101
|
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of mTOR. Neuroscience 2017; 341:112-153. [PMID: 27889578 DOI: 10.1016/j.neuroscience.2016.11.017] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/17/2023]
Abstract
Mammalian/mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that controls several important aspects of mammalian cell function. mTOR activity is modulated by various intra- and extracellular factors; in turn, mTOR changes rates of translation, transcription, protein degradation, cell signaling, metabolism, and cytoskeleton dynamics. mTOR has been repeatedly shown to participate in neuronal development and the proper functioning of mature neurons. Changes in mTOR activity are often observed in nervous system diseases, including genetic diseases (e.g., tuberous sclerosis complex, Pten-related syndromes, neurofibromatosis, and Fragile X syndrome), epilepsy, brain tumors, and neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, and Huntington's disease). Neuroscientists only recently began deciphering the molecular processes that are downstream of mTOR that participate in proper function of the nervous system. As a result, we are gaining knowledge about the ways in which aberrant changes in mTOR activity lead to various nervous system diseases. In this review, we provide a comprehensive view of mTOR in the nervous system, with a special focus on the neuronal functions of mTOR (e.g., control of translation, transcription, and autophagy) that likely underlie the contribution of mTOR to nervous system diseases.
Collapse
Affiliation(s)
- Katarzyna Switon
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Aleja Dzieci Polskich 20, Warsaw 04-730, Poland
| | | | - Justyna Zmorzynska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, Warsaw 02-109, Poland.
| |
Collapse
|
102
|
Chen S, Liu Y, Rong X, Li Y, Zhou J, Lu L. Neuroprotective Role of the PI3 Kinase/Akt Signaling Pathway in Zebrafish. Front Endocrinol (Lausanne) 2017; 8:21. [PMID: 28228749 PMCID: PMC5296330 DOI: 10.3389/fendo.2017.00021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Neuronal survival and growth in the embryo is controlled partly by trophic factors. For most trophic factors (such as Insulin-like growth factor-1), the ability to regulate cell survival has been attributed to the phosphoinositide 3-kinase (PI3K)/Akt kinase cascade. This study presents data illustrating the role of PI3K/Akt in attainment of normal brain size during zebrafish embryogenesis. Blocking PI3K with inhibitor LY294002 caused a significant reduction in brain size (in addition to global growth retardation) during zebrafish embryogenesis. This PI3 Kinase inhibition-induced brain size decrease was recovered by the overexpression of myristoylated Akt (myr-Akt), a constitutive form of Akt. Further analysis reveals that expressing exogenous myr-Akt significantly augmented brain size. Whole mount in situ hybridization analysis of several marker genes showed that myr-Akt overexpression did not alter brain patterning. Furthermore, the expression of myr-Akt was found to protect neuronal cells from apoptosis induced by heat shock and UV light, suggesting that inhibition of neuronal cell death may be part of the underlying cause of the increased brain size. These data provide a foundation for addressing the role of PI3K/Akt in brain growth during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Shuang Chen
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yunzhang Liu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Yun Li
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Ling Lu
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- *Correspondence: Ling Lu,
| |
Collapse
|
103
|
Abstract
Stem cells are commonly defined as undifferentiated cells capable of self-renewing and giving rise to a large number of differentiated progeny. It is becoming increasingly apparent that there exist cancer stem cells (CSCs) from which the cells of any given malignancy arise, whereby only a few cells out of a population of cancer cells are able to initiate tumor formation. These CSCs, like their normal counterparts, are characterized by self-renewal and the ability to “differentiate” into all of the cell types in the original tumor. Current chemotherapeutic strategies involve using non-specific cytotoxic agents that target rapidly cycling cells. Although this may reduce disease burden in many cases, these therapies may miss the rare, self-renewing population that truly gives rise to the malignancy (the CSC). This review will focus on the recent discovery of stem cell-like cells in human brain tumors, putative “brain cancer stem cells,” which exhibit the properties of self-renewal and the ability to recapitulate the original tumor heterogeneity. Dissecting the molecular mechanisms that underlie the ability of these cells to self-renew and maintain quiescence may allow the development of novel therapeutic strategies that will allow for more efficacious and less toxic therapies for these devastating malignancies.
Collapse
Affiliation(s)
- Joseph L Lasky
- Division of Neurosurgery, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
104
|
Superimposing Status Epilepticus on Neuron Subset-Specific PTEN Haploinsufficient and Wild Type Mice Results in Long-term Changes in Behavior. Sci Rep 2016; 6:36559. [PMID: 27819284 PMCID: PMC5098193 DOI: 10.1038/srep36559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
We evaluated the effects of superimposing seizures on a genetic mutation with known involvement in both Autism Spectrum Disorder and in epilepsy. Neuron-subset specific (NS)-Pten heterozygous (HT) and wildtype (WT) adult mice received either intraperitoneal injections of kainic acid (20 mg/kg) to induce status epilepticus or the vehicle (saline). Animals then received a battery of behavioral tasks in order to evaluate activity levels, anxiety, repetitive-stereotyped behavior, social behavior, learning and memory. In the open field task, we found that HT mice after seizures showed a significant increase in total activity and total distance in the surround region of the open field. In the elevated plus maze task, we found that HT mice after seizures displayed increased total distance and velocity as compared to HT mice that did not undergo seizures and WT controls. In the social chamber test, we found the HT mice after seizures displayed an impairment in social behavior. These findings demonstrate that superimposing seizures on a genetic mutation can result in long-term alterations in activity and social behavior in mice.
Collapse
|
105
|
Zhu G, Rankin SL, Larson JD, Zhu X, Chow LML, Qu C, Zhang J, Ellison DW, Baker SJ. PTEN Signaling in the Postnatal Perivascular Progenitor Niche Drives Medulloblastoma Formation. Cancer Res 2016; 77:123-133. [PMID: 27815386 DOI: 10.1158/0008-5472.can-16-1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/30/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023]
Abstract
Loss of the tumor suppressor gene PTEN exerts diverse outcomes on cancer in different developmental contexts. To gain insight into the effect of its loss on outcomes in the brain, we conditionally inactivated the murine Pten gene in neonatal neural stem/progenitor cells. Pten inactivation created an abnormal perivascular proliferative niche in the cerebellum that persisted in adult animals but did not progress to malignancy. Proliferating cells showed undifferentiated morphology and expressed the progenitor marker Nestin but not Math1, a marker of committed granule neuron progenitors. Codeletion of Pten and Trp53 resulted in fully penetrant medulloblastoma originating from the perivascular niche, which exhibited abnormal blood vessel networks and advanced neuronal differentiation of tumor cells. EdU pulse-chase experiments demonstrated a perivascular cancer stem cell population in Pten/Trp53 double mutant medulloblastomas. Genetic analyses revealed recurrent somatic inactivations of the tumor suppressor gene Ptch1 and a recapitulation of the sonic hedgehog subgroup of human medulloblastomas. Overall, our results showed that PTEN acts to prevent the proliferation of a progenitor niche in postnatal cerebellum predisposed to oncogenic induction of medulloblastoma. Cancer Res; 77(1); 123-33. ©2016 AACR.
Collapse
Affiliation(s)
- Guo Zhu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee.,Integrated Program in Biomedical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sherri L Rankin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jon D Larson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lionel M L Chow
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee. .,Integrated Program in Biomedical Sciences, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
106
|
Gutilla EA, Steward O. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control? Neural Regen Res 2016; 11:1201-3. [PMID: 27651754 PMCID: PMC5020805 DOI: 10.4103/1673-5374.189160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.
Collapse
Affiliation(s)
- Erin A Gutilla
- Reeve-Irvine Research Center, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Neurobiology & Behavior, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Neurosurgery, University of California Irvine School of Medicine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
107
|
Gross C. Defective phosphoinositide metabolism in autism. J Neurosci Res 2016; 95:1161-1173. [PMID: 27376697 DOI: 10.1002/jnr.23797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are essential components of lipid membranes and crucial regulators of many cellular functions, including signal transduction, vesicle trafficking, membrane receptor localization and activity, and determination of membrane identity. These functions depend on the dynamic and highly regulated metabolism of phosphoinositides and require finely balanced activity of specific phosphoinositide kinases and phosphatases. There is increasing evidence from genetic and functional studies that these enzymes are often dysregulated or mutated in autism spectrum disorders; in particular, phosphoinositide 3-kinases and their regulatory subunits appear to be affected frequently. Examples of autism spectrum disorders with defective phosphoinositide metabolism are fragile X syndrome and autism disorders associated with mutations in the phosphoinositide 3-phosphatase tensin homolog deleted on chromosome 10 (PTEN), but recent genetic analyses also suggest that select nonsyndromic, idiopathic forms of autism may have altered activity of phosphoinositide kinases and phosphatases. Isoform-specific inhibitors for some of the phosphoinositide kinases have already been developed for cancer research and treatment, and a few are being evaluated for use in humans. Altogether, this offers exciting opportunities to explore altered phosphoinositide metabolism as a therapeutic target in individuals with certain forms of autism. This review summarizes genetic and functional studies identifying defects in phosphoinositide metabolism in autism and related disorders, describes published preclinical work targeting phosphoinositide 3-kinases in neurological diseases, and discusses the opportunities and challenges ahead to translate these findings from animal models and human cells into clinical application in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
108
|
Bolon B, Garman R, Jensen K, Krinke G, Stuart B. A ‘Best Practices’ Approach to Neuropathologic Assessment in Developmental Neurotoxicity Testing—for Today. Toxicol Pathol 2016; 34:296-313. [PMID: 16698729 DOI: 10.1080/01926230600713269] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A key trait of developmental neurotoxicants is their ability to cause structural lesions in the immature nervous system. Thus, neuropathologic assessment is an essential element of developmental neurotoxicity (DNT) studies that are designed to evaluate chemically-induced risk to neural substrates in young humans. The guidelines for conventional DNT assays have been established by regulatory agencies to provide a flexible scaffold for conducting such studies; recent experience has launched new efforts to update these recommendations. The present document was produced by an ad hoc subcommittee of the Society of Toxicologic Pathology (STP) tasked with examining conventional methods used in DNT neuropathology in order to define the ‘best practices’ for dealing with the diverse requirements of both national (EPA) and international (OECD) regulatory bodies. Recommendations (including citations for relevant neurobiological and technical references) address all aspects of the DNT neuropathology examination: study design; tissue fixation, collection, processing, and staining; qualitative and quantitative evaluation; statistical analysis; proper control materials; study documentation; and personnel training. If followed, these proposals will allow pathologists to meet the need for a sound risk assessment (balanced to address both regulatory issues and scientific considerations) in this field today while providing direction for the research needed to further refine DNT neuropathology ‘best practices’ in the future.
