101
|
Tao L, Zhou Z, Tao J, Zhang L, Wu C, Li J, Yue D, Wu Z, Zhang Z, Yuan Z, Huang J, Wang B. High contribution of new particle formation to ultrafine particles in four seasons in an urban atmosphere in south China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164202. [PMID: 37207765 DOI: 10.1016/j.scitotenv.2023.164202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Ultra fine particles (UFP) cover the size range of both nucleation mode particles (NUC, Dp < 25 nm) and Aitken mode particles (AIT, 25 nm < Dp < 100 nm), and play important roles in radiative forcing and human health. In this study, we identified new particle formation (NPF) events and undefined events, explored their potential formation mechanism, and quantified their contributions to UFP number concentration (NUFP) in urban Dongguan of the Pearl River Delta (PRD) region. Field campaigns were carried out in four seasons in 2019 to measure particle number concentration in the size range of 4.7-673.2 nm, volatile organic compounds (VOCs), gaseous pollutants, chemical compositions in PM2.5, and meteorological parameters. The frequency of the occurrence of NPF, as indicated by a significant increase in NUC number concentration (NNUC), was 26 %, and that of the undefined event, as indicated by substantial increases in NNUC or AIT number concentration (NAIT), was 32 % during the whole campaign period. The NPF events mainly occurred in autumn (with a frequency of 59 %) and winter (33 %) and only occasionally in spring (4 %) and summer (4 %). On the contrary, the frequencies of the undefined events were higher in spring (52 %) and summer (38 %) than in autumn (19 %) and winter (22 %). The burst periods of the NPF events mainly occurred before 11:00 Local Time (LT), while those of the undefined events mainly occurred after 11:00 LT. Accompanied to NPF events were low concentrations of VOCs and high concentrations of O3. The undefined events by NUC or AIT were associated with the upwind transport of newly formed particles. Source apportionment analysis suggested that NPF and undefined events were the largest contributor to NNUC (51 ± 28 %), NAIT (41 ± 26 %), and NUFP (45 ± 27 %), while coal combustion and biomass burning, and traffic emission were the second largest contributor to NNUC (22 ± 20 %) and NAIT (39 ± 28 %), respectively.
Collapse
Affiliation(s)
- Li Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Zhen Zhou
- Dongguan Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Dongguan, China
| | - Jun Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Cheng Wu
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, China
| | - Jiawei Li
- RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Dingli Yue
- Guangdong Ecological and Environmental Monitoring Center, Guangzhou, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Zhisheng Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Ziyang Yuan
- Sailbri Cooper Inc., Tigard, Oregon, United States
| | - Junjun Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| |
Collapse
|
102
|
Han D, Chen R, Kan H, Xu Y. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:95-106. [PMID: 38074989 PMCID: PMC10702920 DOI: 10.1016/j.eehl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024]
Abstract
Ambient particles severely threaten human health worldwide. Compared to larger particles, ultrafine particles (UFPs) are highly concentrated in ambient environments, have a larger specific surface area, and are retained for a longer time in the lung. Recent studies have found that they can be transported into various extra-pulmonary organs by crossing the air-blood barrier (ABB). Therefore, to understand the adverse effects of UFPs, it is crucial to thoroughly investigate their bio-distribution and clearance pathways in vivo after inhalation, as well as their toxicological mechanisms. This review highlights emerging evidence on the bio-distribution of UFPs in pulmonary and extra-pulmonary organs. It explores how UFPs penetrate the ABB, the blood-brain barrier (BBB), and the placental barrier (PB) and subsequently undergo clearance by the liver, kidney, or intestine. In addition, the potential underlying toxicological mechanisms of UFPs are summarized, providing fundamental insights into how UFPs induce adverse health effects.
Collapse
Affiliation(s)
- Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
103
|
Pradhan SH, Gibb M, Kramer AT, Sayes CM. Peripheral (lung-to-brain) exposure to diesel particulate matter induces oxidative stress and increased markers for systemic inflammation. ENVIRONMENTAL RESEARCH 2023; 231:116267. [PMID: 37257747 DOI: 10.1016/j.envres.2023.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Combustion-derived air pollution is a complex environmental toxicant that has become a global health concern due to urbanization. Air pollution contains pro-inflammatory stimulants such as fine and ultrafine particulate matter, gases, volatile organic compounds, and metals. This study is focused on the particulate phase, which has been shown to induce systemic inflammation after chronic exposure due to its ability to travel to the lower airway, resulting in the activation of local immune cell populations, releasing acute phase reactants to mitigate ongoing inflammation. The systemic response is a potential mechanism for the co-morbidity associated with regions with high pollution and neuropathology. We exposed diesel particulate matter (DPM) to a pulmonary cell-derived in vitro model where macrophages mimic the diffusion of cytokines into the peripheral circulation to microglia. Alveolar macrophages (transformed U937) were inoculated with resuspended DPM in an acute exposure (24-h incubation) and analyzed for MCP-1 expression and acute phase reactants (IL-1β, IL-6, IL-8, and TNF-α). Post-exposure serum was collected and filtered from cultured alveolar macrophages, introduced to a healthy culture of microglial cells (HMC3), and measured for neurotoxic cytokines, oxidative stress, and pattern recognition receptors. After DPM exposure, the macrophages significantly upregulated all measured acute phase reactants, increased H2O2 production, and increased MCP-1 expression. After collection and filtration to remove excess particulates, microglia cells were incubated with the collected serum for 48 h to allow for cytokine diffusion between the periphery of microglia. Microglia significantly upregulated IL-6, IL-8, and oxidative stress with a moderate increase in IL-1β and TNF-α. As a marker required for signaling tissue damage, CD14 indicated that compared to direct inoculation of DPM, peripheral exposure resulted in the potent activation of microglia cells. The specificity and potency of the response have implications for neuropathology through lung-to-brain mechanisms after inhalation of environmental pollutants.
Collapse
Affiliation(s)
- Sahar H Pradhan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA
| | - Alec T Kramer
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Sciences, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
104
|
Bagon BB, Lee J, Matienzo ME, Lee SJ, Pak SW, Kim K, Lee J, Lee CM, Shin IS, Moon C, Park MJ, Kim DI. Cold-induced adaptive thermogenesis is impaired by exposure of Asian sand dust in mice. J Therm Biol 2023; 116:103675. [PMID: 37517326 DOI: 10.1016/j.jtherbio.2023.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Desertification and desert sandstorms caused by the worsening global warming pose increasing risks to human health. In particular, Asian sand dust (ASD) exposure has been related to an increase in mortality and hospital admissions for respiratory diseases. In this study, we investigated the effects of ASD on metabolic tissues in comparison to diesel particulate matter (DPM) that is known to cause adverse health effects. We found that larger lipid droplets were accumulated in the brown adipose tissues (BAT) of ASD-administered but not DPM-administered mice. Thermogenic gene expression was decreased in these mice as well. When ASD-administered mice were exposed to the cold, they failed to maintain their body temperature, suggesting that the ASD administration had led to impairments in cold-induced adaptive thermogenesis. However, impaired thermogenesis was not observed in DPM-administered mice. Furthermore, mice fed a high-fat diet that were chronically administered ASD demonstrated unexplained weight loss, indicating that chronic administration of ASD could be lethal in obese mice. We further identified that ASD-induced lung inflammation was not exacerbated in uncoupling protein 1 knockout mice, whose thermogenic capacity is impaired. Collectively, ASD exposure can impair cold-induced adaptive thermogenic responses in mice and increase the risk of mortality in obese mice.
Collapse
Affiliation(s)
- Bernadette B Bagon
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Junhyeong Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Merc Emil Matienzo
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Keon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Jeongmin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Chang-Min Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea; Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea
| | - Min-Jung Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea.
| | - Dong-Il Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
105
|
Abdrabouh AES. Toxicological and histopathological alterations in the heart of young and adult albino rats exposed to mosquito coil smoke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93070-93087. [PMID: 37501034 PMCID: PMC10447284 DOI: 10.1007/s11356-023-28812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Mosquito coil repellents are well-known indoor air pollutant with significant health concerns. The present study investigated the toxic effects of mosquito coil smoke on the heart of young and adult male rats. The animals were subjected to the smoke for 6 h/day, 6 days/week, for 4 weeks. Within the first hour after lighting the coil, significant amounts of formaldehyde, total volatile organic compounds, and particulate matter (PM2.5 and PM10) were detected. Both exposed ages, particularly the young group, showed a significant increase in the activities of serum aspartate aminotransferase, lactate dehydrogenase, creatine kinase-MB, and the levels of troponin I, myoglobin, Na+ levels, lipid profile, and inflammatory markers (interleukin-6 and C-reactive protein) as well as a significant decrease in K+ levels and cardiac Na-K ATPase activity, indicating development of cardiac inflammation and dysfunction. Furthermore, the toxic stress response was validated by significant downregulation at expression of the detoxifying enzyme cytochrome p450. Histopathological studies in both age groups, especially the young group, revealed cardiomyocyte degeneration and necrotic areas. Moreover, upregulation at the pro-apoptotic markers, caspase3, P53, and cytochrome C expressions, was detected by immunohistochemical approach in heart sections of the exposed groups. Finally, the myocardial dysfunctional effects of the coil active ingredient, meperfluthrin, were confirmed by the docking results which indicated a high binding affinity of meperfluthrin, with Na-K ATPase and caspase 3. In conclusion, both the young and adult exposed groups experienced significant cardiac toxicity changes evidenced by cell apoptosis and histopathological alterations as well as disruption of biochemical indicators.
Collapse
|
106
|
Munoz A, Schmidt J, Suffet IHM, Tsai CSJ. Characterization of Emissions from Carbon Dioxide Laser Cutting Acrylic Plastics. ACS CHEMICAL HEALTH & SAFETY 2023; 30:182-192. [PMID: 37501918 PMCID: PMC10369487 DOI: 10.1021/acs.chas.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/07/2023] [Indexed: 07/29/2023]
Abstract
Carbon dioxide laser cutters are used to cut and engrave on various types of materials, including metals, wood, and plastics. Although many are equipped with fume extractors for removing airborne substances generated during laser cutting, gases and particulate matter can be released upon opening the lid after completion. This study focused on investigating laser cutting acrylic sheets and associated emissions. Real-time instruments were utilized to monitor both particulate concentrations and size distributions, while the patented Tsai diffusion sampler was used to collect particulate samples on a polycarbonate membrane and transmission electron microscopy (TEM) grid. Identification of released gases consisted of the use of gas sampling with Teflon gas bags followed by analysis using gas chromatography-mass spectrometry (GC-MS). A portable ambient infrared air analyzer was used to quantify the concentrations of the chemicals released by laser cutting activities. The results of the study found that a significant concentration of particulate matter, including nanoplastic particles ranging 15.4-86 nm in particle sizes, and microplastics with agglomerates were released each time the laser cutter lid was opened and were observed to gradually increase in concentration for a period of at least 20 min after the completion of a cut. The GC-MS gaseous samples primarily contained methyl methacrylate at a low level close to the detection limit of the infrared air analyzer.
