101
|
Subramanian D, Vittala A, Chen X, Julien C, Acosta S, Rusin C, Allen C, Rider N, Starosolski Z, Annapragada A, Devaraj S. Stratification of Pediatric COVID-19 cases by inflammatory biomarker profiling and machine learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.04.23288117. [PMID: 37066407 PMCID: PMC10104220 DOI: 10.1101/2023.04.04.23288117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An objective method to identify imminent or current Multi-Inflammatory Syndrome in Children (MIS-C) infected with SARS-CoV-2 is highly desirable. The aims was to define an algorithmically interpreted novel cytokine/chemokine assay panel providing such an objective classification. This study was conducted on 4 groups of patients seen at multiple sites of Texas Children's Hospital, Houston, TX who consented to provide blood samples to our COVID-19 Biorepository. Standard laboratory markers of inflammation and a novel cytokine/chemokine array were measured in blood samples of all patients. Group 1 consisted of 72 COVID-19, 66 MIS-C and 63 uninfected control patients seen between May 2020 and January 2021 and predominantly infected with pre-alpha variants. Group 2 consisted of 29 COVID-19 and 43 MIS-C patients seen between January-May 2021 infected predominantly with the alpha variant. Group 3 consisted of 30 COVID-19 and 32 MIS-C patients seen between August-October 2021 infected with alpha and/or delta variants. Group 4 consisted of 20 COVID-19 and 46 MIS-C patients seen between October 2021-January 2022 infected with delta and/or omicron variants. Group 1 was used to train a L1-regularized logistic regression model which was validated using 5-fold cross validation, and then separately validated against the remaining naïve groups. The area under receiver operating curve (AUROC) and F1-score were used to quantify the performance of the algorithmically interpreted cytokine/chemokine assay panel. Standard laboratory markers predict MIS-C with a 5-fold cross-validated AUROC of 0.86 ± 0.05 and an F1 score of 0.78 ± 0.07, while the cytokine/chemokine panel predicted MIS-C with a 5-fold cross-validated AUROC of 0.95 ± 0.02 and an F1 score of 0.91 ± 0.04, with only sixteen of the forty-five cytokines/chemokines sufficient to achieve this performance. Tested on Group 2 the cytokine/chemokine panel yielded AUROC =0.98, F1=0.93, on Group 3 it yielded AUROC=0.89, F1 = 0.89, and on Group 4 AUROC= 0.99, F1= 0.97). Adding standard laboratory markers to the cytokine/chemokine panel did not improve performance. A top-10 subset of these 16 cytokines achieves equivalent performance on the validation data sets. Our findings demonstrate that a sixteen-cytokine/chemokine panel as well as the top ten subset provides a sensitive, specific method to identify MIS-C in patients infected with SARS-CoV-2 of all the major variants identified to date.
Collapse
|
102
|
Votto M, Castagnoli R, Marseglia GL, Licari A, Brambilla I. COVID-19 and autoimmune diseases: is there a connection? Curr Opin Allergy Clin Immunol 2023; 23:185-192. [PMID: 36728317 DOI: 10.1097/aci.0000000000000888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW This review summarizes current evidence on the potential link between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and autoimmunity. RECENT FINDINGS Several viral infections are potential triggers of reactive and autoimmune diseases by inducing type II and type IV hypersensitivity reactions. Recent evidence demonstrated that SARS-CoV-2 infection is not an exception, triggering the production of tissue-specific autoantibodies during the acute phase of coronavirus disease 2019 (COVID-19) and leading to autoimmune diseases development as long-term complication. The significant immune dysregulation with cytokine storm and organ damage observed in patients with severe to critical COVID-19 is considered the main mechanism explaining the high levels of autoantibodies, which are also implicated in disease severity and the need for an intensive care assessment. Multisystem inflammatory syndrome in children (MIS-C) is an immune-mediated disease where the recent viral infection leads to systemic inflammation, as already observed in other reactive and autoimmune diseases. SUMMARY Autoimmunity may be a complication of SAR-CoV-2 infection. Understanding the pathogenesis of autoimmune manifestations in COVID-19 might help prevent the incidence or exacerbation of autoimmune disorders and design better and more efficient treatment strategies in children and adult populations.
Collapse
Affiliation(s)
- Martina Votto
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Licari
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ilaria Brambilla
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
103
|
Kolb P, Giese S, Voll RE, Hengel H, Falcone V. Immune complexes as culprits of immunopathology in severe COVID-19. Med Microbiol Immunol 2023; 212:185-191. [PMID: 35871171 PMCID: PMC9308473 DOI: 10.1007/s00430-022-00743-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Infection with the pandemic human coronavirus SARS-CoV-2 elicits a respiratory tract disease, termed Coronavirus disease 2019 (COVID-19). While a variable degree of disease-associated symptoms may emerge, severe COVID-19 is commonly associated with respiratory complications such as acute respiratory distress syndrome (ARDS), the necessity for mechanical ventilation or even extracorporeal membrane oxygenation (ECMO). Amongst others, disease outcome depends on age and pre-existing conditions like cardiovascular diseases, metabolic disorders but also age and biological sex. Intriguingly, increasing experimental and clinical evidence suggests that an exacerbated inflammatory response and in particular IgG immune complexes (ICs), significantly contribute to severe and prolonged COVID-19 disease progression. Vast amounts of deposited, unresolved ICs in tissue are capable to initiate an exaggerated Fc gamma receptor (FcγR) mediated signalling cascade which eventually results in common IC-associated organ diseases such as vasculitis, glomerulonephritis and arthritis, comorbidities that have been frequently reported for COVID-19. Moreover and independent of deposited ICs, very recent work identified soluble ICs (sIC) to be also present in the circulation of a majority of severely ill patients, where their systemic abundance correlated with disease severity. Thus, detection of circulating sICs in patients represents a potential marker for critical COVID-19 disease progression. Their detection early after clinical deterioration might become an indicator for the requirement of prompt anti-inflammatory treatment. Here, we review the role of ICs in COVID-19 progression, their possible origins and potential intervention strategies.
Collapse
Affiliation(s)
- Philipp Kolb
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Sebastian Giese
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Reinhard Edmund Voll
- Faculty of Medicine, Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Valeria Falcone
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
104
|
Lee PI, Hsueh PR. Multisystem inflammatory syndrome in children: A dysregulated autoimmune disorder following COVID-19. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:236-245. [PMID: 36720670 PMCID: PMC9841678 DOI: 10.1016/j.jmii.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a dysregulated autoimmune-mediated illness in genetically susceptible patients following COVID-19 with an interval of 2-6 weeks. The median age of patients with MIS-C is 6-11 years. Most common manifestations are involvement of gastrointestinal tract, cardiovascular system, hematological system, and mucocutaneous system. Respiratory tract, neurological system, musculoskeletal system, and kidney are less frequently affected. Mucocutaneous manifestations and coronary artery abnormalities characteristic for Kawasaki disease (KD) may be observed in a significant proportion of MIS-C patients that may make the differential diagnosis be difficult for some patients, especially in the post-pandemic era. The mortality rate is 1-3%. Management and prognosis of MIS-C are similar to that of KD. MIS-C and KD may share a common pathogenic process. Based on the observation of MIS-C-like illness in uninfected neonates, i.e. multisystem inflammatory syndrome in neonates, both MIS-C and KD may be a consequence of dysregulated, over-exaggerated humoral immune responses triggered by a specific infectious agent.
Collapse
Affiliation(s)
- Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Children's Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
105
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
106
|
Greaney AM, Raredon MSB, Kochugaeva MP, Niklason LE, Levchenko A. SARS-CoV-2 leverages airway epithelial protective mechanism for viral infection. iScience 2023; 26:106175. [PMID: 36788793 PMCID: PMC9912025 DOI: 10.1016/j.isci.2023.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Despite much concerted effort to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feedforward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.
Collapse
Affiliation(s)
- Allison Marie Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
- Medical Scientist Training Program, Yale University, New Haven, CT 06511, USA
| | - Maria P. Kochugaeva
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
- Humacyte Inc., Durham, NC 27713, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
107
|
Rivas MN, Arditi M. Kawasaki Disease and Multisystem Inflammatory Syndrome in Children: common inflammatory pathways of two distinct diseases. Rheum Dis Clin North Am 2023. [PMCID: PMC10020039 DOI: 10.1016/j.rdc.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA,Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s at Cedars-Sinai Medical Center, Los Angeles, California, USA,Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA,Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA,Corresponding Author: Moshe Arditi –
| |
Collapse
|
108
|
Buckley PR, Lee CH, Antanaviciute A, Simmons A, Koohy H. A systems approach evaluating the impact of SARS-CoV-2 variant of concern mutations on CD8+ T cell responses. IMMUNOTHERAPY ADVANCES 2023; 3:ltad005. [PMID: 37082106 PMCID: PMC10112682 DOI: 10.1093/immadv/ltad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
T cell recognition of SARS-CoV-2 antigens after vaccination and/or natural infection has played a central role in resolving SARS-CoV-2 infections and generating adaptive immune memory. However, the clinical impact of SARS-CoV-2-specific T cell responses is variable and the mechanisms underlying T cell interaction with target antigens are not fully understood. This is especially true given the virus' rapid evolution, which leads to new variants with immune escape capacity. In this study, we used the Omicron variant as a model organism and took a systems approach to evaluate the impact of mutations on CD8+ T cell immunogenicity. We computed an immunogenicity potential score for each SARS-CoV-2 peptide antigen from the ancestral strain and Omicron, capturing both antigen presentation and T cell recognition probabilities. By comparing ancestral vs. Omicron immunogenicity scores, we reveal a divergent and heterogeneous landscape of impact for CD8+ T cell recognition of mutated targets in Omicron variants. While T cell recognition of Omicron peptides is broadly preserved, we observed mutated peptides with deteriorated immunogenicity that may assist breakthrough infection in some individuals. We then combined our scoring scheme with an in silico mutagenesis, to characterise the position- and residue-specific theoretical mutational impact on immunogenicity. While we predict many escape trajectories from the theoretical landscape of substitutions, our study suggests that Omicron mutations in T cell epitopes did not develop under cell-mediated pressure. Our study provides a generalisable platform for fostering a deeper understanding of existing and novel variant impact on antigen-specific vaccine- and/or infection-induced T cell immunity.
Collapse
Affiliation(s)
- Paul R Buckley
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chloe H Lee
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hashem Koohy
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Alan Turing Fellow in Health and Medicine
| |
Collapse
|
109
|
Yonker LM, Swank Z, Bartsch YC, Burns MD, Kane A, Boribong BP, Davis JP, Loiselle M, Novak T, Senussi Y, Cheng CA, Burgess E, Edlow AG, Chou J, Dionne A, Balaguru D, Lahoud-Rahme M, Arditi M, Julg B, Randolph AG, Alter G, Fasano A, Walt DR. Circulating Spike Protein Detected in Post-COVID-19 mRNA Vaccine Myocarditis. Circulation 2023; 147:867-876. [PMID: 36597886 PMCID: PMC10010667 DOI: 10.1161/circulationaha.122.061025] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail. METHODS From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children's Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2-specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2-specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling. Results were compared with those from 45 healthy, asymptomatic, age-matched vaccinated control subjects. RESULTS Extensive antibody profiling and T-cell responses in the individuals who developed postvaccine myocarditis were essentially indistinguishable from those of vaccinated control subjects, despite a modest increase in cytokine production. A notable finding was that markedly elevated levels of full-length spike protein (33.9±22.4 pg/mL), unbound by antibodies, were detected in the plasma of individuals with postvaccine myocarditis, whereas no free spike was detected in asymptomatic vaccinated control subjects (unpaired t test; P<0.0001). CONCLUSIONS Immunoprofiling of vaccinated adolescents and young adults revealed that the mRNA vaccine-induced immune responses did not differ between individuals who developed myocarditis and individuals who did not. However, free spike antigen was detected in the blood of adolescents and young adults who developed post-mRNA vaccine myocarditis, advancing insight into its potential underlying cause.
