nourbakhsh N, Mak RH. Steroid-resistant nephrotic syndrome: past and current perspectives. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2017; 8:29-37. [PMID: 29388620 PMCID: PMC5774596 DOI: 10.2147/phmt.s100803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with steroid-resistant nephrotic syndrome (SRNS) represent a challenging subset of patients with nephrotic syndrome who often fail standard immunosuppression and have a higher likelihood of progressing to end-stage renal disease. Appropriate treatment of SRNS requires an adequate understanding of the historical treatment, renal histopathology, and genetics associated with the disease. The aim of this review is to present a comprehensive appraisal of the history, role of renal biopsy, genetics, and treatment of SRNS.
Collapse
Affiliation(s)
- Noureddin Nourbakhsh
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, La Jolla, CA, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
103
|
Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D, Xue L, Workalemahu T, Heard-Costa NL, den Hoed M, Ahluwalia TS, Qi Q, Ngwa JS, Renström F, Quaye L, Eicher JD, Hayes JE, Cornelis M, Kutalik Z, Lim E, Luan J, Huffman JE, Zhang W, Zhao W, Griffin PJ, Haller T, Ahmad S, Marques-Vidal PM, Bien S, Yengo L, Teumer A, Smith AV, Kumari M, Harder MN, Justesen JM, Kleber ME, Hollensted M, Lohman K, Rivera NV, Whitfield JB, Zhao JH, Stringham HM, Lyytikäinen LP, Huppertz C, Willemsen G, Peyrot WJ, Wu Y, Kristiansson K, Demirkan A, Fornage M, Hassinen M, Bielak LF, Cadby G, Tanaka T, Mägi R, van der Most PJ, Jackson AU, Bragg-Gresham JL, Vitart V, Marten J, Navarro P, Bellis C, Pasko D, Johansson Å, Snitker S, Cheng YC, Eriksson J, Lim U, Aadahl M, Adair LS, Amin N, Balkau B, Auvinen J, Beilby J, Bergman RN, Bergmann S, Bertoni AG, Blangero J, Bonnefond A, Bonnycastle LL, Borja JB, Brage S, Busonero F, Buyske S, Campbell H, Chines PS, Collins FS, Corre T, Smith GD, Delgado GE, Dueker N, Dörr M, Ebeling T, Eiriksdottir G, Esko T, Faul JD, Fu M, Færch K, Gieger C, Gläser S, Gong J, Gordon-Larsen P, Grallert H, Grammer TB, Grarup N, van Grootheest G, Harald K, Hastie ND, Havulinna AS, Hernandez D, Hindorff L, Hocking LJ, Holmens OL, Holzapfel C, Hottenga JJ, Huang J, Huang T, Hui J, Huth C, Hutri-Kähönen N, James AL, Jansson JO, Jhun MA, Juonala M, Kinnunen L, Koistinen HA, Kolcic I, Komulainen P, Kuusisto J, Kvaløy K, Kähönen M, Lakka TA, Launer LJ, Lehne B, Lindgren CM, Lorentzon M, Luben R, Marre M, Milaneschi Y, Monda KL, Montgomery GW, De Moor MHM, Mulas A, Müller-Nurasyid M, Musk AW, Männikkö R, Männistö S, Narisu N, Nauck M, Nettleton JA, Nolte IM, Oldehinkel AJ, Olden M, Ong KK, Padmanabhan S, Paternoster L, Perez J, Perola M, Peters A, Peters U, Peyser PA, Prokopenko I, Puolijoki H, Raitakari OT, Rankinen T, Rasmussen-Torvik LJ, Rawal R, Ridker PM, Rose LM, Rudan I, Sarti C, Sarzynski MA, Savonen K, Scott WR, Sanna S, Shuldiner AR, Sidney S, Silbernagel G, Smith BH, Smith JA, Snieder H, Stančáková A, Sternfeld B, Swift AJ, Tammelin T, Tan ST, Thorand B, Thuillier D, Vandenput L, Vestergaard H, van Vliet-Ostaptchouk JV, Vohl MC, Völker U, Waeber G, Walker M, Wild S, Wong A, Wright AF, Zillikens MC, Zubair N, Haiman CA, Lemarchand L, Gyllensten U, Ohlsson C, Hofman A, Rivadeneira F, Uitterlinden AG, Pérusse L, Wilson JF, Hayward C, Polasek O, Cucca F, Hveem K, Hartman CA, Tönjes A, Bandinelli S, Palmer LJ, Kardia SLR, Rauramaa R, Sørensen TIA, Tuomilehto J, Salomaa V, Penninx BWJH, de Geus EJC, Boomsma DI, Lehtimäki T, Mangino M, Laakso M, Bouchard C, Martin NG, Kuh D, Liu Y, Linneberg A, März W, Strauch K, Kivimäki M, Harris TB, Gudnason V, Völzke H, Qi L, Järvelin MR, Chambers JC, Kooner JS, Froguel P, Kooperberg C, Vollenweider P, Hallmans G, Hansen T, Pedersen O, Metspalu A, Wareham NJ, Langenberg C, Weir DR, Porteous DJ, Boerwinkle E, Chasman DI, Abecasis GR, Barroso I, McCarthy MI, Frayling TM, O’Connell JR, van Duijn CM, Boehnke M, Heid IM, Mohlke KL, Strachan DP, Fox CS, Liu CT, Hirschhorn JN, Klein RJ, Johnson AD, Borecki IB, Franks PW, North KE, Cupples LA, Loos RJF, Kilpeläinen TO. Genome-wide physical activity interactions in adiposity - A meta-analysis of 200,452 adults. PLoS Genet 2017; 13:e1006528. [PMID: 28448500 PMCID: PMC5407576 DOI: 10.1371/journal.pgen.1006528] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/07/2016] [Indexed: 11/23/2022] Open
Abstract
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
Collapse
Affiliation(s)
- Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anne E. Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristin L. Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mary F. Feitosa
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Llilda Barata
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas W. Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Audrey Y. Chu
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David Hadley
- Division of Population Health Sciences and Education, St. George's, University of London, London, United Kingdom
| | - Luting Xue
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Tsegaselassie Workalemahu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Nancy L. Heard-Costa
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marcel den Hoed
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tarunveer S. Ahluwalia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julius S. Ngwa
- Howard University, Department of Internal Medicine, Washington DC, United States of America
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - John D. Eicher
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - James E. Hayes
- Cell and Developmental Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Marilyn Cornelis
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zoltan Kutalik
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Jian’an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Jennifer E. Huffman
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Cardiology, Ealing Hospital HNS Trust, Middlesex, United Kingdom
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paula J. Griffin
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Shafqat Ahmad
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Pedro M. Marques-Vidal
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Stephanie Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Loic Yengo
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, Lille, France
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Meena Kumari
- ISER, University of Essex, Colchester, Essex, United Kingdom
| | - Marie Neergaard Harder
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Marie Justesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcus E. Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Mette Hollensted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Lohman
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Natalia V. Rivera
- Karolinska Institutet, Respiratory Unit, Department of Medicine Solna, Stockholm, Sweden
| | - John B. Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jing Hua Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Heather M. Stringham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland
| | - Charlotte Huppertz
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- EMGO+ Institute, Vrije Universiteit & VU University Medical Center, Amsterdam, The Netherlands
- Department of Public and Occupational Health, VU University Medical Center, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- EMGO+ Institute, Vrije Universiteit & VU University Medical Center, Amsterdam, The Netherlands
| | - Wouter J. Peyrot
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ InGeest, Amsterdam, The Netherlands
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kati Kristiansson
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ayse Demirkan
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Maija Hassinen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gemma Cadby
- Centre for Genetic Origins of Health and Disease, University of Western Australia, Crawley, Western Australia, Australia
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Peter J. van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne U. Jackson
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer L. Bragg-Gresham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Claire Bellis
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research of Singapore, Singapore
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dorota Pasko
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Søren Snitker
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yu-Ching Cheng
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Veterans Affairs Maryland Health Care System, University of Maryland, Baltimore, Maryland, United States of America
| | - Joel Eriksson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Unhee Lim
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Mette Aadahl
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Linda S. Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Beverley Balkau
- INSERM U-1018, CESP, Renal and Cardiovascular Epidemiology, UVSQ-UPS, Villejuif, France
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - John Beilby
- Busselton Population Medical Research Institute, Nedlands, Western Australia, Australia
- PathWest Laboratory Medicine of WA, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sven Bergmann
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Alain G. Bertoni
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - John Blangero
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Amélie Bonnefond
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, Lille, France
| | - Lori L. Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Judith B. Borja
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
- Department of Nutrition and Dietetics, University of San Carlos, Cebu City, Philippines
| | - Søren Brage
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Steve Buyske
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, Edinburgh, Scotland
| | - Peter S. Chines
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Francis S. Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Tanguy Corre
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - George Davey Smith
- MRC Integrative Epidemiology Unit & School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Graciela E. Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Dueker
- University of Maryland School of Medicine, Department of Epidemiology & Public Health, Baltimore, Maryland, United States of America
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Tapani Ebeling
- Department of Medicine, Oulu University Hospital, Oulu, Finland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mao Fu
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Sven Gläser
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Jian Gong
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tanja B. Grammer
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerard van Grootheest
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ InGeest, Amsterdam, The Netherlands
| | - Kennet Harald
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Nicholas D. Hastie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Aki S. Havulinna
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Lucia Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynne J. Hocking
- Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Christina Holzapfel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Nutritional Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- NCA Institute, VU University & VU Medical Center, Amsterdam, The Netherlands
| | - Jie Huang
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Tao Huang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jennie Hui
- Busselton Population Medical Research Institute, Nedlands, Western Australia, Australia
- PathWest Laboratory Medicine of WA, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Population Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Cornelia Huth
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Department of Pediatrics, University of Tampere School of Medicine, Tampere, Finland
| | - Alan L. James
- Busselton Population Medical Research Institute, Nedlands, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - John-Olov Jansson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Min A. Jhun
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Leena Kinnunen
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Heikki A. Koistinen
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
- Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | | | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kirsti Kvaløy
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, University of Tampere School of Medicine, Tampere, Finland
| | - Timo A. Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio Campus, Finland
| | - Lenore J. Launer
- Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- The Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Mattias Lorentzon
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Michel Marre