Collapse
Affiliation(s)
- Alejandro Munoz
- Department
of Environmental Health Sciences, Fielding School of Public Health, University of California—Los Angeles, Los Angeles, California 90095-1735, United
States
| | - Jacob Schmidt
- Samueli
School of Engineering, University of California—Los
Angeles, Los Angeles, California 90095-1735, United States
| | - I. H. Mel Suffet
- Department
of Environmental Health Sciences, Fielding School of Public Health, University of California—Los Angeles, Los Angeles, California 90095-1735, United
States
| | - Candace Su-Jung Tsai
- Department
of Environmental Health Sciences, Fielding School of Public Health, University of California—Los Angeles, Los Angeles, California 90095-1735, United
States
| |
Collapse
|
107
|
Tamayo JM, Osman HC, Schwartzer JJ, Pinkerton K, Ashwood P. Characterizing the Neuroimmune Environment of Offspring in a Novel Model of Maternal Allergic Asthma and Particulate Matter Exposure. RESEARCH SQUARE 2023:rs.3.rs-3140415. [PMID: 37503062 PMCID: PMC10371118 DOI: 10.21203/rs.3.rs-3140415/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by the presence of decreased social interactions and an increase in stereotyped and repetitive behaviors. Epidemiology studies suggest that cases of ASD are on the rise. Similarly, rates of asthma are increasing, and the presence of maternal asthma during pregnancy increases the likelihood of a child being later diagnosed with ASD. Particulate matter (PM), via air pollution, is an environmental factor known to worsen the symptoms of asthma, but also, PM has been associated with increased risk of neuropsychiatric disorders including ASD. Despite the links between asthma and PM with neuropsychiatric disorders, there is a lack of laboratory models investigating combined prenatal exposure to asthma and PM on offspring neurodevelopment. Thus, we developed a novel mouse model that combines exposure to maternal allergic asthma (MAA) and ultrafine iron-soot (UIS), a common component of PM. In the current study, female BALB/c mice were primed for allergic asthma with ovalbumin (OVA) prior to pregnancy. Following mating and beginning on gestational day 2 (GD2), dams were exposed to either aerosolized OVA or phosphate buffered saline (PBS) for 1 hour. Following the 1-hour exposure, pregnant females were then exposed to UIS or clean air for 4 hours. Offspring brains were collected at postnatal days (P)15 and (P)35. Cortices and hippocampal regions were then isolated and assessed for changes in cytokines using a Luminex bead-based multiplex assay. Analyses identified changes in many cytokines across treatment groups at both timepoints in the cortex, including interleukin-1 beta (IL-1β), IL-2, IL-13, and IL-17, which remained elevated from P15 to P35 in all treatment conditions compared to controls. In the hippocampus at P15, elevations in cytokines were also identified across the treatment groups, namely interferon gamma (IFNγ) and IL-7. The combination of MAA and UIS exposure (MAA-UIS) during pregnancy resulted in an increase in microglia density in the hippocampus of offspring, as identified by IBA-1 staining. Together, these data indicate that exposure to MAA, UIS, and MAA-UIS result in changes in the neuroimmune environment of offspring that persist into adulthood.
Collapse
|
108
|
Soltanpour Z, Rasoulzadeh Y, Ansarin K, Seyedrezazadeh E, Mohammadian Y. Carcinogenic and non-carcinogenic risk of exposure to metal fume in different types of welding processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83728-83734. [PMID: 37349491 DOI: 10.1007/s11356-023-28258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The international agency for cancer research (IARC) has classified welding fumes as definitive carcinogens. The aim of the present study was to assess health risk due to exposure to welding fumes in different welding types. In this study, exposure to fumes of iron (Fe), chromium (Cr), and nickel (Ni) in the breathing zone air of 31 welder engaged in arc, argon and CO2 welding was assessed. Carcinogenic and non-carcinogenic risk assessments due to exposure to fumes were performed using the method proposed by the Environmental Protection Agency (EPA) by Monte Carlo simulation. The results showed that in the CO2 welding, concentration of Ni, Cr, and Fe was lower than the 8-h Time-Weighted Average Threshold Limit Value (TWA-TLV), recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). In argon welding, Cr and Fe concentrations were higher than the TWA-TLV. In arc welding, concentrations of Ni and Fe were more than the TWA-TLV. In addition, the risk of non-carcinogenicity due to exposure to Ni and Fe in all three types of welding was more than standard level (HQ>1). The results indicated that the welders are at health risk due to exposure to metal fumes. Preventive exposure control measures such as local ventilation need to be implemented in welding workplaces.
Collapse
Affiliation(s)
- Zahra Soltanpour
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Rasoulzadeh
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
109
|
Bramble K, Blanco MN, Doubleday A, Gassett AJ, Hajat A, Marshall JD, Sheppard L. Exposure Disparities by Income, Race and Ethnicity, and Historic Redlining Grade in the Greater Seattle Area for Ultrafine Particles and Other Air Pollutants. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:77004. [PMID: 37404015 PMCID: PMC10321236 DOI: 10.1289/ehp11662] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Growing evidence shows ultrafine particles (UFPs) are detrimental to cardiovascular, cerebrovascular, and respiratory health. Historically, racialized and low-income communities are exposed to higher concentrations of air pollution. OBJECTIVES Our aim was to conduct a descriptive analysis of present-day air pollution exposure disparities in the greater Seattle, Washington, area by income, race, ethnicity, and historical redlining grade. We focused on UFPs (particle number count) and compared with black carbon, nitrogen dioxide, and fine particulate matter (PM 2.5 ) levels. METHODS We obtained race and ethnicity data from the 2010 U.S. Census, median household income data from the 2006-2010 American Community Survey, and Home Owners' Loan Corporation (HOLC) redlining data from the University of Richmond's Mapping Inequality. We predicted pollutant concentrations at block centroids from 2019 mobile monitoring data. The study region encompassed much of urban Seattle, with redlining analyses restricted to a smaller region. To analyze disparities, we calculated population-weighted mean exposures and regression analyses using a generalized estimating equation model to account for spatial correlation. RESULTS Pollutant concentrations and disparities were largest for blocks with median household income of < $ 20,000 , Black residents, HOLC Grade D, and ungraded industrial areas. UFP concentrations were 4% lower than average for non-Hispanic White residents and higher than average for racialized groups (Asian, 3%; Black, 15%; Hispanic, 6%; Native American, 8%; Pacific Islander, 11%). For blocks with median household incomes of < $ 20,000 , UFP concentrations were 40% higher than average, whereas blocks with incomes of > $ 110,000 had UFP concentrations 16% lower than average. UFP concentrations were 28% higher for Grade D and 49% higher for ungraded industrial areas compared with Grade A. Disparities were highest for UFPs and lowest for PM 2.5 exposure levels. DISCUSSION Our study is one of the first to highlight large disparities with UFP exposures compared with multiple pollutants. Higher exposures to multiple air pollutants and their cumulative effects disproportionately impact historically marginalized groups. https://doi.org/10.1289/EHP11662.
Collapse
Affiliation(s)
- Kaya Bramble
- Department of Industrial & Systems Engineering, College of Engineering, University of Washington, Seattle, Washington, USA
| | - Magali N. Blanco
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Annie Doubleday
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Amanda J. Gassett
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Anjum Hajat
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Julian D. Marshall
- Department of Civil & Environmental Engineering, College of Engineering, University of Washington, Seattle, Washington, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
110
|
Edebeli J, Spirig C, Fluck S, Fierz M, Anet J. Spatiotemporal Heterogeneity of Lung-Deposited Surface Area in Zurich Switzerland: Lung-Deposited Surface Area as a New Routine Metric for Ambient Particle Monitoring. Int J Public Health 2023; 68:1605879. [PMID: 37457845 PMCID: PMC10338687 DOI: 10.3389/ijph.2023.1605879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Objective: To assess the spatiotemporal heterogeneity of lung-deposited particle surface area concentration (LDSA), while testing the long-term performance of a prototype of low-cost-low-maintenance LDSA sensors. One factor hampering epidemiological studies on fine to ultrafine particles (F-to-UFP) exposure is exposure error due to their high spatiotemporal heterogeneity, not reflected in particle mass. Though LDSA shows consistent associations between F-to-UFP exposure and health effects, LDSA data are limited. Methods: We measured LDSA in a network of ten sensors, including urban, suburban, and rural environments in Zurich, Switzerland. With traffic counts, traffic co-pollutant concentrations, and meteorological parameters, we assessed the drivers of the LDSA observations. Results: LDSA reflected the high spatiotemporal heterogeneity of F-to-UFP. With micrometeorological influences, local sources like road traffic, restaurants, air traffic, and residential combustion drove LDSA. The temporal pattern of LDSA reflected that of the local sources. Conclusion: LDSA may be a viable metric for inexpensively characterizing F-to-UFP exposure. The tested devices generated sound data and may significantly contribute to filling the LDSA exposure data gap, providing grounds for more statistically significant epidemiological studies and regulation of F-to-UFP.
Collapse
Affiliation(s)
- Jacinta Edebeli
- Center for Aviation, School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Curdin Spirig
- Center for Aviation, School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Stefan Fluck
- Center for Aviation, School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Martin Fierz
- Naneos Particle Solution GmbH, Windisch, Switzerland
| | - Julien Anet
- Center for Aviation, School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| |
Collapse
|
111
|
Alarabi AB, Mohsen A, Taleb ZB, Mizuguchi K, Alshbool FZ, Khasawneh FT. Predicting thrombotic cardiovascular outcomes induced by waterpipe-associated chemicals using comparative toxicogenomic database: Genes, phenotypes, and pathways. Life Sci 2023; 323:121694. [PMID: 37068705 PMCID: PMC10798163 DOI: 10.1016/j.lfs.2023.121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
Hookah, or waterpipe, is a tobacco smoking device that has gained popularity in the United States. A growing body of evidence demonstrates that waterpipe smoke (WPS) is associated with various adverse effects on human health, including infectious diseases, cancer, and cardiovascular diseases (CVDs), particularly thrombotic events. However, the molecular mechanisms through which WPS contributes to disease development remain unclear. In this study, we utilized an analytical approach based on the Comparative Toxicogenomics Database (CTD) to integrate chemical, gene, phenotype, and disease data to predict potential molecular mechanisms underlying the effects of WPS, based on its chemical and toxicant profile. Our analysis revealed that CVDs were among the top disease categories with regard to the number of curated interactions with WPS chemicals. We identified 5674 genes common between those modulated by WPS chemicals and traditional tobacco smoking. The CVDs with the most curated interactions with WPS chemicals were hypertension, atherosclerosis, and myocardial infarction, whereas "particulate matter", "heavy metals", and "nicotine" showed the highest number of curated interactions with CVDs. Our analysis predicted that the potential mechanisms underlying WPS-induced thrombotic diseases involve common phenotypes, such as inflammation, apoptosis, and cell proliferation, which are shared across all thrombotic diseases and the three aforementioned chemicals. In terms of enriched signaling pathways, we identified several, including chemokine and MAPK signaling, with particulate matter exhibiting the most statistically significant association with all 12 significant signaling pathways related to WPS chemicals. Collectively, our predictive comprehensive analysis provides evidence that WPS negatively impacts health and offers insights into the potential mechanisms through which it exerts these effects. This information should guide further research to explore and better understand the WPS and other tobacco product-related health consequences.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmacy Practice, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA.
| | - Attayab Mohsen
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Ziyad Ben Taleb
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0081, Japan
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA.
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX, USA.
| |
Collapse
|
112
|
Matthews B, Alsante AN, Brooks SD. Pollen Emissions of Subpollen Particles and Ice Nucleating Particles. ACS EARTH & SPACE CHEMISTRY 2023; 7:1207-1218. [PMID: 38357474 PMCID: PMC10863449 DOI: 10.1021/acsearthspacechem.3c00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 02/16/2024]
Abstract
Pollen grains significantly contribute to the aerosol population, and levels are predicted to increase in the future. Under humid atmospheric conditions, pollen grains can rupture creating pollen grain fragments referred to as subpollen particles (SPPs) which are dispersed into the atmosphere with wind. In this laboratory study, SPP emission factors were determined for ryegrass, Lolium sp., and giant ragweed,Ambrosia trifida, in terms of the number of SPPs produced per pollen grain and the number of SPPs produced per m2, which were compared to previously measured live oak,Quercus virginiana, emission factors. The SPP emission factors were 4.9 × 1013 ± 4.3 × 1013 SPPs per m2 for ryegrass, 1.3 × 1015 ± 1.1 × 1015 SPPs per m2 for giant ragweed, and 1.1 × 1015 ± 1.6 × 1015 SPPs per m2 for live oak. SPPs and whole pollen grains from these species were evaluated for their ice nucleation efficiency in immersion and contact mode freezing. Measurements of the ice nucleation efficiency indicate that SPPs are weakly effective INPs in immersion mode, but that pollen grains represent a source of moderately efficient INPs in immersion and contact modes.