Collapse
Affiliation(s)
- Brad Bolon
- GEMpath Inc., Cedar City, Utah 84720, USA
| | | | | | | | | |
Collapse
|
109
|
Jadali A, Kwan KY. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea. Biol Open 2016; 5:698-708. [PMID: 27142333 PMCID: PMC4920183 DOI: 10.1242/bio.016758] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/17/2016] [Indexed: 12/28/2022] Open
Abstract
Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP) cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.
Collapse
Affiliation(s)
- Azadeh Jadali
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y Kwan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
110
|
Clipperton-Allen AE, Chen Y, Page DT. Autism-relevant behaviors are minimally impacted by conditional deletion of Pten in oxytocinergic neurons. Autism Res 2016; 9:1248-1262. [PMID: 27220363 DOI: 10.1002/aur.1641] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/04/2016] [Accepted: 04/18/2016] [Indexed: 01/04/2023]
Abstract
Germline heterozygous mutations in Pten (phosphatase and tensin homolog) are associated with macrocephaly and autism spectrum disorders (ASD). Pten germline heterozygous (Pten+/- ) mice approximate these mutations, and both sexes show widespread brain overgrowth and impaired social behavior. Strikingly similar behavior phenotypes have been reported in oxytocin (Oxt) and/or oxytocin receptor (OxtR) knockout mice. Thus, we hypothesized that the behavioral phenotypes of germline Pten+/- mice may be caused by reduced Pten function in Oxt-expressing cells. To investigate this, we tested mice in which Pten was conditionally deleted using oxytocin-Cre (Oxt-Cre+ ; PtenloxP/+ , Oxt-Cre+ ; PtenloxP/loxP ) on a battery including assays of social, repetitive, depression-like, and anxiety-like behaviors. Minimal behavioral abnormalities were found; decreased anxiety-like behavior in the open field test in Oxt-Cre+ ; PtenloxP/loxP males was the only result that phenocopied germline Pten+/- mice. However, Oxt cell size was dramatically increased in Oxt-Cre+ ; PtenloxP/loxP mice in adulthood. Thus, conditional deletion of Pten using Oxt-Cre has a profound effect on Oxt cell structure, but not on ASD-relevant behavior. We interpret these results as inconsistent with our starting hypothesis that reduced Pten function in Oxt-expressing cells causes the behavioral deficits observed in germline Pten+/- mice. Autism Res 2016, 9: 1248-1262. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Youjun Chen
- Department of Neuroscience, Scripps Research Institute, Jupiter, Florida
| | - Damon T Page
- Department of Neuroscience, Scripps Research Institute, Jupiter, Florida
| |
Collapse
|
111
|
Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 2016; 107:333-343. [DOI: 10.1016/j.phrs.2016.03.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
|
112
|
Qu L, Gao Y, Sun H, Wang H, Liu X, Sun D. Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure. Biol Trace Elem Res 2016; 170:366-72. [PMID: 26296331 DOI: 10.1007/s12011-015-0478-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022]
Abstract
The nervous system is a target of arsenic toxicity. Phosphatase and tensin homologue deleted on chromosome 10/protein kinase B/cAMP-response element binding protein (PTEN/Akt/CREB) signaling pathway has been reported to be involved in maintaining normal function of the nervous system, modulating growth and proliferation of neurocyte, regulating neuron synaptic plasticity, and long-term memory. And many studies have demonstrated that expressions of PTEN, Akt, and CREB protein were influenced by arsenic, but it is not clear whether this signaling pathway is involved in the nervous system impairment of rats induced by chronic arsenite exposure, and we have addressed this in this study. Eighty male Sprague-Dawley (SD) rats were randomly divided into eight groups (n = 10 each), four groups exposed to NaAsO2 (0, 5, 10, and 50 mg/L NaAsO2 in drinking water) for 3 months, the other four groups exposed to NaAsO2 (0, 5, 10, 50 mg/L NaAsO2 in drinking water) for 6 months. Hematoxylin and eosin (HE) staining showed that chronic arsenite exposure induced varying degrees of damage in cerebral neurons. And arsenite exposure increased arsenic amount in serum and brain samples in a dose- and time-dependent manner. Moreover, the protein levels of PTEN and Akt in brain tissue were not significantly changed compared with the control group, but p-Akt, CREB, and p-CREB were all significantly downregulated in arsenite-exposed groups with a dose-dependent pattern. These results suggested that chronic arsenite exposure negatively regulated the PTEN-Akt-CREB signaling pathway, and dysfunction of the signaling pathway might be one of the mechanisms of nervous system impairment induced by chronic arsenite exposure.
Collapse
Affiliation(s)
- Lisha Qu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hongna Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hui Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
113
|
Matsushita Y, Sakai Y, Shimmura M, Shigeto H, Nishio M, Akamine S, Sanefuji M, Ishizaki Y, Torisu H, Nakabeppu Y, Suzuki A, Takada H, Hara T. Hyperactive mTOR signals in the proopiomelanocortin-expressing hippocampal neurons cause age-dependent epilepsy and premature death in mice. Sci Rep 2016; 6:22991. [PMID: 26961412 PMCID: PMC4785342 DOI: 10.1038/srep22991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a frequent comorbidity in patients with focal cortical dysplasia (FCD). Recent studies utilizing massive sequencing data identified subsets of genes that are associated with epilepsy and FCD. AKT and mTOR-related signals have been recently implicated in the pathogenic processes of epilepsy and FCD. To clarify the functional roles of the AKT-mTOR pathway in the hippocampal neurons, we generated conditional knockout mice harboring the deletion of Pten (Pten-cKO) in Proopiomelanocortin-expressing neurons. The Pten-cKO mice developed normally until 8 weeks of age, then presented generalized seizures at 8–10 weeks of age. Video-monitored electroencephalograms detected paroxysmal discharges emerging from the cerebral cortex and hippocampus. These mice showed progressive hypertrophy of the dentate gyrus (DG) with increased expressions of excitatory synaptic markers (Psd95, Shank3 and Homer). In contrast, the expression of inhibitory neurons (Gad67) was decreased at 6–8 weeks of age. Immunofluorescence studies revealed the abnormal sprouting of mossy fibers in the DG of the Pten-cKO mice prior to the onset of seizures. The treatment of these mice with an mTOR inhibitor rapamycin successfully prevented the development of seizures and reversed these molecular phenotypes. These data indicate that the mTOR pathway regulates hippocampal excitability in the postnatal brain.
Collapse
Affiliation(s)
- Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsunori Shimmura
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Shigeto
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshito Ishizaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
114
|
Gutilla EA, Buyukozturk MM, Steward O. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice. Exp Neurol 2016; 279:27-39. [PMID: 26896833 DOI: 10.1016/j.expneurol.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/18/2022]
Abstract
Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable neuropathology.
Collapse
Affiliation(s)
- Erin A Gutilla
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States
| | - Melda M Buyukozturk
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; Neurobiology and Behavior, University of California, Irvine, United States; Neurosurgery, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States.
| |
Collapse
|
115
|
Borniger JC, Cissé YM, Cantemir-Stone CZ, Bolon B, Nelson RJ, Marsh CB. Behavioral abnormalities in mice lacking mesenchyme-specific Pten. Behav Brain Res 2016; 304:80-5. [PMID: 26876012 DOI: 10.1016/j.bbr.2016.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/15/2022]
Abstract
Phosphatase and tensin homolog (Pten) is a negative regulator of cell proliferation and growth. Using a Cre-recombinase approach with Lox sequences flanking the fibroblast-specific protein 1 (Fsp1 aka S100A4; a mesenchymal marker), we probed sites of expression using a β-galactosidase Rosa26(LoxP) reporter allele; the transgene driving deletion of Pten (exons 4-5) was found throughout the brain parenchyma and pituitary, suggesting that deletion of Pten in Fsp1-positive cells may influence behavior. Because CNS-specific deletion of Pten influences social and anxiety-like behaviors and S100A4 is expressed in astrocytes, we predicted that loss of Pten in Fsp1-expressing cells would result in deficits in social interaction and increased anxiety. We further predicted that environmental enrichment would compensate for genetic deficits in these behaviors. We conducted a battery of behavioral assays on Fsp1-Cre;Pten(LoxP/LoxP) male and female homozygous knockouts (Pten(-/-)) and compared their behavior to Pten(LoxP/LoxP) (Pten(+/+)) conspecifics. Despite extensive physical differences (including reduced hippocampal size) and deficits in sensorimotor function, Pten(-/-) mice behaved remarkably similar to control mice on nearly all behavioral tasks. These results suggest that the social and anxiety-like phenotypes observed in CNS-specific Pten(-/-) mice may depend on neuronal Pten, as lack of Pten in Fsp1-expressing cells of the CNS had little effect on these behaviors.