- INSERM U-1138, Équipe 2: Pathophysiology and Therapeutics of Vascular and Renal diseases Related to Diabetes, Centre de Recherche des Cordeliers, Paris, France
- Department of Endocrinology, Diabetology, Nutrition, and Metabolic Diseases, Bichat Claude Bernard Hospital, Paris, France
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ InGeest, Amsterdam, The Netherlands
| | - Keri L. Monda
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Observational Research, Amgen Inc., Thousand Oaks, California, United States of America
| | - Grant W. Montgomery
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marleen H. M. De Moor
- EMGO+ Institute, Vrije Universiteit & VU University Medical Center, Amsterdam, The Netherlands
- Section of Clinical Child and Family Studies, Department of Educational and Family Studies, Vrije Universiteit, Amsterdam, The Netherlands
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - A. W. Musk
- Busselton Population Medical Research Institute, Nedlands, Western Australia, Australia
- School of Population Health, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Reija Männikkö
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Satu Männistö
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jennifer A. Nettleton
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine J. Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthias Olden
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Sandosh Padmanabhan
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit & School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Jeremiah Perez
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Markus Perola
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- University of Tartu, Estonian Genome Centre, Tartu, Estonia
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Inga Prokopenko
- Genomics of Common Disease, Imperial College London, London, United Kingdom
| | | | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lynda M. Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, Edinburgh, Scotland
| | - Cinzia Sarti
- Social Services and Health Care Department, City of Helsinki, Helsinki, Finland
| | - Mark A. Sarzynski
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - William R. Scott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Veterans Affairs Maryland Health Care System, University of Maryland, Baltimore, Maryland, United States of America
| | - Steve Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Günther Silbernagel
- Division of Angiology, Department of Internal Medicine, Medical University Graz, Austria
| | - Blair H. Smith
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Barbara Sternfeld
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Amy J. Swift
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Tuija Tammelin
- LIKES Research Center for Sport and Health Sciences, Jyväskylä, Finland
| | - Sian-Tsung Tan
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dorothée Thuillier
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, Lille, France
| | - Liesbeth Vandenput
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Jana V. van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Quebec, Canada
- School of Nutrition, Laval University, Quebec, Canada
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Gérard Waeber
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah Wild
- Centre for Population Health Sciences, Usher Institute for Population Health Sciences and Informatics, Teviot Place, Edinburgh, Scotland
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Niha Zubair
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loic Lemarchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods, Quebec, Canada
- Department of Kinesiology, Laval University, Quebec, Canada
| | - James F. Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, Edinburgh, Scotland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Ozren Polasek
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, Edinburgh, Scotland
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
| | - Catharina A. Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke Tönjes
- University of Leipzig, Medical Department, Leipzig, Germany
| | | | - Lyle J. Palmer
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Thorkild I. A. Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- MRC Integrative Epidemiology Unit & School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- Department of Clinical Epidemiology, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, Denmark
| | - Jaakko Tuomilehto
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Veikko Salomaa
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ InGeest, Amsterdam, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- EMGO+ Institute, Vrije Universiteit & VU University Medical Center, Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- NCA Institute, VU University & VU Medical Center, Amsterdam, The Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, United Kingdom
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Allan Linneberg
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab Services LLC, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Lu Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Cardiology, Ealing Hospital HNS Trust, Middlesex, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jaspal S. Kooner
- Department of Cardiology, Ealing Hospital HNS Trust, Middlesex, United Kingdom
- National Heart and Lung Institute, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Philippe Froguel
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, Lille, France
- Hammersmith Hospital, London, United Kingdom
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter Vollenweider
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Göran Hallmans
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David J. Porteous
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric Boerwinkle
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | | | - Gonçalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Cornelia M. van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
- Center of Medical Systems Biology, Leiden, The Netherlands
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David P. Strachan
- Population Health Research Institute, St. George's University of London, London, United Kingdom
| | - Caroline S. Fox
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Joel N. Hirschhorn
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Robert J. Klein
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew D. Johnson
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul W. Franks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kari E. North
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - L. Adrienne Cupples
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Ruth J. F. Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Genetics of Obesity and Related Metabolic Traits Program, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tuomas O. Kilpeläinen
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
104
|
Schenk H, Müller-Deile J, Kinast M, Schiffer M. Disease modeling in genetic kidney diseases: zebrafish. Cell Tissue Res 2017; 369:127-141. [PMID: 28331970 DOI: 10.1007/s00441-017-2593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mark Kinast
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA.
| |
Collapse
|
105
|
Tyutyunnykova A, Telegeev G, Dubrovska A. The controversial role of phospholipase C epsilon (PLCε) in cancer development and progression. J Cancer 2017; 8:716-729. [PMID: 28382133 PMCID: PMC5381159 DOI: 10.7150/jca.17779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/23/2016] [Indexed: 01/21/2023] Open
Abstract
The phospholipase C (PLC) enzymes are important regulators of membrane phospholipid metabolism. PLC proteins can be activated by the receptor tyrosine kinases (RTK) or G-protein coupled receptors (GPCR) in response to the different extracellular stimuli including hormones and growth factors. Activated PLC enzymes hydrolyze phosphoinositides to increase the intracellular level of Ca2+ and produce diacylglycerol, which are important mediators of the intracellular signaling transduction. PLC family includes 13 isozymes belonging to 6 subfamilies according to their domain structures and functions. Although importance of PLC enzymes for key cellular functions is well established, the PLC proteins belonging to the ε, ζ and η subfamilies were identified and characterized only during the last decade. As a largest known PLC protein, PLCε is involved in a variety of signaling pathways and controls different cellular properties. Nevertheless, its role in carcinogenesis remains elusive. The aim of this review is to provide a comprehensive and up-to-date overview of the experimental and clinical data about the role of PLCε in the development and progression of the different types of human and experimental tumors.
Collapse
Affiliation(s)
- Anna Tyutyunnykova
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Gennady Telegeev
- The Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Fetscherstrasse 74, 01307 Dresden, Germany.; German Cancer Consortium (DKTK), Dresden, Germany.; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
106
|
Perico L, Mandalà M, Schieppati A, Carrara C, Rizzo P, Conti S, Longaretti L, Benigni A, Remuzzi G. BRAF Signaling Pathway Inhibition, Podocyte Injury, and Nephrotic Syndrome. Am J Kidney Dis 2017; 70:145-150. [PMID: 28242136 DOI: 10.1053/j.ajkd.2016.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/23/2016] [Indexed: 11/11/2022]
Abstract
Dabrafenib and trametinib, BRAF and MEK inhibitors, respectively, are effective targeted metastatic melanoma therapies, but little is known about their nephrotoxicity. Although tubulointerstitial injury has been the most widely reported renal side effect of targeted melanoma therapy, nephrotic syndrome has not been reported before. We report on a patient with metastatic melanoma who developed nephrotic syndrome during dabrafenib and trametinib treatment. Kidney biopsy showed diffuse loss of podocyte cytoarchitecture, extensive foot-process effacement, and glomerular endothelial injury. Kidney function and glomerular ultrastructural changes recovered fully after drug withdrawal. In vitro, BRAF inhibition decreased PLCε1 expression in podocytes, accompanied by a reduction in nephrin expression and an increase in permeability to albumin. Additionally, these drugs inhibited the podocyte-vascular endothelial growth factor (VEGF) system. In addition to implications for nephrotic syndrome pathophysiology, we suggest that patients given dabrafenib and trametinib be monitored closely for potential glomerular damage.
Collapse
Affiliation(s)
- Luca Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Mario Mandalà
- Unit of Medical Oncology, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Arrigo Schieppati
- Rare Disease Unit, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Camillo Carrara
- Rare Disease Unit, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Paola Rizzo
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Sara Conti
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Lorena Longaretti
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
107
|
Zhai S, Liu C, Zhang L, Zhu J, Guo J, Zhang J, Chen Z, Zhou W, Chang T, Xu S, Qi Y, Zhuang T, Yu N, Wang W, Wang H, Yu S, Li X. PLCE1 Promotes Esophageal Cancer Cell Progression by Maintaining the Transcriptional Activity of Snail. Neoplasia 2017; 19:154-164. [PMID: 28147304 PMCID: PMC5279705 DOI: 10.1016/j.neo.2016.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is among the most deadly malignant diseases. However, the genetic factors contributing to its occurrence are poorly understood. Multiple studies with large clinic-based cohorts revealed that variations of the phospholipase C epsilon (PLCE1) gene were associated with esophageal cancer susceptibility. However, the causative role of PLCE1 in esophageal cancer is not clear. We inactivated the functional alleles of PLCE1 by CRISPR/Cas9 genome editing technology. The resultant PLCE1 inactivated cells were analyzed both in vitro and in vivo. Our results showed that loss of PLCE1 dramatically decreased the invasion and proliferation capacity of esophageal carcinoma cells in vitro. Moreover, such PLCE1 inactivated tumor grafts exhibited significantly decreased tumor size in mice. We found that PLCE1 was required to maintain protein level of snail a key transcription factor responsible for invasion. Our further transcriptomic data revealed that deficient cells were significantly decreased in expression of genes enriched as targets of Snail. Strikingly, recovery of Snail protein at least partially rescued the invasion and proliferation capacity in PLCE1 inactivated cells. In ESCC clinical specimens, PLCE1 was correlated with tumor stage (P<.0001). Interestingly, PLCE1 expression was positively correlated Snail by immunohistochemistry in such specimens (P<.0001). Therefore, our functional experiments showed the essential roles of PLCE1 in esophageal carcinoma cells and provided evidences that targeting PLCE1 and its downstream molecules could be effective therapies for esophageal cancer.