Collapse
Affiliation(s)
- Brianna
H. Matthews
- Department
of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Alyssa N. Alsante
- Department
of Oceanography, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department
of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
113
|
Gan W, Manning KJ, Cleary EG, Fortinsky RH, Brugge D. Exposure to ultrafine particles and cognitive decline among older people in the United States. ENVIRONMENTAL RESEARCH 2023; 227:115768. [PMID: 36965813 PMCID: PMC10246447 DOI: 10.1016/j.envres.2023.115768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Some studies suggest that ambient particulate air pollution is associated with cognitive decline. However, the findings are mixed, and there is no relevant research examining the influences of ultrafine particles (UFP), which may have more toxicity than larger particles. We therefore conducted this study to investigate whether residential UFP exposure is associated with cognitive decline using data from the Alzheimer's Disease Research Centers in the United States. METHODS This is a longitudinal study of participants who were aged 65 years and older and had normal cognitive status at baseline. Residential UFP exposure, expressed as particle number concentrations (PNC), was assessed in 2016-2017 using a nationwide land use regression model, and was assigned to each participant using their 3-digit residential ZIP codes. Cognitive functions including memory, attention, language, executive function, and global function were assessed annually using 15 neuropsychological tests from March 2015 to February 2022. Linear mixed-effects models were used to examine the associations after adjustment for covariates including baseline age, sex, APOE ε4 status, race, education, smoking status, history of diabetes, quartiles of neighborhood median household income, and interaction terms of follow-up time with each covariate. RESULTS This study included 5646 participants (mean age 76 years, 65% female). On average, each participant had 4 annual visits. When PNC was treated as a continuous variable, there were no statistically or clinically significant changes in annual decline of each cognitive function in relation to an interquartile range elevation in PNC (4026 particles/cm3). Similarly, when PNC was treated as a categorical variable including five exposure groups, there were no linear exposure-response trends in annual decline of each cognitive function across the five exposure groups. CONCLUSIONS This study found no meaningful associations between residential UFP exposure and cognitive decline in global and domain-specific functions. There is a need for further research that assigns UFP exposure at a finer geographic scale.
Collapse
Affiliation(s)
- Wenqi Gan
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Kevin J Manning
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | - Richard H Fortinsky
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA; UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Doug Brugge
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
114
|
Ryu Y, Roh S, Joung YS. Assessing the cytotoxicity of aerosolized carbon black and benzo[a]pyrene with controlled physical and chemical properties on human lung epithelial cells. Sci Rep 2023; 13:9358. [PMID: 37291179 PMCID: PMC10250308 DOI: 10.1038/s41598-023-35586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023] Open
Abstract
Atmospheric particulate matter (PM) is a complex mixture of hazardous particles containing hundreds of inorganic and organic species. Organic components, such as carbon black (CB) and benzo[a]pyrene (BaP), are known to exhibit diverse genotoxic and carcinogenic effects. The toxicity of CB and polycyclic aromatic hydrocarbons has been well studied, however the combined toxicity is much less understood. A spray-drying system was used to control the size and chemical composition of PMs. PMs were prepared by loading BaP on three different sized CBs (0.1 μm, 2.5 μm, and 10 μm) to obtain BaP-unloaded CB (CB0.1, CB2.5, and CB10) and BaP-loaded CB (CB0.1-BaP, CB2.5-BaP, and CB10-BaP). We analyzed cell viability, levels of oxidative stress, and pro-inflammatory cytokines using human lung cells (A549 epithelial cells). Cell viability decreased when exposed to all PMs (PM0.1, PM2.5, and PM10), regardless of the presence of BaP. The increase in PM size due to BaP-adsorption to CB resulted in insufficient toxic effects on human lung cells compared to CB alone. Smaller CBs reduced cell viability, leading to reactive oxygen species formation, which can cause damage to cellular structures deliver more harmful substances. Additionally, small CBs were predominant in inducing the expression of pro-inflammatory cytokines in A549 epithelial cells. These results indicate that the size of CB is a key factor that immediately affects the inflammation of lung cells, compared to the presence of BaP.
Collapse
Affiliation(s)
- Youngri Ryu
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Soonjong Roh
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Young Soo Joung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea.
| |
Collapse
|
115
|
Felici G, Lachowicz JI, Milia S, Cannizzaro E, Cirrincione L, Congiu T, Jaremko M, Campagna M, Lecca LI. A pilot study of occupational exposure to ultrafine particles during 3D printing in research laboratories. Front Public Health 2023; 11:1144475. [PMID: 37333549 PMCID: PMC10272752 DOI: 10.3389/fpubh.2023.1144475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction 3D printing is increasingly present in research environments, and could pose health risks to users due to air pollution and particulate emissions. We evaluated the nanoparticulate emissions of two different 3D printers, utilizing either fused filament fabrication with polylactic acid, or stereolithography (SLA) with light curing resin. Methods Nanoparticulate emissions were evaluated in two different research environments, both by environmental measurements in the laboratory and by personal sampling. Results The SLA printer had higher nanoparticulate emissions, with an average concentration of 4,091 parts/cm3, versus 2,203 particles/cm3 for the fused filament fabrication printer. The collected particulate matter had variable morphology and elemental composition with a preponderance of carbon, sulfur and oxygen, the main byproducts. Discussion Our study implies that when considering the health risks of particulate emissions from 3D printing in research laboratories, attention should be given to the materials used and the type of 3D printer.
Collapse
Affiliation(s)
- Giorgio Felici
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Simone Milia
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Emanuele Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, Palermo, Italy
| | - Luigi Cirrincione
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, Palermo, Italy
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Luigi Isaia Lecca
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| |
Collapse
|
116
|
Zhang F, Zhu S, Tang H, Zhao D, Zhang X, Zhao G, Zhang X, Li T, Ruan L, Zhu W. Ambient particulate matter, a novel factor hindering life spans of HIV/AIDS patients: Evidence from a ten-year cohort study in Hubei, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162589. [PMID: 36871737 DOI: 10.1016/j.scitotenv.2023.162589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The life spans of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) patients have been extended in the era of antiretroviral therapy. However, few studies have considered the influence of the environment on the life expectancy of people living with HIV/AIDS. Several studies have investigated mortality and air pollution associations, but the evidence for associations between long-term exposure to particulate matter (PM) and mortality among HIV/AIDS patients remains extremely sparse. METHODS We conceived a dynamic cohort study by enrolling people with HIV/AIDS from 103 counties in Hubei province, China from 2010 to 2019, with 23,809 persons and 78,457.2 person-years of follow-up. The county-level annual concentrations of PM2.5 and PM10 were extracted from the ChinaHighAirPollutants dataset. Cox proportional hazards models with time-varying exposures were conducted to assess the associations between PM and mortality. RESULTS Per 1 μg/m3 increased in PM2.5 and PM10 would elevate 0.69 % (95 % CIs: 0.39, 1.00) and 0.39 % (95 % CIs: 0.18, 0.59) risk of all-cause deaths (ACD) and 1.65 % (95 % CIs: 1.14, 2.17) and 0.90 % (95 % CIs: 0.56, 1.24) of AIDS-related deaths (ARD), respectively. Significantly stronger associations of PM-ARD were found in patients aged over 60 years old, with corresponding excess risk of 2.66 % (95 % CIs: 1.76, 3.58) for PM2.5 and 1.62 (95 % CIs: 1.01, 2.23) for PM10. CONCLUSIONS This study added to the existing evidence that long-term exposure to ambient PM adversely affects the life spans of HIV/AIDS patients. Hence, public health departments should take proactive measures to prevent further life loss and promote survival among those living with HIV/AIDS.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Hen Tang
- Institute of Chronic Infectious Disease Prevention and Control, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Dingyuan Zhao
- Institute of Chronic Infectious Disease Prevention and Control, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Lianguo Ruan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
117
|
Teixeira J, Sousa G, Morais S, Delerue-Matos C, Oliveira M. Assessment of coarse, fine, and ultrafine particulate matter at different microenvironments of fire stations. CHEMOSPHERE 2023:139005. [PMID: 37245598 DOI: 10.1016/j.chemosphere.2023.139005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
The concentrations of respirable particulate matter (PM) and the impact on indoor air quality in occupational settings remains poorly characterized. This study assesses, for the first time, the cumulative and non-cumulative concentrations of 14 fractions of coarse (3.65-9.88 μm), fine (0.156-2.47 μm), and ultrafine (0.015-0.095 μm) PM inside the garage of heavy vehicles, firefighting personal protective equipment' storage room, bar, and a common area of seven Portuguese fire stations. Sampling campaigns were performed during a regular work week at the fire stations. Levels of daily total cumulative PM ranged from 277.4 to 413.2 μg/m3 (maximum values of 811.4 μg/m3), with the bar (370.1 μg/m3) and the PPE' storage room (361.3 μg/m3) presenting slightly increased levels (p > 0.05) than the common area (324.8 μg/m3) and the garage (339.4 μg/m3). The location of the sampling site, the proximity to local industries and commercial activities, the layout of the building, the heating system used, and indoor sources influenced the PM concentrations. Fine (193.8-301.0 μg/m3) and ultrafine (41.3-78.2 μg/m3) particles were predominant in the microenvironments of all fire stations and accounted for 71.5% and 17.8% of daily total cumulative levels, respectively; coarse particles (23.3-47.1 μg/m3) represented 10.7% of total PM. The permissible exposure limit (5.0 mg/m3) defined by the Occupational Safety and Health Organization for respirable dust was not overcome in the evaluated fire stations. Results suggest firefighters' regular exposure to fine and ultrafine PM inside fire stations which will contribute to cardiorespiratory health burden. Further studies are needed to characterize firefighters' exposure to fine and ultrafine PM inside fire stations, identify main emission sources, and evaluate the contribution of exposures at fire stations to firefighters' occupational health risks.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Gabriel Sousa
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
118
|
Yalamanchili J, Hennigan CJ, Reed BE. Measurement artifacts in the dithiothreitol (DTT) oxidative potential assay caused by interactions between aqueous metals and phosphate buffer. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131693. [PMID: 37245366 DOI: 10.1016/j.jhazmat.2023.131693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Metals in particulate matter (PM) are hypothesized to have enhanced toxicity based on their ability to catalyze reactive oxygen species (ROS) formation. Acellular assays are used to measure the oxidative potential (OP) of PM and its individual components. Many OP assays, including the dithiothreitol (DTT) assay, use a phosphate buffer matrix to simulate biological conditions (pH 7.4 and 37 °C). Prior work from our group observed transition metal precipitation in the DTT assay, consistent with thermodynamic equilibria. In this study, we characterized the effects of metal precipitation on OP measured by the DTT assay. Metal precipitation was affected by aqueous metal concentrations, ionic strength, and phosphate concentrations in ambient PM sampled in Baltimore, MD and a standard PM sample (NIST SRM-1648a, Urban Particulate Matter). Critically, differences in metal precipitation induced differing OP responses of the DTT assay as a function of phosphate concentration in all PM samples analyzed. These results indicate that comparison of DTT assay results obtained at differing phosphate buffer concentrations is highly problematic. Further, these results have implications for other chemical and biological assays that use phosphate buffer for pH control and their use to infer PM toxicity.
Collapse
Affiliation(s)
- Jayashree Yalamanchili
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Christopher J Hennigan
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| | - Brian E Reed
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
119
|
Lee WS, Kang I, Yoon SJ, Kim H, Sim Y, Park Y, Park J, Jeong J. Three-dimensional label-free visualization of the interactions of PM2.5 with macrophages and epithelial cells using optical diffraction tomography. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131678. [PMID: 37245364 DOI: 10.1016/j.jhazmat.2023.131678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/30/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Particulate matter ≤ 2.5 µm (PM2.5) poses health risks related to various diseases and infections. However, the interactions between PM2.5 and cells such as uptake and cell responses have not been fully investigated despite advances in bioimaging techniques, because the heterogeneous morphology and composition of PM2.5 make it challenging to employ labeling techniques, such as fluorescence. In this work, we visualized the interaction between PM2.5 and cells using optical diffraction tomography (ODT), which provides quantitative phase images by refractive index distribution. Through ODT analysis, the interactions of PM2.5 with macrophages and epithelial cells, such as intracellular dynamics, uptake, and cellular behavior, were successfully visualized without labeling techniques. ODT analysis clearly shows the behavior of phagocytic macrophages and nonphagocytic epithelial cells for PM2.5. Moreover, ODT analysis could quantitatively compare the accumulation of PM2.5 inside the cells. PM2.5 uptake by macrophages increased substantially over time, but uptake by epithelial cells increased only marginally. Our findings indicate that ODT analysis is a promising alternative approach to visually and quantitatively understanding the interaction of PM2.5 with cells. Therefore, we expect ODT analysis to be employed to investigate the interactions of materials and cells that are difficult to label.