Collapse
Affiliation(s)
- Lael M. Yonker
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Zoe Swank
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
| | - Yannic C. Bartsch
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA (Y.C.B., E.B., B.J., G.A.)
| | - Madeleine D. Burns
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
| | - Abigail Kane
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
| | - Brittany P. Boribong
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Jameson P. Davis
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
| | - Maggie Loiselle
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
| | - Tanya Novak
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Anesthesiology, Critical Care and Pain Medicine (T.N., A.G.R.), Boston Children’s Hospital, MA
| | - Yasmeen Senussi
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
| | - Chi-An Cheng
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
| | - Eleanor Burgess
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA (Y.C.B., E.B., B.J., G.A.)
| | - Andrea G. Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology (A.G.E.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Vincent Center for Reproductive Biology (A.G.E.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Anesthesiology, Critical Care and Pain Medicine (T.N., A.G.R.), Boston Children’s Hospital, MA
| | - Janet Chou
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pediatrics, Division of Immunology (J.C.), Boston Children’s Hospital, MA
| | - Audrey Dionne
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Cardiology (A.D.), Boston Children’s Hospital, MA
| | - Duraisamy Balaguru
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Manuella Lahoud-Rahme
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Infectious and Immunologic Diseases Research Center, and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (M.A.)
| | - Boris Julg
- Department of Medicine (B.J.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA (Y.C.B., E.B., B.J., G.A.)
| | - Adrienne G. Randolph
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - Galit Alter
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA (Y.C.B., E.B., B.J., G.A.)
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Department of Pediatrics (L.M.Y., M.D.B., A.K., B.P.B., J.P.D., M.L., D.B., M.L.-R., A.F.), Division of Infectious Disease, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
| | - David R. Walt
- Harvard Medical School, Boston, MA (L.M.Y., Z.S., Y.C.B., B.P.B., T.N., Y.S., C.-A.C., J.C., A.D., D.B., M.L.-R., B.J., A.G.R., G.A., A.F., D.R.W.)
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA (Z.S., Y.S., C.-A.C., D.R.W.)
| |
Collapse
|
110
|
Pan L, Sun L, Asakawa T, Ben X, Lu H. Updated information regarding acute severe hepatitis of unknown origin in children: Viewpoints of and insights from pediatricians. Biosci Trends 2023; 17:68-72. [PMID: 36273891 DOI: 10.5582/bst.2022.01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, the morbidity of acute severe hepatitis of unknown origin in children (SHIC) has tended to decrease, but this condition should not be ignored because of its uncertain but severe nature. The current study briefly summarizes updated information regarding the epidemiological, clinical, and etiological aspects of SHIC based on the newest information available. Opinions from pediatricians are also presented. In light of the status quo of SHIC and COVID-19 globally, several suggestions are proposed to improve future studies, which could help to further explore the underlying mechanisms of SHIC in the context of COVID-19.
Collapse
Affiliation(s)
- Liping Pan
- Department of Pediatrics, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Lulu Sun
- Department of Pediatrics, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Xiaoming Ben
- Department of Pediatrics, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
111
|
Chan KR, Koh CWT, Ng DHL, Qin S, Ooi JSG, Ong EZ, Zhang SLX, Sam H, Kalimuddin S, Low JGH, Ooi EE. Early peripheral blood MCEMP1 and HLA-DRA expression predicts COVID-19 prognosis. EBioMedicine 2023; 89:104472. [PMID: 36801619 PMCID: PMC9934388 DOI: 10.1016/j.ebiom.2023.104472] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Mass vaccination has dramatically reduced the incidence of severe COVID-19, with most cases now presenting as self-limiting upper respiratory tract infections. However, those with co-morbidities, the elderly and immunocompromised, as well as the unvaccinated, remain disproportionately vulnerable to severe COVID-19 and its sequelae. Furthermore, as the effectiveness of vaccination wanes with time, immune escape SARS-CoV-2 variants could emerge to cause severe COVID-19. Reliable prognostic biomarkers for severe disease could be used as early indicator of re-emergence of severe COVID-19 as well as for triaging of patients for antiviral therapy. METHODS We performed a systematic review and re-analysis of 7 publicly available datasets, analysing a total of 140 severe and 181 mild COVID-19 patients, to determine the most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients. In addition, we included an independent cohort where blood transcriptomics of COVID-19 patients were prospectively and longitudinally monitored previously, to track the time in which these gene expression changes occur before nadir of respiratory function. Single cell RNA-sequencing of peripheral blood mononuclear cells from publicly available datasets was then used to determine the immune cell subsets involved. FINDINGS The most consistent differentially regulated genes in peripheral blood of severe COVID-19 patients were MCEMP1, HLA-DRA and ETS1 across the 7 transcriptomics datasets. Moreover, we found significantly heightened MCEMP1 and reduced HLA-DRA expression as early as four days before the nadir of respiratory function, and the differential expression of MCEMP1 and HLA-DRA occurred predominantly in CD14+ cells. The online platform which we developed is publicly available at https://kuanrongchan-covid19-severity-app-t7l38g.streamlitapp.com/, for users to query gene expression differences between severe and mild COVID-19 patients in these datasets. INTERPRETATION Elevated MCEMP1 and reduced HLA-DRA gene expression in CD14+ cells during the early phase of disease are prognostic of severe COVID-19. FUNDING K.R.C is funded by the National Medical Research Council (NMRC) of Singapore under the Open Fund Individual Research Grant (MOH-000610). E.E.O. is funded by the NMRC Senior Clinician-Scientist Award (MOH-000135-00). J.G.H.L. is funded by the NMRC under the Clinician-Scientist Award (NMRC/CSAINV/013/2016-01). S.K. is funded by the NMRC under the Transition Award. This study was sponsored in part by a generous gift from The Hour Glass.
Collapse
Affiliation(s)
- Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.
| | - Clara W T Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Dorothy H L Ng
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shijie Qin
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Justin S G Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eugenia Z Ong
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Summer L X Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Huizhen Sam
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Jenny G H Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Eng Eong Ooi
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
112
|
Redmond CJ, Kitakule MM, Son A, Sylvester M, Sacco K, Delmonte O, Licciardi F, Castagnoli R, Poli MC, Espinoza Y, Astudillo C, Weber SE, Montealegre Sanchez GA, Barron KS, Magliocco M, Dobbs K, Zhang Y, Matthews H, Oguz C, Su HC, Notarangelo LD, Frischmeyer-Guerrerio P, Schwartz DM. Deep immune profiling uncovers novel associations with clinical phenotypes of multisystem inflammatory syndrome in children (MIS-C). Ann Rheum Dis 2023; 82:442-445. [PMID: 36424123 PMCID: PMC10013176 DOI: 10.1136/ard-2022-223269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Christopher John Redmond
- Vasculitis Translational Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Moses M Kitakule
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - McKella Sylvester
- Vasculitis Translational Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Keith Sacco
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Allergy and Immunology, University of Arizona, Phoenix, Arizona, USA
| | - Ottavia Delmonte
- Immune Deficiency and Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Francesco Licciardi
- Dipartimento di Scienze della Sanità Pubblica e Pediatrica, Università degli Studi di Torino, Torino, Italy
| | - Riccardo Castagnoli
- Immune Deficiency and Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - M Cecilia Poli
- Department of Pediatrics, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | | | - Sarah E Weber
- Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gina A Montealegre Sanchez
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Karyl S Barron
- Office of the Scientific Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary Magliocco
- Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kerry Dobbs
- Immune Deficiency and Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Helen Matthews
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Cihan Oguz
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Immune Deficiency and Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
113
|
Son MBF, Burns JC, Newburger JW. A New Definition for Multisystem Inflammatory Syndrome in Children. Pediatrics 2023; 151:190436. [PMID: 36624565 DOI: 10.1542/peds.2022-060302] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mary Beth F Son
- Division of Immunology.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Jane C Burns
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
114
|
Yap RXL, Leung BPL, Howe HS, Loh ME, Young BE, Fan BE, Lim XR. Immune and coagulation profiles in 3 adults with multisystem inflammatory syndrome. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2023. [DOI: 10.47102/annals-acadmedsg.2022290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Introduction: There is a paucity of information on the cytokine, complement, endothelial activation, and coagulation profiles of multisystem inflammatory syndrome in adults (MIS-A), a rare but serious complication following recovery from SARS-CoV-2 infection. We aim to examine the immune biomarker and coagulation profiles in association with the clinical presentation and course of MIS-A.
Method: The clinical features of MIS-A patients admitted to our tertiary hospital were documented. Their levels of interleukin (IL)-1β, IL-6, IL-10, IL-17, IL-18, interferon-α (IFN-α), IFN-γ, interferon gamma-induced protein 10 (IP-10), tumour necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, complement activation product (complement 5a [C5a]), and endothelial biomarker intercellular adhesion molecule-1 (ICAM-1) levels were assayed. The haemostatic profile was assessed with standard coagulation testing and thromboelastography.
Results: Three male patients were diagnosed with MIS-A at our centre from January to June 2022 with a median age of 55 years. All had tested positive for SARS-CoV-2 12–62 days prior to MIS-A presentation, with gastrointestinal and cardiovascular systems as the most commonly involved. Levels of IL-6, IL-10, IL-18, IP-10 and MCP-1 were raised whereas IL-1β, IFN-α, IFN-γ, IL-17 and TNF-α remained normal. Markedly elevated levels of C-reactive protein (CRP), ferritin and ICAM-1 were present in all. C5a was elevated in 2 patients. A hypercoagulable state was demonstrated by raised levels of D-dimer, factor VIII, von Willebrand factor antigen, and ristocetin cofactor with corresponding raised parameters in thromboelastography in the 2 patients who had their coagulation profile assessed.
Conclusion: MIS-A patients demonstrate activation of pro-inflammatory cytokines, endotheliopathy, complement hyperactivation and hypercoagulability.
Keywords: COVID-19, cytokines, hypercoagulability, hyperinflammatory syndrome
Collapse
|
115
|
Lee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, CoV-Contact Cohort§, COVID Human Genetic Effort¶, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, et alLee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, CoV-Contact Cohort§, COVID Human Genetic Effort¶, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, Rice CM, Silverman RH, Zhang SY, Casanova JL. Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children. Science 2023; 379:eabo3627. [PMID: 36538032 PMCID: PMC10451000 DOI: 10.1126/science.abo3627] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/16/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.