Collapse
Affiliation(s)
- Shicong Zhai
- Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China; Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Cui Liu
- School of Nursing, Xinxiang Medical University, Henan, China
| | - Lichen Zhang
- School of Laboratory Medicine, Xinxiang Medical University
| | - Jian Zhu
- School of Laboratory Medicine, Xinxiang Medical University; Research Center for Immunology, Xinxiang Medical University, Henan, China
| | - Jiqiang Guo
- Research Center for Immunology, Xinxiang Medical University, Henan, China
| | - Jinghang Zhang
- Department of Pathology, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Zhijun Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Wenping Zhou
- Lymphoma Institute, Zhengzhou, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Tingmin Chang
- Department of Gastroenterology, the First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Siguang Xu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, China
| | - Yijun Qi
- Key Laboratory of Cellular and Molecular Immunology, College of Medicine, Henan University, Kaifeng, Henan, China
| | - Ting Zhuang
- School of Laboratory Medicine, Xinxiang Medical University; Research Center for Immunology, Xinxiang Medical University, Henan, China
| | - Na Yu
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Weilong Wang
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Ontario Cancer Institute, Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto, Canada
| | - Sifan Yu
- Research Center for Immunology, Xinxiang Medical University, Henan, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Department of Renal cancer and Melanoma, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Xiumin Li
- Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China; Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
108
|
Bierzynska A, McCarthy HJ, Soderquest K, Sen ES, Colby E, Ding WY, Nabhan MM, Kerecuk L, Hegde S, Hughes D, Marks S, Feather S, Jones C, Webb NJA, Ognjanovic M, Christian M, Gilbert RD, Sinha MD, Lord GM, Simpson M, Koziell AB, Welsh GI, Saleem MA. Genomic and clinical profiling of a national nephrotic syndrome cohort advocates a precision medicine approach to disease management. Kidney Int 2017; 91:937-947. [PMID: 28117080 DOI: 10.1016/j.kint.2016.10.013] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/08/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Steroid Resistant Nephrotic Syndrome (SRNS) in children and young adults has differing etiologies with monogenic disease accounting for 2.9-30% in selected series. Using whole exome sequencing we sought to stratify a national population of children with SRNS into monogenic and non-monogenic forms, and further define those groups by detailed phenotypic analysis. Pediatric patients with SRNS were identified via a national United Kingdom Renal Registry. Whole exome sequencing was performed on 187 patients, of which 12% have a positive family history with a focus on the 53 genes currently known to be associated with nephrotic syndrome. Genetic findings were correlated with individual case disease characteristics. Disease causing variants were detected in 26.2% of patients. Most often this occurred in the three most common SRNS-associated genes: NPHS1, NPHS2, and WT1 but also in 14 other genes. The genotype did not always correlate with expected phenotype since mutations in OCRL, COL4A3, and DGKE associated with specific syndromes were detected in patients with isolated renal disease. Analysis by primary/presumed compared with secondary steroid resistance found 30.8% monogenic disease in primary compared with none in secondary SRNS permitting further mechanistic stratification. Genetic SRNS progressed faster to end stage renal failure, with no documented disease recurrence post-transplantation within this cohort. Primary steroid resistance in which no gene mutation was identified had a 47.8% risk of recurrence. In this unbiased pediatric population, whole exome sequencing allowed screening of all current candidate genes. Thus, deep phenotyping combined with whole exome sequencing is an effective tool for early identification of SRNS etiology, yielding an evidence-based algorithm for clinical management.
Collapse
Affiliation(s)
- Agnieszka Bierzynska
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, UK
| | - Hugh J McCarthy
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, UK
| | - Katrina Soderquest
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ethan S Sen
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, UK
| | - Elizabeth Colby
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, UK
| | - Wen Y Ding
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, UK
| | - Marwa M Nabhan
- Egyptian group for orphan renal diseases (EGORD), Department of paediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | - Nicholas J A Webb
- Department of Paediatric Nephrology and NIHR/Wellcome Trust Clinical Research Facility, University of Manchester, Manchester Academic Health Science Centre, Royal Manchester Children's Hospital, Manchester, UK
| | - Milos Ognjanovic
- Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | | | - Rodney D Gilbert
- Southampton Children's Hospital and University of Southampton School of Medicine, Southampton, UK
| | | | - Graham M Lord
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Michael Simpson
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ania B Koziell
- Division of Transplantation Immunology and Mucosal Biology, Department of Experimental Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Gavin I Welsh
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, UK
| | - Moin A Saleem
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, UK.
| |
Collapse
|
109
|
Podocyte number and density changes during early human life. Pediatr Nephrol 2017; 32:823-834. [PMID: 28028615 PMCID: PMC5368211 DOI: 10.1007/s00467-016-3564-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Podocyte depletion, which drives progressive glomerulosclerosis in glomerular diseases, is caused by a reduction in podocyte number, size or function in the context of increasing glomerular volume. METHODS Kidneys obtained at autopsy from premature and mature infants who died in the first year of life (n = 24) were used to measure podometric parameters for comparison with previously reported data from older kidneys. RESULTS Glomerular volume increased 4.6-fold from 0.13 ± 0.07 μm3 x106 in the pre-capillary loop stage, through 0.35 μm3 x106 at the capillary loop, to 0.60 μm3 x106 at the mature glomerular stage. Podocyte number per glomerulus increased from 326 ± 154 per glomerulus at the pre-capillary loop stage to 584 ± 131 per glomerulus at the capillary loop stage of glomerular development to reach a value of 589 ± 166 per glomerulus in mature glomeruli. Thus, the major podocyte number increase occurs in the early stages of glomerular development, in contradistinction to glomerular volume increase, which continues after birth in association with body growth. CONCLUSIONS As glomeruli continue to enlarge, podocyte density (number per volume) rapidly decreases, requiring a parallel rapid increase in podocyte size that allows podocyte foot processes to maintain complete coverage of the filtration surface area. Hypertrophic stresses on the glomerulus and podocyte during development and early rapid growth periods of life are therefore likely to play significant roles in determining how and when defects in podocyte structure and function due to genetic variants become clinically manifest. Therapeutic strategies aimed at minimizing mismatch between these factors may prove clinically useful.
Collapse
|
110
|
Greka A. An Introduction to the Glom-NExT Inaugural Symposium: Toward Precision Medicine in Nephrology. Semin Nephrol 2016; 36:448-452. [PMID: 27987542 DOI: 10.1016/j.semnephrol.2016.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anna Greka
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| |
Collapse
|
111
|
Abstract
PURPOSE OF REVIEW In this review, we take a combined membrane biologist's and geneticist's view of the podocyte, to examine how genetics have informed our understanding of membrane receptors, channels, and other signaling molecules affecting podocyte health and disease. RECENT FINDINGS An integral part of the kidney, the glomerulus, is responsible for the kidney's filter function. Within the glomerulus, the podocyte is a unique cell serving a critically important role: it is exposed to signals from the urinary space in Bowman's capsule, it receives and transmits signals to/from the basement membrane upon which it elaborates, and it receives signals from the vascular space with which it also communicates, thus exposed to toxins, viruses, chemicals, proteins, and cellular components or debris that flow in the blood stream. Our understanding of how podocytes perform their important role has been largely informed by human genetics, and the recent revolution afforded by exome sequencing has brought a tremendous wealth of new genetic data to light. SUMMARY Genetically defined, rare/orphan podocytopathies, as reviewed here, are critically important to study as they may reveal the next generation targets for precision medicine in nephrology.
Collapse
|
112
|
Lim BJ, Yang JW, Do WS, Fogo AB. Pathogenesis of Focal Segmental Glomerulosclerosis. J Pathol Transl Med 2016; 50:405-410. [PMID: 27744657 PMCID: PMC5122732 DOI: 10.4132/jptm.2016.09.21] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is characterized by focal and segmental obliteration of glomerular capillary tufts with increased matrix. FSGS is classified as collapsing, tip, cellular, perihilar and not otherwise specified variants according to the location and character of the sclerotic lesion. Primary or idiopathic FSGS is considered to be related to podocyte injury, and the pathogenesis of podocyte injury has been actively investigated. Several circulating factors affecting podocyte permeability barrier have been proposed, but not proven to cause FSGS. FSGS may also be caused by genetic alterations. These genes are mainly those regulating slit diaphragm structure, actin cytoskeleton of podocytes, and foot process structure. The mode of inheritance and age of onset are different according to the gene involved. Recently, the role of parietal epithelial cells (PECs) has been highlighted. Podocytes and PECs have common mesenchymal progenitors, therefore, PECs could be a source of podocyte repopulation after podocyte injury. Activated PECs migrate along adhesion to the glomerular tuft and may also contribute to the progression of sclerosis. Markers of activated PECs, including CD44, could be used to distinguish FSGS from minimal change disease. The pathogenesis of FSGS is very complex; however, understanding basic mechanisms of podocyte injury is important not only for basic research, but also for daily diagnostic pathology practice.
Collapse
Affiliation(s)
- Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Woo Sung Do
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
113
|
Nuclear translocation of IQGAP1 protein upon exposure to puromycin aminonucleoside in cultured human podocytes: ERK pathway involvement. Cell Signal 2016; 28:1470-8. [DOI: 10.1016/j.cellsig.2016.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/18/2022]
|
114
|
Sethi SK, Wadhwani N, Jha P, Duggal R, Vega-Warner V, Raina R, Bansal SB, Kher V, Sampson MG, Otto EA. A Familial Infantile Renal Failure. Kidney Int Rep 2016; 2:130-133. [PMID: 29142950 PMCID: PMC5678632 DOI: 10.1016/j.ekir.2016.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Sidharth K. Sethi
- Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
- Correspondence: Sidharth K. Sethi, Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana 122001, India.Kidney InstituteMedanta, The MedicityGurgaonHaryana 122001India
| | - Nikita Wadhwani
- Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Pranaw Jha
- Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Rajan Duggal
- Department of Pathology, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Virginia Vega-Warner
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
- Division of Pediatric Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Rupesh Raina
- Pediatric Nephrology, Akron Children's Hospital, Akron, Ohio, USA
| | - Shyam B. Bansal
- Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Vijay Kher
- Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Matthew G. Sampson
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
- Division of Pediatric Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Edgar A. Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
115
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
116
|
New insight into the pathogenesis of minimal change nephrotic syndrome: Role of the persistence of respiratory tract virus in immune disorders. Autoimmun Rev 2016; 15:632-7. [DOI: 10.1016/j.autrev.2016.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
117
|
Sampson MG, Gillies CE, Robertson CC, Crawford B, Vega-Warner V, Otto EA, Kretzler M, Kang HM. Using Population Genetics to Interrogate the Monogenic Nephrotic Syndrome Diagnosis in a Case Cohort. J Am Soc Nephrol 2016; 27:1970-83. [PMID: 26534921 PMCID: PMC4926977 DOI: 10.1681/asn.2015050504] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/06/2015] [Indexed: 01/02/2023] Open
Abstract
To maximize clinical benefits of genetic screening of patients with nephrotic syndrome (NS) to diagnose monogenic causes, reliably distinguishing NS-causing variants from the background of rare, noncausal variants prevalent in all genomes is vital. To determine the prevalence of monogenic NS in a North American case cohort while accounting for background prevalence of genetic variation, we sequenced 21 implicated monogenic NS genes in 312 participants from the Nephrotic Syndrome Study Network and 61 putative controls from the 1000 Genomes Project (1000G). These analyses were extended to available sequence data from approximately 2500 subjects from the 1000G. A typical pathogenicity filter identified causal variants for NS in 4.2% of patients and 5.8% of subjects from the 1000G. We devised a more stringent pathogenicity filtering strategy, reducing background prevalence of causal variants to 1.5%. When applying this stringent filter to patients, prevalence of monogenic NS was 2.9%; of these patients, 67% were pediatric, and 44% had FSGS on biopsy. The rate of complete remission did not associate with monogenic classification. Thus, we identified factors contributing to inaccurate monogenic classification of NS and developed a more accurate variant filtering strategy. The prevalence and clinical correlates of monogenic NS in this sporadically affected cohort differ substantially from those reported for patients referred for genetic analysis. Particularly in unselected, population-based cases, considering putative causal variants in known NS genes from a probabilistic rather than a deterministic perspective may be more precise. We also introduce GeneVetter, a web tool for monogenic assessment of rare disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Edgar A Otto
- Departments of Pediatrics and Communicable Diseases, and
| | - Matthias Kretzler
- Internal Medicine, Division of Nephrology and Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| |
Collapse
|
118
|
|
119
|
Sampson MG, Pollak MR. Opportunities and Challenges of Genotyping Patients With Nephrotic Syndrome in the Genomic Era. Semin Nephrol 2016. [PMID: 26215859 DOI: 10.1016/j.semnephrol.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both targeted and genome-wide linkage and association studies have identified a number of genes and genetic variants associated with nephrotic syndrome (NS). Genotype-phenotype studies of patients with these variants have identified correlations of clear clinical significance. Combined with improved genomic technologies, this has resulted in increasing, and justifiable, enthusiasm for incorporating our patients' genomic information into our clinical management decisions. Here, we summarize our understanding of NS-associated genetic factors, namely rare causal mutations or common risk alleles in apolipoprotein L1. We discuss the complexities inherent in trying to ascribe risk or causality to these variants, particularly as we seek to extend genetic testing to a broader group of patients, including many with sporadic disease. Overall, the thoughtful application and interpretation of these genetic tests will maximize the benefits to our patients with NS in the form of more precise clinical care.