Collapse
Affiliation(s)
- Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu Daejeon, 34141, Republic of Korea
| | - Inha Kang
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu Daejeon, 34141, Republic of Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu Daejeon, 34141, Republic of Korea
| | - Hyunjung Kim
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu Daejeon, 34141, Republic of Korea
| | - Yugyeong Sim
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu Daejeon, 34113, Republic of Korea
| | - Youngjun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu Daejeon, 34141, Republic of Korea
| | - Jinah Park
- School of Computing, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu Daejeon, 34141, Republic of Korea.
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu Daejeon, 34141, Republic of Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu Daejeon, 34113, Republic of Korea.
| |
Collapse
|
120
|
Wang T, Liu Y, Zhou Y, Liu Q, Zhang Q, Sun M, Sun M, Li H, Xu A, Liu Y. Astaxanthin protected against the adverse effects induced by diesel exhaust particulate matter via improving membrane stability and anti-oxidative property. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131684. [PMID: 37236114 DOI: 10.1016/j.jhazmat.2023.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Diesel exhaust particulate matter (DPM), which has been clarified as a Group I carcinogenic agent, is still challenging in its detoxification due to the complex composition and toxic mechanisms. Astaxanthin (AST) is a pleiotropic small biological molecule widely used in medical and healthcare with surprising effects and applications. The present study aimed to investigate the protective effects of AST on DPM-induced injury and the underlying mechanism. Our results indicated that AST significantly suppressed the generation of phosphorylated histone H2AX (γ-H2AX, marker of DNA damage) and inflammation caused by DPM both in vitro and in vivo. Mechanistically, AST prevented the endocytosis and intracellular accumulation of DPM via regulating the stability and fluidity of plasma membranes. Moreover, the oxidative stress elicited by DPM in cells could also be effectively inhibited by AST, together with protecting the structure and function of mitochondria. These investigations provided clear evidence that AST notably reduced DPM invasion and intracellular accumulation by modulating the membrane-endocytotic pathway, which eventually reduced intracellular oxidative stress caused by DPM. Our data might provide a novel clue for curing and treating the harmful effects of particulate matter.
Collapse
Affiliation(s)
- Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qiao Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Qixing Zhang
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengzi Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Meng Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Han Li
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
121
|
Patel H, Talbot N, Dirks K, Salmond J. The impact of low emission zones on personal exposure to ultrafine particles in the commuter environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162540. [PMID: 36870513 DOI: 10.1016/j.scitotenv.2023.162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Auckland is a city with limited industrial activity, road traffic being the dominant source of air pollution. Thus, the time periods when social contact and movement in Auckland were severely curtailed due to COVID-19 restrictions presented a unique opportunity to observe impacts on pedestrian exposure to air pollution under a range of different traffic flow scenarios, providing insights into the impacts of potential future traffic calming measures. Pedestrian exposure to ultrafine particles (UFPs), was measured using personal monitoring along a customised route through Central Auckland during different COVID-19-affected traffic flow conditions. Results showed that reduced traffic flows led to statistically significant reductions in average exposure to UFP under all traffic reduction scenarios (TRS). However, the size of the reduction was variable in both time and place. Under the most stringent TRS (traffic reduction of 82 %), median ultrafine particle (UFP) concentrations reduced by 73 %. Under the less stringent scenario, the extent of reduction varied in time and space; a traffic reduction of 62 % resulted in a 23 % reduction in median UFP concentrations in 2020 but in 2021 similar traffic reductions led to a decrease in median UFP concentrations of 71 %. Under all scenarios, the magnitude of the impact of traffic reductions on UFP exposure varied along the route, with areas dominated by emissions from construction and ferry/port activities showing little correlation between traffic flow and exposure. Shared traffic spaces, previously pedestrianised, also recorded consistently high concentrations with little variability observed. This study provided a unique opportunity to assess the potential benefits and risks of such zones and to help decision-makers evaluate future traffic management interventions (such as low emissions zones). The results suggest that controlled traffic flow interventions can result in a significant reduction in pedestrian exposure to UFPs, but that the magnitude of reductions is sensitive to local-scale variations in meteorology, urban land use and traffic flow patterns.
Collapse
Affiliation(s)
- Hamesh Patel
- School of Environment, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, New Zealand; Mote Ltd, 40a George Street, Mount Eden, Auckland, New Zealand.
| | - Nick Talbot
- School of Environment, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kim Dirks
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jennifer Salmond
- School of Environment, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
122
|
Serafin P, Zaremba M, Sulejczak D, Kleczkowska P. Air Pollution: A Silent Key Driver of Dementia. Biomedicines 2023; 11:biomedicines11051477. [PMID: 37239148 DOI: 10.3390/biomedicines11051477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In 2017, the Lancet Commission on Dementia Prevention, Intervention, and Care included air pollution in its list of potential risk factors for dementia; in 2018, the Lancet Commission on Pollution concluded that the evidence for a causal relationship between fine particulate matter (PM) and dementia is encouraging. However, few interventions exist to delay or prevent the onset of dementia. Air quality data are becoming increasingly available, and the science underlying the associated health effects is also evolving rapidly. Recent interest in this area has led to the publication of population-based cohort studies, but these studies have used different approaches to identify cases of dementia. The purpose of this article is to review recent evidence describing the association between exposure to air pollution and dementia with special emphasis on fine particulate matter of 2.5 microns or less. We also summarize here the proposed detailed mechanisms by which air pollutants reach the brain and activate the innate immune response. In addition, the article also provides a short overview of existing limitations in the treatment of dementia.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Malgorzata Zaremba
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Str., 02-106 Warsaw, Poland
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
| |
Collapse
|
123
|
Gokul T, Kumar KR, Veeramanikandan V, Arun A, Balaji P, Faggio C. Impact of Particulate Pollution on Aquatic Invertebrates. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104146. [PMID: 37164218 DOI: 10.1016/j.etap.2023.104146] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023]
Abstract
A serious global problem, air pollution poses a risk to both human and environmental health. It contains hazardous material like heavy metals, nanoparticles, and others that can create an impact on both land and marine environments. Particulate pollutants, which can enter water systems through a variety of ways, including precipitation and industrial runoff, can have a particularly adverse influence on aquatic invertebrates. Once in the water, these particles can harm aquatic invertebrates physically, physiologically, and molecularly, resulting in developmental problems and multi-organ toxicity. Further research at the cellular and molecular levels in numerous locations of the world is necessary to completely understand the impacts of particle pollution on aquatic invertebrates. Understanding how particle pollution affects aquatic invertebrates is vital as the significance of ecotoxicological studies on particulate contaminants increases. This review gives a comprehensive overview of the current understanding of how particle pollution affects aquatic invertebrates.
Collapse
Affiliation(s)
- Tamilselvan Gokul
- PG and Research Centre in Zoology, Vivekananda College, Tiruvedakam (West), Madurai, TN, India
| | - Kamatchi Ramesh Kumar
- PG and Research Centre in Zoology, Vivekananda College, Tiruvedakam (West), Madurai, TN, India
| | | | - Alagarsamy Arun
- Department of Microbiology, Alagappa University, Karaikudi, TN, India
| | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, TN, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
124
|
Bouma F, Janssen NA, Wesseling J, van Ratingen S, Strak M, Kerckhoffs J, Gehring U, Hendricx W, de Hoogh K, Vermeulen R, Hoek G. Long-term exposure to ultrafine particles and natural and cause-specific mortality. ENVIRONMENT INTERNATIONAL 2023; 175:107960. [PMID: 37178608 DOI: 10.1016/j.envint.2023.107960] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Health implications of long-term exposure to ubiquitously present ultrafine particles (UFP) are uncertain. The aim of this study was to investigate the associations between long-term UFP exposure and natural and cause-specific mortality (including cardiovascular disease (CVD), respiratory disease, and lung cancer) in the Netherlands. METHODS A Dutch national cohort of 10.8 million adults aged ≥ 30 years was followed from 2013 until 2019. Annual average UFP concentrations were estimated at the home address at baseline, using land-use regression models based on a nationwide mobile monitoring campaign performed at the midpoint of the follow-up period. Cox proportional hazard models were applied, adjusting for individual and area-level socio-economic status covariates. Two-pollutant models with the major regulated pollutants nitrogen dioxide (NO2) and fine particles (PM2.5 and PM10), and the health relevant combustion aerosol pollutant (elemental carbon (EC)) were assessed based on dispersion modelling. RESULTS A total of 945,615 natural deaths occurred during 71,008,209 person-years of follow-up. The correlation of UFP concentration with other pollutants ranged from moderate (0.59 (PM2.5)) to high (0.81 (NO2)). We found a significant association between annual average UFP exposure and natural mortality [HR 1.012 (95 % CI 1.010-1.015), per interquartile range (IQR) (2723 particles/cm3) increment]. Associations were stronger for respiratory disease mortality [HR 1.022 (1.013-1.032)] and lung cancer mortality [HR 1.038 (1.028-1.048)] and weaker for CVD mortality [HR 1.005 (1.000-1.011)]. The associations of UFP with natural and lung cancer mortality attenuated but remained significant in all two-pollutant models, whereas the associations with CVD and respiratory mortality attenuated to the null. CONCLUSION Long-term UFP exposure was associated with natural and lung cancer mortality among adults independently from other regulated air pollutants.
Collapse
Affiliation(s)
- Femke Bouma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Nicole Ah Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joost Wesseling
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sjoerd van Ratingen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maciek Strak
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wouter Hendricx
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
125
|
Chen F, Wang Y, Du X. Changes in healthy effects and economic burden of PM 2.5 in Beijing after COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60294-60302. [PMID: 37022551 PMCID: PMC10078083 DOI: 10.1007/s11356-023-26005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2023] [Indexed: 05/07/2023]
Abstract
The COVID-19 lockdown had a positive control effect on urban air quality. However, this effect remains uncertain after the epidemic enters regular management, and furthermore, only limited data are available regarding urban PM2.5 (aerodynamic diameter ≤ 2.5μm) under the impact of the epidemic. We used daily ambient PM2.5 concentration data in Beijing to compare and analyze the changes in urban PM2.5 concentrations before and after the COVID-19 epidemic and to estimate the healthy effects and economic burden associated with PM2.5 before and after the epidemic. The study found that COVID-19 has a significant impact on the urban environmental PM2.5 concentration, which is manifested by the decrease in the PM2.5 concentration in Beijing during the epidemic by 27.8%. Exposure-response models estimated 56.443 (95% CI: 43.084-69.893) thousand people die prematurely in Beijing during the COVID-19 epidemic attributed to long-term PM2.5 exposure, with a 13.3% decrease in the number of premature deaths year-on-year. The total healthy economic losses attributable to PM2.5 in Beijing during the COVID-19 epidemic were 35.76 (95% CI: 28.41-42.44) billion yuan, with a per capita loss of 816.8 yuan. Strict control measures throughout the COVID-19 epidemic had a positive impact on air quality in Beijing, with a decrease in both premature deaths and economic healthy losses attributable to fine particles. This paper helps to enrich and expand the research on the impact of COVID-19 on the urban environment and provides a basis for formulating policies related to air quality improvement in the post-epidemic era.