Collapse
Affiliation(s)
- Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Magali Perret
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Iolanda Jordan
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | - Camille Beaufils
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurelie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
| | - Weite Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Milena Hasan
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valentina Libri
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - Fabrice Jaffré
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Marion Moreews
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Kaya Bilguvar
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Flores
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Andrés A. Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
| | - Baptiste Milisavljevic
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romain Levy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Marie-Paule Morin
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | | | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Lazaro Lorenzo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jordi Anton
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Julie Toubiana
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
| | - Fanny Bajolle
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
| | - Victoria Fumadó
- Kids Corona Platform, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Nadhira Fidouh
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
| | - Jordi Pérez-Tur
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Lebon
- Medical School, Paris City University, Paris, France
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien Bonnet
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
| | - Xavier Duval
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
| | - CoV-Contact Cohort§
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Bursa City Hospital, Bursa, Turkey
- Ankara City Hospital, Yildirim Beyazit University, Ankara, Turkey
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
- Medical School, Paris City University, Paris, France
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- New York Genome Center, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Necmettin Erbakan University, Konya, Turkey
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- Human Genomics and Evolution, Collège de France, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - COVID Human Genetic Effort¶
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Bursa City Hospital, Bursa, Turkey
- Ankara City Hospital, Yildirim Beyazit University, Ankara, Turkey
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
- Medical School, Paris City University, Paris, France
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- New York Genome Center, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Necmettin Erbakan University, Konya, Turkey
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- Human Genomics and Evolution, Collège de France, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | - Anna M. Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Clifford L. Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | | | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Carlos Rodriguez-Gallego
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Laia Alsina
- Kids Corona Platform, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Alexandre Belot
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Human Genomics and Evolution, Collège de France, Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
116
|
Giryes S, McGonagle D. Immune and non-immune mechanisms that determine vasculitis and coronary artery aneurysm topography in Kawasaki disease and MIS-C. Clin Exp Rheumatol 2023; 22:103240. [PMID: 36496111 DOI: 10.1016/j.autrev.2022.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
The overlap between multisystem inflammatory syndrome in children (MIS-C) and Kawasaki disease (KD) including coronary artery aneurysms (CAA) and broadly shared gastrointestinal and mucocutaneous disease is poorly defined. In this perspective, we highlight common age-related extravascular epicardial microanatomical and immunological factors that might culminate in CAA expression in both MIS-C and KD. Specifically, the coronary vasa vasorum originates outside the major coronary arteries. Widespread inflammation in the epicardial interstitial compartment in shared between KD and MIS-C. Age-related changes in the neonatal and immature coronary vasculature including the impact of coronary artery biomechanical factors including coronary vessel calibre, age-related vessel distensibility, flow, and vessel neurovascular innervation may explain the decreasing CAA frequency from neonates to older children and the virtual absence of CAA in young adults with the MIS-C phenotype. Other KD and MIS-C features including mucocutaneous disease with keratinocyte-related immunopathology corroborate that disease phenotypes are centrally influenced by inflammation originating outside vessel walls but a potential role for primary coronary artery vascular wall inflammation cannot be excluded. Hence, common extravascular originating tissue-specific responses to aetiologically diverse triggers including superantigens may lead to widespread interstitial tissue inflammation characteristically manifesting as CAA development, especially in younger subjects. Given that CAA is virtually absent in adults, further studies are needed to ascertain whether epicardial interstitial inflammation may impact on both coronary artery physiology and cardiac conduction tissue and contribute to cardiovascular disease- a hitherto unappreciated consideration.
Collapse
Affiliation(s)
- Sami Giryes
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, United Kingdom.
| |
Collapse
|
117
|
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff L, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B. Systems biological assessment of the temporal dynamics of immunity to a viral infection in the first weeks and months of life. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.28.23285133. [PMID: 36778389 PMCID: PMC9915811 DOI: 10.1101/2023.01.28.23285133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dynamics of innate and adaptive immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to SARS-CoV-2 infection in infants and young children in the first weeks and months of life by analyzing blood samples collected before, during, and after infection with Omicron and Non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, were stably maintained for >300 days. Antigen-specific memory B cell (MCB) responses were durable for 150 days but waned thereafter. Somatic hypermutation of V-genes in MCB accumulated progressively over 9 months. The innate response was characterized by upregulation of activation markers on blood innate cells, and a plasma cytokine profile distinct from that seen in adults, with no inflammatory cytokines, but an early and transient accumulation of chemokines (CXCL10, IL8, IL-18R1, CSF-1, CX3CL1), and type I IFN. The latter was strongly correlated with viral load, and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell transcriptomics. Consistent with this, single-cell ATAC-seq revealed enhanced accessibility of chromatic loci targeted by interferon regulatory factors (IRFs) and reduced accessibility of AP-1 targeted loci, as well as traces of epigenetic imprinting in monocytes, during convalescence. Together, these data provide the first snapshot of immunity to infection during the initial weeks and months of life.
Collapse
Affiliation(s)
- Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tuebingen, Tuebingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, Tuebingen, Germany
- German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Allison R. Burrell
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Sara Spranger
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsay Nyhoff
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Devyani Joshi
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Usama Ashraf
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Katherine C. Konvinse
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Emily Yang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Blanco
- Stanford Genomics Service Center, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gregory Tharp
- Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R. Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kari C. Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taia T. Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mary A. Staat
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
118
|
|
119
|
Benamar M, Chen Q, Chou J, Julé AM, Boudra R, Contini P, Crestani E, Lai PS, Wang M, Fong J, Rockwitz S, Lee P, Chan TMF, Altun EZ, Kepenekli E, Karakoc-Aydiner E, Ozen A, Boran P, Aygun F, Onal P, Sakalli AAK, Cokugras H, Gelmez MY, Oktelik FB, Cetin EA, Zhong Y, Taylor ML, Irby K, Halasa NB, Mack EH, Overcoming COVID-19 Investigators, Signa S, Prigione I, Gattorno M, Cotugno N, Amodio D, Geha RS, Son MB, Newburger J, Agrawal PB, Volpi S, Palma P, Kiykim A, Randolph AG, Deniz G, Baris S, De Palma R, Schmitz-Abe K, Charbonnier LM, Henderson LA, Chatila TA. The Notch1/CD22 signaling axis disrupts Treg function in SARS-CoV-2-associated multisystem inflammatory syndrome in children. J Clin Invest 2023; 133:e163235. [PMID: 36282598 PMCID: PMC9797337 DOI: 10.1172/jci163235] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 02/04/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Chen
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Amélie M. Julé
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rafik Boudra
- Brigham and Women’s Hospital, Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Paola Contini
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Elena Crestani
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Peggy S. Lai
- Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Muyun Wang
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Fong
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Shira Rockwitz
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsz Man Fion Chan
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ekin Zeynep Altun
- Ministry of Healthy, Marmara University Education and Training Hospital, Department of Pediatrics, Istanbul, Turkey
| | - Eda Kepenekli
- Marmara University, Faculty of Medicine, Division of Pediatric Infectious Diseases, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Perran Boran
- Marmara University, Faculty of Medicine, Division of Social Pediatrics, Istanbul, Turkey
| | - Fatih Aygun
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pinar Onal
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayse Ayzit Kilinc Sakalli
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Haluk Cokugras
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkey
| | - Fatma Betul Oktelik
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkey
| | - Yuelin Zhong
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Lucia Taylor
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine Irby
- Arkansas Children’s Hospital, Little Rock, Arkansas, USA
| | - Natasha B. Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth H. Mack
- Division of Pediatric Critical Care Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Sara Signa
- DINOGMI, Università degli Studi di Genova, Genova, Italy and Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Ignazia Prigione
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Nicola Cotugno
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata,” Roma, Italy
| | - Donato Amodio
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Raif S. Geha
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Beth Son
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane Newburger
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Pankaj B. Agrawal
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, USA
- Division of Newborn Medicine and Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefano Volpi
- DINOGMI, Università degli Studi di Genova, Genova, Italy and Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Paolo Palma
- Clinical and Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome “Tor Vergata,” Roma, Italy
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Adrienne G. Randolph
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Raffaele De Palma
- Unit of Clinical Immunology and Translational Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
- CNR Institute of Biomolecular Chemistry (IBC), Pozzuoli, Napoli, Italy
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
120
|
Noval Rivas M, Arditi M. Notch1 signaling impairs regulatory T cells during multisystem inflammatory syndrome in children. J Clin Invest 2023; 133:166016. [PMID: 36594470 PMCID: PMC9797332 DOI: 10.1172/jci166016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare pediatric inflammatory disorder characterized by immune cell hyperactivation, cytokine storm, and the production of autoantibodies. The mechanisms underlying such immune dysregulation still need to be unraveled. In this issue of the JCI, Benamar et al. demonstrated the critical role of the Notch receptor 1/CD22 (Notch1/CD22) axis in Tregs, which, when activated, impairs Treg functions and promotes inflammation. They showed that the Notch1/CD22 axis contributed to dysregulated immune responses in MIS-C. These findings may have implications for MIS-C and many other inflammatory diseases.
Collapse
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s,,Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, and
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children’s,,Infectious and Immunologic Diseases Research Center (IIDRC), Department of Biomedical Sciences, and,Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
121
|
Kopitar AN, Repas J, Janžič L, Bizjak M, Vesel TT, Emeršič N, Avramovič MZ, Ihan A, Avčin T, Pavlin M. Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrome (MIS-C). Front Immunol 2023; 14:1157702. [PMID: 37153551 PMCID: PMC10157053 DOI: 10.3389/fimmu.2023.1157702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Although children seem to be less susceptible to COVID-19, some of them develop a rare but serious hyperinflammatory condition called multisystem inflammatory syndrome in children (MIS-C). While several studies describe the clinical conditions of acute MIS-C, the status of convalescent patients in the months after acute MIS-C is still unclear, especially the question of persistence of changes in the specific subpopulations of immune cells in the convalescent phase of the disease. Methods We therefore analyzed peripheral blood of 14 children with MIS-C at the onset of the disease (acute phase) and 2 to 6 months after disease onset (post-acute convalescent phase) for lymphocyte subsets and antigen-presenting cell (APC) phenotype. The results were compared with six healthy age-matched controls. Results All major lymphocyte populations (B cells, CD4 + and CD8+ T cells, and NK cells) were decreased in the acute phase and normalized in the convalescent phase. T cell activation was increased in the acute phase, followed by an increased proportion of γ/δ-double-negative T cells (γ/δ DN Ts) in the convalescent phase. B cell differentiation was impaired in the acute phase with a decreased proportion of CD21 expressing, activated/memory, and class-switched memory B cells, which normalized in the convalescent phase. The proportion of plasmacytoid dendritic cells, conventional type 2 dendritic cells, and classical monocytes were decreased, while the proportion of conventional type 1 dendritic cells was increased in the acute phase. Importantly the population of plasmacytoid dendritic cells remained decreased in the convalescent phase, while other APC populations normalized. Immunometabolic analysis of peripheral blood mononuclear cells (PBMCs) in the convalescent MIS-C showed comparable mitochondrial respiration and glycolysis rates to healthy controls. Conclusions While both immunophenotyping and immunometabolic analyzes showed that immune cells in the convalescent MIS-C phase normalized in many parameters, we found lower percentage of plasmablasts, lower expression of T cell co-receptors (CD3, CD4, and CD8), an increased percentage of γ/δ DN Ts and increased metabolic activity of CD3/CD28-stimulated T cells. Overall, the results suggest that inflammation persists for months after the onset of MIS-C, with significant alterations in some immune system parameters, which may also impair immune defense against viral infections.