Collapse
Affiliation(s)
- Jeremy C Borniger
- Department of Neuroscience and the Behavioral Neuroendocrinology Group, The Ohio State University-Wexner Medical Center, Columbus, OH 43210, USA.
| | - Yasmine M Cissé
- Department of Neuroscience and the Behavioral Neuroendocrinology Group, The Ohio State University-Wexner Medical Center, Columbus, OH 43210, USA
| | - Carmen Z Cantemir-Stone
- Department of Neuroscience and the Behavioral Neuroendocrinology Group, The Ohio State University-Wexner Medical Center, Columbus, OH 43210, USA
| | - Brad Bolon
- Comparative Pathology and Mouse Phenotyping Shared Resource. Comprehensive Cancer Center, The Ohio State University-Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience and the Behavioral Neuroendocrinology Group, The Ohio State University-Wexner Medical Center, Columbus, OH 43210, USA
| | - Clay B Marsh
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University-Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
116
|
Abstract
The central nervous system is comprised of multiple cell types including neurons, glia, and other supporting cells that may differ dramatically in levels of signaling pathway activation. Immunohistochemistry in conjunction with drug interference are powerful tools that allow evaluation of signaling pathways in different cell types of the mouse central nervous system in vivo. Here we provide detailed protocols for immunohistochemistry to evaluate three essential components in the PI3K pathway in mouse brain: Pten, p-Akt, and p-4ebp1, and for rapamycin treatment to modulate mTOR signaling in vivo.
Collapse
Affiliation(s)
- Guo Zhu
- Department of Pathology, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Room D2006C, 262 Danny Thomas Place, Memphis, TN, 38105-3678, USA.
| |
Collapse
|
117
|
Benedykcinska A, Ferreira A, Lau J, Broni J, Richard-Loendt A, Henriquez NV, Brandner S. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis Model Mech 2015; 9:211-20. [PMID: 26704996 PMCID: PMC4770146 DOI: 10.1242/dmm.022715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/21/2015] [Indexed: 01/10/2023] Open
Abstract
Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS) can be limited, when the promoter (such as GFAP) is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER) allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours.
Collapse
Affiliation(s)
- Anna Benedykcinska
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andreia Ferreira
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joanne Lau
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jessica Broni
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Angela Richard-Loendt
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nico V Henriquez
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
118
|
Roy A, Skibo J, Kalume F, Ni J, Rankin S, Lu Y, Dobyns WB, Mills GB, Zhao JJ, Baker SJ, Millen KJ. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. eLife 2015; 4. [PMID: 26633882 PMCID: PMC4744197 DOI: 10.7554/elife.12703] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI:http://dx.doi.org/10.7554/eLife.12703.001 An enzyme called PI3K is involved in a major signaling pathway that controls cell growth. Mutations in this pathway have devastating consequences. When such mutations happen in adults, they can lead to cancer. Mutations that occur in embryos can cause major developmental birth defects, including abnormally large brains. After birth, these developmental problems can cause intellectual disabilities, autism and epilepsy. Children with this kind of epilepsy often do not respond to currently available seizure medications. There are several outstanding questions that if answered could help efforts to develop treatments for children with brain growth disorders. Firstly, how do the developmental abnormalities happen? Do the abnormalities themselves cause epilepsy? And can drugs that target this pathway, and are already in clinical trials for cancer, control seizures? Now, Roy et al. have made mouse models of these human developmental brain disorders and used them to answer these questions. The mice were genetically engineered to have various mutations in the gene that encodes the catalytic subunit of the PI3K enzyme. The mutations were the same as those found in people with brain overgrowth disorders, and were activated only in the developing brain of the mice. These mutations caused enlarged brain size, fluid accumulation in the brain, brain malformations and epilepsy in developing mice – thus mimicking the human birth defects. The severity of these symptoms depended on the specific mutation and when the mutant genes were turned on during development. Next, Roy et al. studied these mice to see if the seizures could be treated using a drug, that has already been developed for brain cancer. This drug specifically targets and reduces the activity of PI3K. Adult mutant mice with brain malformations were treated for just one hour; this dramatically reduced their seizures. These experiments prove that seizures associated with this kind of brain overgrowth disorder are driven by ongoing abnormal PI3K activity and can be treated even when underlying brain abnormalities persist. Roy et al. suggest that drugs targeting PI3K might help treat seizures in children with these brain overgrowth disorders. DOI:http://dx.doi.org/10.7554/eLife.12703.002
Collapse
Affiliation(s)
- Achira Roy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Jonathan Skibo
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Jing Ni
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Sherri Rankin
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yiling Lu
- The University of Texas MD Anderson Cancer Center, Houston, United States
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Gordon B Mills
- The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Jean J Zhao
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, United States
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, United States
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| |
Collapse
|
119
|
Baek ST, Copeland B, Yun EJ, Kwon SK, Guemez-Gamboa A, Schaffer AE, Kim S, Kang HC, Song S, Mathern GW, Gleeson JG. An AKT3-FOXG1-reelin network underlies defective migration in human focal malformations of cortical development. Nat Med 2015; 21:1445-54. [PMID: 26523971 PMCID: PMC4955611 DOI: 10.1038/nm.3982] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
Focal malformations of cortical development (FMCDs) account for the majority of drug-resistant pediatric epilepsy. Postzygotic somatic mutations activating the phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway are found in a wide range of brain diseases, including FMCDs. It remains unclear how a mutation in a small fraction of cells disrupts the architecture of the entire hemisphere. Within human FMCD-affected brain, we found that cells showing activation of the PI3K-AKT-mTOR pathway were enriched for the AKT3(E17K) mutation. Introducing the FMCD-causing mutation into mouse brain resulted in electrographic seizures and impaired hemispheric architecture. Mutation-expressing neural progenitors showed misexpression of reelin, which led to a non-cell autonomous migration defect in neighboring cells, due at least in part to derepression of reelin transcription in a manner dependent on the forkhead box (FOX) transcription factor FOXG1. Treatments aimed at either blocking downstream AKT signaling or inactivating reelin restored migration. These findings suggest a central AKT-FOXG1-reelin signaling pathway in FMCD and support pathway inhibitors as potential treatments or therapies for some forms of focal epilepsy.
Collapse
Affiliation(s)
- Seung Tae Baek
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
| | - Brett Copeland
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
| | - Eun-Jin Yun
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Seok-Kyu Kwon
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Alicia Guemez-Gamboa
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
| | - Ashleigh E Schaffer
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
| | - Sangwoo Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hoon-Chul Kang
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinics, Severance Children's Hospital, Seoul, South Korea
- Epilepsy Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Saera Song
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
| | - Gary W Mathern
- Department of Neurosurgery, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Joseph G Gleeson
- Laboratory of Pediatric Brain Diseases, Rockefeller University, New York, New York, USA
- Department of Neurosciences, University of California San Diego (UCSD), La Jolla, California, USA
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
120
|
Reynolds CD, Smith GD, Jefferson TS, Lugo JN. Comparison of Equivalence between Two Commercially Available S499-Phosphorylated FMRP Antibodies in Mice. PLoS One 2015; 10:e0143134. [PMID: 26580204 PMCID: PMC4651511 DOI: 10.1371/journal.pone.0143134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/31/2015] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome (FXS) develops from excessive trinucleotide CGG repeats in the 5’-untranslated region at Xq27.3 of the Fmr-1 gene, which functionally silences its expression and prevents transcription of its protein. This disorder is the most prominent form of heritable intellectual deficiency, affecting roughly 1 in 5,000 males and 1 in 10,000 females globally. Antibody specificity and selectivity are essential for investigating changes in intracellular protein signaling and phosphorylation status of the Fragile X Mental Retardation Protein (FMRP). Currently, both PhosphoSolutions® and abcam® produce commercially available S499-phosphorylated FMRP specific antibodies. The antibody from PhosphoSolutions® has been validated in previous studies; however, the antibody from abcam® antibody has yet to receive similar validation. This study aims to determine whether these two antibodies are true equivalents through western blot analysis of both NS-Pten knockout (KO) and Fmr-1 KO mice strains. We prepared hippocampal synaptosomal preparations and probed the samples using total FMRP, abcam® phosphorylated FMRP, and PhosphoSolutions® phosphorylated FMRP antibodies. We found that there was a significant increase in phosphorylated FMRP levels using the abcam® and PhosphoSolutions® antibodies in the NS-Pten KO mice compared to wildtype mice. However, there was much more variability using the abcam® antibody. Furthermore, there was a band present in the Fmr-1 KO for the phosphorylated FMRP site using the abcam® antibody for western blotting but not for the PhosphoSolutions® antibody. Our findings strongly suggest that the antibody from abcam® is neither specific nor selective for its advertised targeted substrate, S499-phosphorylated FMRP.