Collapse
Affiliation(s)
- Fengxia Chen
- College of Science, Northwest A& F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yan Wang
- College of Science, Northwest A& F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Xiaoli Du
- College of Science, Northwest A& F University, Yangling, 712100, Shaanxi, People's Republic of China
| |
Collapse
|
126
|
Poulsen AH, Sørensen M, Hvidtfeldt UA, Christensen JH, Brandt J, Frohn LM, Ketzel M, Andersen C, Raaschou-Nielsen O. Source-Specific Air Pollution Including Ultrafine Particles and Risk of Myocardial Infarction: A Nationwide Cohort Study from Denmark. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:57010. [PMID: 37235386 DOI: 10.1289/ehp10556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Air pollution is negatively associated with cardiovascular health. Impediments to efficient regulation include lack of knowledge about which sources of air pollution contributes most to health burden and few studies on effects of the potentially more potent ultrafine particles (UFP). OBJECTIVE The authors aimed to investigate myocardial infarction (MI) morbidity and specific types and sources of air pollution. METHODS We identified all persons living in Denmark in the period 2005-2017, age >50 y and never diagnosed with MI. We quantified 5-y running time-weighted mean concentrations of air pollution at residencies, both total and apportioned to traffic and nontraffic sources. We evaluated particulate matter (PM) with aerodynamic diameter ≤2.5μm (PM2.5), <0.1μm (UFP), elemental carbon (EC), and nitrogen dioxide (NO2). We used Cox proportional hazards models, with adjustment for time-varying exposures, and personal and area-level demographic and socioeconomic covariates from high-quality administrative registers. RESULTS In this nationwide cohort of 1,964,702 persons (with 18 million person-years of follow-up and 71,285 cases of MI), UFP and PM2.5 were associated with increased risk of MI with hazard ratios (HRs) per interquartile range (IQR) of 1.040 [95% confidence interval (CI): 1.025, 1.055] and 1.053 (95% CI: 1.035, 1.071), respectively. HRs per IQR of UFP and PM2.5 from nontraffic sources were similar to the total (1.034 and 1.051), whereas HRs for UFP and PM2.5 from traffic sources were smaller (1.011 and 1.011). The HR for EC from traffic sources was 1.013 (95% CI: 1.003, 1.023). NO2 from nontraffic sources was associated with MI (HR=1.048; 95% CI: 1.034, 1.062) but not from traffic sources. In general, nontraffic sources contributed more to total air pollution levels than national traffic sources. CONCLUSIONS PM2.5 and UFP from traffic and nontraffic sources were associated with increased risk of MI, with nontraffic sources being the dominant source of exposure and morbidity. https://doi.org/10.1289/EHP10556.
Collapse
Affiliation(s)
- Aslak Harbo Poulsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ulla Arthur Hvidtfeldt
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jesper H Christensen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate (Interdisciplinary Centre for Climate Change), Aarhus University, Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate (Interdisciplinary Centre for Climate Change), Aarhus University, Roskilde, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate (Interdisciplinary Centre for Climate Change), Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Christopher Andersen
- iClimate (Interdisciplinary Centre for Climate Change), Aarhus University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- iClimate (Interdisciplinary Centre for Climate Change), Aarhus University, Roskilde, Denmark
| |
Collapse
|
127
|
Amin M, Prajati G, Humairoh GP, Putri RM, Phairuang W, Hata M, Furuuchi M. Characterization of size-fractionated carbonaceous particles in the small to nano-size range in Batam city, Indonesia. Heliyon 2023; 9:e15936. [PMID: 37215863 PMCID: PMC10192538 DOI: 10.1016/j.heliyon.2023.e15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
A cascade impactor type sampler equipped with an inertial filter was used to collect size-segregated particles down to ultrafine particles (UFPs or PM0.1) on Batam Island in Sumatra, Indonesia, bordered by Singapore and Malaysia during a wet and the COVID-19 pandemic season in 2021. Carbonaceous species, including organic carbon (OC) and elemental carbon (EC), were analyzed by a thermal/optical carbon analyzer to determine the carbon species and their indices. The average UFP was 3.1 ± 0.9 μg/m3, which was 2-4 times lower than in other cities in Sumatra during the same season in the normal condition. The PMs mass concentration was largely affected by local emissions but long-range transportation of particles from Singapore and Malaysia was also not negligible. The air mass arrived at the sampling site passed the ocean, which introduced out clean air with a low level of PMs. The backward trajectory of the air mass and the largest fraction of OC2 and OC3 in all sizes was identified as being transported from the 2 above countries. OC is the dominant fraction in TC and the ratio of carbonaceous components indicated that origin of all particle sizes was predominantly vehicle emissions. UFPs were dominantly emitted from vehicles exhaust emission, while coarser particles (>10 μm) were influenced by the non-exhaust emissions, such as tire wear. Other particles (0.5-1.0; 1.0-2.5; and 2.5-10 μm) were slightly affected by biomass burning. The effective carbon ratio (ECR) and inhalation dose (ID) related EC indicated that finer particles or UFPs and PM0.5-1 contributed more to human health and global warming.
Collapse
Affiliation(s)
- Muhammad Amin
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
- Faculty of Engineering, Maritim University of Raja Ali Haji, Tanjung Pinang, Kepulauan Riau, 29115, Indonesia
| | - Gita Prajati
- Environmental Engineering Department, Universitas Universal, Batam, Kepulauan Riau, 29456, Indonesia
| | - Gita Pati Humairoh
- Environmental Engineering Department, Universitas Universal, Batam, Kepulauan Riau, 29456, Indonesia
| | - Rahmi Mulia Putri
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Worradorn Phairuang
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Mitsuhiko Hata
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masami Furuuchi
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
128
|
Flood-Garibay JA, Angulo-Molina A, Méndez-Rojas MÁ. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:704-726. [PMID: 36752881 DOI: 10.1039/d2em00276k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the World Health Organization, both indoor and urban air pollution are responsible for the deaths of around 3.5 million people annually. During the last few decades, the interest in understanding the composition and health consequences of the complex mixture of polluted air has steadily increased. Today, after decades of detailed research, it is well-recognized that polluted air is a complex mixture containing not only gases (CO, NOx, and SO2) and volatile organic compounds but also suspended particles such as particulate matter (PM). PM comprises particles with sizes in the range of 30 to 2.5 μm (PM30, PM10, and PM2.5) and ultrafine particles (UFPs) (less than 0.1 μm, including nanoparticles). All these constituents have different chemical compositions, origins and health consequences. It has been observed that the concentration of PM and UFPs is high in urban areas with moderate traffic and increases in heavy traffic areas. There is evidence that inhaling PM derived from fossil fuel combustion is associated with a wide variety of harmful effects on human health, which are not solely associated with the respiratory system. There is accumulating evidence that the brains of urban inhabitants contain high concentrations of nanoparticles derived from combustion and there is both epidemiological and experimental evidence that this is correlated with the appearance of neurodegenerative human diseases. Neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, and cerebrovascular accidents, are among the main debilitating disorders of our time and their epidemiology can be classified as a public health emergency. Therefore, it is crucial to understand the pathophysiology and molecular mechanisms related to PM exposure, specifically to UFPs, present as pollutants in air, as well as their correlation with the development of neurodegenerative diseases. Furthermore, PM can enhance the transmission of airborne diseases and trigger inflammatory and immune responses, increasing the risk of health complications and mortality. Therefore, understanding the different levels of this issue is important to create and promote preventive actions by both the government and civilians to construct a strategic plan to treat and cope with the current and future epidemic of these types of disorders on a global scale.
Collapse
Affiliation(s)
- Jessica Andrea Flood-Garibay
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| | | | - Miguel Ángel Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
129
|
Ocampos MS, Leite LCS, de Pádua Melo ES, de Cássia Avellaneda Guimarães R, Oliveira RJ, de Cássia Freitas K, Hiane PA, Karuppusamy A, do Nascimento VA. Indirect Methods to Determine the Risk of Damage to the Health of Firefighters and Children Due to Exposure to Smoke Emission from Burning Wood/Coal in a Controlled Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085607. [PMID: 37107889 PMCID: PMC10139234 DOI: 10.3390/ijerph20085607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
People are constantly exposed to particulate matter and chemicals released during fires. However, there are still few studies on gas and particulate emissions related to exposure to burning firewood and charcoal during forest fires, making it difficult to understand the effects on the health of the population. The objective of this study was to quantify the metal(loid)s present in the smoke from wood and charcoal fires through the deposition of metals in beef topside and pork loin, considering the routes of skin exposure, inhalation, and ingestion, contributing to the understanding of metals in the increase of the risks of cancer and mortality associated with firefighting and children. The concentrations of metals [aluminum (Al), chromium (Cr), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), vanadium (V), zinc (Zn)] and metalloids arsenic (As) were determined by inductively coupled plasma-mass spectrometry (ICP OES) after microwave digestion. Moreover, we assessed the associated risk regarding the elemental intake of these elements through the smoke, using the hazard quotient (HQ), hazard index (HI), Total Hazard Index (HIt), and carcinogenic risk (CR). All samples had results for HQ and HIt < 1, indicating a non-potential health risk. However, the carcinogenic risks posed by As and Cr via the three exposure pathways (except for inhalation exposure to children and adults, and by Cr via ingestion and inhalation for children and adults) exceeded the standard threshold. In conclusion, continuous exposure of firefighters or children to smoke from fires containing high concentrations of heavy metals such as As and Cr can be harmful to health. The study used animal tissues; thus, new methods must be developed to quantify the concentration of heavy metals deposited in human tissue when humans are exposed to smoke from fires.
Collapse
Affiliation(s)
- Marcelo Sampaio Ocampos
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health (GEBABS), Graduate Program in Health and Development in the Central-West Region of Brazil, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
| | - Luana Carolina Santos Leite
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health (GEBABS), Graduate Program in Health and Development in the Central-West Region of Brazil, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
| | - Elaine Silva de Pádua Melo
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health (GEBABS), Graduate Program in Health and Development in the Central-West Region of Brazil, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
| | - Rodrigo Juliano Oliveira
- Center for Studies in Stem Cells, Cell Therapy and Genetic Toxicology (CeTroGen), School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
| | - Arunachalam Karuppusamy
- Center for Studies in Stem Cells, Cell Therapy and Genetic Toxicology (CeTroGen), School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
| | - Valter Aragão do Nascimento
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health (GEBABS), Graduate Program in Health and Development in the Central-West Region of Brazil, School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil
- Correspondence: or
| |
Collapse
|
130
|
Chen TL, Lai CH, Chen YC, Ho YH, Chen AY, Hsiao TC. Source-oriented risk and lung-deposited surface area (LDSA) of ultrafine particles in a Southeast Asia urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161733. [PMID: 36682561 DOI: 10.1016/j.scitotenv.2023.161733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Submicron and ultrafine particle (UFP) exposure may be epidemiologically and toxicologically linked to pulmonary, neurodegenerative, and cardiovascular diseases. This study explores UFP and fine particle sources using a positive matrix factorization (PMF) model based on PM2.5 chemical compositions and particle number size distributions (PNSDs). The particle chemical composition and size distribution contributions are simultaneously identified to evaluate lung deposition and excess cancer risks. High correlations between the PNSD and chemical composition apportionment results were observed. Fresh and aged traffic particles dominated the number concentrations, while heterogeneous, photochemical reactions and/or regional transport may have resulted in secondary aerosol formation. Fresh and aged road traffic particle sources mostly contributed to the lung deposition dosage in the pulmonary region (~53 %), followed by the tracheobronchial (~30.4 %) and head regions (~16.6 %). However, lung-deposited surface area (LDSA) concentrations were dominated by aged road traffic (~39.2 %) and secondary aerosol (~33.2 %) sources. The excess cancer risks caused by Cr6+, Ni, and As were also mainly contributed to by aged road traffic (~31.7 %) and secondary aerosols (~67 %). The source apportionments based on the physical and chemical properties of aerosol particles are complementary, offering a health impact benchmark of UFPs in a Southeast Asia urban city.