Collapse
Affiliation(s)
- Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Janžič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Bizjak
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tina Tajnšek Vesel
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nina Emeršič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Zajc Avramovič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Avčin
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Department of Pediatrics, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| |
Collapse
|
122
|
Feleszko W, Okarska-Napierała M, Buddingh EP, Bloomfield M, Sediva A, Bautista-Rodriguez C, Brough HA, Eigenmann PA, Eiwegger T, Eljaszewicz A, Eyerich S, Gomez-Casado C, Fraisse A, Janda J, Jiménez-Saiz R, Kallinich T, Krohn IK, Mortz CG, Riggioni C, Sastre J, Sokolowska M, Strzelczyk Z, Untersmayr E, Tramper-Stranders G. Pathogenesis, immunology, and immune-targeted management of the multisystem inflammatory syndrome in children (MIS-C) or pediatric inflammatory multisystem syndrome (PIMS): EAACI Position Paper. Pediatr Allergy Immunol 2023; 34:e13900. [PMID: 36705045 DOI: 10.1111/pai.13900] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare, but severe complication of coronavirus disease 2019 (COVID-19). It develops approximately 4 weeks after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and involves hyperinflammation with multisystem injury, commonly progressing to shock. The exact pathomechanism of MIS-C is not known, but immunological dysregulation leading to cytokine storm plays a central role. In response to the emergence of MIS-C, the European Academy of Allergy and Clinical Immunology (EAACI) established a task force (TF) within the Immunology Section in May 2021. With the use of an online Delphi process, TF formulated clinical statements regarding immunological background of MIS-C, diagnosis, treatment, follow-up, and the role of COVID-19 vaccinations. MIS-C case definition is broad, and diagnosis is made based on clinical presentation. The immunological mechanism leading to MIS-C is unclear and depends on activating multiple pathways leading to hyperinflammation. Current management of MIS-C relies on supportive care in combination with immunosuppressive and/or immunomodulatory agents. The most frequently used agents are systemic steroids and intravenous immunoglobulin. Despite good overall short-term outcome, MIS-C patients should be followed-up at regular intervals after discharge, focusing on cardiac disease, organ damage, and inflammatory activity. COVID-19 vaccination is a safe and effective measure to prevent MIS-C. In anticipation of further research, we propose a convenient and clinically practical algorithm for managing MIS-C developed by the Immunology Section of the EAACI.
Collapse
Affiliation(s)
- Wojciech Feleszko
- Department of Pediatric Pneumology and Allergy, The Medical University of Warsaw, Warsaw, Poland
| | | | - Emilie Pauline Buddingh
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic.,Department of Pediatrics, 1st Faculty of Medicine, Thomayer University Hospital, Charles University, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Carles Bautista-Rodriguez
- Pediatric Cardiology Services, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Helen A Brough
- Paediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, St. Thomas' Hospital, King's College London, London, UK.,Children's Allergy Service, Evelina Children's Hospital, Guy's and St.Thomas' Hospital NHS Foundation Trust, London, UK.,Paediatric Allergy Group, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Guys' Hospital, King's College London, London, UK
| | - Philippe A Eigenmann
- Department of Women-Children-Teenagers, University Hospital of Geneva, Geneva, Switzerland
| | - Thomas Eiwegger
- Karl Landsteiner University of Health Sciences, Krems, Austria.,Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Stefanie Eyerich
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Cristina Gomez-Casado
- Department of Dermatology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alain Fraisse
- Pediatric Cardiology Services, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Jozef Janda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain.,Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain.,Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Tilmann Kallinich
- Pediatric Pneumology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin and Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Inge Kortekaas Krohn
- SKIN Research Group, Vrije Univeristeit Brussel (VUB), Brussels, Belgium.,Department of Dermatology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Charlotte G Mortz
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University Hospital, Odense, Denmark
| | - Carmen Riggioni
- Allergy, Immunology and Rheumatology Division, Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joaquin Sastre
- Fundacion Jimenez Diaz and CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Ziemowit Strzelczyk
- Department of Pediatric Pneumology and Allergy, The Medical University of Warsaw, Warsaw, Poland
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerdien Tramper-Stranders
- Department of Paediatric Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Department of Neonatology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | | |
Collapse
|
123
|
Long A, Kleiner A, Looney RJ. Immune dysregulation. J Allergy Clin Immunol 2023; 151:70-80. [PMID: 36608984 DOI: 10.1016/j.jaci.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
The understanding of immune dysregulation in many different diseases continues to grow. There is increasing evidence that altered microbiome and gut barrier dysfunction contribute to systemic inflammation in patients with primary immunodeficiency and in patients with rheumatic disease. Recent research provides insight into the process of induction and maturation of pathogenic age-associated B cells and highlights the role of age-associated B cells in creating tissue inflammation. T follicular regulatory cells are shown to help maintain B-cell tolerance, and therapeutic approaches to increase or promote T follicular regulatory cells may help prevent or decrease immune dysregulation. Meanwhile, novel studies of systemic-onset juvenile idiopathic arthritis reveal a strong HLA association with interstitial lung disease and identify key aspects of the pathogenesis of macrophage activation syndrome. Studies of hyperinflammatory syndromes, including the recently described multisystem inflammatory syndrome of children, characterize similarities and differences in cytokine profiles and T-cell activation. This review focuses on recent advances in the understanding of immune dysregulation and describes potential key factors that may function as biomarkers for disease or targets for therapeutic interventions. Future trials are necessary to address the many remaining questions with regards to pathogenesis, diagnosis, and treatment of autoimmune, inflammatory, and immunodeficiency syndromes.
Collapse
Affiliation(s)
- Andrew Long
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Anatole Kleiner
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - R John Looney
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
124
|
Xu Q, Milanez-Almeida P, Martins AJ, Radtke AJ, Hoehn KB, Oguz C, Chen J, Liu C, Tang J, Grubbs G, Stein S, Ramelli S, Kabat J, Behzadpour H, Karkanitsa M, Spathies J, Kalish H, Kardava L, Kirby M, Cheung F, Preite S, Duncker PC, Kitakule MM, Romero N, Preciado D, Gitman L, Koroleva G, Smith G, Shaffer A, McBain IT, McGuire PJ, Pittaluga S, Germain RN, Apps R, Schwartz DM, Sadtler K, Moir S, Chertow DS, Kleinstein SH, Khurana S, Tsang JS, Mudd P, Schwartzberg PL, Manthiram K. Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children. Nat Immunol 2023; 24:186-199. [PMID: 36536106 PMCID: PMC10777159 DOI: 10.1038/s41590-022-01367-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.
Collapse
Affiliation(s)
- Qin Xu
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Andrew J Martins
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Andrea J Radtke
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Cihan Oguz
- NIAID Collaborative Bioinformatics Resource (NCBR), NIAID, NIH, Bethesda, MD, USA
- Axle Informatics, Bethesda, MD, USA
| | - Jinguo Chen
- Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Can Liu
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Sydney Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD, USA
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Sabrina Ramelli
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD, USA
| | - Juraj Kabat
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Hengameh Behzadpour
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
| | - Maria Karkanitsa
- Laboratory of Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | - Jacquelyn Spathies
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD, USA
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD, USA
| | - Lela Kardava
- B-cell Immunology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Martha Kirby
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA
| | - Foo Cheung
- Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | - Silvia Preite
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | - Nahir Romero
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Diego Preciado
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Lyuba Gitman
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Grace Smith
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Arthur Shaffer
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Ian T McBain
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Peter J McGuire
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Ronald N Germain
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH, Bethesda, MD, USA
- Lymphocyte Biology Section, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Richard Apps
- Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
| | | | - Kaitlyn Sadtler
- Laboratory of Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD, USA
| | - Susan Moir
- B-cell Immunology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Daniel S Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD, USA
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - John S Tsang
- Center for Human Immunology, NIAID, NIH, Bethesda, MD, USA
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD, USA
| | - Pamela Mudd
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD, USA.
| | - Kalpana Manthiram
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
125
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
126
|
Papadopoulos KI, Papadopoulou A, Aw TC. A protective erythropoietin evolutionary landscape, NLRP3 inflammasome regulation, and multisystem inflammatory syndrome in children. Hum Cell 2023; 36:26-40. [PMID: 36310304 PMCID: PMC9618415 DOI: 10.1007/s13577-022-00819-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.
Collapse
Affiliation(s)
- Konstantinos I Papadopoulos
- Department of Research and Development, THAI StemLife Co., Ltd., 566/3 THAI StemLife Bldg., Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, 10310, Bangkok, Thailand.
| | - Alexandra Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
127
|
Kanduri C, Scheffer L, Pavlović M, Rand KD, Chernigovskaya M, Pirvandy O, Yaari G, Greiff V, Sandve GK. simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods. Gigascience 2022; 12:giad074. [PMID: 37848619 PMCID: PMC10580376 DOI: 10.1093/gigascience/giad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-experienced repertoires. RESULTS We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like repertoires with a realistic overlap of receptor sequences. simAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental data sources) for what constitutes receptor-level immune signals. This includes the possibility of making or not making any prior assumptions regarding the similarity or commonality of immune state-associated sequences that will be used as true signals. We demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on simAIRR-generated and real-world experimental AIRR datasets. CONCLUSIONS This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state-of-the-art way of simulating AIRR datasets. simAIRR is available as a Python package: https://github.com/KanduriC/simAIRR.
Collapse
Affiliation(s)
- Chakravarthi Kanduri
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Lonneke Scheffer
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Milena Pavlović
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Knut Dagestad Rand
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Oz Pirvandy
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Geir K Sandve
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
128
|
Santos-Rebouças CB, Piergiorge RM, Dos Santos Ferreira C, Seixas Zeitel RD, Gerber AL, Rodrigues MCF, Guimarães APDC, Silva RM, Fonseca AR, Souza RC, de Souza ATAM, Rossi ÁD, Porto LCDMS, Cardoso CC, de Vasconcelos ATR. Host genetic susceptibility underlying SARS-CoV-2-associated Multisystem Inflammatory Syndrome in Brazilian Children. Mol Med 2022; 28:153. [PMID: 36510129 PMCID: PMC9742658 DOI: 10.1186/s10020-022-00583-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multisystem Inflammatory Syndrome in Children (MIS-C) is a life-threatening complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which manifests as a hyper inflammatory process with multiorgan involvement in predominantly healthy children in the weeks following mild or asymptomatic coronavirus disease 2019 (COVID-19). However, host monogenic predisposing factors to MIS-C remain elusive. METHODS Herein, we used whole exome sequencing (WES) on 16 MIS-C Brazilian patients to identify single nucleotide/InDels variants as predisposition factors associated with MIS-C. RESULTS We identified ten very rare variants in eight genes (FREM1, MPO, POLG, C6, C9, ABCA4, ABCC6, and BSCL2) as the most promising candidates to be related to a higher risk of MIS-C development. These variants may propitiate a less effective immune response to infection or trigger the inflammatory response or yet a delayed hyperimmune response to SARS-CoV-2. Protein-Protein Interactions (PPIs) among the products of the mutated genes revealed an integrated network, enriched for immune and inflammatory response mechanisms with some of the direct partners representing gene products previously associated with MIS-C and Kawasaki disease (KD). In addition, the PPIs direct partners are also enriched for COVID-19-related gene sets. HLA alleles prediction from WES data allowed the identification of at least one risk allele in 100% of the MIS-C patients. CONCLUSIONS This study is the first to explore host MIS-C-associated variants in a Latin American admixed population. Besides expanding the spectrum of MIS-C-associated variants, our findings highlight the relevance of using WES for characterising the genetic interindividual variability associated with COVID-19 complications and ratify the presence of overlapping/convergent mechanisms among MIS-C, KD and COVID-19, crucial for future therapeutic management.