Collapse
Affiliation(s)
- Matthew G Sampson
- Department of Pediatrics, Division of Nephrology, University of Michigan School of Medicine, Ann Arbor, MI.
| | - Martin R Pollak
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
120
|
Wang JJ, Mao JH. The etiology of congenital nephrotic syndrome: current status and challenges. World J Pediatr 2016; 12:149-58. [PMID: 26961288 DOI: 10.1007/s12519-016-0009-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/11/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS), defined as heavy proteinuria, hypoalbuminemia, hyperlipidemia and edema presenting in the first 0-3 months of life, may be caused by congenital syphilis, toxoplasmosis, or congenital viral infections (such as cytomegalovirus). However, the majority of CNS cases are caused by monogenic defects of structural proteins that form the glomerular filtration barrier in the kidneys. Since 1998, an increasing number of genetic defects have been identified for their involvements in the pathogenesis of CNS, including NPHS1, NPHS2, WT1, PLCE1, and LAMB2. DATA SOURCES We searched databases such as PubMed, Elsevier and Wanfang with the following key words: congenital nephrotic syndrome, proteinuria, infants, neonate, congenital infection, mechanism and treatment; and we selected those publications written in English that we judged to be relevant to the topic of this review. RESULTS Based on the data present in the literature, we reviewed the following topics: 1) Infection associated CNS including congenital syphilis, congenital toxoplasmosis, and congenital cytomegalovirus infection; 2) genetic CNS including mutation of NPHS1 (Nephrin), NPHS2 (Podocin), WT1, LAMB2 (Laminin-β2), PLCE1 (NPHS3); 3) Other forms of CNS including maternal systemic lupus erythematosus, mercury poisoning, renal vein thrombosis, neonatal alloimmunization against neutral endopeptidase. CONCLUSION At present, the main challenge in CNS is to identify the cause of disease for individual patients. To make a definitive diagnosis, with the exclusion of infection-related CNS and maternal-associated disorders, pathology, family history, inheritance mode, and other accompanying congenital malformations are sometimes, but not always, useful indicators for diagnosing genetic CNS. Next-generation sequencing would be a more effective method for diagnosing genetic CNS in some patients, however, there are still some challenges with next-generation sequencing that need to be resolved in the future.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Hua Mao
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China. .,Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
121
|
|
122
|
Tsvetkov D, Hohmann M, Anistan YM, Mannaa M, Harteneck C, Rudolph B, Gollasch M. A CD2AP Mutation Associated with Focal Segmental Glomerulosclerosis in Young Adulthood. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2016; 9:15-9. [PMID: 26997877 PMCID: PMC4792198 DOI: 10.4137/ccrep.s30867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022]
Abstract
Mutations in CD2-associated protein (CD2AP) have been identified in patients with focal segmental glomerulosclerosis (FSGS); however, reports of CD2AP mutations remain scarce. We performed Sanger sequencing in a patient with steroid-resistant FSGS and identified a heterozygous CD2AP mutation (p.T374A, c.1120 A > G). Our patient displayed mild cognitive decline, a phenotypic characteristic not previously associated with CD2AP-associated FSGS. His proteinuria was remarkably reduced by treatment with cyclosporine A. Our findings expand the genetic spectrum of CD2AP-associated disorders and broaden the associated phenotype with the co-occurrence of cognitive decline. Our case shows that cyclosporin A is a treatment option for CD2AP-associated nephropathy.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Nephrology/Intensive Care, Experimental and Clinical Research Center (ECRC), Charité University Medicine Berlin, Berlin, Germany.; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Yoland Marie Anistan
- Nephrology/Intensive Care, Experimental and Clinical Research Center (ECRC), Charité University Medicine Berlin, Berlin, Germany.; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Marwan Mannaa
- Nephrology/Intensive Care, Charité Campus Virchow-Klinikum, Charité University Medicine Berlin, Berlin, Germany
| | - Christian Harteneck
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, University of Tübingen, Tübingen, Germany.; Interfaculty Center of Pharmacogenomics and Drug Research, Tübingen, Germany
| | - Birgit Rudolph
- Institute of Pathology, Charité University Medicine Berlin, Berlin, Germany
| | - Maik Gollasch
- Nephrology/Intensive Care, Experimental and Clinical Research Center (ECRC), Charité University Medicine Berlin, Berlin, Germany.; Max Delbrück Center for Molecular Medicine, Berlin, Germany.; Nephrology/Intensive Care, Charité Campus Virchow-Klinikum, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
123
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
124
|
Lo Vasco VR, Leopizzi M, Di Maio V, Della Rocca C. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving Phosphoinositide-specific Phospholipases C. SPRINGERPLUS 2016; 5:156. [PMID: 27026853 PMCID: PMC4766154 DOI: 10.1186/s40064-016-1768-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022]
Abstract
The definition of the number and nature of the signal transduction pathways involved in the pathogenesis and the identification of the molecules promoting metastasis spread might improve the knowledge of the natural history of osteosarcoma, also allowing refine the prognosis and opening the way to novel therapeutic strategies. Phosphatydil inositol (4,5) bisphosphate (PIP2), belonging to the Phosphoinositide (PI) signal transduction pathway, was related to the regulation of ezrin, an ezrin-radixin-moesin protein involved in metastatic osteosarcoma spread. The levels of PIP2 are regulated by means of the PI-specific Phospholipase C (PLC) enzymes. Recent literature data suggested that in osteosarcoma the panel of expression of PLC isoforms varies in a complex and unclear manner and is related to ezrin, probably networking with Ras GTPases, such as RhoA and Rac1. We analyzed the expression and the subcellular localization of PLC enzymes in cultured human osteosarcoma MG-63 cells, commonly used as an experimental model for human osteoblasts, using U-73122 PLC inhibitor, U-73343 inactive analogue, and by silencing ezrin. The treatment with U-73122 significantly reduces the number of MG-63 viable cells and contemporarily modifies the expression and the subcellular localization of selected PLC isoforms. U-73122 reduces the cell growth in cultured MG-63 ostesarcoma cell line involving PI-specific Phospholipases C.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- />Sensory Organs Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University of Rome, viale dell’Università, 33, 00157 Rome, Italy
| | - Martina Leopizzi
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Valeria Di Maio
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| | - Carlo Della Rocca
- />Medico-Surgical Sciences and Biotechnology Department, Polo Pontino- Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
125
|
Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, Lovric S, Ashraf S, Braun DA, Halbritter J, Fang H, Airik R, Vega-Warner V, Cho KJ, Chan TA, Morris LGT, ffrench-Constant C, Allen N, McNeill H, Büscher R, Kyrieleis H, Wallot M, Gaspert A, Kistler T, Milford DV, Saleem MA, Keng WT, Alexander SI, Valentini RP, Licht C, Teh JC, Bogdanovic R, Koziell A, Bierzynska A, Soliman NA, Otto EA, Lifton RP, Holzman LB, Sibinga NES, Walz G, Tufro A, Hildebrandt F. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 2016; 7:10822. [PMID: 26905694 PMCID: PMC4770090 DOI: 10.1038/ncomms10822] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 01/25/2016] [Indexed: 01/12/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
Collapse
Affiliation(s)
- Heon Yung Gee
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Carolin E Sadowski
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pardeep K Aggarwal
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Jonathan D Porath
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Toma A Yakulov
- University Freiburg Medical Center, Freiburg 79106, Germany
| | - Markus Schueler
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Svjetlana Lovric
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shazia Ashraf
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniela A Braun
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jan Halbritter
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Humphrey Fang
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rannar Airik
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Virginia Vega-Warner
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kyeong Jee Cho
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Luc G T Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nicholas Allen
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Helen McNeill
- Department of Molecular Genetics, Samuel Lunenfeld-Tanenbaum Research Institute, University of Toronto, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Rainer Büscher
- Department of Pediatrics II, University Hospital of Essen, Essen 45147, Germany
| | | | - Michael Wallot
- Department of Pediatrics, Bethanien Hospital, Moers 47441, Germany
| | - Ariana Gaspert
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Thomas Kistler
- Division of Nephrology, Kantonsspital Winterthur, Winterthur 8401, Switzerland
| | - David V Milford
- Department of Paediatric Nephrology, Birmingham Children's Hospital, Birmingham B4 6NH, UK
| | - Moin A Saleem
- Children's and Academic Renal Unit, University of Bristol, Bristol BS1 5NB, UK
| | - Wee Teik Keng
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead 2145, Australia
| | - Rudolph P Valentini
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital of Michigan/Wayne State University, Detroit, Michigan 48201, USA
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Jun C Teh
- Division of Nephrology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Radovan Bogdanovic
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade 11000, Serbia
| | - Ania Koziell
- Department of Experimental Immunobiology, Division of Transplantation Immunology &Mucosal Biology, King's College London, Faculty of Life Sciences &Medicine, 5th floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology &Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo 11562, Egypt.,Egyptian Group for Orphan Renal Diseases, Cairo 11562, Egypt
| | - Edgar A Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas E S Sibinga
- Wilf Family Cardiovascular Research Institute and Department of Medicine/Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Gerd Walz
- University Freiburg Medical Center, Freiburg 79106, Germany
| | - Alda Tufro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
126
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
127
|
Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol 2016; 12:133-46. [PMID: 26750453 DOI: 10.1038/nrneph.2015.205] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The primary causes of chronic kidney disease (CKD) in children differ from those of CKD in adults. In the USA the most common diagnostic groups of renal disease that manifest before the age of 25 years are congenital anomalies of the kidneys and urinary tract, steroid-resistant nephrotic syndrome, chronic glomerulonephritis and renal cystic ciliopathies, which together encompass >70% of early-onset CKD diagnoses. Findings from the past decade suggest that early-onset CKD is caused by mutations in any one of over 200 different monogenic genes. Developments in high-throughput sequencing in the past few years has rendered identification of causative mutations in this high number of genes feasible. Use of genetic analyses in patients with early onset-CKD will provide patients and their families with a molecular genetic diagnosis, generate new insights into disease mechanisms, facilitate aetiology-based classifications of patient cohorts for clinical studies, and might have consequences for personalized approaches to the prevention and treatment of CKD. In this Review, we discuss the implications of next-generation sequencing in clinical genetic diagnostics and the discovery of novel genes in early-onset CKD. We also delineate the resulting opportunities for deciphering disease mechanisms and the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Asaf Vivante
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
128
|
Auguste D, Maier M, Baldwin C, Aoudjit L, Robins R, Gupta IR, Takano T. Disease-causing mutations of RhoGDIα induce Rac1 hyperactivation in podocytes. Small GTPases 2016; 7:107-21. [PMID: 26726844 DOI: 10.1080/21541248.2015.1113353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nephrotic syndrome (NS) describes a group of kidney disorders in which there is injury to podocyte cells, specialized cells within the kidney's glomerular filtration barrier, allowing proteins to leak into the urine. Three mutations in ARHGDIA, which encodes Rho GDP dissociation inhibitor α (GDIα), have been reported in patients with heritable NS and encode the following amino acid changes: ΔD185, R120X, and G173V. To investigate the impact of these mutations on podocyte function, endogenous GDIα was knocked-down in cultured podocytes by shRNA and then the cells were re-transfected with wild-type or mutant GDIα constructs. Among the 3 prototypical Rho-GTPases, Rac1 was markedly hyperactivated in podocytes with any of the 3 mutant forms of GDIα while the activation of RhoA and Cdc42 was modest and variable. All three mutant GDIα proteins resulted in slow podocyte motility, suggesting that podocytes are sensitive to the relative balance of Rho-GTPase activity. In ΔD185 podocytes, both random and directional movements were impaired and kymograph analysis of the leading edge showed increased protrusion and retraction of leading edge (phase switching). The mutant podocytes also showed impaired actin polymerization, smaller cell size, and increased cellular projections. In the developing kidney, GDIα expression increased as podocytes matured. Conversely, active Rac1 was detected only in immature, but not in mature, podocytes. The results indicate that GDIα has a critical role in suppressing Rac1 activity in mature podocytes, to prevent podocyte injury and nephrotic syndrome.
Collapse
Affiliation(s)
- David Auguste
- a Division of Nephrology, McGill University Health Centre , Montreal , Quebec , Canada
| | - Mirela Maier
- a Division of Nephrology, McGill University Health Centre , Montreal , Quebec , Canada
| | - Cindy Baldwin
- a Division of Nephrology, McGill University Health Centre , Montreal , Quebec , Canada
| | - Lamine Aoudjit
- a Division of Nephrology, McGill University Health Centre , Montreal , Quebec , Canada
| | - Richard Robins
- a Division of Nephrology, McGill University Health Centre , Montreal , Quebec , Canada
| | - Indra R Gupta
- a Division of Nephrology, McGill University Health Centre , Montreal , Quebec , Canada
| | - Tomoko Takano
- a Division of Nephrology, McGill University Health Centre , Montreal , Quebec , Canada
| |
Collapse
|
129
|
Weber S, Büscher AK, Hagmann H, Liebau MC, Heberle C, Ludwig M, Rath S, Alberer M, Beissert A, Zenker M, Hoyer PF, Konrad M, Klein HG, Hoefele J. Dealing with the incidental finding of secondary variants by the example of SRNS patients undergoing targeted next-generation sequencing. Pediatr Nephrol 2016; 31:73-81. [PMID: 26248470 DOI: 10.1007/s00467-015-3167-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Steroid-resistant nephrotic syndrome (SRNS) is a severe cause of progressive renal disease. Genetic forms of SRNS can present with autosomal recessive or autosomal dominant inheritance. Recent studies have identified mutations in multiple podocyte genes responsible for SRNS. Improved sequencing methods (next-generation sequencing, NGS) now promise rapid mutational testing of SRNS genes. METHODS In the present study, a simultaneous screening of ten SRNS genes in 37 SRNS patients was performed by NGS. RESULTS In 38 % of the patients, causative mutations in one SRNS gene were found. In 22 % of the patients, in addition to these mutations, a secondary variant in a different gene was identified. CONCLUSIONS This high incidence of accumulating sequence variants was unexpected but, although they might have modifier effects, the pathogenic potential of these additional sequence variants seems unclear so far. The example of molecular diagnostics by NGS in SRNS patients shows that these new sequencing technologies might provide further insight into molecular pathogenicity in genetic disorders but will also generate results, which will be difficult to interpret and complicate genetic counseling. Although NGS promises more frequent identification of disease-causing mutations, the identification of causative mutations, the interpretation of incidental findings and possible pitfalls might pose problems, which hopefully will decrease by further experience and elucidation of molecular interactions.
Collapse
Affiliation(s)
- Stefanie Weber
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Anja K Büscher
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Henning Hagmann
- Renal Division, Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Renal Division, Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Department of Pediatrics, University Hospital of Cologne, Cologne, Germany
| | - Christian Heberle
- Center for Human Genetics and Laboratory Diagnostics Dr. Klein, Dr. Rost and Colleagues, Martinsried, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Sabine Rath
- Center for Human Genetics and Laboratory Diagnostics Dr. Klein, Dr. Rost and Colleagues, Martinsried, Germany
| | - Martin Alberer
- Department of Infectious Diseases and Tropical Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Antje Beissert
- Pediatric Nephrology, University Children's Hospital, Würzburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Magdeburg, Germany
| | - Peter F Hoyer
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | | | - Hanns-Georg Klein
- Center for Human Genetics and Laboratory Diagnostics Dr. Klein, Dr. Rost and Colleagues, Martinsried, Germany
| | - Julia Hoefele
- Center for Human Genetics and Laboratory Diagnostics Dr. Klein, Dr. Rost and Colleagues, Martinsried, Germany.
| |
Collapse
|
130
|
Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol 2015; 27:1778-91. [PMID: 26586691 DOI: 10.1681/asn.2015010096] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023] Open
Abstract
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases.
Collapse
Affiliation(s)
- Sazia Sharmin
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Yusuke Kaku
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoko Ohmori
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Hidetake Kurihara
- Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and Japan Science and Technology Agency, CREST, Kumamoto, Japan
| |
Collapse
|
131
|
Lovric S, Ashraf S, Tan W, Hildebrandt F. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 2015; 31:1802-1813. [PMID: 26507970 DOI: 10.1093/ndt/gfv355] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/08/2015] [Indexed: 01/15/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) represents the second most frequent cause of chronic kidney disease in the first three decades of life. It manifests histologically as focal segmental glomerulosclerosis (FSGS) and carries a 33% risk of relapse in a renal transplant. No efficient treatment exists. Identification of single-gene (monogenic) causes of SRNS has moved the glomerular epithelial cell (podocyte) to the center of its pathogenesis. Recently, mutations in >30 recessive or dominant genes were identified as causing monogenic forms of SRNS, thereby revealing the encoded proteins as essential for glomerular function. These findings helped define protein interaction complexes and functional pathways that could be targeted for treatment of SRNS. Very recently, it was discovered that in the surprisingly high fraction of ∼30% of all individuals who manifest with SRNS before 25 years of age, a causative mutation can be detected in one of the ∼30 different SRNS-causing genes. These findings revealed that SRNS and FSGS are not single disease entities but rather are part of a spectrum of distinct diseases with an identifiable genetic etiology. Mutation analysis should be offered to all individuals who manifest with SRNS before the age of 25 years, because (i) it will provide the patient and families with an unequivocal cause-based diagnosis, (ii) it may uncover a form of SRNS that is amenable to treatment (e.g. coenzyme Q10), (iii) it may allow avoidance of a renal biopsy procedure, (iv) it will further unravel the puzzle of pathogenic pathways of SRNS and (v) it will permit personalized treatment options for SRNS, based on genetic causation in way of 'precision medicine'.
Collapse
Affiliation(s)
- Svjetlana Lovric
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weizhen Tan
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
132
|
Phua YL, Chu JYS, Marrone AK, Bodnar AJ, Sims-Lucas S, Ho J. Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival. Physiol Rep 2015; 3:3/10/e12537. [PMID: 26438731 PMCID: PMC4632944 DOI: 10.14814/phy2.12537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small noncoding RNAs that post-transcriptionally regulate mRNA levels. While previous studies have demonstrated that miRNAs are indispensable in the nephron progenitor and ureteric bud lineage, little is understood about stromal miRNAs during kidney development. The renal stroma (marked by expression of FoxD1) gives rise to the renal interstitium, a subset of peritubular capillaries, and multiple supportive vascular cell types including pericytes and the glomerular mesangium. In this study, we generated FoxD1GC;Dicerfl/fl transgenic mice that lack miRNA biogenesis in the FoxD1 lineage. Loss of Dicer activity resulted in multifaceted renal anomalies including perturbed nephrogenesis, expansion of nephron progenitors, decreased renin-expressing cells, fewer smooth muscle afferent arterioles, and progressive mesangial cell loss in mature glomeruli. Although the initial lineage specification of FoxD1+ stroma was not perturbed, both the glomerular mesangium and renal interstitium exhibited ectopic apoptosis, which was associated with increased expression of Bcl2l11 (Bim) and p53 effector genes (Bax, Trp53inp1, Jun, Cdkn1a, Mmp2, and Arid3a). Using a combination of high-throughput miRNA profiling of the FoxD1+-derived cells and mRNA profiling of differentially expressed transcripts in FoxD1GC;Dicerfl/fl kidneys, at least 72 miRNA:mRNA target interactions were identified to be suppressive of the apoptotic program. Together, the results support an indispensable role for stromal miRNAs in the regulation of apoptosis during kidney development.