Collapse
Affiliation(s)
- Conner D. Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Gregory D. Smith
- Institute of Biomedical Sciences, Baylor University, Waco, Texas, United States of America
| | - Taylor S. Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
- Institute of Biomedical Sciences, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
121
|
Blocking IGF Signaling in Adult Neurons Alleviates Alzheimer's Disease Pathology through Amyloid-β Clearance. J Neurosci 2015; 35:11500-13. [PMID: 26290229 DOI: 10.1523/jneurosci.0343-15.2015] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Alzheimer's disease (AD) is a frequent and irreversible age-related neurodegeneration without efficient treatment. Experimental AD in mice responds positively to decreased insulin-like growth factor I (IGF-I) signaling, a pathway also implicated in aging. Here we aimed to protect the aging brain from devastating amyloid pathology by making specifically adult neurons resistant to IGF signaling. To achieve that, we knocked out neuronal IGF-1R during adulthood in APP/PS1 mice. We found that mutants exhibited improved spatial memory and reduced anxiety. Mutant brains displayed fewer amyloid plaques, less amyloid-β (Aβ), and diminished neuroinflammation. Surprisingly, adult neurons undergoing IGF-1R knock-out reduced their apical soma and developed leaner dendrites, indicative of remarkable structural plasticity entailing condensed forebrain neuroarchitecture. Neurons lacking IGF-1R in AD showed less accumulation of Aβ-containing autophagic vacuoles. At the same time, plasma Aβ levels were increased. Our data indicate that neuronal IGF-1R ablation, via preserved autophagic compartment and enhanced systemic elimination, offers lifelong protection from AD pathology by clearing toxic Aβ. Neuronal IGF-1R, and possibly other cell size-controlling pathways are promising targets for AD treatment. SIGNIFICANCE STATEMENT We found compelling evidence in vivo that Alzheimer's disease (AD) progression is significantly delayed when insulin-like growth factor (IGF) signaling is blocked in adult neurons. To show that, we built a novel mouse model, combining inducible neuron-specific IGF-1R knock-out with AD transgenics. Analysis of the experimental AD phenotype revealed less abundant amyloid-β (Aβ) peptides, fewer plaques, and diminished neuroinflammation in mutants with inactivated IGF signaling, together with clearly preserved behavioral and memory performances. We present for the first time evidence that IGF signaling has profound effects on neuronal proteostasis and maintenance of cell morphology in vivo. Our results indicate in a model highly pertinent to translational research that neuronal IGF resistance may represent a pathophysiologically relevant mechanism of the brain for preventing Aβ accumulation.
Collapse
|
122
|
Gangarossa G, Sakkaki S, Lory P, Valjent E. Mouse hippocampal phosphorylation footprint induced by generalized seizures: Focus on ERK, mTORC1 and Akt/GSK-3 pathways. Neuroscience 2015; 311:474-83. [PMID: 26545981 DOI: 10.1016/j.neuroscience.2015.10.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/27/2015] [Indexed: 02/03/2023]
Abstract
Exacerbated hippocampal activity has been associated to critical modifications of the intracellular signaling pathways. We have investigated rapid hippocampal adaptive responses induced by maximal electroshock seizure (MES). Here, we demonstrate that abnormal and exacerbated hippocampal activity induced by MES triggers specific and temporally distinct patterns of phosphorylation of extracellular signal-related kinase (ERK), mammalian target of rapamycin complex (mTORC) and Akt/glycogen synthase kinase-3 (Akt/GSK-3) pathways in the mouse hippocampus. While the ERK pathway is transiently activated, the mTORC1 cascade follows a rapid inhibition followed by a transient activation. This rebound of mTORC1 activity leads to the selective phosphorylation of p70S6K, which is accompanied by an enhanced phosphorylation of the ribosomal subunit S6. In contrast, the Akt/GSK-3 pathway is weakly altered. Finally, MES triggers a rapid upregulation of several plasticity-associated genes as a consequence exacerbated hippocampal activity. The results reported in the present study are reminiscent of the one observed in other models of generalized seizures, thus defining a common molecular footprint induced by intense and aberrant hippocampal activities.
Collapse
Affiliation(s)
- Giuseppe Gangarossa
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; Inserm U1191, Montpellier F-34094, France; Université de Montpellier, Montpellier F-34094, France.
| | - Sophie Sakkaki
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; Inserm U1191, Montpellier F-34094, France; Université de Montpellier, Montpellier F-34094, France
| | - Philippe Lory
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; Inserm U1191, Montpellier F-34094, France; Université de Montpellier, Montpellier F-34094, France; LabEx 'Ion Channel Science and Therapeutics', Montpellier F-34094, France
| | - Emmanuel Valjent
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34094, France; Inserm U1191, Montpellier F-34094, France; Université de Montpellier, Montpellier F-34094, France.
| |
Collapse
|
123
|
Wang S, Wang T, Wang T, Jia L. Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA. Mol Cells 2015; 38:959-965. [PMID: 26486163 PMCID: PMC4673410 DOI: 10.14348/molcells.2015.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022] Open
Abstract
Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi 710032,
China
| | - Ting Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi 710032,
China
| | - Tao Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi 710032,
China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, Shaanxi 710032,
China
| |
Collapse
|
124
|
Feng DD, Cai W, Chen X. The associations between Parkinson's disease and cancer: the plot thickens. Transl Neurodegener 2015; 4:20. [PMID: 26504519 PMCID: PMC4620601 DOI: 10.1186/s40035-015-0043-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/07/2015] [Indexed: 01/10/2023] Open
Abstract
Epidemiological studies support a general inverse association between the risk of cancer development and Parkinson’s disease (PD). In recent years however, increasing amount of eclectic evidence points to a positive association between PD and cancers through different temporal analyses and ethnic groups. This positive association has been supported by several common genetic mutations in SNCA, PARK2, PARK8, ATM, p53, PTEN, and MC1R resulting in cellular changes such as mitochondrial dysfunction, aberrant protein aggregation, and cell cycle dysregulation. Here, we review the epidemiological and biological advances of the past decade in the association between PD and cancers to offer insight on the recent and sometimes contradictory findings.
Collapse
Affiliation(s)
- Danielle D Feng
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Waijiao Cai
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA.,Key Laboratory of Cellular and Molecular Biology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Xiqun Chen
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
125
|
Subramanian M, Timmerman CK, Schwartz JL, Pham DL, Meffert MK. Characterizing autism spectrum disorders by key biochemical pathways. Front Neurosci 2015; 9:313. [PMID: 26483618 PMCID: PMC4586332 DOI: 10.3389/fnins.2015.00313] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/20/2015] [Indexed: 12/29/2022] Open
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Megha Subramanian
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Christina K Timmerman
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Joshua L Schwartz
- Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Daniel L Pham
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Mollie K Meffert
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Biological Chemistry, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
126
|
Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development 2015; 142:3601-11. [PMID: 26400094 DOI: 10.1242/dev.118836] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 08/28/2015] [Indexed: 12/26/2022]
Abstract
The ability to induce targeted mutations in somatic cells in developing organisms and then track the fates of those cells is a powerful approach both for studying neural development and for modeling human disease. The CRISPR/Cas9 system allows for such targeted mutagenesis, and we therefore tested it in combination with a piggyBac transposase lineage labeling system to track the development of neocortical neural progenitors with targeted mutations in genes linked to neurodevelopmental disruptions and tumor formation. We show that sgRNAs designed to target PTEN successfully decreased PTEN expression, and led to neuronal hypertrophy and altered neuronal excitability. Targeting NF1, by contrast, caused increased astrocytogenesis at the expense of neurogenesis, and combined targeting of three tumor suppressors (PTEN, NF1 and P53) resulted in formation of glioblastoma tumors. Our results demonstrate that CRISPR/Cas9 combined with piggyBac transposase lineage labeling can produce unique models of neurodevelopmental disruption and tumors caused by somatic mutation in neural progenitors.