Collapse
Affiliation(s)
- Cíntia Barros Santos-Rebouças
- Departamento de Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Mina Piergiorge
- Departamento de Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristina Dos Santos Ferreira
- Laboratório de Bioinformática - LABINFO, Laboratório Nacional de Computação Científica, LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Zip Code: 25651‑075, Petrópolis, Rio de Janeiro, Brazil
| | - Raquel de Seixas Zeitel
- UTI Pediátrica, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática - LABINFO, Laboratório Nacional de Computação Científica, LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Zip Code: 25651‑075, Petrópolis, Rio de Janeiro, Brazil
| | - Marta Cristine Felix Rodrigues
- Serviço de Reumatologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira - IPPMG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática - LABINFO, Laboratório Nacional de Computação Científica, LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Zip Code: 25651‑075, Petrópolis, Rio de Janeiro, Brazil
| | - Rodrigo Moulin Silva
- UTI Pediátrica, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Rodrigues Fonseca
- Serviço de Reumatologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira - IPPMG, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rangel Celso Souza
- Laboratório de Bioinformática - LABINFO, Laboratório Nacional de Computação Científica, LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Zip Code: 25651‑075, Petrópolis, Rio de Janeiro, Brazil
| | | | - Átila Duque Rossi
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cynthia Chester Cardoso
- Laboratório de Virologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Tereza Ribeiro de Vasconcelos
- Laboratório de Bioinformática - LABINFO, Laboratório Nacional de Computação Científica, LNCC/MCTIC, Getúlio Vargas, Av., 333, Quitandinha, Zip Code: 25651‑075, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
129
|
Shingleton J, Burton L, Williams HE, Finnie TJR, Bennett E, Birrell P, Kenny S, Watson-Koszel T, Viner R, Arditi M, DeAngelis D, Gent N, Ladhani SN. Risk of paediatric multisystem inflammatory syndrome (PIMS-TS) during the SARS-CoV-2 alpha and delta variant waves: National observational and modelling study, 2020-21, England. Front Pediatr 2022; 10:1034280. [PMID: 36545670 PMCID: PMC9762156 DOI: 10.3389/fped.2022.1034280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Paediatric Multisystem Inflammatory Syndrome (PIMS-TS) is a rare life-threatening complication that typically occurs several weeks after SARS-CoV-2 infection in children and young people (CYP). We used national and regional-level data from the COVID-19 pandemic waves in England to develop a model to predict PIMS-TS cases. Methods SARS-CoV-2 infections in CYP aged 0-15 years in England were estimated using the PHE-Cambridge real-time model. PIMS-TS cases were identified through the British Paediatric Surveillance Unit during (March-June 2020) and through Secondary Uses Services (SUS) from November 2020. A predictive model was developed to estimate PIMS-TS risk and lag times after SARS-CoV-2 infections. Results During the Alpha wave, the model accurately predicted PIMS-TS cases (506 vs. 502 observed cases), with a median estimated risk of 0.038% (IQR, 0.037-0.041%) of paediatric SARS-CoV-2 infections. For the Delta wave, the median risk of PIMS-TS was significantly lower at 0.026% (IQR, 0.025-0.029%), with 212 observed PIMS-TS cases compared to 450 predicted by the model. Conclusions The model accurately predicted national and regional PIMS-TS cases in CYP during the Alpha wave. PIMS-TS cases were 53% lower than predicted during the Delta wave. Further studies are needed to understand the mechanisms of the observed lower risk with the Delta variant.
Collapse
Affiliation(s)
- Joseph Shingleton
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Lucy Burton
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Hannah E. Williams
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Thomas J. R. Finnie
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Emma Bennett
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Paul Birrell
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
- MRC Biostatistics Unit, University of Cambridge, School of Clinical Medicine, Cambridge Institute of Public Health, Cambridge, United Kingdom
- Statistical Modelling and Economics, UK Health Security Agency, Colindale, United Kingdom
| | - Simon Kenny
- CYP Transformation Programme Team, Nursing Directorate, NHS England and NHS Improvement, Leeds, England
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Surgery, Alder Hey in the Park, Liverpool, United Kingdom
| | - Tiffany Watson-Koszel
- CYP Transformation Programme Team, Nursing Directorate, NHS England and NHS Improvement, Leeds, England
| | - Russell Viner
- Population, Policy and Practice, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Daniela DeAngelis
- Statistical Modelling and Economics, UK Health Security Agency, Colindale, United Kingdom
| | - Nick Gent
- Emergency Preparedness Response and Resilience Directorate, UK Health Security Agency, Porton Down, London, United Kingdom
- Joint Modelling Team, UK Health Security Agency, London, United Kingdom
| | - Shamez N. Ladhani
- Immunisation and Countermeasures Division, UK Health Security Agency, London, United Kingdom
- Paediatric Infectious Diseases Research Group, St George’s University of London, London, United Kingdom
| |
Collapse
|
130
|
Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, Ge J. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review. J Autoimmun 2022; 133:102919. [PMID: 36242821 DOI: 10.1016/j.jaut.2022.102919] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
Autoimmunity refers to the phenomenon that the body's immune system produces antibodies or sensitized lymphocytes to its own tissues to cause an immune response. Immune disorders caused by autoimmunity can mediate autoimmune diseases. Autoimmune diseases have complicated pathogenesis due to the many types of cells involved, and the mechanism is still unclear. The emergence of single-cell research technology can solve the problem that ordinary transcriptome technology cannot be accurate to cell type. It provides unbiased results through independent analysis of cells in tissues and provides more mRNA information for identifying cell subpopulations, which provides a novel approach to study disruption of immune tolerance and disturbance of pro-inflammatory pathways on a cellular basis. It may fundamentally change the understanding of molecular pathways in the pathogenesis of autoimmune diseases and develop targeted drugs. Single-cell transcriptome sequencing (scRNA-seq) has been widely applied in autoimmune diseases, which provides a powerful tool for demonstrating the cellular heterogeneity of tissues involved in various immune inflammations, identifying pathogenic cell populations, and revealing the mechanism of disease occurrence and development. This review describes the principles of scRNA-seq, introduces common sequencing platforms and practical procedures, and focuses on the progress of scRNA-seq in 41 autoimmune diseases, which include 9 systemic autoimmune diseases and autoinflammatory diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) and 32 organ-specific autoimmune diseases (5 Skin diseases, 3 Nervous system diseases, 4 Eye diseases, 2 Respiratory system diseases, 2 Circulatory system diseases, 6 Liver, Gallbladder and Pancreas diseases, 2 Gastrointestinal system diseases, 3 Muscle, Bones and joint diseases, 3 Urinary system diseases, 2 Reproductive system diseases). This review also prospects the molecular mechanism targets of autoimmune diseases from the multi-molecular level and multi-dimensional analysis combined with single-cell multi-omics sequencing technology (such as scRNA-seq, Single cell ATAC-seq and single cell immune group library sequencing), which provides a reference for further exploring the pathogenesis and marker screening of autoimmune diseases and autoimmune inflammatory diseases in the future.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Tianqing Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
131
|
Katoto PDMC, Brand AS, Byamungu LN, Tamuzi JL, Mahwire TC, Kitenge MK, Wiysonge CS, Gray G. Safety of COVID-19 Pfizer-BioNtech (BNT162b2) mRNA vaccination in adolescents aged 12-17 years: A systematic review and meta-analysis. Hum Vaccin Immunother 2022; 18:2144039. [PMID: 36367429 DOI: 10.1080/21645515.2022.2144039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has severely affected adolescents. Safe and effective vaccines are pivotal tools in controlling this pandemic. We reviewed the safety profile of the BNT162b2 COVID-19 vaccine in adolescents using mostly real-world data to assist decision-making. We used random-effects model meta-analysis to derive pooled rates of single or grouped adverse events following immunization (AEFI) after each primary and booster dose, as well as after combining all doses. Reporting on over one million participants with safety data were included. The most-reported local and systemic AEFIs were pain/swelling/erythema/redness and fatigue/headache/myalgia, respectively. AESIs were rarely reported but were more frequent after the second dose than they were after the first and the booster doses. Health impact was less common among adolescents after receiving BNT162b2 vaccine. Rare life-threatening AEFIs were reported across all doses in real-world studies. Our findings highlight the significance of enhancing national and regional vaccination programs to ensure public confidence.
Collapse
Affiliation(s)
- Patrick D M C Katoto
- Office of the President and CEO, South African Medical Research Council, Cape Town, South Africa.,Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Centre for Tropical Diseases and Global Health, Department of Medicine, Catholic University of Bukavu, Bukavu, DR Congo
| | - Amanda S Brand
- Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liliane N Byamungu
- Department of Pediatric, Faculty of Medicine and Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Jacques L Tamuzi
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tamirirashe C Mahwire
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marcel K Kitenge
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Charles S Wiysonge
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa.,HIV and Other Infectious Diseases Research Unit, South African Medical Research Council, Durban, South Africa
| | - Glenda Gray
- Office of the President and CEO, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
132
|
Chi H, Chang L, Chao YC, Lin DS, Yang HW, Fang LC, Lin CH, Ho CS, Yang KD. Pathogenesis and Preventive Tactics of Immune-Mediated Non-Pulmonary COVID-19 in Children and Beyond. Int J Mol Sci 2022; 23:14157. [PMID: 36430629 PMCID: PMC9696849 DOI: 10.3390/ijms232214157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The COVID-19 pandemic has evolved to immune escape and threatened small children and the elderly with a higher severity and fatality of non-pulmonary diseases. These life-threatening non-pulmonary COVID-19 diseases such as acute necrotizing encephalopathies (ANE) and multisystem inflammatory syndrome in children (MIS-C) are more prevalent in children. However, the mortality of multisystem inflammatory syndrome in adults (MIS-A) is much higher than that of MIS-C although the incidence of MIS-A is lower. Clarification of immunopathogenesis and genetic susceptibility of inflammatory non-pulmonary COVID-19 diseases would provide an appropriate guide for the crisis management and prevention of morbidity and fatality in the ongoing pandemic. This review article described three inflammatory non-pulmonary COVID-19 diseases including (1) meningoencephalitis (ME), (2) acute necrotizing encephalopathies (ANE), and (3) post-infectious multisystem inflammatory syndrome in children (MIS-C) and in adults (MIS-A). To prevent these life-threatening non-pulmonary COVID-19 diseases, hosts carrying susceptible genetic variants should receive prophylactic vaccines, avoid febrile respiratory tract infection, and institute immunomodulators and mitochondrial cocktails as early as possible.