Collapse
Affiliation(s)
- Yu Leng Phua
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica Y S Chu
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - April K Marrone
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
133
|
Sampson MG. Actualizing the Benefits of Genomic Discovery in Pediatric Nephrology. J Pediatr Genet 2015; 5:69-75. [PMID: 27617144 DOI: 10.1055/s-0035-1557113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/19/2015] [Indexed: 01/13/2023]
Abstract
The discovery of genetic variation associated with pediatric kidney disease has shed light on the biology underlying these conditions and, in some cases, has improved our clinical management of patients. We are challenged to continue the momentum of the genomic era in pediatric nephrology by identifying novel disease-associated genetic variation and translating these discoveries into clinical applications. This article reviews the diverse forms of genetic architecture that have been found to be associated with kidney diseases and traits. These include rare, fully penetrant variants responsible for Mendelian forms of disease, copy number variants, and more common variants associated with increased risk of disease. These discoveries have provided us with a greater understanding of the molecular mechanisms underlying these conditions and highlighted key pathways for potential intervention. In a number of areas, the identification of rare, fully penetrant variants is immediately clinically relevant, whether in regard to diagnostic testing, prediction of outcomes, or choice of therapies and interventions. This article discusses limitations in the deterministic view of rare, putatively causal mutations, a challenge increasing in importance as sequencing expands to many more genes and patients. This article also focusses on common genetic variants, using those found to be associated with focal segmental glomerulosclerosis in African-Americans, IgA nephropathy, chronic kidney disease (CKD), and estimated glomerular filtration rate (eGFR) as examples. Identifying common genetic variants associated with disease will complement other areas of genomic inquiry, lead to a greater biological understanding of disease, and will benefit pediatric nephrology patients.
Collapse
Affiliation(s)
- Matthew G Sampson
- Division of Pediatric Nephrology, Department of Pediatrics and Communicable Diseases, University of Michigan School of Medicine, Ann Arbor, Michigan, United States
| |
Collapse
|
134
|
Rheault MN, Gbadegesin RA. The Genetics of Nephrotic Syndrome. J Pediatr Genet 2015; 5:15-24. [PMID: 27617138 DOI: 10.1055/s-0035-1557109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
Abstract
Nephrotic syndrome (NS) is a common pediatric kidney disease and is defined as massive proteinuria, hypoalbuminemia, and edema. Dysfunction of the glomerular filtration barrier, which is made up of endothelial cells, glomerular basement membrane, and visceral epithelial cells known as podocytes, is evident in children with NS. While most children have steroid-responsive nephrotic syndrome (SSNS), approximately 20% have steroid-resistant nephrotic syndrome (SRNS) and are at risk for progressive kidney dysfunction. While the cause of SSNS is still not well understood, there has been an explosion of research into the genetic causes of SRNS in the past 15 years. More than 30 proteins regulating the function of the glomerular filtration barrier have been associated with SRNS including podocyte slit diaphragm proteins, podocyte actin cytoskeletal proteins, mitochondrial proteins, adhesion and glomerular basement membrane proteins, transcription factors, and others. A genetic cause of SRNS can be found in approximately 70% of infants presenting in the first 3 months of life and 50% of infants presenting between 4 and 12 months, with much lower likelihood for older patients. Identification of the underlying genetic etiology of SRNS is important in children because it allows for counseling of other family members who may be at risk, predicts risk of recurrent disease after kidney transplant, and predicts response to immunosuppressive therapy. Correlations between genetic mutation and clinical phenotype as well as genetic risk factors for SSNS and SRNS are reviewed in this article.
Collapse
Affiliation(s)
- Michelle N Rheault
- Division of Nephrology, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, United States
| | - Rasheed A Gbadegesin
- Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
135
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
136
|
Sugano Y, Lindenmeyer MT, Auberger I, Ziegler U, Segerer S, Cohen CD, Neuhauss SCF, Loffing J. The Rho-GTPase binding protein IQGAP2 is required for the glomerular filtration barrier. Kidney Int 2015; 88:1047-56. [PMID: 26154927 DOI: 10.1038/ki.2015.197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023]
Abstract
Podocyte dysfunction impairs the size selectivity of the glomerular filter, leading to proteinuria, hypoalbuminuria, and edema, clinically defined as nephrotic syndrome. Hereditary forms of nephrotic syndrome are linked to mutations in podocyte-specific genes. To identify genes contributing to podocyte dysfunction in acquired nephrotic syndrome, we studied human glomerular gene expression data sets for glomerular-enriched gene transcripts differentially regulated between pretransplant biopsy samples and biopsies from patients with nephrotic syndrome. Candidate genes were screened by in situ hybridization for expression in the zebrafish pronephros, an easy-to-use in vivo assay system to assess podocyte function. One glomerulus-enriched product was the Rho-GTPase binding protein, IQGAP2. Immunohistochemistry found a strong presence of IQGAP2 in normal human and zebrafish podocytes. In zebrafish larvae, morpholino-based knockdown of iqgap2 caused a mild foot process effacement of zebrafish podocytes and a cystic dilation of the urinary space of Bowman's capsule upon onset of urinary filtration. Moreover, the glomerulus of zebrafish morphants showed a glomerular permeability for injected high-molecular-weight dextrans, indicating an impaired size selectivity of the glomerular filter. Thus, IQGAP2 is a Rho-GTPase binding protein, highly abundant in human and zebrafish podocytes, which controls normal podocyte structure and function as evidenced in the zebrafish pronephros.
Collapse
Affiliation(s)
- Yuya Sugano
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Ines Auberger
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Stephan Segerer
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Division of Nephrology, University Hospital, Zurich, Switzerland
| | - Clemens D Cohen
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Zurich, Switzerland.,Division of Nephrology, Klinikum Harlaching, Munich, Germany
| | - Stephan C F Neuhauss
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Johannes Loffing
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Institute of Anatomy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
137
|
Sadowski CE, Lovric S, Ashraf S, Pabst WL, Gee HY, Kohl S, Engelmann S, Vega-Warner V, Fang H, Halbritter J, Somers MJ, Tan W, Shril S, Fessi I, Lifton RP, Bockenhauer D, El-Desoky S, Kari JA, Zenker M, Kemper MJ, Mueller D, Fathy HM, Soliman NA, Hildebrandt F. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J Am Soc Nephrol 2015; 26:1279-89. [PMID: 25349199 PMCID: PMC4446877 DOI: 10.1681/asn.2014050489] [Citation(s) in RCA: 437] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/10/2014] [Indexed: 01/15/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of ESRD in the first two decades of life. Effective treatment is lacking. First insights into disease mechanisms came from identification of single-gene causes of SRNS. However, the frequency of single-gene causation and its age distribution in large cohorts are unknown. We performed exon sequencing of NPHS2 and WT1 for 1783 unrelated, international families with SRNS. We then examined all patients by microfluidic multiplex PCR and next-generation sequencing for all 27 genes known to cause SRNS if mutated. We detected a single-gene cause in 29.5% (526 of 1783) of families with SRNS that manifested before 25 years of age. The fraction of families in whom a single-gene cause was identified inversely correlated with age of onset. Within clinically relevant age groups, the fraction of families with detection of the single-gene cause was as follows: onset in the first 3 months of life (69.4%), between 4 and 12 months old (49.7%), between 1 and 6 years old (25.3%), between 7 and 12 years old (17.8%), and between 13 and 18 years old (10.8%). For PLCE1, specific mutations correlated with age of onset. Notably, 1% of individuals carried mutations in genes that function within the coenzyme Q10 biosynthesis pathway, suggesting that SRNS may be treatable in these individuals. Our study results should facilitate molecular genetic diagnostics of SRNS, etiologic classification for therapeutic studies, generation of genotype-phenotype correlations, and the identification of individuals in whom a targeted treatment for SRNS may be available.
Collapse
Affiliation(s)
- Carolin E Sadowski
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Svjetlana Lovric
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Werner L Pabst
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan Kohl
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susanne Engelmann
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Virginia Vega-Warner
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Humphrey Fang
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jan Halbritter
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael J Somers
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Weizhen Tan
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shirlee Shril
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inès Fessi
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard P Lifton
- Department of Genetics and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Detlef Bockenhauer
- Institute of Child Health, University College London, London, United Kingdom
| | - Sherif El-Desoky
- Pediatric Nephrology Unit, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Jameela A Kari
- Pediatric Nephrology Unit, King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia
| | - Martin Zenker
- Department of Human Genetics, Otto von Guericke University, Magdeburg, Germany
| | - Markus J Kemper
- Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Mueller
- Department of Pediatric Nephrology, Medical Faculty of the Charité, Berlin, Germany
| | - Hanan M Fathy
- The Pediatric Nephrology Unit, Alexandria University, Alexandria, Egypt
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt; Egyptian Group for Orphan Renal Diseases, Cairo, Egypt; and
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
138
|
Kalwa H, Storch U, Demleitner J, Fiedler S, Mayer T, Kannler M, Fahlbusch M, Barth H, Smrcka A, Hildebrandt F, Gudermann T, Dietrich A. Phospholipase C epsilon (PLCε) induced TRPC6 activation: a common but redundant mechanism in primary podocytes. J Cell Physiol 2015; 230:1389-99. [PMID: 25521631 DOI: 10.1002/jcp.24883] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/03/2014] [Indexed: 12/22/2022]
Abstract
In eukaryotic cells, activation of phospholipase C (PLC)-coupled membrane receptors by hormones leads to an increase in the intracellular Ca(2+) concentration [Ca(2+) ]i . Catalytic activity of PLCs results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) which opens DAG-sensitive classical transient receptor channels 3, 6, and 7 (TRPC3/6/7), initiating Ca(2+) influx from the extracellular space. Patients with focal segmental glomerulosclerosis (FSGS) express gain-of-function mutants of TRPC6, while others carry loss-of-function mutants of PLCε, raising the intriguing possibility that both proteins interact and might work in the same signalling pathway. While TRPC6 activation by PLCβ and PLCγ isozymes was extensively studied, the role of PLCε in TRPC6 activation remains elusive. TRPC6 was co-immunoprecipitated with PLCε in a heterologous overexpression system in HEK293 cells as well as in freshly isolated murine podocytes. Receptor-operated TRPC6 currents in HEK293 cells expressing TRPC6 were reduced by a specific PLCε siRNA and by a PLCε loss-of-function mutant isolated from a patient with FSGS. PLCε-induced TRPC6 activation was also identified in murine embryonic fibroblasts (MEFs) lacking Gαq/11 proteins. Further analysis of the signal transduction pathway revealed a Gα12/13 Rho-GEF activation which induced Rho-mediated PLCε stimulation. Therefore, we identified a new pathway for TRPC6 activation by PLCε. PLCε-/- podocytes however, were undistinguishable from WT podocytes in their angiotensin II-induced formation of actin stress fibers and their GTPγS-induced TRPC6 activation, pointing to a redundant role of PLCε-mediated TRPC6 activation at least in podocytes.