Collapse
Affiliation(s)
- Fuyi Chen
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Joel Rosiene
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Alicia Che
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Albert Becker
- Department of Neuropathology, University of Bonn Medical Center, 53105 Born, Germany
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| |
Collapse
|
127
|
Patil VV, Guzman M, Carter AN, Rathore G, Yoshor D, Curry D, Wilfong A, Agadi S, Swann JW, Adesina AM, Bhattacharjee MB, Anderson AE. Activation of extracellular regulated kinase and mechanistic target of rapamycin pathway in focal cortical dysplasia. Neuropathology 2015; 36:146-56. [PMID: 26381727 DOI: 10.1111/neup.12242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/26/2022]
Abstract
Neuropathology of resected brain tissue has revealed an association of focal cortical dysplasia (FCD) with drug-resistant epilepsy (DRE). Recent studies have shown that the mechanistic target of rapamycin (mTOR) pathway is hyperactivated in FCD as evidenced by increased phosphorylation of the ribosomal protein S6 (S6) at serine 240/244 (S(240/244) ), a downstream target of mTOR. Moreover, extracellular regulated kinase (ERK) has been shown to phosphorylate S6 at serine 235/236 (S(235/236) ) and tuberous sclerosis complex 2 (TSC2) at serine 664 (S(664) ) leading to hyperactive mTOR signaling. We evaluated ERK phosphorylation of S6 and TSC2 in two types of FCD (FCD I and FCD II) as a candidate mechanism contributing to mTOR pathway dysregulation. Tissue samples from patients with tuberous sclerosis (TS) served as a positive control. Immunostaining for phospho-S6 (pS6(240/244) and pS6(235/236) ), phospho-ERK (pERK), and phospho-TSC2 (pTSC2) was performed on resected brain tissue with FCD and TS. We found increased pS6(240/244) and pS6(235/236) staining in FCD I, FCD II and TS compared to normal-appearing tissue, while pERK and pTSC2 staining was increased only in FCD IIb and TS tissue. Our results suggest that both the ERK and mTOR pathways are dysregulated in FCD and TS; however, the signaling alterations are different for FCD I as compared to FCD II and TS.
Collapse
Affiliation(s)
- Vinit V Patil
- Program in Translational Biology and Molecular Medicine, Texas Children's Hospital, Houston, Texas, USA.,Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.,Department of Pathology, Saint Louis University, Saint Louis, Missouri
| | - Miguel Guzman
- Department of Pathology, Saint Louis University, Saint Louis, Missouri
| | - Angela N Carter
- Department of Neuroscience, Texas Children's Hospital, Houston, Texas, USA.,Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Geetanjali Rathore
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Yoshor
- Department of Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Daniel Curry
- Department of Neurosurgery, Texas Children's Hospital, Houston, Texas, USA
| | - Angus Wilfong
- Department of Neurology, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Satish Agadi
- Department of Neurology, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - John W Swann
- Department of Neuroscience, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA.,Program in Translational Biology and Molecular Medicine, Texas Children's Hospital, Houston, Texas, USA.,Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | | | - Meenakshi B Bhattacharjee
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, Houston, Texas, USA
| | - Anne E Anderson
- Department of Neurology, Texas Children's Hospital, Houston, Texas, USA.,Department of Neuroscience, Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA.,Program in Translational Biology and Molecular Medicine, Texas Children's Hospital, Houston, Texas, USA.,Cain Foundation Laboratories, Texas Children's Hospital, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
128
|
Séjourné J, Llaneza D, Kuti OJ, Page DT. Social Behavioral Deficits Coincide with the Onset of Seizure Susceptibility in Mice Lacking Serotonin Receptor 2c. PLoS One 2015; 10:e0136494. [PMID: 26308619 PMCID: PMC4550412 DOI: 10.1371/journal.pone.0136494] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/15/2015] [Indexed: 11/19/2022] Open
Abstract
The development of social behavior is strongly influenced by the serotonin system. Serotonin 2c receptor (5-HT2cR) is particularly interesting in this context considering that pharmacological modulation of 5-HT2cR activity alters social interaction in adult rodents. However, the role of 5-HT2cR in the development of social behavior is unexplored. Here we address this using Htr2c knockout mice, which lack 5-HT2cR. We found that these animals exhibit social behavior deficits as adults but not as juveniles. Moreover, we found that the age of onset of these deficits displays similar timing as the onset of susceptibility to spontaneous death and audiogenic-seizures, consistent with the hypothesis that imbalanced excitation and inhibition (E/I) may contribute to social behavioral deficits. Given that autism spectrum disorder (ASD) features social behavioral deficits and is often co-morbid with epilepsy, and given that 5-HT2cR physically interacts with Pten, we tested whether a second site mutation in the ASD risk gene Pten can modify these phenotypes. The age of spontaneous death is accelerated in mice double mutant for Pten and Htr2c relative to single mutants. We hypothesized that pharmacological antagonism of 5-HT2cR activity in adult animals, which does not cause seizures, might modify social behavioral deficits in Pten haploinsufficient mice. SB 242084, a 5-HT2cR selective antagonist, can reverse the social behavior deficits observed in Pten haploinsufficient mice. Together, these results elucidate a role of 5-HT2cR in the modulation of social behavior and seizure susceptibility in the context of normal development and Pten haploinsufficiency.
Collapse
Affiliation(s)
- Julien Séjourné
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458, United States of America
| | - Danielle Llaneza
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458, United States of America
| | - Orsolya J. Kuti
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, United States of America
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida, 33458, United States of America
- * E-mail:
| |
Collapse
|
129
|
Phosphatase and Tensin Homologue: Novel Regulation by Developmental Signaling. JOURNAL OF SIGNAL TRANSDUCTION 2015; 2015:282567. [PMID: 26339505 PMCID: PMC4539077 DOI: 10.1155/2015/282567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/06/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022]
Abstract
Phosphatase and tensin homologue (PTEN) is a critical cell endogenous inhibitor of phosphoinositide signaling in mammalian cells. PTEN dephosphorylates phosphoinositide trisphosphate (PIP3), and by so doing PTEN has the function of negative regulation of Akt, thereby inhibiting this key intracellular signal transduction pathway. In numerous cell types, PTEN loss-of-function mutations result in unopposed Akt signaling, producing numerous effects on cells. Numerous reports exist regarding mutations in PTEN leading to unregulated Akt and human disease, most notably cancer. However, less is commonly known about nonmutational regulation of PTEN. This review focuses on an emerging literature on the regulation of PTEN at the transcriptional, posttranscriptional, translational, and posttranslational levels. Specifically, a focus is placed on the role developmental signaling pathways play in PTEN regulation; this includes insulin-like growth factor, NOTCH, transforming growth factor, bone morphogenetic protein, wnt, and hedgehog signaling. The regulation of PTEN by developmental mediators affects critical biological processes including neuronal and organ development, stem cell maintenance, cell cycle regulation, inflammation, response to hypoxia, repair and recovery, and cell death and survival. Perturbations of PTEN regulation consequently lead to human diseases such as cancer, chronic inflammatory syndromes, developmental abnormalities, diabetes, and neurodegeneration.
Collapse
|
130
|
Chen Y, Huang WC, Séjourné J, Clipperton-Allen AE, Page DT. Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling. J Neurosci 2015; 35:10252-67. [PMID: 26180201 PMCID: PMC6605343 DOI: 10.1523/jneurosci.5272-14.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 02/04/2023] Open
Abstract
Abnormal patterns of head and brain growth are a replicated finding in a subset of individuals with autism spectrum disorder (ASD). It is not known whether risk factors associated with ASD and abnormal brain growth (both overgrowth and undergrowth) converge on common biological pathways and cellular mechanisms in the developing brain. Heterozygous mutations in PTEN (PTEN(+/-)), which encodes a negative regulator of the PI3K-Akt-mTOR pathway, are a risk factor for ASD and macrocephaly. Here we use the developing cerebral cortex of Pten(+/-) mice to investigate the trajectory of brain overgrowth and underlying cellular mechanisms. We find that overgrowth is detectable from birth to adulthood, is driven by hyperplasia, and coincides with excess neurons at birth and excess glia in adulthood. β-Catenin signaling is elevated in the developing Pten(+/-) cortex, and a heterozygous mutation in Ctnnb1 (encoding β-catenin), itself a candidate gene for ASD and microcephaly, can suppress Pten(+/-) cortical overgrowth. Thus, a balance of Pten and β-catenin signaling regulates normal brain growth trajectory by controlling cell number, and imbalance in this relationship can result in abnormal brain growth. SIGNIFICANCE STATEMENT We report that Pten haploinsufficiency leads to a dynamic trajectory of brain overgrowth during development and altered scaling of neuronal and glial cell populations. β-catenin signaling is elevated in the developing cerebral cortex of Pten haploinsufficient mice, and a heterozygous mutation in β-catenin, itself a candidate gene for ASD and microcephaly, suppresses Pten(+/-) cortical overgrowth. This leads to the new insight that Pten and β-catenin signaling act in a common pathway to regulate normal brain growth trajectory by controlling cell number, and disruption of this pathway can result in abnormal brain growth.
Collapse
Affiliation(s)
- Youjun Chen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Wen-Chin Huang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | - Julien Séjourné
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| | | | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
131
|
Lee BH, Smith T, Paciorkowski AR. Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav 2015; 47:191-201. [PMID: 25900226 PMCID: PMC4475437 DOI: 10.1016/j.yebeh.2015.03.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022]
Abstract
There is an increasing recognition of clinical overlap in patients presenting with epilepsy and autism spectrum disorder (ASD), and a great deal of new information regarding the genetic causes of both disorders is available. Several biological pathways appear to be involved in both disease processes, including gene transcription regulation, cellular growth, synaptic channel function, and maintenance of synaptic structure. We review several genetic disorders where ASD and epilepsy frequently co-occur, and we discuss the screening tools available for practicing neurologists and epileptologists to help determine which patients should be referred for formal ASD diagnostic evaluation. Finally, we make recommendations regarding the workflow of genetic diagnostic testing available for children with both ASD and epilepsy. This article is part of a Special Issue entitled "Autism and Epilepsy".