Collapse
Affiliation(s)
- Hsin Chi
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Lung Chang
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Yen-Chun Chao
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Dar-Shong Lin
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Horng-Woei Yang
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Li-Chih Fang
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Chia-Hsueh Lin
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Che-Sheng Ho
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Kuender D. Yang
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
133
|
Gong K, Xu X, Yao J, Ye S, Yu X, Tu H, Lan Y, Fan YC, Shi Y. Acute hepatitis of unknown origin in children: A combination of factors. Front Pharmacol 2022; 13:1056385. [PMID: 36438816 PMCID: PMC9698116 DOI: 10.3389/fphar.2022.1056385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
On 5 April 2022, the World Health Organization was notified of 10 cases of severe acute hepatitis of unknown etiology in children under 10 years of age in the United Kingdom. Although the exact cause of a proportion of pediatric acute hepatitis and acute liver failure cases was unclear, the above event has caused widespread concern worldwide. As of 14 September 2022, approximately 1,296 probable cases of acute hepatitis of unknown etiology have been reported from 37 countries/regions, of which approximately 55 required or received liver transplantation and 29 died. Although the etiology of acute hepatitis of unknown origin in children remains unclear, many hypotheses have been proposed about the disease. Instead of individual factors such as "adenovirus infection," "SARS-CoV-2 related," and "Adeno-associated virus 2 with helper virus coinfection," it is more likely due to a combination of factors. Accordingly, there is an urgent need for more data and research to clarify the disease etiology. This review aims to provide a historical perspective of acute hepatitis of unknown etiology in children in the past decades and summarize the current hypothesis and evidence on this emerging disease.
Collapse
Affiliation(s)
- Kai Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xianbin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaoheng Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huilan Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Lan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu-chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
134
|
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of disorders affecting immune host defense and immunoregulation. Considering the predisposition to develop severe and chronic infections, it is crucial to understand the clinical evolution of COVID-19 in IEI patients. This review analyzes clinical outcomes following SARS-CoV-2 infection, as well as response to COVID-19 vaccines in patients with IEI.
Collapse
Affiliation(s)
- Ottavia M. Delmonte
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Riccardo Castagnoli
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland,2Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy,3Pediatric Clinic, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Luigi D. Notarangelo
- 1Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
135
|
Malik A, Tóth EN, Teng MS, Hurst J, Watt E, Wise L, Kent N, Bartram J, Grandjean L, Dominguez-Villar M, Adams S, Cooper N. Distorted TCR repertoires define multisystem inflammatory syndrome in children. PLoS One 2022; 17:e0274289. [PMID: 36301874 PMCID: PMC9612519 DOI: 10.1371/journal.pone.0274289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
While the majority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) display mild or no symptoms, rare individuals develop severe disease presenting with multisystem inflammatory syndrome (MIS-C). The reason for variable clinical manifestations is not understood. Here, we carried out TCR sequencing and conducted comparative analyses of TCR repertoires between children with MIS-C (n = 12) and mild (n = 8) COVID-19. We compared these repertoires with unexposed individuals (samples collected pre-COVID-19 pandemic: n = 8) and with the Adaptive Biotechnologies MIRA dataset, which includes over 135,000 high-confidence SARS-CoV-2-specific TCRs. We show that the repertoires of children with MIS-C are characterised by the expansion of TRBV11-2 chains with high junctional and CDR3 diversity. Moreover, the CDR3 sequences of TRBV11-2 clones shift away from SARS-CoV-2 specific T cell clones, resulting in distorted TCR repertoires. In conclusion, our study reports that CDR3-independent expansion of TRBV11-2+ cells, lacking SARS-CoV-2 specificity, defines MIS-C in children.
Collapse
Affiliation(s)
- Amna Malik
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Eszter N. Tóth
- Etcembly Ltd, Magdalen Centre, Robert Robinson Way, Oxford, United Kingdom
| | - Michelle S. Teng
- Etcembly Ltd, Magdalen Centre, Robert Robinson Way, Oxford, United Kingdom
| | - Jacob Hurst
- Etcembly Ltd, Magdalen Centre, Robert Robinson Way, Oxford, United Kingdom
| | - Eleanor Watt
- Molecular and Cellular Immunology Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lauren Wise
- SIHMDS-Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Natalie Kent
- SIHMDS-Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Jack Bartram
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Louis Grandjean
- Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Stuart Adams
- SIHMDS-Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Nichola Cooper
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
| |
Collapse
|
136
|
Gelzo M, Castaldo A, Giannattasio A, Scalia G, Raia M, Esposito MV, Maglione M, Muzzica S, D’Anna C, Grieco M, Tipo V, La Cava A, Castaldo G. MIS-C: A COVID-19-as sociated condition between hypoimmunity and hyperimmunity. Front Immunol 2022; 13:985433. [PMID: 36263058 PMCID: PMC9574022 DOI: 10.3389/fimmu.2022.985433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare, severe complication of COVID-19. A better knowledge of immunological, cellular, and genetic characteristics of MIS-C could help better understand the pathogenesis of the disease and contribute to identifying specific diagnostic biomarkers and develop targeted therapies. We studied 37 MIS-C children at hospital admission and 24 healthy controls analyzing serum cytokines (IFN-α, IFN-β, IFN-γ, IL-6, IL-10, IL-17A, IL-12p70 and TNF), lymphocyte populations by flow cytometry and 386 genes related to autoimmune diseases, autoinflammation and primary immunodeficiencies by NGS. MIS-C patients showed a significant increase of serum IFNγ (despite a significant reduction of activated Th1) and ILs, even if with a great heterogeneity among patients, revealing different pathways involved in MIS-C pathogenesis and suggesting that serum cytokines at admission may help to select the inflammatory pathways to target in each patient. Flow cytometry demonstrated a relevant reduction of T populations while the percentage of B cell was increased in agreement with an autoimmune pathogenesis of MIS-C. Genetic analysis identified variants in 34 genes and 83.3% of patients had at least one gene variant. Among these, 9 were mutated in more patients. Most genes are related to autoimmune diseases like ATM, NCF1, MCM4, FCN3, and DOCK8 or to autoinflammatory diseases associated to the release of IFNγ like PRF1, NOD2, and MEF. Thus, an incomplete clearance of the Sars-CoV2 during the acute phase may induce tissue damage and self-antigen exposure and genetic variants can predispose to hyper-reactive immune dysregulation events of MIS-C-syndrome. Type II IFN activation and cytokine responses (mainly IL-6 and IL-10) may cause a cytokine storm in some patients with a more severe acute phase of the disease, lymphopenia and multisystemic organ involvement. The timely identification of such patients with an immunocytometric panel might be critical for targeted therapeutic management.
Collapse
Affiliation(s)
- Monica Gelzo
- CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Alice Castaldo
- Dipartimento di Scienze Mediche Traslazionali, Sezione di Pediatria, Università di Napoli Federico II, Naples, Italy
| | - Antonietta Giannattasio
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | | | | | | | - Marco Maglione
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Stefania Muzzica
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Carolina D’Anna
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Michela Grieco
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Vincenzo Tipo
- Pediatric Emergency and Short Stay Unit, Santobono-Pausilipon Children’s Hospital, Naples, Italy
| | - Antonio La Cava
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Scarl, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
- *Correspondence: Giuseppe Castaldo,
| |
Collapse
|
137
|
Lam KP, Chiñas M, Julé AM, Taylor M, Ohashi M, Benamar M, Crestani E, Son MBF, Chou J, Gebhart C, Chatila T, Newburger J, Randolph A, Gutierrez-Arcelus M, Henderson LA. SARS-CoV-2-specific T cell responses in patients with multisystem inflammatory syndrome in children. Clin Immunol 2022; 243:109106. [PMID: 36049601 PMCID: PMC9423880 DOI: 10.1016/j.clim.2022.109106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infections that occurs in the pediatric population. We sought to characterize T cell responses in MIS-C compared to COVID-19 and pediatric hyperinflammatory syndromes. MIS-C was distinct from COVID-19 and hyperinflammatory syndromes due to an expansion of T cells expressing TRBV11-2 that was not associated with HLA genotype. Children diagnosed with MIS-C, but who were negative for SARS-CoV-2 by PCR and serology, did not display Vβ skewing. There was no difference in the proportion of T cells that became activated after stimulation with SARS-CoV-2 peptides in children with MIS-C compared to convalescent COVID-19. The frequency of SARS-CoV-2-specific TCRs and the antigens recognized by these TCRs were comparable in MIS-C and COVID-19. Expansion of Vβ11-2+ T cells was a specific biomarker of MIS-C patients with laboratory confirmed SARS-CoV-2 infections. Children with MIS-C had robust antigen-specific T cell responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Ki Pui Lam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcos Chiñas
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amélie M. Julé
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maria Taylor
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Crestani
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Beth F. Son
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Talal Chatila
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jane Newburger
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adrienne Randolph
- Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA,Corresponding author at: 1 Blackfan Circle, Karp Family Research Building, 10th Floor, Boston, MA 02115, USA
| |
Collapse
|
138
|
Munblit D, Greenhawt M, Brough HA, Pushkareva A, Karimova D, Demidova A, Warner JO, Kalayci O, Sediva A, Untersmayr E, Rodriguez Del Rio P, Vazquez-Ortiz M, Arasi S, Alvaro-Lozano M, Tsabouri S, Galli E, Beken B, Eigenmann PA. Allergic diseases and immunodeficiencies in children, lessons learnt from COVID-19 pandemic by 2022: A statement from the EAACI-section on pediatrics. Pediatr Allergy Immunol 2022; 33:e13851. [PMID: 36282136 PMCID: PMC9538373 DOI: 10.1111/pai.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
Abstract
By the April 12, 2022, the COVID-19 pandemic had resulted in over half a billion people being infected worldwide. There have been 6.1 million deaths directly due to the infection, but the pandemic has had many more short- and long-term pervasive effects on the physical and mental health of the population. Allergic diseases are among the most prevalent noncommunicable chronic diseases in the pediatric population, and health-care professionals and researchers were seeking answers since the beginning of pandemic. Children are at lower risk of developing severe COVID-19 or dying from infection. Allergic diseases are not associated with a higher COVID-19 severity and mortality, apart from severe/poorly controlled asthma. The pandemic disrupted routine health care, but many mitigation strategies, including but not limited to telemedicine, were successfully implemented to continue delivery of high-standard care. Although children faced a multitude of pandemic-related issues, allergic conditions were effectively treated remotely while reduction in air pollution and lack of contact with outdoor allergens resulted in improvement, particularly respiratory allergies. There is no evidence to recommend substantial changes to usual management modalities of allergic conditions in children, including allergen immunotherapy and use of biologicals. Allergic children are not at greater risk of multisystem inflammatory syndrome development, but some associations with Long COVID were reported, although the data are limited, and further research is needed. This statement of the EAACI Section on Pediatrics provides recommendations based on the lessons learnt from the pandemic, as available evidence.