Collapse
Affiliation(s)
- Hermann Kalwa
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Gee HY, Zhang F, Ashraf S, Kohl S, Sadowski CE, Vega-Warner V, Zhou W, Lovric S, Fang H, Nettleton M, Zhu JY, Hoefele J, Weber LT, Podracka L, Boor A, Fehrenbach H, Innis JW, Washburn J, Levy S, Lifton RP, Otto EA, Han Z, Hildebrandt F. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest 2015; 125:2375-84. [PMID: 25961457 DOI: 10.1172/jci79504] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/16/2015] [Indexed: 01/28/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of progressive renal function decline and affects millions of people. In a recent study, 30% of SRNS cases evaluated were the result of monogenic mutations in 1 of 27 different genes. Here, using homozygosity mapping and whole-exome sequencing, we identified recessive mutations in kidney ankyrin repeat-containing protein 1 (KANK1), KANK2, and KANK4 in individuals with nephrotic syndrome. In an independent functional genetic screen of Drosophila cardiac nephrocytes, which are equivalents of mammalian podocytes, we determined that the Drosophila KANK homolog (dKank) is essential for nephrocyte function. RNAi-mediated knockdown of dKank in nephrocytes disrupted slit diaphragm filtration structures and lacuna channel structures. In rats, KANK1, KANK2, and KANK4 all localized to podocytes in glomeruli, and KANK1 partially colocalized with synaptopodin. Knockdown of kank2 in zebrafish recapitulated a nephrotic syndrome phenotype, resulting in proteinuria and podocyte foot process effacement. In rat glomeruli and cultured human podocytes, KANK2 interacted with ARHGDIA, a known regulator of RHO GTPases in podocytes that is dysfunctional in some types of nephrotic syndrome. Knockdown of KANK2 in cultured podocytes increased active GTP-bound RHOA and decreased migration. Together, these data suggest that KANK family genes play evolutionarily conserved roles in podocyte function, likely through regulating RHO GTPase signaling.
Collapse
|
140
|
Goya J, Wong AK, Yao V, Krishnan A, Homilius M, Troyanskaya OG. FNTM: a server for predicting functional networks of tissues in mouse. Nucleic Acids Res 2015; 43:W182-7. [PMID: 25940632 PMCID: PMC4489275 DOI: 10.1093/nar/gkv443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022] Open
Abstract
Functional Networks of Tissues in Mouse (FNTM) provides biomedical researchers with tissue-specific predictions of functional relationships between proteins in the most widely used model organism for human disease, the laboratory mouse. Users can explore FNTM-predicted functional relationships for their tissues and genes of interest or examine gene function and interaction predictions across multiple tissues, all through an interactive, multi-tissue network browser. FNTM makes predictions based on integration of a variety of functional genomic data, including over 13 000 gene expression experiments, and prior knowledge of gene function. FNTM is an ideal starting point for clinical and translational researchers considering a mouse model for their disease of interest, researchers already working with mouse models who are interested in discovering new genes related to their pathways or phenotypes of interest, and biologists working with other organisms to explore the functional relationships of their genes of interest in specific mouse tissue contexts. FNTM predicts tissue-specific functional relationships in 200 tissues, does not require any registration or installation and is freely available for use at http://fntm.princeton.edu.
Collapse
Affiliation(s)
- Jonathan Goya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aaron K Wong
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA Simons Center for Data Analysis, Simons Foundation, NY 10010, USA Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| | - Victoria Yao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| | - Arjun Krishnan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Max Homilius
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA Simons Center for Data Analysis, Simons Foundation, NY 10010, USA Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
141
|
Lin T, Li J, Wang F, Cao L, Wu J, Tu J, Ji L, Geng H, Chen C, Chen D. A Chinese girl with novel PLCE1 mutations and proliferation of the mesangium responded to tacrolimus therapy. Nephrology (Carlton) 2015; 19:173. [PMID: 24533735 DOI: 10.1111/nep.12178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Tiantian Lin
- Department of Nephrology, Capital Institute of Pediatrics, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Ng KH, Heng CK, Khor CC, Yap HK. Genes in FSGS: Diagnostic and Management Strategies in Children. CURRENT PEDIATRICS REPORTS 2015. [DOI: 10.1007/s40124-014-0064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
143
|
Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 2015; 16:427-46. [PMID: 25722290 DOI: 10.15252/embr.201439834] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 01/02/2023] Open
Abstract
IQGAP scaffold proteins are evolutionarily conserved in eukaryotes and facilitate the formation of complexes that regulate cytoskeletal dynamics, intracellular signaling, and intercellular interactions. Fungal and mammalian IQGAPs are implicated in cytokinesis. IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate physiology, operating in the kidney, nervous system, cardio-vascular system, pancreas, and lung. The functions of IQGAPs can be corrupted during oncogenesis and are usurped by microbial pathogens. Therefore, IQGAPs represent intriguing candidates for novel therapeutic agents. While modulation of the cytoskeletal architecture was initially thought to be the primary function of IQGAPs, it is now clear that they have roles beyond the cytoskeleton. This review describes contributions of IQGAPs to physiology at the organism level.
Collapse
Affiliation(s)
- Andrew C Hedman
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jessica M Smith
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
144
|
Singh L, Singh G, Dinda AK. Understanding podocytopathy and its relevance to clinical nephrology. Indian J Nephrol 2015; 25:1-7. [PMID: 25684864 PMCID: PMC4323905 DOI: 10.4103/0971-4065.134531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Podocytopathies are the most common group of glomerular disorder leading to proteinuria. On the basis of pathophysiology, light microscopic and ultrastructural evaluation, the podocytopathies include minimal change disease, diffuse mesangial sclerosis, focal segmental glomerulosclerosis and collapsing glomerulopathy. The present review summarizes the basic etiopathogenesis of podocytopthies, highlights the common genetic and acquired factors in its causation, puts forth various diagnostic modalities and discusses the role of emerging agents or treatment.
Collapse
Affiliation(s)
- L Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - G Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - A K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
145
|
Genetic causes of proteinuria and nephrotic syndrome: impact on podocyte pathobiology. Pediatr Nephrol 2015; 30:221-33. [PMID: 24584664 PMCID: PMC4262721 DOI: 10.1007/s00467-014-2753-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
In the past 20 years, multiple genetic mutations have been identified in patients with congenital nephrotic syndrome (CNS) and both familial and sporadic focal segmental glomerulosclerosis (FSGS). Characterization of the genetic basis of CNS and FSGS has led to the recognition of the importance of podocyte injury to the development of glomerulosclerosis. Genetic mutations induce injury due to effects on the podocyte's structure, actin cytoskeleton, calcium signaling, and lysosomal and mitochondrial function. Transgenic animal studies have contributed to our understanding of podocyte pathobiology. Podocyte endoplasmic reticulum stress response, cell polarity, and autophagy play a role in maintenance of podocyte health. Further investigations related to the effects of genetic mutations on podocytes may identify new pathways for targeting therapeutics for nephrotic syndrome.
Collapse
|
146
|
Saleem MA. One hundred ways to kill a podocyte. Nephrol Dial Transplant 2015; 30:1266-71. [PMID: 25637640 DOI: 10.1093/ndt/gfu363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/27/2014] [Indexed: 12/30/2022] Open
Abstract
The podocyte is a highly specialized cell, forming within the developing glomerulus from a mesenchymal origin, acquiring some but not complete features of an epithelial cell as it matures. Once mature, this cell has the potential to receive signals from several different directions and sits within a dynamic microenvironment. By taking an overview of many lines of evidence, it is clear that we already know many signals that are tightly controlled in keeping the podocyte healthy. For example, vascular endothelial growth factor, insulin and integrins are all known to have bidirectional effects on podocyte functionality, depending on whether there is too much or too little. It is of little surprise therefore that disrupting this delicate balance can result in a dramatic loss of function, and manifestation of glomerular disease originating from many different primary insults. The cues directing podocyte phenotype and functionality for the purpose of this review will be divided into four main sources: (i) genetic, (ii) paracrine signals from endothelial and mesangial cells, (iii) direct contact signals to/from the glomerular basement membrane and (iv) signals from circulating plasma. Of course there are other influences, which we still know little about, such as flow and shear stresses, signals from the urinary space that should all be considered in the overall healthy environment.
Collapse
Affiliation(s)
- Moin A Saleem
- Bristol Children's Hospital, University of Bristol, Bristol, UK
| |
Collapse
|
147
|
Bińczak-Kuleta A, Rubik J, Litwin M, Ryder M, Lewandowska K, Taryma-Leśniak O, Clark JS, Grenda R, Ciechanowicz A. Retrospective mutational analysis of NPHS1, NPHS2, WT1 and LAMB2 in children with steroid-resistant focal segmental glomerulosclerosis - a single-centre experience. Bosn J Basic Med Sci 2015; 14:89-93. [PMID: 24856380 DOI: 10.17305/bjbms.2014.2270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aim of our study was to examine NPHS1, NPHS2, WT1 and LAMB2 mutations, previously reported in two thirds of patients with nephrotic syndrome with onset before the age of one year old. Genomic DNA samples from Polish children (n=33) with Steroid-Resistant Nephrotic Syndrome (SRNS) due to focal segmental glomerulosclerosis (FSGS), manifesting before the age of 13 years old, underwent retrospective analysis of NPHS1, NPHS2, WT1 (exons 8, 9 and adjacent exon/intron boundaries) and LAMB2. No pathogenic NPHS1 or LAMB2 mutations were found in our FSGS cohort. SRNS-causing mutations of NPHS2 and WT1 were detected in 7 of 33 patients (21%), including those with nephrotic syndrome manifesting before one year old: five of seven patients. Four patients had homozygous c.413G>A (p.Arg138Gln) NPHS2 mutations; one subject was homozygous for c.868G>A (p.Val290Met) NPHS2. A phenotypic female had C>T transition at position +4 of the WT1 intron 9 (c.1432+4C>T) splice-donor site, and another phenotypic female was heterozygous for G>A transition at position +5 (c.1432+5G>A). Genotyping revealed a female genotypic gender (46, XX) for the first subject and male (46, XY) for the latter. In addition, one patient was heterozygous for c.104dup (p.Arg36Profs*34) NPHS2; two patients carried a c.686G>A (p.Arg229Gln) NPHS2 non-neutral variant. Results indicate possible clustering of causative NPHS2 mutations in FSGS-proven SRNS with onset before age one year old, and provide additional evidence that patients with childhood steroid-resistant nephrotic syndrome due to focal segmental glomerulosclerosis should first undergo analysis of NPHS2 coding sequence and WT1 exons 8 and 9 and surrounding exon/intron boundary sequences, followed by gender genotyping.