Collapse
Affiliation(s)
- Bo Hoon Lee
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Tristram Smith
- Division of Neurodevelopmental and Behavioral Pediatrics, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Alex R Paciorkowski
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA; Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
132
|
Wong M, Roper SN. Genetic animal models of malformations of cortical development and epilepsy. J Neurosci Methods 2015; 260:73-82. [PMID: 25911067 DOI: 10.1016/j.jneumeth.2015.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Abstract
Malformations of cortical development constitute a variety of pathological brain abnormalities that commonly cause severe, medically-refractory epilepsy, including focal lesions, such as focal cortical dysplasia, heterotopias, and tubers of tuberous sclerosis complex, and diffuse malformations, such as lissencephaly. Although some cortical malformations result from environmental insults during cortical development in utero, genetic factors are increasingly recognized as primary pathogenic factors across the entire spectrum of malformations. Genes implicated in causing different cortical malformations are involved in a variety of physiological functions, but many are focused on regulation of cell proliferation, differentiation, and neuronal migration. Advances in molecular genetic methods have allowed the engineering of increasingly sophisticated animal models of cortical malformations and associated epilepsy. These animal models have identified some common mechanistic themes shared by a number of different cortical malformations, but also revealed the diversity and complexity of cellular and molecular mechanisms that lead to the development of the pathological lesions and resulting epileptogenesis.
Collapse
Affiliation(s)
- Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Steven N Roper
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
133
|
Zou H, Ding Y, Shi W, Xu X, Gong A, Zhang Z, Liu J. MicroRNA-29c/PTEN pathway is involved in mice brain development and modulates neurite outgrowth in PC12 cells. Cell Mol Neurobiol 2015; 35:313-322. [PMID: 25352418 PMCID: PMC11486311 DOI: 10.1007/s10571-014-0126-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022]
Abstract
Growing evidence indicates that microRNAs (miRNAs) are important mediators of brain development and neurite growth. However, the affected signaling mechanisms are not clearly clarified. In the present study, we confirm that miR-29c is expressed during mice brain development and increases neurite outgrowth via decreasing PTEN expression. We first screen the picked-out miR-29c up-regulated in PC12 cells induced by nerve growth factor (NGF). In silico analysis of possible miR-29c targets, VEGFA, MAPK3, PDGFB, and PTEN mRNA are proposed as relatively likely putative binding sites for miR-29c. Subsequently, we detect that miR-29c is involved in brain development and has a negative relationship with the expression of PTEN. Then, using luciferase reporter assay,we demonstrate that miR-29c could directly target to the 3'-UTR of PTEN mRNA and result in down-expression of PTEN. By infecting PC12 cells with lentiviral pLKO-miR-29c or control, we also find that increasing levels of miR-29c markedly increase Akt phosphorylation level, and thus, promote neurite outgrowth of PC12 cells. Together, our results identify that miR-29c is required for mice brain development and modulates neurite outgrowth in PC12 cells via targeting PTEN and has a promising therapeutic target for neural disease.
Collapse
Affiliation(s)
- Hongjun Zou
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu, 213003, China
| | - Ya Ding
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu, 213003, China
| | - Weifeng Shi
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Xu Xu
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu, 213003, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jinbo Liu
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu, 213003, China.
- Department of Orthopaedics, The First People's Hospital of Changzhou, School of Medicine, Third Affiliated Hospital of Suzhou University, No. 185 of Juqian Street, Changzhou, 213000, China.
| |
Collapse
|
134
|
Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive. J Neurosci 2015; 35:943-59. [PMID: 25609613 DOI: 10.1523/jneurosci.3144-14.2015] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons.
Collapse
|
135
|
Nguyen LH, Brewster AL, Clark ME, Regnier-Golanov A, Sunnen CN, Patil VV, D'Arcangelo G, Anderson AE. mTOR inhibition suppresses established epilepsy in a mouse model of cortical dysplasia. Epilepsia 2015; 56:636-46. [PMID: 25752454 DOI: 10.1111/epi.12946] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hyperactivation of the mechanistic target of rapamycin (mTOR; also known as mammalian target of rapamycin) pathway has been demonstrated in human cortical dysplasia (CD) as well as in animal models of epilepsy. Although inhibition of mTOR signaling early in epileptogenesis suppressed epileptiform activity in the neuron subset-specific Pten knockout (NS-Pten KO) mouse model of CD, the effects of mTOR inhibition after epilepsy is fully established were not previously examined in this model. Here, we investigated whether mTOR inhibition suppresses epileptiform activity and other neuropathological correlates in adult NS-Pten KO mice with severe and well-established epilepsy. METHODS The progression of epileptiform activity, mTOR pathway dysregulation, and associated neuropathology with age in NS-Pten KO mice were evaluated using video-electroencephalography (EEG) recordings, Western blotting, and immunohistochemistry. A cohort of NS-Pten KO mice was treated with the mTOR inhibitor rapamycin (10 mg/kg i.p., 5 days/week) starting at postnatal week 9 and video-EEG monitored for epileptiform activity. Western blotting and immunohistochemistry were performed to evaluate the effects of rapamycin on the associated pathology. RESULTS Epileptiform activity worsened with age in NS-Pten KO mice, with parallel increases in the extent of hippocampal mTOR complex 1 and 2 (mTORC1 and mTORC2, respectively) dysregulation and progressive astrogliosis and microgliosis. Rapamycin treatment suppressed epileptiform activity, improved baseline EEG activity, and increased survival in severely epileptic NS-Pten KO mice. At the molecular level, rapamycin treatment was associated with a reduction in both mTORC1 and mTORC2 signaling and decreased astrogliosis and microgliosis. SIGNIFICANCE These findings reveal a wide temporal window for successful therapeutic intervention with rapamycin in the NS-Pten KO mouse model, and they support mTOR inhibition as a candidate therapy for established, late-stage epilepsy associated with CD and genetic dysregulation of the mTOR pathway.
Collapse
Affiliation(s)
- Lena H Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, U.S.A; The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, U.S.A; The Gordon and Mary Cain Pediatric Neurology Research Foundation Laboratories, Texas Children's Hospital, Houston, Texas, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Jansen LA, Mirzaa GM, Ishak GE, O'Roak BJ, Hiatt JB, Roden WH, Gunter SA, Christian SL, Collins S, Adams C, Rivière JB, St-Onge J, Ojemann JG, Shendure J, Hevner RF, Dobyns WB. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 2015; 138:1613-28. [PMID: 25722288 DOI: 10.1093/brain/awv045] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/22/2014] [Indexed: 11/15/2022] Open
Abstract
Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum.
Collapse
Affiliation(s)
- Laura A Jansen
- 1 University of Virginia, Neurology, Charlottesville, VA, USA 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA
| | - Ghayda M Mirzaa
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA 3 University of Washington, Paediatrics, Seattle, WA, USA
| | - Gisele E Ishak
- 4 Seattle Children's Hospital, Radiology, Seattle, WA, USA
| | - Brian J O'Roak
- 5 University of Washington, Genome Sciences, Seattle, WA, USA 6 Oregon Health and Science University, Molecular and Medical Genetics, Portland, OR, USA
| | - Joseph B Hiatt
- 5 University of Washington, Genome Sciences, Seattle, WA, USA
| | - William H Roden
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA
| | - Sonya A Gunter
- 1 University of Virginia, Neurology, Charlottesville, VA, USA
| | - Susan L Christian
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA
| | - Sarah Collins
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA
| | - Carissa Adams
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA
| | - Jean-Baptiste Rivière
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA 7 Université de Bourgogne, Equipe Génétique des Anomalies du Développement, Dijon, France
| | - Judith St-Onge
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA 7 Université de Bourgogne, Equipe Génétique des Anomalies du Développement, Dijon, France
| | | | - Jay Shendure
- 5 University of Washington, Genome Sciences, Seattle, WA, USA
| | - Robert F Hevner
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA 8 University of Washington, Neurosurgery, Seattle, WA, USA
| | - William B Dobyns
- 2 Seattle Children's Research Institute, Centre for Integrative Brain Research, Seattle, WA, USA 3 University of Washington, Paediatrics, Seattle, WA, USA
| |
Collapse
|
137
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
138
|
Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM, Townamchai N, Gerriets VA, Rathmell JC, Sharpe AH, Bluestone JA, Turka LA. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol 2015; 16:188-96. [PMID: 25559257 PMCID: PMC4297515 DOI: 10.1038/ni.3077] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022]
Abstract
Foxp3(+) regulatory T cells (Treg cells) are required for immunological homeostasis. One notable distinction between conventional T cells (Tconv cells) and Treg cells is differences in the activity of phosphatidylinositol-3-OH kinase (PI(3)K); only Tconv cells downregulate PTEN, the main negative regulator of PI(3)K, upon activation. Here we found that control of PI(3)K in Treg cells was essential for lineage homeostasis and stability. Mice lacking Pten in Treg cells developed an autoimmune-lymphoproliferative disease characterized by excessive T helper type 1 (TH1) responses and B cell activation. Diminished control of PI(3)K activity in Treg cells led to reduced expression of the interleukin-2 (IL-2) receptor α subunit CD25, accumulation of Foxp3(+)CD25(-) cells and, ultimately, loss of expression of the transcription factor Foxp3 in these cells. Collectively, our data demonstrate that control of PI(3)K signaling by PTEN in Treg cells is critical for maintaining their homeostasis, function and stability.