Collapse
Affiliation(s)
- Daniel Munblit
- Inflammation, Repair and Development Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Matthew Greenhawt
- Section of Allergy and Clinical Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Helen A Brough
- Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Paediatric Allergy Group, Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Anna Pushkareva
- European Academy of Allergy and Clinical Immunology (EAACI), Zurich, Switzerland
| | - Diana Karimova
- European Academy of Allergy and Clinical Immunology (EAACI), Zurich, Switzerland
| | - Anastasia Demidova
- European Academy of Allergy and Clinical Immunology (EAACI), Zurich, Switzerland
| | - John O Warner
- Inflammation, Repair and Development Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Omer Kalayci
- Pediatric Allergy and Asthma, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Anna Sediva
- Department of Immunology, 2nd Medical Faculty, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Marta Vazquez-Ortiz
- Inflammation, Repair and Development Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Stefania Arasi
- Translational Research in Pediatric Specialities Area, Division of Allergy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Montserrat Alvaro-Lozano
- Allergology and Clinical Immunology Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Sophia Tsabouri
- Child Health Department, University of Ioannina School of Medicine, Ioannina, Greece
| | - Elena Galli
- Pediatric Allergology Unit, Department of Pediatric Medicine, S.Pietro Hospital Fatebenefratelli, Rome, Italy
| | - Burcin Beken
- Department of Pediatric Allergy and Immunology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Philippe A Eigenmann
- Pediatric Allergy Unit, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
139
|
Mensa-Vilaró A, Vicente A, Español-Rego M, Antón J, Fabregat V, Fortuny C, González EA, Fumadó V, González-Roca E, Jou C, Plaza S, Mosquera JM, Yagüe J, Prat C, Pascal M, Juan M, Arostegui JI, Baselga E, Alsina L. Chilblains outbreak during COVID-19 pandemic: A Type-I interferonopathy? Pediatr Allergy Immunol 2022; 33:e13860. [PMID: 36282139 PMCID: PMC9874765 DOI: 10.1111/pai.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Mensa-Vilaró
- Department of Immunology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Asunción Vicente
- Department of Dermatology, Hospital Sant Joan de Déu, Esplugues, Spain
| | | | - Jordi Antón
- Department of Rheumatology, Hospital Sant Joan de Déu, Esplugues, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Claudia Fortuny
- Department of Pediatrics, Infectious Disease Unit, Hospital Sant Joan de Déu, Esplugues, Spain
| | | | - Victoria Fumadó
- Department of Pediatrics, Infectious Disease Unit, Hospital Sant Joan de Déu, Esplugues, Spain
| | | | - Cristina Jou
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain.,Pathology Department and Biobank, Hospital Sant Joan de Déu, Esplugues, Spain
| | - Susana Plaza
- Department of Immunology, Hospital Clínic, Barcelona, Spain
| | | | - Jordi Yagüe
- Department of Immunology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Carolina Prat
- Department of Dermatology, Hospital Sant Joan de Déu, Esplugues, Spain
| | - Mariona Pascal
- Department of Immunology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Juan I Arostegui
- Department of Immunology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Eulalia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Esplugues, Spain
| | - Laia Alsina
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain.,Department of Allergy and Clinical Immunology, Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain.,Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
140
|
Spracklen TF, Mendelsohn SC, Butters C, Facey-Thomas H, Stander R, Abrahams D, Erasmus M, Baguma R, Day J, Scott C, Zühlke LJ, Kassiotis G, Scriba TJ, Webb K. IL27 gene expression distinguishes multisystem inflammatory syndrome in children from febrile illness in a South African cohort. Front Immunol 2022; 13:992022. [PMID: 36148243 PMCID: PMC9486543 DOI: 10.3389/fimmu.2022.992022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Multisystem inflammatory syndrome in children (MIS-C) is a severe acute inflammatory reaction to SARS-CoV-2 infection in children. There is a lack of data describing differential expression of immune genes in MIS-C compared to healthy children or those with other inflammatory conditions and how expression changes over time. In this study, we investigated expression of immune-related genes in South African MIS-C patients and controls. Methods The cohort included 30 pre-treatment MIS-C cases and 54 healthy non-inflammatory paediatric controls. Other controls included 34 patients with juvenile systemic lupus erythematosus, Kawasaki disease or other inflammatory conditions. Longitudinal post-treatment MIS-C specimens were available at various timepoints. Expression of 80 immune-related genes was determined by real-time quantitative PCR. Results A total of 29 differentially expressed genes were identified in pre-treatment MIS-C compared to healthy controls. Up-regulated genes were found to be overrepresented in innate immune pathways including interleukin-1 processing and pyroptosis. Post-treatment follow-up data were available for up to 1,200 hours after first treatment. All down-regulated genes and 17/18 up-regulated genes resolved to normal levels in the timeframe, and all patients clinically recovered. When comparing MIS-C to other febrile conditions, only IL27 expression could differentiate these two groups with high sensitivity and specificity. Conclusions These data indicate a unique 29-gene signature of MIS-C in South African children. The up-regulation of interleukin-1 and pyroptosis pathway genes highlights the role of the innate immune system in MIS-C. IL-27 is a potent anti-inflammatory and antiviral cytokine that may distinguish MIS-C from other conditions in our setting.
Collapse
Affiliation(s)
- Timothy F. Spracklen
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Simon C. Mendelsohn
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Raphaella Stander
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Debbie Abrahams
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Mzwandile Erasmus
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Day
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Christiaan Scott
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Liesl J. Zühlke
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St Mary’s Hospital, Imperial College, London, United Kingdom
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate Webb
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Crick African Network, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
141
|
Redmond C, Kitakule MM, Son A, Sylvester M, Sacco K, Delmonte O, Licciardi F, Castagnoli R, Poli C, Espinoza Y, Astudillo C, Weber SE, Sanchez GAM, Barron K, Magliocco M, Dobbs K, Zhang Y, Matthews H, Oguz C, Su HC, Notarangelo LD, Frischmeyer-Guerrerio PA, Schwartz DM. Deep immune profiling uncovers novel associations with clinical phenotypes of Multisystem Inflammatory Syndrome in Children (MIS-C). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.08.31.22279265. [PMID: 36093351 PMCID: PMC9460975 DOI: 10.1101/2022.08.31.22279265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is a systemic inflammatory condition that follows SARS-CoV2 infection or exposure in children. Clinical presentations are highly variable and include fever, gastrointestinal (GI) disease, shock, and Kawasaki Disease-like illness (MIS-C/KD). Compared to patients with acute COVID, patients with MIS-C have a distinct immune signature and expansion of TRVB11 expressing T cells. However, the relationship between immunological and clinical phenotypes of MIS-C is unknown. Here, we measured serum biomarkers, TCR repertoire, and SARS-CoV2-specific T cell responses in a cohort of 76 MIS-C patients. Serum biomarkers associated with macrophage and Th1 activation were elevated in patients with shock, consistent with previous reports. Significantly increased SARS-CoV-2-induced IFN-γ, IL-2, and TNF-α production were seen in CD4 + T cells from patients with neurologic involvement and respiratory failure. Diarrhea was associated with a significant reduction in shock-associated serum biomarkers, suggesting a protective effect. TRVB11 usage was highly associated with MIS-C/KD and coronary aneurysms, suggesting a potential biomarker for these manifestations in MIS-C patients. By identifying novel immunologic associations with the different clinical phenotypes of MIS-C, this study provides insights into the clinical heterogeneity of MIS-C. These unique immunophenotypic associations could provide biomarkers to identify patients at risk for severe complications of MIS-C, including shock and MIS-C/KD.
Collapse
Affiliation(s)
- Christopher Redmond
- Vasculitis Translational Research Section, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health
| | | | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - McKella Sylvester
- Vasculitis Translational Research Section, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health
| | - Keith Sacco
- Phoenix Children’s Hospital
- University of Arizona
| | - Ottavia Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Francesco Licciardi
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Riccardo Castagnoli
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Cecilia Poli
- Faculty of Medicine, Clinica Alemana Universidad del Desarrollo
- Division of Immunology and Rheumatology, Hospital Roberto del Rio
| | - Yasmin Espinoza
- Division of Immunology and Rheumatology, Hospital Roberto del Rio
| | - Camila Astudillo
- Division of Immunology and Rheumatology, Hospital Roberto del Rio
| | - Sarah E. Weber
- Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Gina A. Montealegre Sanchez
- Division of Clinical Medicine, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Karyl Barron
- Office of the Scientific Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Mary Magliocco
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Kerry Dobbs
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Yu Zhang
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Helen Matthews
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Cihan Oguz
- Research Technologies Branch, Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Helen C. Su
- Human Immunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | | | - Daniella M. Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology
| |
Collapse
|
142
|
胡 亚, 姚 开. Clinical characteristics and epidemiological significance of coronavirus disease 2019 in children and adolescents. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:846-852. [PMID: 36036120 PMCID: PMC9425860 DOI: 10.7499/j.issn.1008-8830.2205026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022]
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) started in late December 2019, and spread rapidly throughout the world. In March 2020, the World Health Organization (WHO) declared global epidemic of COVID-19. According to the American Academy of Pediatrics, nearly 13 million children have been diagnosed with COVID-19 since the outbreak. In general, children and teens have milder symptoms and fewer deaths from COVID-19 than adults. Understanding the symptoms, infectivity, and transmission patterns of COVID-19 in children and adolescents is of great significance for timely identifying suspected patients and developing effective control measures. Considering that some children will not be vaccinated for quite some time in the future, it is more important to improve the understanding of the clinical and epidemiological significance of COVID-19 in children and adolescents. This article summarizes the current understanding of the clinical manifestations and epidemiological significance of COVID-19 in children and adolescents to provide a reference for clinical diagnosis and treatment and the formulation of epidemic prevention and control strategies in children's gathering institutions such as kindergartens and schools.
Collapse
|
143
|
Does Multisystem Inflammatory Syndrome Only Mimic Acute Appendicitis in Children or Can It Coexist: When Should We Suspect MIS-C? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081101. [PMID: 36013568 PMCID: PMC9416076 DOI: 10.3390/medicina58081101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Acute abdominal pain in children has been noticed to be a primary reason to seek medical attention in multisystem inflammatory disorder (MIS-C), which can prevail separately or together with acute appendicitis. Our aim was to distinguish regular appendicitis cases from MIS-C and to suggest the best clinical and laboratory criteria for it. Materials and methods: Cases of patients, admitted to the Pediatric Surgery Department over a six-month period in 2021, were retrospectively analyzed. Confirmed MIS-C or acute appendicitis cases were selected. MIS-C cases were either separate/with no found inflammation in the appendix or together with acute appendicitis. Acute appendicitis cases were either regular cases or with a positive COVID-19 test. Four groups were formed and compared: A-acute appendicitis, B-MIS-C with acute appendicitis, C-MIS-C only and D-acute appendicitis with COVID-19. Results: A total of 76 cases were overall analyzed: A-36, B-6, C-29 and D-5. The most significant differences were found in duration of disease A—1.4 days, B—4.5 days, C—4 days, D—4 days (p < 0.0001), C reactive protein (CRP) values A-19.3 mg/L B-112.5 m/L, C-143.8 mg/L and D-141 mg/L (p < 0.0001), presence of febrile fever A-13.9%, B-66.7%, C-96.6% and D-40% (p < 0.0001) and other system involvement: A 0%, B 100%, C 100% and D 20%. A combination of these factors was entered into a ROC curve and was found to have a possibility to predict MIS-C in our analyzed cases (with or without acute appendicitis) with an AUC = 0.983, p < 0.0001, sensitivity of 94.3% and specificity of 92.7% when at least three criteria were met. Conclusions: MIS-C could be suspected even when clinical data and performed tests suggest acute appendicitis especially when at least three out of four signs are present: CRP > 55.8 mg, symptoms last 3 days or longer, febrile fever is present, and any kind of other system involvement is noticed, especially with a known prior recent COVID-19 contact, infection or a positive COVID-19 antibody IgG test.