Collapse
Affiliation(s)
- Agnieszka Bińczak-Kuleta
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Jacek Rubik
- Department of Nephrology, Kidney Transplantation and Hypertension, Children`s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Mieczysław Litwin
- Department of Nephrology, Kidney Transplantation and Hypertension, Children`s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Małgorzata Ryder
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Klaudyna Lewandowska
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Olga Taryma-Leśniak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Jeremy S Clark
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation and Hypertension, Children`s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
148
|
Dong L, Pietsch S, Tan Z, Perner B, Sierig R, Kruspe D, Groth M, Witzgall R, Gröne HJ, Platzer M, Englert C. Integration of Cistromic and Transcriptomic Analyses Identifies Nphs2, Mafb, and Magi2 as Wilms' Tumor 1 Target Genes in Podocyte Differentiation and Maintenance. J Am Soc Nephrol 2015; 26:2118-28. [PMID: 25556170 DOI: 10.1681/asn.2014080819] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/10/2014] [Indexed: 11/03/2022] Open
Abstract
The Wilms' tumor suppressor gene 1 (WT1) encodes a zinc finger transcription factor. Mutation of WT1 in humans leads to Wilms' tumor, a pediatric kidney tumor, or other kidney diseases, such as Denys-Drash and Frasier syndromes. We showed previously that inactivation of WT1 in podocytes of adult mice results in proteinuria, foot process effacement, and glomerulosclerosis. However, the WT1-dependent transcriptional network regulating podocyte development and maintenance in vivo remains unknown. Here, we performed chromatin immunoprecipitation followed by high-throughput sequencing with glomeruli from wild-type mice. Additionally, we performed a cDNA microarray screen on an inducible podocyte-specific WT1 knockout mouse model. By integration of cistromic and transcriptomic analyses, we identified the WT1 targetome in mature podocytes. To further analyze the function and targets of WT1 in podocyte maturation, we used an Nphs2-Cre model, in which WT1 is deleted during podocyte differentiation. These mice display anuria and kidney hemorrhage and die within 24 hours after birth. To address the evolutionary conservation of WT1 targets, we performed functional assays using zebrafish as a model and identified Nphs2, Mafb, and Magi2 as novel WT1 target genes required for podocyte development. Our data also show that both Mafb and Magi2 are required for normal development of the embryonic zebrafish kidney. Collectively, our work provides insights into the transcriptional networks controlled by WT1 and identifies novel WT1 target genes that mediate the function of WT1 in podocyte differentiation and maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Groth
- Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; and
| | - Matthias Platzer
- Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Christoph Englert
- Departments of Molecular Genetics and Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
149
|
Colin E, Huynh Cong E, Mollet G, Guichet A, Gribouval O, Arrondel C, Boyer O, Daniel L, Gubler MC, Ekinci Z, Tsimaratos M, Chabrol B, Boddaert N, Verloes A, Chevrollier A, Gueguen N, Desquiret-Dumas V, Ferré M, Procaccio V, Richard L, Funalot B, Moncla A, Bonneau D, Antignac C. Loss-of-function mutations in WDR73 are responsible for microcephaly and steroid-resistant nephrotic syndrome: Galloway-Mowat syndrome. Am J Hum Genet 2014; 95:637-48. [PMID: 25466283 DOI: 10.1016/j.ajhg.2014.10.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023] Open
Abstract
Galloway-Mowat syndrome is a rare autosomal-recessive condition characterized by nephrotic syndrome associated with microcephaly and neurological impairment. Through a combination of autozygosity mapping and whole-exome sequencing, we identified WDR73 as a gene in which mutations cause Galloway-Mowat syndrome in two unrelated families. WDR73 encodes a WD40-repeat-containing protein of unknown function. Here, we show that WDR73 was present in the brain and kidney and was located diffusely in the cytoplasm during interphase but relocalized to spindle poles and astral microtubules during mitosis. Fibroblasts from one affected child and WDR73-depleted podocytes displayed abnormal nuclear morphology, low cell viability, and alterations of the microtubule network. These data suggest that WDR73 plays a crucial role in the maintenance of cell architecture and cell survival. Altogether, WDR73 mutations cause Galloway-Mowat syndrome in a particular subset of individuals presenting with late-onset nephrotic syndrome, postnatal microcephaly, severe intellectual disability, and homogenous brain MRI features. WDR73 is another example of a gene involved in a disease affecting both the kidney glomerulus and the CNS.
Collapse
|
150
|
Gbadegesin RA, Adeyemo A, Webb NJA, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, Kale A, Gipson D, Srivastava T, Lin JJ, Chand D, Hunley TE, Brophy PD, Bagga A, Sinha A, Rheault MN, Ghali J, Nicholls K, Abraham E, Janjua HS, Omoloja A, Barletta GM, Cai Y, Milford DD, O'Brien C, Awan A, Belostotsky V, Smoyer WE, Homstad A, Hall G, Wu G, Nagaraj S, Wigfall D, Foreman J, Winn MP. HLA-DQA1 and PLCG2 Are Candidate Risk Loci for Childhood-Onset Steroid-Sensitive Nephrotic Syndrome. J Am Soc Nephrol 2014; 26:1701-10. [PMID: 25349203 DOI: 10.1681/asn.2014030247] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/09/2014] [Indexed: 12/11/2022] Open
Abstract
Steroid-sensitive nephrotic syndrome (SSNS) accounts for >80% of cases of nephrotic syndrome in childhood. However, the etiology and pathogenesis of SSNS remain obscure. Hypothesizing that coding variation may underlie SSNS risk, we conducted an exome array association study of SSNS. We enrolled a discovery set of 363 persons (214 South Asian children with SSNS and 149 controls) and genotyped them using the Illumina HumanExome Beadchip. Four common single nucleotide polymorphisms (SNPs) in HLA-DQA1 and HLA-DQB1 (rs1129740, rs9273349, rs1071630, and rs1140343) were significantly associated with SSNS at or near the Bonferroni-adjusted P value for the number of single variants that were tested (odds ratio, 2.11; 95% confidence interval, 1.56 to 2.86; P=1.68×10(-6) (Fisher exact test). Two of these SNPs-the missense variants C34Y (rs1129740) and F41S (rs1071630) in HLA-DQA1-were replicated in an independent cohort of children of white European ancestry with SSNS (100 cases and ≤589 controls; P=1.42×10(-17)). In the rare variant gene set-based analysis, the best signal was found in PLCG2 (P=7.825×10(-5)). In conclusion, this exome array study identified HLA-DQA1 and PLCG2 missense coding variants as candidate loci for SSNS. The finding of a MHC class II locus underlying SSNS risk suggests a major role for immune response in the pathogenesis of SSNS.
Collapse
Affiliation(s)
- Rasheed A Gbadegesin
- Department of Pediatrics, Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland;
| | - Nicholas J A Webb
- Department of Pediatric Nephrology and NIHR/Wellcome Trust Children's Clinical Research Facility, The University of Manchester, Manchester Academic Health Science Centre, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Larry A Greenbaum
- Division of Pediatric Nephrology, Emory University School of Medicine and Children's Healthcare of Atlanta, Georgia
| | | | | | - Arundhati Kale
- Division of Nephrology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Debbie Gipson
- Department of Pediatrics, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Tarak Srivastava
- Division of Nephrology, Children's Mercy Hospital, Kansas City, Missouri
| | - Jen-Jar Lin
- Department of Pediatrics, Division of Nephrology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina
| | - Deepa Chand
- Department of Pediatrics, Division of Nephrology, Rush University, Chicago, Illinois
| | - Tracy E Hunley
- Department of Pediatrics, Division of Nephrology, Vanderbilt University, Nashville, Tennessee
| | - Patrick D Brophy
- Department of Pediatrics, Division of Nephrology, University of Iowa, Iowa City, Iowa
| | - Arvind Bagga
- Department of Pediatrics, Division of Nephrology, All India Institute of Medical Science, Ansari Nagar, New Delhi, India
| | - Aditi Sinha
- Department of Pediatrics, Division of Nephrology, All India Institute of Medical Science, Ansari Nagar, New Delhi, India
| | - Michelle N Rheault
- Department of Pediatrics, Division of Nephrology, University of Minnesota Amplatz Children's Hospital, Minneapolis, Minnesota
| | - Joanna Ghali
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Australia
| | - Kathy Nicholls
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Australia
| | - Elizabeth Abraham
- Department of Pediatrics, Division of Nephrology, St. Louis University, St. Louis, Missouri
| | - Halima S Janjua
- Pediatric Institute, Center for Pediatric Nephrology, Cleveland Clinic, Cleveland, Ohio
| | - Abiodun Omoloja
- Division of Nephrology, Dayton Children's Hospital, Dayton, Ohio
| | | | - Yi Cai
- Division of Nephrology, Helen Devos Children's Hospital, Grand Rapids, Michigan
| | | | | | - Atif Awan
- Division of Nephrology, The Children's University Hospital, Dublin, Ireland
| | - Vladimir Belostotsky
- Department of Pediatrics, Division of Nephrology, Leeds Teaching Hospital, Leeds, United Kingdom
| | - William E Smoyer
- Center for Clinical and Translational Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and
| | - Alison Homstad
- Department of Pediatrics, Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Gentzon Hall
- Department of Medicine, Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Guanghong Wu
- Department of Medicine, Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Shashi Nagaraj
- Department of Pediatrics, Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Delbert Wigfall
- Department of Pediatrics, Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - John Foreman
- Department of Pediatrics, Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | - Michelle P Winn
- Department of Medicine, Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|