Collapse
Affiliation(s)
- Tse-Lun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Chen-Hao Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Hsuan Ho
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Albert Y Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
131
|
Xue J, Li Z, Li X, Hua C, Shang P, Zhao J, Liu K, Xie F. Evaluation of cigarette smoke-induced oxidative stress and inflammation in BEAS-2B cells based on a lung microfluidic chip. Food Chem Toxicol 2023; 176:113787. [PMID: 37062330 DOI: 10.1016/j.fct.2023.113787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Oxidative stress and inflammation induced by cigarette smoking are associated with the pathology process of various chronic respiratory diseases, including asthma, emphysema, chronic obstructive pulmonary disease and cancer. Compared with conventional cell culture techniques, microfluidic chips can provide a continuous nutrient supply, mimic the in vivo physiological microenvironment of the cells, and conduct an integrated and flexible analysis of cell status and functions. Here, we designed and fabricated a bionic-lung chip, which was applied to perform cigarette smoke exposure of BEAS-2B cells cultured at the gas-liquid interface. The oxidative stress and inflammation in the cells exposed to cigarette smoke were investigated on chip. The results showed that cellular damage, oxidative stress and inflammatory response induced by cigarette smoke in the chip were dependent on smoke concentration and time after smoke exposure. N-Acetylcysteine (NAC) significantly inhibited these effects of cigarette smoke exposure on the cells at the gas-liquid interface within the chip.
Collapse
Affiliation(s)
- Jingxian Xue
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Zezhi Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China; Beijing Technology and Business University, Beijing, 100048, PR China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China.
| | - Chenfeng Hua
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, PR China.
| |
Collapse
|
132
|
Kaur S, Morales-Hidalgo P, Arija V, Canals J. Prenatal Exposure to Air Pollutants and Attentional Deficit Hyperactivity Disorder Development in Children: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085443. [PMID: 37107725 PMCID: PMC10138804 DOI: 10.3390/ijerph20085443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Up to 9.5% of the world's population is diagnosed with attention deficit/hyperactivity disorder (ADHD), making it one of the most common childhood disorders. Air pollutants could be considered an environmental risk condition for ADHD, but few studies have specifically investigated the effect of prenatal exposure. The current paper reviews the studies conducted on the association between prenatal air pollutants (PM, NOx, SO2, O3, CO and PAH) and ADHD development in children. From the 890 studies searched through PubMed, Google Scholar, Scopus, and Web of Science, 15 cohort studies met the inclusion criteria. NOS and WHO guidelines were used for quality and risk of bias assessment. The accumulative sample was 589,400 of children aged 3-15 years. Most studies reported an association between ADHD symptoms and prenatal PAH and PM exposure. Data available on NO2 and SO2 were inconsistent, whereas the effect of CO/O3 is barely investigated. We observed heterogeneity through an odd ratio forest plot, and discrepancies in methodologies across the studies. Eight of the fifteen studies were judged to be of moderate risk of bias in the outcome measurement. In a nutshell, future studies should aim to minimize heterogeneity and reduce bias by ensuring a more representative sample, standardizing exposure and outcome assessments.
Collapse
Affiliation(s)
- Sharanpreet Kaur
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Paula Morales-Hidalgo
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Psychology and Education Studies, Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43002 Reus, Spain
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Correspondence:
| |
Collapse
|
133
|
Cho E, Cho Y. Estimating the economic value of ultrafine particle information: a contingent valuation method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54822-54834. [PMID: 36881235 PMCID: PMC9990581 DOI: 10.1007/s11356-023-26157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Global concern regarding ultrafine particles (UFPs), which are particulate matter (PM) with a diameter of less than 100 nm, is increasing. These particles are difficult to measure using the current methods because their characteristics are different from those of other air pollutants. Therefore, a new monitoring system is required to obtain accurate UFP information, which will raise the financial burden of the government and people. In this study, we estimated the economic value of UFP information by evaluating the willingness-to-pay (WTP) for the UFP monitoring and reporting system. We used the contingent valuation method (CVM) and the one-and-one-half-bounded dichotomous choice (OOHBDC) spike model. We analyzed how the respondents' socio-economic variables, as well as their cognition level of PM, affected their WTP. Therefore, we collected WTP data of 1040 Korean respondents through an online survey. The estimated mean WTP for building a UFP monitoring and reporting system is KRW 6958.55-7222.55 (USD 6.22-6.45) per household per year. We found that people satisfied with the current air pollutant information, and generally possessing relatively greater knowledge of UFPs, have higher WTP for a UFP monitoring and reporting system. We found that people are willing to pay more than the actual installation and operating costs of current air pollution monitoring systems. If the collected UFP data is disclosed in an easily accessible manner, as is current air pollutant data, it will be possible to secure more public acceptance for expanding the UFP monitoring and reporting system nationwide.
Collapse
Affiliation(s)
- Eunjung Cho
- Department of Industrial Engineering, College of Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
- Technical Analysis Center, National Institute of Green Technology, 173, Toegye-Ro, Jung-Gu, Seoul, 04554 South Korea
| | - Youngsang Cho
- Department of Industrial Engineering, College of Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| |
Collapse
|
134
|
Chen YH, Nguyen D, Brindley S, Ma T, Xia T, Brune J, Brown JM, Tsai CSJ. The dependence of particle size on cell toxicity for modern mining dust. Sci Rep 2023; 13:5101. [PMID: 36991007 PMCID: PMC10060429 DOI: 10.1038/s41598-023-31215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractProgressive massive pulmonary fibrosis among coal miners has unexpectedly increased. It would likely due to the greater generation of smaller rock and coal particles produced by powerful equipment used in modern mines. There is limited understanding of the relationship between micro- or nanoparticles with pulmonary toxicity. This study aims to determine whether the size and chemical characteristics of typical coal-mining dust contribute to cellular toxicity. Size range, surface features, morphology, and elemental composition of coal and rock dust from modern mines were characterized. Human macrophages and bronchial tracheal epithelial cells were exposed to mining dust of three sub- micrometer and micrometer size ranges at varying concentrations, then assessed for cell viability and inflammatory cytokine expression. Coal had smaller hydrodynamic size (180–3000 nm) compared to rock (495–2160 nm) in their separated size fractions, more hydrophobicity, less surface charge, and consisted of more known toxic trace elements (Si, Pt, Fe, Al, Co). Larger particle size had a negative association with in-vitro toxicity in macrophages (p < 0.05). Fine particle fraction, approximately 200 nm for coal and 500 nm for rock particles, explicitly induced stronger inflammatory reactions than their coarser counterparts. Future work will study additional toxicity endpoints to further elucidate the molecular mechanism causing pulmonary toxicity and determine a dose–response curve.
Collapse
|
135
|
Matthews JC, Chompoobut C, Navasumrit P, Khan MAH, Wright MD, Ruchirawat M, Shallcross DE. Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5316. [PMID: 37047932 PMCID: PMC10094290 DOI: 10.3390/ijerph20075316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Traffic is a major source of particulate pollution in large cities, and particulate matter (PM) level in Bangkok often exceeds the World Health Organisation limits. While PM2.5 and PM10 are both measured in Bangkok regularly, the sub-micron range of PM, of specific interest in regard to possible adverse health effects, is very limited. In the study, particle number concentration (PNC) was measured on public transport in Bangkok. A travel route through Bangkok using the state railway, the mass rapid transport underground system, the Bangkok Mass Transit System (BTS) Skytrain and public buses on the road network, with walking routes between, was taken whilst measuring particle levels with a hand-held concentration particle counter. The route was repeated 19 times covering different seasons during either morning or evening rush hours. The highest particle concentrations were found on the state railway, followed by the bus, the BTS Skytrain and the MRT underground with measured peaks of 350,000, 330,000, 33,000 and 9000 cm-3, respectively, though particle numbers over 100,000 cm-3 may be an underestimation due to undercounting in the instrument. Inside each form of public transport, particle numbers would peak when stopping to collect passengers (doors opening) and decay with a half-life between 2 and 3 min. There was a weak correlation between particle concentration on bus, train and BTS and Skytrain with carbon monoxide concentration, as measured at a fixed location in the city.
Collapse
Affiliation(s)
- James C. Matthews
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Chalida Chompoobut
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Panida Navasumrit
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - M. Anwar H. Khan
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Matthew D. Wright
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Mathuros Ruchirawat
- Chulabhorn Research Institute, 54 Kamphaeng-Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Dudley E. Shallcross
- Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7375, South Africa
| |
Collapse
|
136
|
Brean J, Rowell A, Beddows DCS, Shi Z, Harrison RM. Estimates of Future New Particle Formation under Different Emission Scenarios in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4741-4750. [PMID: 36930743 PMCID: PMC10061929 DOI: 10.1021/acs.est.2c08348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
New particle formation (NPF) is a leading source of particulate matter by number and a contributor to particle mass during haze events. Reductions in emissions of air pollutants, many of which are NPF precursors, are expected in the move toward carbon neutrality or net-zero. Expected changes to pollutant emissions are used to investigate future changes to NPF processes, in comparison to a simulation of current conditions. The projected changes to SO2 emissions are key in changing future NPF number, with different scenarios producing either a doubling or near total reduction in sulfuric acid-amine particle formation rates. Particle growth rates are projected to change little in all but the strictest emission control scenarios. These changes will reduce the particle mass arising by NPF substantially, thus showing a further cobenefit of net-zero policies. Major uncertainties remain in future NPF including the volatility of oxygenated organic molecules resulting from changes to NOx and amine emissions.
Collapse
Affiliation(s)
- James Brean
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alex Rowell
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - David C. S. Beddows
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Zongbo Shi
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Roy M. Harrison
- School
of Geography, Earth & Environmental
Sciences University of Birmingham, Birmingham B15 2TT, United Kingdom
- Department
of Environmental Sciences, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
137
|
Szűcs-Somlyó É, Lehel J, Májlinger K, Lőrincz M, Kővágó C. Metal-oxide inhalation induced fever - Immuntoxicological aspects of welding fumes. Food Chem Toxicol 2023; 175:113722. [PMID: 36907501 DOI: 10.1016/j.fct.2023.113722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Metal fume fever is a well-known occupational disease that arises from prolonged exposure to subtoxic levels of zinc oxide-containing fumes or dust. This review article aims to identify and examine the possible immunotoxicological effects of inhaled zinc oxide nanoparticles. The current most widely accepted pathomechanism for the development of the disease involves the formation of reactive oxygen species following the entry of zinc oxide particles into the alveolus resulting the release of pro-inflammatory cytokines by activation of the Nuclear Factor Kappa B transcriptional signal, thus evoking the symptoms. The role of metallothionein in inducing tolerance is believed to be a key factor in mitigating the development of metal fume fever. The other, poorly proven hypothetical route is that zinc-oxide particles bind to an undefined protein in the body as haptens to form an antigen and act as an allergen. After activation of the immune system, primary antibodies and immune complexes are developed and type 1. hypersensitivity reaction occurs, that can cause asthmatic dyspnoea, urticaria and angioedema. The development of tolerance is explained by the formation of secondary antibodies against primary antibodies. Oxidative stress and immunological processes cannot be completely separated from each other, as they can induce each other.