Collapse
Affiliation(s)
- Alexandria Huynh
- Division of Medical Sciences, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Michel DuPage
- Diabetes Center and the Department of Medicine, University of California - San Francisco, San Francisco, CA
| | - Bhavana Priyadharshini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Peter T. Sage
- Division of Immunology, Department of Microbiology, Harvard Medical School, Boston, MA
| | - Jason Quiros
- Diabetes Center and the Department of Medicine, University of California - San Francisco, San Francisco, CA
| | - Christopher M. Borges
- Division of Medical Sciences, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Natavudh Townamchai
- Division of Nephrology, Department of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Valerie A. Gerriets
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Jeffrey C. Rathmell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Arlene H. Sharpe
- Division of Immunology, Department of Microbiology, Harvard Medical School, Boston, MA
| | - Jeffrey A. Bluestone
- Diabetes Center and the Department of Medicine, University of California - San Francisco, San Francisco, CA
| | - Laurence A. Turka
- Division of Medical Sciences, Harvard Medical School, Boston, MA
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
139
|
Shima A, Nitta N, Suzuki F, Laharie AM, Nozaki K, Depaulis A. Activation of mTOR signaling pathway is secondary to neuronal excitability in a mouse model of mesio-temporal lobe epilepsy. Eur J Neurosci 2015; 41:976-88. [DOI: 10.1111/ejn.12835] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Ayako Shima
- Department of Neurosurgery; Shiga University of Medical Science, Seta-Tsukinowa-Cho; Otsu Shiga 520-2192 Japan
- Department of Neurosurgery; Koto Memorial Hospital; Higashioumi Shiga Japan
| | - Naoki Nitta
- Department of Neurosurgery; Shiga University of Medical Science, Seta-Tsukinowa-Cho; Otsu Shiga 520-2192 Japan
- Inserm, U836; Grenoble France
- Grenoble Institut des Neurosciences; University of Grenoble Alpes; Grenoble France
| | - Fumio Suzuki
- Department of Neurosurgery; Koto Memorial Hospital; Higashioumi Shiga Japan
| | - Anne-Marie Laharie
- Inserm, U836; Grenoble France
- Grenoble Institut des Neurosciences; University of Grenoble Alpes; Grenoble France
| | - Kazuhiko Nozaki
- Department of Neurosurgery; Shiga University of Medical Science, Seta-Tsukinowa-Cho; Otsu Shiga 520-2192 Japan
| | - Antoine Depaulis
- Inserm, U836; Grenoble France
- Grenoble Institut des Neurosciences; University of Grenoble Alpes; Grenoble France
- CHU de Grenoble; Hôpital Michallon; Grenoble France
| |
Collapse
|
140
|
Abstract
Three theories of regeneration dominate neuroscience today, all purporting to explain why the adult central nervous system (CNS) cannot regenerate. One theory proposes that Nogo, a molecule expressed by myelin, prevents axonal growth. The second theory emphasizes the role of glial scars. The third theory proposes that chondroitin sulfate proteoglycans (CSPGs) prevent axon growth. Blockade of Nogo, CSPG, and their receptors indeed can stop axon growth in vitro and improve functional recovery in animal spinal cord injury (SCI) models. These therapies also increase sprouting of surviving axons and plasticity. However, many investigators have reported regenerating spinal tracts without eliminating Nogo, glial scar, or CSPG. For example, many motor and sensory axons grow spontaneously in contused spinal cords, crossing gliotic tissue and white matter surrounding the injury site. Sensory axons grow long distances in injured dorsal columns after peripheral nerve lesions. Cell transplants and treatments that increase cAMP and neurotrophins stimulate motor and sensory axons to cross glial scars and to grow long distances in white matter. Genetic studies deleting all members of the Nogo family and even the Nogo receptor do not always improve regeneration in mice. A recent study reported that suppressing the phosphatase and tensin homolog (PTEN) gene promotes prolific corticospinal tract regeneration. These findings cannot be explained by the current theories proposing that Nogo and glial scars prevent regeneration. Spinal axons clearly can and will grow through glial scars and Nogo-expressing tissue under some circumstances. The observation that deleting PTEN allows corticospinal tract regeneration indicates that the PTEN/AKT/mTOR pathway regulates axonal growth. Finally, many other factors stimulate spinal axonal growth, including conditioning lesions, cAMP, glycogen synthetase kinase inhibition, and neurotrophins. To explain these disparate regenerative phenomena, I propose that the spinal cord has evolved regenerative mechanisms that are normally suppressed by multiple extrinsic and intrinsic factors but can be activated by injury, mediated by the PTEN/AKT/mTOR, cAMP, and GSK3b pathways, to stimulate neural growth and proliferation.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
141
|
Zhang W, Thamattoor AK, LeRoy C, Buckmaster PS. Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy. Hippocampus 2014; 25:594-604. [PMID: 25488607 DOI: 10.1002/hipo.22396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 11/07/2022]
Abstract
Numerous hypotheses of temporal lobe epileptogenesis have been proposed, and several involve hippocampal mossy cells. Building on previous hypotheses we sought to test the possibility that after epileptogenic injuries surviving mossy cells develop into super-connected seizure-generating hub cells. If so, they might require more cellular machinery and consequently have larger somata, elongate their dendrites to receive more synaptic input, and display higher frequencies of miniature excitatory synaptic currents (mEPSCs). To test these possibilities pilocarpine-treated mice were evaluated using GluR2-immunocytochemistry, whole-cell recording, and biocytin-labeling. Epileptic pilocarpine-treated mice displayed substantial loss of GluR2-positive hilar neurons. Somata of surviving neurons were 1.4-times larger than in controls. Biocytin-labeled mossy cells also were larger in epileptic mice, but dendritic length per cell was not significantly different. The average frequency of mEPSCs of mossy cells recorded in the presence of tetrodotoxin and bicuculline was 3.2-times higher in epileptic pilocarpine-treated mice as compared to controls. Other parameters of mEPSCs were similar in both groups. Average input resistance of mossy cells in epileptic mice was reduced to 63% of controls, which is consistent with larger somata and would tend to make surviving mossy cells less excitable. Other intrinsic physiological characteristics examined were similar in both groups. Increased excitatory synaptic input is consistent with the hypothesis that surviving mossy cells develop into aberrantly super-connected seizure-generating hub cells, and soma hypertrophy is indirectly consistent with the possibility of axon sprouting. However, no obvious evidence of hyperexcitable intrinsic physiology was found. Furthermore, similar hypertrophy and hyper-connectivity has been reported for other neuron types in the dentate gyrus, suggesting mossy cells are not unique in this regard. Thus, findings of the present study reveal epilepsy-related changes in mossy cell anatomy and synaptic input but do not strongly support the hypothesis that mossy cells develop into seizure-generating hub cells.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | | | | |
Collapse
|
142
|
Spinelli L, Black FM, Berg JN, Eickholt BJ, Leslie NR. Functionally distinct groups of inherited PTEN mutations in autism and tumour syndromes. J Med Genet 2014; 52:128-34. [PMID: 25527629 PMCID: PMC4316932 DOI: 10.1136/jmedgenet-2014-102803] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Germline mutations in the phosphatase PTEN are associated with diverse human pathologies, including tumour susceptibility, developmental abnormalities and autism, but any genotype-phenotype relationships are poorly understood. METHODS We have studied the functional consequences of seven PTEN mutations identified in patients diagnosed with autism and macrocephaly and five mutations from severe tumour bearing sufferers of PTEN hamartoma tumour syndrome (PHTS). RESULTS All seven autism-associated PTEN mutants investigated retained the ability to suppress cellular AKT signalling, although five were highly unstable. Observed effects on AKT also correlated with the ability to suppress soma size and the length and density of dendritic spines in primary neurons. Conversely, all five PTEN mutations from severe cases of PHTS appeared to directly and strongly disrupt the ability to inhibit AKT signalling. CONCLUSIONS Our work implies that alleles causing incomplete loss of PTEN function are more commonly linked to autism than to severe PHTS cases.
Collapse
Affiliation(s)
- Laura Spinelli
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, UK
| | - Fiona M Black
- Clinical Genetics, School of Medicine, University of Dundee, Dundee, UK
| | - Jonathan N Berg
- Clinical Genetics, School of Medicine, University of Dundee, Dundee, UK
| | - Britta J Eickholt
- Cluster of Excellence NeuroCure and Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
143
|
Is Cytoplasmic PTEN a Specific Target for Neuronal Survival? Mol Neurobiol 2014; 52:1758-1764. [DOI: 10.1007/s12035-014-8922-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/30/2014] [Indexed: 01/16/2023]
|
144
|
Maire CL, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, DiTomaso E, Ligon KL. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells 2014; 32:313-26. [PMID: 24395742 DOI: 10.1002/stem.1590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 11/07/2022]
Abstract
Therapeutic modulation of phosphatidylinositol 3-kinase (PI3K)/PTEN signaling is currently being explored for multiple neurological indications including brain tumors and seizure disorders associated with cortical malformations. The effects of PI3K/PTEN signaling are highly cell context dependent but the function of this pathway in specific subsets of neural stem/progenitor cells generating oligodendroglial lineage cells has not been fully studied. To address this, we created Olig2-cre:Pten(fl/fl) mice that showed a unique pattern of Pten loss and PI3K activation in Olig2-lineage cells. Olig2-cre:Pten(fl/fl) animals progressively developed central nervous system white matter hypermyelination by 3 weeks of age leading to later onset leukodystrophy, chronic neurodegeneration, and death by 9 months. In contrast, during immediate postnatal development, oligodendroglia were unaffected but abnormal and accelerated differentiation of lateral subventricular zone stem cells produced calretinin-positive interneuron dysplasia. Neural stem cells isolated from Olig2-cre:Pten(fl/fl) mice also exhibited accelerated differentiation and proliferation into calretinin-positive interneurons and oligodendrocytes indicating such effects are cell autonomous. Opposition of the pathway by treatment of human primary neural progenitor cells (NPCs) with the PI3K inhibitor, NVP-BKM120, blocked in vitro differentiation of neurons and oligodendroglia indicating PI3K/PTEN effects on NPCs can be bidirectional. In summary, our results suggest Pten is a developmental rheostat regulating interneuron and oligodendroglial differentiation and support testing of PI3K modulating drugs as treatment for developmental and myelination disorders. However, such agents may need to be administered at ages that minimize potential effects on early stem/progenitor cell development.