Collapse
Affiliation(s)
- Éva Szűcs-Somlyó
- University of Veterinary Medicine, Department of Epidemiology and Infectious Diseases, Budapest, Hungary
| | - József Lehel
- University of Veterinary Medicine, Department of Food Hygiene, Budapest, Hungary
| | - Kornél Májlinger
- Budapest University of Technology and Economics, Department of Materials Science and Engineering, Budapest, Hungary
| | - Márta Lőrincz
- University of Veterinary Medicine, Department of Epidemiology and Infectious Diseases, Budapest, Hungary
| | - Csaba Kővágó
- University of Veterinary Medicine, Department of Pharmacology and Toxicology, Budapest, Hungary.
| |
Collapse
|
138
|
Jeong S, Shin EC, Lee JH, Ha JH. Particulate Matter Elevates Ocular Inflammation and Endoplasmic Reticulum Stress in Human Retinal Pigmented Epithelium Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4766. [PMID: 36981676 PMCID: PMC10049273 DOI: 10.3390/ijerph20064766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Because of their exposure to air, eyes can come into contact with air pollutants such as particulate matter (PM), which may cause severe ocular pathologies. Prolonged ocular PM exposure may increase inflammation and endoplasmic reticulum stress in the retina. Herein, we investigated whether PM exposure induces ocular inflammation and endoplasmic reticulum (ER) stress-related cellular responses in human retinal epithelium-19 (ARPE-19) cells. To understand how PM promotes ocular inflammation, we monitored the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor kappa beta (NFκB) axis and the expression of key inflammatory mRNAs. We also measured the upregulation of signature components for the ER-related unfolded protein response (UPR) pathways, as well as intracellular calcium ([Ca2+]i) levels, as readouts for ER stress induction following PM exposure. Ocular PM exposure significantly elevated the expression of multiple cytokine mRNAs and increased phosphorylation levels of NFκB-MAPK axis in a PM dose-dependent manner. Moreover, incubation with PM significantly increased [Ca2+]i levels and the expression of UPR-related proteins, which indicated ER stress resulting from cell hypoxia, and upregulation of hypoxic adaptation mechanisms such as the ER-associated UPR pathways. Our study demonstrated that ocular PM exposure increased inflammation in ARPE-19 cells, by activating the MAPK/NFκB axis and cytokine mRNA expression, while also inducing ER stress and stress adaptation responses. These findings may provide helpful insight into clinical and non-clinical research examining the role of PM exposure in ocular pathophysiology and delineating its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jong-Hwa Lee
- Bioanalytical and Pharmacokinetic Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
139
|
Zimmermann EJ, Candeias J, Gawlitta N, Bisig C, Binder S, Pantzke J, Offer S, Rastak N, Bauer S, Huber A, Kuhn E, Buters J, Groeger T, Delaval MN, Oeder S, Di Bucchianico S, Zimmermann R. Biological impact of sequential exposures to allergens and ultrafine particle-rich combustion aerosol on human bronchial epithelial BEAS-2B cells at the air liquid interface. J Appl Toxicol 2023. [PMID: 36869434 DOI: 10.1002/jat.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Elias Josef Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Joana Candeias
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jeroen Buters
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Thomas Groeger
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mathilde N Delaval
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
140
|
Sharma R, Kumar A. Analysis of seasonal and spatial distribution of particulate matters and gaseous pollutants around an open cast coal mining area of Odisha, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39842-39856. [PMID: 36602741 DOI: 10.1007/s11356-022-25034-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Open cast mining - a predominant method of coal production in India (94.46% of total coal production) - has been found to be a major factor which is responsible for the emission of dust particles and gaseous pollutants, leading to the deterioration of air quality in the coal mining area. Considering the health concerns and environmental impacts of these pollutants, the inhabited villages of Ib valley coalfield area of Orisha, India, were selected for this study. In this regard, various researchers have performed the analysis of air quality data and modeling for the dispersion of pollutants. However, a long-term study on spatial and seasonal variations of air pollutants and their relationship with meteorological parameters were missing in the literature. Accordingly, the spatial and seasonal variations of air pollutants in the area were assessed for a period of six years (2014 - 2020), and concentrations of PM2.5, PM10, and SPM were found to be above the annual national ambient air quality standards (NAAQS) for all the three seasons. The overall mean concentrations of NOx, PM10, PM2.5, SPM, and SO2 during this period were found to be 17.2 ± 9.28, 152.5 ± 99.7, 53.27 ± 37.70, 268.5 ± 158.2, and 12.58 ± 7.47 μg/m3, respectively. The analysis of meteorological parameters showed a strong and significant negative correlation of relative humidity with PM2.5 (r = - 0.30, p-value = 5.659 × 10-10), PM10 (r = - 0.36, p-value = 1.97 × 10-13), and SPM (r = - 0.45, p-value = 2.2 × 10-16). Furthermore, the spatial distribution of pollutants was performed using the geographic information system (GIS) and inverse distance weighting (IDW) method, wherein the seasonal distribution of pollutants was shown through the bivariate polar plots. Therefore, the analyses and recommendations provided in this study can help the policymakers in developing a long-term air quality improvement strategy around a coal mining area, including the spatial and seasonal variations of air pollutants and their relationship with meteorological parameters.
Collapse
Affiliation(s)
- Rajat Sharma
- School of Energy & Environment, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India
| | - Ashutosh Kumar
- School of Energy & Environment, Thapar Institute of Engineering & Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
141
|
Suriyawong P, Chuetor S, Samae H, Piriyakarnsakul S, Amin M, Furuuchi M, Hata M, Inerb M, Phairuang W. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon 2023; 9:e14261. [PMID: 36938473 PMCID: PMC10018570 DOI: 10.1016/j.heliyon.2023.e14261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Many of the current atmospheric environmental problems facing Thailand are linked to air pollution that is largely derived from biomass burning. Different parts of Thailand have distinctive sources of biomass emissions that affect air quality. The main contributors to atmospheric particulate matter (PM), especially the PM2.5 fraction in Thailand, were highlighted in a recent study of PM derived from biomass burning. This review is divided into six sections. Section one is an introduction to biomass burning in Thailand. Section two covers issues related to biomass burning for each of the four main regions in Thailand, including Northern, Northeastern, Central, and Southern Thailand. In northern Thailand, forest fires and the burning of crop residues have contributed to air quality in the past decade. The northeast region is mainly affected by the burning of agricultural residues. However, the main contributor to PM in the Bangkok Metropolitan Region is motor vehicles and crop burning. In Southern Thailand, the impact of agoindustries, biomass combustion, and possible agricultural residue burning are the primary sources, and cross-border pollution is also important. The third section concerns the effect of biomass burning on human health. Finally, perspectives, new challenges, and policy recommendations are made concerning improving air quality in Thailand, e.g., forest fuel management and biomass utilization. The overall conclusions point to issues that will have a long-term impact on achieving a blue sky over Thailand through the development of coherent policies and the management of air pollution and sharing this knowledge with a broader audience.
Collapse
Affiliation(s)
- Phuchiwan Suriyawong
- Research Unit for Energy, Economic, And Ecological Management (3E), Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800 Thailand
| | - Hisam Samae
- Research Unit for Energy, Economic, And Ecological Management (3E), Science and Technology Research Institute, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Suthida Piriyakarnsakul
- Office of National Higher Education Science Research and Innovation Policy Council, Bangkok 10330 Thailand
| | - Muhammad Amin
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
- Faculty of Engineering, Maritim University of Raja Ali Haji, Tanjung Pinang, Kepulauan Riau 29115, Indonesia
| | - Masami Furuuchi
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mitsuhiko Hata
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
| | - Muanfun Inerb
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Worradorn Phairuang
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan
- Department of Geography, Faculty of Social Sciences, Chiang Mai University, Muang, Chiang Mai 50200 Thailand
- Corresponding author. Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan.
| |
Collapse
|
142
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
143
|
Handika RA, Phairuang W, Amin M, Yudison AP, Anggraini FJ, Hata M, Furuuchi M. Investigation of the Exposure of Schoolchildren to Ultrafine Particles (PM 0.1) during the COVID-19 Pandemic in a Medium-Sized City in Indonesia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2947. [PMID: 36833643 PMCID: PMC9957305 DOI: 10.3390/ijerph20042947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The health risk of schoolchildren who were exposed to airborne fine and ultrafine particles (PM0.1) during the COVID-19 pandemic in the Jambi City (a medium-sized city in Sumatra Island), Indonesia was examined. A questionnaire survey was used to collect information on schoolchildren from selected schools and involved information on personal profiles; living conditions; daily activities and health status. Size-segregated ambient particulate matter (PM) in school environments was collected over a period of 24 h on weekdays and the weekend. The personal exposure of PM of eight selected schoolchildren from five schools was evaluated for a 12-h period during the daytime using a personal air sampler for PM0.1 particles. The schoolchildren spent their time mostly indoors (~88%), while the remaining ~12% was spent in traveling and outdoor activities. The average exposure level was 1.5~7.6 times higher than the outdoor level and it was particularly high for the PM0.1 fraction (4.8~7.6 times). Cooking was shown to be a key parameter that explains such a large increase in the exposure level. The PM0.1 had the largest total respiratory deposition doses (RDDs), particularly during light exercise. The high level of PM0.1 exposure by indoor sources potentially associated with health risks was shown to be important.
Collapse
Affiliation(s)
- Rizki Andre Handika
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Faculty of Science and Technology, Jambi University, Jambi 36364, Indonesia
| | - Worradorn Phairuang
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Muhammad Amin
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Adyati Pradini Yudison
- Air and Waste Management Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | | | - Mitsuhiko Hata
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masami Furuuchi
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand
| |
Collapse
|
144
|
Sørensen M, Poulsen AH, Hvidtfeldt UA, Christensen JH, Brandt J, Frohn LM, Ketzel M, Andersen C, Valencia VH, Lassen CF, Raaschou-Nielsen O. Effects of Sociodemographic Characteristics, Comorbidity, and Coexposures on the Association between Air Pollution and Type 2 Diabetes: A Nationwide Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27008. [PMID: 36802347 PMCID: PMC9942819 DOI: 10.1289/ehp11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Exposure to air pollution has been associated with a higher risk of type 2 diabetes (T2D), but studies investigating whether deprived groups are more susceptible to the harmful effects of air pollution are inconsistent. OBJECTIVES We aimed to investigate whether the association between air pollution and T2D differed according to sociodemographic characteristics, comorbidity, and coexposures. METHODS We estimated residential exposure to PM2.5, ultrafine particles (UFP), elemental carbon, and NO2 for all persons living in Denmark in the period 2005-2017. In total, 1.8 million persons 50-80 y of age were included for main analyses of whom 113,985 developed T2D during follow-up. We conducted additional analyses on 1.3 million persons age 35-50 y. Using Cox proportional hazards model (relative risk) and Aalens additive hazard model (absolute risk), we calculated associations between 5-y time-weighted running means of air pollution and T2D in strata of sociodemographic variables, comorbidity, population density, road traffic noise, and green space proximity. RESULTS Air pollution was associated with T2D, especially among people age 50-80 y, with hazard ratios of 1.17 [95% confidence interval (CI): 1.13, 1.21] per 5 μg/m3 PM2.5 and 1.16 (95% CI: 1.13, 1.19) per 10,000 UFP/cm3. In the age 50-80 y population, we found higher associations between air pollution and T2D among men in comparison with women, people with lower education vs. individuals with high education, people with medium income vs. those with low or high income, people cohabiting vs. those living alone, and people with comorbidities vs. those without comorbidities. We observed no marked changes according to occupation, population density, road noise, or surrounding greenness. In the age 35-50 y population, similar tendencies were observed, except in relation to sex and occupation, where we observed associations with air pollution only among women and blue-collar workers. DISCUSSION We found stronger associations between air pollution and T2D among people with existing comorbidities and weaker associations among people with high socioeconomic status in comparison with those with lower socioeconomic status. https://doi.org/10.1289/EHP11347.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Aslak Harbo Poulsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ulla Arthur Hvidtfeldt
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate – Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate – Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | | | - Victor H. Valencia
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Christina Funch Lassen
- Centre of Social Medicine, University Hospital Bispebjerg-Frederiksberg, Frederiksberg, Denmark
| | - Ole Raaschou-Nielsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
145
|
Zou W, Luo H, Yang M, Xu J, Zhao N. Biomimetic Robust All-Polymer Porous Coatings for Passive Daytime Radiative Cooling. Macromol Rapid Commun 2023; 44:e2200695. [PMID: 36305388 DOI: 10.1002/marc.202200695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Passive daytime radiation cooling (PDRC) has gained considerable attention as an emerging and promising cooling technology. Polymer-based porous materials are one of the important candidates for PDRC application due to their easy processing, free of inorganic particle doping, and multifunctionality. However, the mechanical properties of these porous materials, which are critical in outdoor services, have been overlooked in previous studies. Herein, a nonsolvent-induced phase separation (NIPS) method combined with ambient pressure drying to prepare polyethylene-polysilicate all-polymer porous coatings is developed. The coatings possess a Cyphochilus beetle-like skeleton structure with optimal skeleton size, laminated anisotropy, and high volume fraction (64 ± 1%). These structure features ensure a maximum skeleton density without optical crowding, thus enhancing light scattering and stress dispersion, and balancing optical and mechanical properties. The coatings exhibit significant mechanical robustness (only ≈70 µm thickness reduction after 1000 Taber abrasion cycles at a 750 g load without influencing optical performance), durability, optical properties (a solar reflectance of ≈95% and an average near-normal thermal emittance of ≈96%), and PDRC performance (realizing sub-ambient cooling of ≈3-6 °C at midday with different weather conditions). The work provides a new solution to improve the practicability of polymer-based porous coatings in PDRC outdoor services and other fields.
Collapse
Affiliation(s)
- Weizhi Zou
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heng Luo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meng Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
146
|
Zhang F, Tang H, Zhao D, Zhang X, Zhu S, Zhao G, Zhang X, Li T, Wei J, Li D, Zhu W. Short-term exposure to ambient particulate matter and mortality among HIV/AIDS patients: Case-crossover evidence from all counties of Hubei province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159410. [PMID: 36257445 DOI: 10.1016/j.scitotenv.2022.159410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) has been a worrisome public health problem in the world. However, evidence for associations between short-term exposure to particulate matter (PM) and mortality among HIV/AIDS patients is scarce. METHODS We collected daily death records in people with HIV/AIDS from all counties (N = 103) of Hubei province, China from 2018 to 2019. The county-level daily concentrations of PM1, PM2.5 and PM10 in the same period were extracted from ChinaHighAirPollutants dataset. A time-stratified case-crossover design with conditional logistic regression analysis was performed to assess the associations between PM and mortality. RESULTS Each 1 μg/m3 increased in PM1 corresponded with 0.89 % elevated in all-cause deaths (ACD) at lag 0-4 days. The largest effects of PM1, PM2.5 and PM10 on AIDS-related deaths (ARD) were detected at lag 0-4 days, and PM1 [percent changes in odds ratio: 2.51 % (95 % CIs: 0.82, 4.22)] appeared greater health hazards than PM2.5 [1.24 % (95 % CIs: 0.33, 2.15)] as well as PM10 [0.65 % (95 % CIs: 0.01, 1.30)]. In subgroup analyses, the significant associations of PM1/PM2.5 and ACD were only found in male and the cold season. We also observed the effects of PM1 and PM10 on ARD were significantly stronger (P for interaction <0.05) in males than females. In addition, we caught sight of HIV/AIDS patients aged over 60 years old were more susceptible to ARD caused by PM than younger population. CONCLUSIONS Our study suggested PM1 was positively linked with the risk of ACD and ARD. Male patients with HIV/AIDS were more significantly susceptible to PM1, PM2.5 and PM10. PM1/PM2.5 appeared stronger associations with ARD in HIV/AIDS patients aged over 60 years old and in the cold season.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Hen Tang
- Institute of Chronic Infectious Disease Prevention and Control, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Dingyuan Zhao
- Institute of Chronic Infectious Disease Prevention and Control, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
147
|
Huynh M, Crane MJ, Jamieson AM. The lung, the niche, and the microbe: Exploring the lung microbiome in cancer and immunity. Front Immunol 2023; 13:1094110. [PMID: 36733391 PMCID: PMC9888758 DOI: 10.3389/fimmu.2022.1094110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The lung is a complex and unique organ system whose biology is strongly influenced by environmental exposure, oxygen abundance, connection to extrapulmonary systems via a dense capillary network, and an array of immune cells that reside in the tissue at steady state. The lung also harbors a low biomass community of commensal microorganisms that are dynamic during both health and disease with the capacity to modulate regulatory immune responses during diseases such as cancer. Lung cancer is the third most common cancer worldwide with the highest mortality rate amongst cancers due to the difficulty of an early diagnosis. This review discusses the current body of work addressing the interactions between the lung microbiota and the immune system, and how these two components of the pulmonary system are linked to lung cancer development and outcomes. Bringing in lessons from broader studies examining the effects of the gut microbiota on cancer outcomes, we highlight many challenges and gaps in this nascent field.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Department of Molecular Microbiology & Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
148
|
Nasri SM, Putri FA, Sunarno S, Fauzia S, Ramdhan DH. PM 2.5 exposure and lung function impairment among fiber-cement industry workers. J Public Health Res 2023; 12:22799036221148989. [PMID: 36654813 PMCID: PMC9841852 DOI: 10.1177/22799036221148989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/14/2022] [Indexed: 01/16/2023] Open
Abstract
Introduction Numerous studies have reported respiratory impairment by exposure to fine particulate matter (PM2.5). However, limited studies investigated its effects on fiber cement roof workers. Thus, our study evaluated the impact of PM2.5 on pulmonary impairments among workers and its risk factors. Design and Method A total of 131 fiber cement roof workers have been chosen based on the inclusive criteria. Size-segregated particles were measured in the workplace of workers. Interview and spirometry tests were obtained to determine the respiratory impairments. Result The results showed the mean concentrations of PM2.5 had exceeded the WHO and US-EPA standards. A quarter of workers had lung restriction, lung obstruction, and mixed. Workers are most likely to have shortness of breath and wheezing. A significant correlation was found between smoking, production workers, and a long work period with abnormal lung function. Fiber cement roof workers are significantly at risk of exposure to PM2.5. They are most likely to acquire abnormal lung function due to PM2.5 exposure. Conclusion Our study recommended the industry constantly maintain its programs. The industry should keep using the wet process to prevent dust generation and water suppression from preventing dust spread, as well as to wear respiratory protection for workers to avoid PM2.5 exposure. We recommended as well to the industry to implement follow-up programs for workers with abnormal lung function. Further action is needed to protect the workers' occupational health in the fiber cement roof industry.
Collapse
Affiliation(s)
- Sjahrul Meizar Nasri
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Indonesia, Kampus UI, Depok, Indonesia
| | - Fiori Amelia Putri
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Indonesia, Kampus UI, Depok, Indonesia
| | - Stevan Sunarno
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Indonesia, Kampus UI, Depok, Indonesia
| | - Sifa Fauzia
- Department of Environmental Health, Faculty of Public Health, Universitas Indonesia, Kampus UI, Depok, Indonesia
| | - Doni Hikmat Ramdhan
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Indonesia, Kampus UI, Depok, Indonesia
| |
Collapse
|
149
|
Ramsperger AFRM, Bergamaschi E, Panizzolo M, Fenoglio I, Barbero F, Peters R, Undas A, Purker S, Giese B, Lalyer CR, Tamargo A, Moreno-Arribas MV, Grossart HP, Kühnel D, Dietrich J, Paulsen F, Afanou AK, Zienolddiny-Narui S, Eriksen Hammer S, Kringlen Ervik T, Graff P, Brinchmann BC, Nordby KC, Wallin H, Nassi M, Benetti F, Zanella M, Brehm J, Kress H, Löder MGJ, Laforsch C. Nano- and microplastics: a comprehensive review on their exposure routes, translocation, and fate in humans. NANOIMPACT 2023; 29:100441. [PMID: 36427812 DOI: 10.1016/j.impact.2022.100441] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Contamination of the environment with nano-and microplastic particles (NMPs) and its putative adverse effects on organisms, ecosystems, and human health is gaining increasing scientific and public attention. Various studies show that NMPs occur abundantly within the environment, leading to a high likelihood of human exposure to NMPs. Here, different exposure scenarios can occur. The most notable exposure routes of NMPs into the human body are via the airways and gastrointestinal tract (GIT) through inhalation or ingestion, but also via the skin due to the use of personal care products (PCPs) containing NMPs. Once NMPs have entered the human body, it is possible that they are translocated from the exposed organ to other body compartments. In our review article, we combine the current knowledge on the (1) exposure routes of NMPs to humans with the basic understanding of the potential (2) translocation mechanisms into human tissues and, consequently, their (3) fate within the human body. Regarding the (1) exposure routes, we reviewed the current knowledge on the occurrence of NMPs in food, beverages, personal care products and the air (focusing on indoors and workplaces) and found that the studies suggest an abundant presence of MPs within the exposure scenarios. The overall abundance of MPs in exposure matrices relevant to humans highlights the importance of understanding whether NMPs have the potential for tissue translocation. Therefore, we describe the current knowledge on the potential (2) translocation pathways of NMPs from the skin, GIT and respiratory systems to other body compartments. Here, particular attention was paid to how likely NMPs can translocate from the primary exposed organs to secondary organs due to naturally occurring defence mechanisms against tissue translocation. Based on the current understanding, we conclude that a dermal translocation of NMPs is rather unlikely. In contrast, small MPs and NPs can generally translocate from the GIT and respiratory system to other tissues. Thus, we reviewed the existing literature on the (3) fate of NMPs within the human body. Based on the current knowledge of the contamination of human exposure routes and the potential translocation mechanisms, we critically discuss the size of the detected particles reported in the fate studies. In some cases, the particles detected in human tissue samples exceed the size of a particle to overcome biological barriers allowing particle translocation into tissues. Therefore, we emphasize the importance of critically reading and discussing the presented results of NMP in human tissue samples.
Collapse
Affiliation(s)
- Anja F R M Ramsperger
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany; Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Turin, Italy
| | | | - Ruud Peters
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Anna Undas
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Sebastian Purker
- Institute of Safety and Risk Sciences (ISR), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernd Giese
- Institute of Safety and Risk Sciences (ISR), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Carina R Lalyer
- Institute of Safety and Risk Sciences (ISR), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, Madrid, Spain
| | | | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Jana Dietrich
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | - Pål Graff
- National Institute of Occupational Health, Oslo, Norway
| | - Bendik C Brinchmann
- National Institute of Occupational Health, Oslo, Norway; Section of Air Pollution and Noise, Department of Environment and Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| | | | | | | | - Julian Brehm
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Martin G J Löder
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
150
|
Chiu YH, Chiu HP, Lin MY. Synergistic effect of probiotic and postbiotic on attenuation of PM2.5-induced lung damage and allergic response. J Food Sci 2023; 88:513-522. [PMID: 36463413 DOI: 10.1111/1750-3841.16398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
To date, few studies have been conducted on the relationship between postbiotics and air pollution, and there is limited knowledge if postbiotic and probiotic have synergistic effects. Therefore, we created a PM-induced lung inflammation mice model and demonstrated the effect of probiotic, postbiotic, and their combination treatment on attenuation of PM2.5-induced lung damage and allergic response. The mice were intratracheally given PM2.5 triggering conditions of acute lung damage and allergic response. Our results showed that individual treatment of probiotic and postbiotic reduced body weight loss by 47.1% and 48.9%, but the results did not show any effect on polarizing IFN-γ/IL-4 ratio. In addition, PM2.5-induced overactive expression of IgE treated by probiotic and postbiotic was reduced by 33.2% and 30.4%, respectively. While combination treatment of probiotic and postbiotic exerted a synergistic effect, especially considerably on improving IgE reduction by 57.1%, body weight loss by 78.3%, and IFN-γ/IL-4 ratio boost by 87.5%. To sum up the above functionality, these research findings may help establish a novel platform for postbiotic application, formulation, and mechanistic selection with regard to PM2.5-induced lung injury. PRACTICAL APPLICATION: Allergic inflammation caused by PM2.5 is not like common allergens (ex. Pollens, ovalbumin, dust mites), which simply skewing Th1/Th2 polarization to Th2. Thus using probiotics screened by Th1-skewing criteria might not be the best choice to treat on PM2.5-induced symptoms. This research proposed a combination of probiotics and postbiotics on modulating immunity homeostasis, and consequently attenuating complications of PM2.5-induced lung damage. These research findings may help establish a novel platform for postbiotic application, formulation and mechanistic selection with regard to PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Yi-Heng Chiu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, ROC, Taiwan.,Chambio Co., Ltd., Taichung, ROC, Taiwan
| | | | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, ROC, Taiwan
| |
Collapse
|