Collapse
Affiliation(s)
- Cécile L Maire
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Santini E, Klann E. Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Sci Signal 2014; 7:re10. [PMID: 25351249 DOI: 10.1126/scisignal.2005832] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of heritable neurodevelopmental disorders. Symptoms of ASD, which include deficits in social interaction skills, impaired communication ability, and ritualistic-like repetitive behaviors, appear in early childhood and continue throughout life. Genetic studies have revealed at least two clusters of genes frequently associated with ASD and intellectual disability: those encoding proteins involved in translational control and those encoding proteins involved in synaptic function. We hypothesize that mutations occurring in these two clusters of genes interfere with interconnected downstream signaling pathways in neuronal cells to cause ASD symptomatology. In this review, we discuss the monogenic forms of ASD caused by mutations in genes encoding for proteins that regulate translation and synaptic function. Specifically, we describe the function of these proteins, the intracellular signaling pathways that they regulate, and the current mouse models used to characterize the synaptic and behavioral features associated with their mutation. Finally, we summarize recent studies that have established a connection between mRNA translation and synaptic function in models of ASD and propose that dysregulation of one has a detrimental impact on the other.
Collapse
Affiliation(s)
- Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
146
|
McMahon JJ, Yu W, Yang J, Feng H, Helm M, McMahon E, Zhu X, Shin D, Huang Y. Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice. Neurobiol Dis 2014; 73:296-306. [PMID: 25315683 DOI: 10.1016/j.nbd.2014.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 11/15/2022] Open
Abstract
Epilepsy and autism spectrum disorder (ASD) are common comorbidities of one another. Despite the prevalent correlation between the two disorders, few studies have been able to elucidate a mechanistic link. We demonstrate that forebrain specific Tsc1 deletion in mice causes epilepsy and autism-like behaviors, concomitant with disruption of 5-HT neurotransmission. We find that epileptiform activity propagates to the raphe nuclei, resulting in seizure-dependent hyperactivation of mTOR in 5-HT neurons. To dissect whether mTOR hyperactivity in 5-HT neurons alone was sufficient to recapitulate an autism-like phenotype we utilized Tsc1flox/flox;Slc6a4-cre mice, in which mTOR is restrictively hyperactivated in 5-HT neurons. Tsc1flox/flox;Slc6a4-cre mice displayed alterations of the 5-HT system and autism-like behaviors, without causing epilepsy. Rapamycin treatment in these mice was sufficient to rescue the phenotype. We conclude that the spread of seizure activity to the brainstem is capable of promoting hyperactivation of mTOR in the raphe nuclei, which in turn promotes autism-like behaviors. Thus our study provides a novel mechanism describing how epilepsy can contribute to the development of autism-like behaviors, suggesting new therapeutic strategies for autism.
Collapse
Affiliation(s)
- John J McMahon
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Wilson Yu
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Jun Yang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Haihua Feng
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Meghan Helm
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Elizabeth McMahon
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Xinjun Zhu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | - Damian Shin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Yunfei Huang
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
147
|
Haws ME, Jaramillo TC, Espinosa F, Widman AJ, Stuber GD, Sparta DR, Tye KM, Russo SJ, Parada LF, Stavarache M, Kaplitt M, Bonci A, Powell CM. PTEN knockdown alters dendritic spine/protrusion morphology, not density. J Comp Neurol 2014; 522:1171-90. [PMID: 24264880 DOI: 10.1002/cne.23488] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 12/12/2022]
Abstract
Mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology by using fluorescent dye confocal imaging. Contrary to previous studies in the dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory postsynaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in the dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors.
Collapse
Affiliation(s)
- Michael E Haws
- Department of Neurology & Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-8813; Neuroscience Graduate Program, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390-8813
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Carnero A, Paramio JM. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models. Front Oncol 2014; 4:252. [PMID: 25295225 PMCID: PMC4172058 DOI: 10.3389/fonc.2014.00252] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/03/2014] [Indexed: 12/12/2022] Open
Abstract
When PI3K (phosphatidylinositol-3 kinase) is activated by receptor tyrosine kinases, it phosphorylates PIP2 to generate PIP3 and activates the signaling pathway. Phosphatase and tensin homolog deleted on chromosome 10 dephosphorylates PIP3 to PIP2, and thus, negatively regulates the pathway. AKT (v-akt murine thymoma viral oncogene homolog; protein kinase B) is activated downstream of PIP3 and mediates physiological processes. Furthermore, substantial crosstalk exists with other signaling networks at all levels of the PI3K pathway. Because of its diverse array, gene mutations, and amplifications and also as a consequence of its central role in several signal transduction pathways, the PI3K-dependent axis is frequently activated in many tumors and is an attractive therapeutic target. The preclinical testing and analysis of these novel therapies requires appropriate and well-tailored systems. Mouse models in which this pathway has been genetically modified have been essential in understanding the role that this pathway plays in the tumorigenesis process. Here, we review cancer mouse models in which the PI3K/AKT pathway has been genetically modified.
Collapse
Affiliation(s)
- Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla , Seville , Spain
| | - Jesus M Paramio
- Molecular Oncology Unit, Division of Biomedicine, CIEMAT , Madrid , Spain ; Oncogenomics Unit, Biomedical Research Institute, "12 de Octubre" University Hospital , Madrid , Spain
| |
Collapse
|
149
|
Fragoso R, Barata JT. PTEN and leukemia stem cells. Adv Biol Regul 2014; 56:22-29. [PMID: 24961634 DOI: 10.1016/j.jbior.2014.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Leukemia stem cells (LSCs) are considered responsible for leukemia initiation, relapse and resistance to chemotherapy. These cells have self-renewal capacity and originate the other cells in the leukemia pool. Therefore, in order to completely eradicate leukemia cells and consequently cure the disease, therapies should in principle necessarily target LSCs. However, the fact that LSCs share functional and phenotypic properties with normal hematopoietic stem cells (HSCs) poses a significant challenge: how to target LSCs without damaging normal HSCs and compromising hematopoiesis? The discovery that PTEN regulates LSCs and HSCs through different mechanisms, demonstrated that it is possible to identify pathways that differentially impact leukemia and normal stem cell function and opened new therapeutic perspectives for the selective elimination of LSCs. In this review, we briefly discuss the mechanisms that regulate PTEN function in LSCs and HSCs and their potential for the development of LSC-targeted therapies.
Collapse
Affiliation(s)
- Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
150
|
Ciuffreda L, Falcone I, Incani UC, Del Curatolo A, Conciatori F, Matteoni S, Vari S, Vaccaro V, Cognetti F, Milella M. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Adv Biol Regul 2014; 56:66-80. [PMID: 25088603 DOI: 10.1016/j.jbior.2014.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability. PTEN prevents tumorigenesis through multiple mechanisms and regulates a plethora of cellular processes, including survival, proliferation, energy metabolism and cellular architecture. Moreover, recent studies have demonstrated that PTEN is able to exit, exist, and function outside the cell, allowing for inhibition of the PI3K pathway in neighboring cells in a paracrine fashion. Most recently, studies have shown that PTEN is also critical for stem cell maintenance and that PTEN loss can lead to the emergence and proliferation of cancer stem cell (CSC) clones. Depending on the cellular and tissue context of origin, PTEN deletion may result in increased self-renewal capacity or normal stem cell exhaustion and PTEN-defìcient stem and progenitor cells have been reported in prostate, lung, intestinal, and pancreatic tissues before tumor formation; moreover, reversible or irreversible PTEN loss is frequently observed in CSC from a variety of solid and hematologic malignancies, where it may contribute to the functional phenotype of CSC. In this review, we will focus on the role of PTEN expression and function and downstream pathway activation in cancer stem cell biology and regulation of the tumorigenic potential; the emerging role of PTEN in mediating the crosstalk between the PI3K and MAPK pathways will also be discussed, together with prospects for the therapeutic targeting of tumors lacking PTEN expression.
Collapse
Affiliation(s)
- Ludovica Ciuffreda
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Italia Falcone
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Ursula Cesta Incani
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Anais Del Curatolo
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Fabiana Conciatori
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Sabrina Vari
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Vanja Vaccaro
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Michele Milella
- Division of Medical Oncology A, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|