Collapse
|
144
|
Two Pediatric Cases of Multisystem Inflammatory Syndrome with Overlapping Neurological Involvement Following SARS-CoV-2 Vaccination and Unknown SARS-CoV2 Infection: The Importance of Pre-Vaccination History. Vaccines (Basel) 2022; 10:vaccines10071136. [PMID: 35891300 PMCID: PMC9319257 DOI: 10.3390/vaccines10071136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/25/2022] Open
Abstract
The SARS-CoV-2 vaccine roll-out has been successful around the world. However, there are increasing concerns about adverse events. We report two pediatric cases of Multisystem-Inflammatory-Syndrome (MIS-C) with neurological involvement that occurred after SARS-CoV-2 vaccination and unknown recent SARS-CoV-2 infection. Brain magnetic resonance revealed mild-encephalopathy with reversible-splenial-lesion in both cases and complete resolution within 4 weeks. In conclusion, this report aims to describe rare emerging clinical entities that can help pediatricians to make an early diagnosis and to provide appropriate treatment. Multisystem-Inflammatory-Syndromes following COVID-19 vaccination remain rare events. When a history of a recent contact with SARS-CoV-2 is present, a careful evaluation by the clinicians in charge of immunization activities is suggested prior to proceeding with the vaccination.
Collapse
|
145
|
Noval Rivas M, Porritt RA, Cheng MH, Bahar I, Arditi M. Multisystem Inflammatory Syndrome in Children and Long COVID: The SARS-CoV-2 Viral Superantigen Hypothesis. Front Immunol 2022; 13:941009. [PMID: 35874696 PMCID: PMC9300823 DOI: 10.3389/fimmu.2022.941009] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a febrile pediatric inflammatory disease that may develop weeks after initial SARS-CoV-2 infection or exposure. MIS-C involves systemic hyperinflammation and multiorgan involvement, including severe cardiovascular, gastrointestinal (GI) and neurological symptoms. Some clinical attributes of MIS-C-such as persistent fever, rashes, conjunctivitis and oral mucosa changes (red fissured lips and strawberry tongue)-overlap with features of Kawasaki disease (KD). In addition, MIS-C shares striking clinical similarities with toxic shock syndrome (TSS), which is triggered by bacterial superantigens (SAgs). The remarkable similarities between MIS-C and TSS prompted a search for SAg-like structures in the SARS-CoV-2 virus and the discovery of a unique SAg-like motif highly similar to a Staphylococcal enterotoxin B (SEB) fragment in the SARS-CoV-2 spike 1 (S1) glycoprotein. Computational studies suggest that the SAg-like motif has a high affinity for binding T-cell receptors (TCRs) and MHC Class II proteins. Immunosequencing of peripheral blood samples from MIS-C patients revealed a profound expansion of TCR β variable gene 11-2 (TRBV11-2), which correlates with MIS-C severity and serum cytokine levels, consistent with a SAg-triggered immune response. Computational sequence analysis of SARS-CoV-2 spike further identified conserved neurotoxin-like motifs which may alter neuronal cell function and contribute to neurological symptoms in COVID-19 and MIS-C patients. Additionally, autoantibodies are detected during MIS-C, which may indicate development of post-SARS-CoV-2 autoreactive and autoimmune responses. Finally, prolonged persistence of SARS-CoV-2 RNA in the gut, increased gut permeability and elevated levels of circulating S1 have been observed in children with MIS-C. Accordingly, we hypothesize that continuous and prolonged exposure to the viral SAg-like and neurotoxin-like motifs in SARS-CoV-2 spike may promote autoimmunity leading to the development of post-acute COVID-19 syndromes, including MIS-C and long COVID, as well as the neurological complications resulting from SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Magali Noval Rivas
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rebecca A Porritt
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Moshe Arditi
- Department of Pediatrics, Division of Infectious Diseases and Immunology, Guerin Children's at Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Infectious and Immunologic Diseases Research Center (IIDRC) and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
146
|
Wang H, Wu G, Yang Y, Lian F, Xue S. Sequence similarity suggests molecular mimicry-induced cardiovascular symptoms in multisystem inflammatory syndrome in children (MIS-C). Immunol Lett 2022; 250:7-14. [PMID: 35809666 PMCID: PMC9259193 DOI: 10.1016/j.imlet.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Heng Wang
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital.
| | - Gangning Wu
- Shanghai Jiao Tong University College of Basic Medicine.
| | - Yan Yang
- Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital.
| | - Feng Lian
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital.
| | - Song Xue
- Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital.
| |
Collapse
|
147
|
Li J, Hu W, Zhang JY, Wang FS. Pediatric Acute Severe Hepatitis of Unknown Origin: What is New? J Clin Transl Hepatol 2022; 10:509-514. [PMID: 35836759 PMCID: PMC9240247 DOI: 10.14218/jcth.2022.00247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, there are emerging cases of acute severe hepatitis of unknown origin in children. These cases have gathered increasing attention, owing to the development of acute liver failure in some cases that resulted in liver transplantation. This review briefly summarizes the outbreak and diagnostic criteria of the disease. We further discuss the possible causes and related mechanisms underlying its occurrence and progression, and analyze the challenges in management. Finally, this review emphasizes patient management in clinical settings and a combination of efforts to unmask the disease.
Collapse
Affiliation(s)
- Jing Li
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Hu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Yuan Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Correspondence to: Fu-Sheng Wang, Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China. ORCID: https://orcid.org/0000-0002-8043-6685. Tel: +86-10-66933333, Fax: +86-10-66933332, E-mail:
| |
Collapse
|
148
|
Suárez-Del-Villar-Carrero R, Martinez-Urbistondo D, Cuevas-Sierra A, Ibañez-Sustacha I, Candela-Fernandez A, Dominguez-Calvo A, Ramos-Lopez O, Vargas JA, Reglero G, Villares-Fernandez P, Martinez JA. Hematological- and Immunological-Related Biomarkers to Characterize Patients with COVID-19 from Other Viral Respiratory Diseases. J Clin Med 2022; 11:3578. [PMID: 35806866 PMCID: PMC9267806 DOI: 10.3390/jcm11133578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has overloaded health system worldwide; thus, it demanded a triage method for an efficient and early discrimination of patients with COVID-19. The objective of this research was to perform a model based on commonly requested hematological variables for an early featuring of patients with COVID-19 form other viral pneumonia. This investigation enrolled 951 patients (mean of age 68 and 56% of male) who underwent a PCR test for respiratory viruses between January 2019 and January 2020, and those who underwent a PCR test for detection of SARS-CoV-2 between February 2020 and October 2020. A comparative analysis of the population according to PCR tests and logistic regression model was performed. A total of 10 variables were found for the characterization of COVID-19: age, sex, anemia, immunosuppression, C-reactive protein, chronic obstructive pulmonary disease, cardiorespiratory disease, metastasis, leukocytes and monocytes. The ROC curve revealed a sensitivity and specificity of 75%. A deep analysis showed low levels of leukocytes in COVID-19-positive patients, which could be used as a primary outcome of COVID-19 detection. In conclusion, this investigation found that commonly requested laboratory variables are able to help physicians to distinguish COVID-19 and perform a quick stratification of patients into different prognostic categories.
Collapse
Affiliation(s)
- Rafael Suárez-Del-Villar-Carrero
- Department of Internal Medicine, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain; (R.S.-D.-V.-C.); (D.M.-U.); (A.D.-C.); (P.V.-F.)
| | - Diego Martinez-Urbistondo
- Department of Internal Medicine, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain; (R.S.-D.-V.-C.); (D.M.-U.); (A.D.-C.); (P.V.-F.)
| | - Amanda Cuevas-Sierra
- IMDEA-Food Institute (Madrid Institute for Advances Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain; (G.R.); (J.A.M.)
| | - Iciar Ibañez-Sustacha
- School of Medicine, San Pablo CEU University, 28925 Madrid, Spain; (I.I.-S.); (A.C.-F.)
| | | | - Andrea Dominguez-Calvo
- Department of Internal Medicine, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain; (R.S.-D.-V.-C.); (D.M.-U.); (A.D.-C.); (P.V.-F.)
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico;
| | - Juan Antonio Vargas
- Department of Internal Medicine, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain;
- Department of Medicine, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Guillermo Reglero
- IMDEA-Food Institute (Madrid Institute for Advances Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain; (G.R.); (J.A.M.)
| | - Paula Villares-Fernandez
- Department of Internal Medicine, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain; (R.S.-D.-V.-C.); (D.M.-U.); (A.D.-C.); (P.V.-F.)
| | - Jose Alfredo Martinez
- IMDEA-Food Institute (Madrid Institute for Advances Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain; (G.R.); (J.A.M.)
| |
Collapse
|
149
|
Thom K, Kahl B, Wagner T, van Egmond-Fröhlich A, Krainz M, Frischer T, Leeb I, Schuster C, Ehringer-Schetitska D, Minkov M, Male C, Michel-Behnke I. SARS-CoV-2 Associated Pediatric Inflammatory Multisystem Syndrome With a High Prevalence of Myocarditis - A Multicenter Evaluation of Clinical and Laboratory Characteristics, Treatment and Outcome. Front Pediatr 2022; 10:896252. [PMID: 35757128 PMCID: PMC9227661 DOI: 10.3389/fped.2022.896252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Pediatric inflammatory multisystem syndrome - temporally associated with SARS-CoV-2 infection (PIMS -TS) comprises a new disease entity having emerged after the COVID-19 outbreak in 2019. Materials and Methods For this multicenter, retrospective study children between 0 and 18 years with PIMS-TS between March 2020 and May 2021 were included, before availability of vaccination for children. Frequent SARS-CoV-2 variants at that period were the wildtype virus, alpha, beta and delta variants. Inclusion criteria were according to the PIMS-TS criteria, proposed by the Royal College of Pediatrics and WHO. Study aim was to review their clinical, laboratory and echocardiographic data with a focus on cardiac involvement. Results We report 45 patients, median age 9 years, 64% male. SARS-CoV-2 antibodies were positive in 35/41 (85%). PIMS occurrence followed local COVID-19 peak incidence periods with a time lag. The most common symptoms at presentation were fever (98%), abdominal pain (89%) and rash (80%). Fever history of > 5 days was associated with decreased left ventricular function (p = 0.056). Arterial hypotension and cardiac dysfunction were documented in 72% patients, increased brain natriuretic peptide in 96% and increased cardiac troponin in 64% of the children. Echocardiography revealed mitral valve regurgitation (64%), coronary abnormalities (36%) and pericardial effusions (40%). Increased NT-proBNP was significantly associated with the need of inotropics (p < 0.05), which were necessary in 40% of the patients. Treatment comprised intravenous immunoglobulin (93%), systemic steroids (84%) and acetylsalicylic acid (100%; 26/45 started with high dosages). For insufficient response to this treatment, five (11%) children received the interleukin-1 receptor antagonist anakinra. All patients were discharged with almost resolved cardiac signs. Conclusion Our analysis of non-vaccinated children with PIMS-TS demonstrates that a considerable number have associated myocarditis requiring intensive care and inotropic support. Most children showed adequate response to intravenous immunoglobulin and steroids and good recovery. Further evaluation of pediatric patients with COVID-19 associated diseases is required to evaluate the impact of new virus variants.
Collapse
Affiliation(s)
- Katharina Thom
- Department of Pediatrics, Division of Pediatric Cardiology, Pediatric Heart Centre, Medical University of Vienna, Vienna, Austria
| | - Beatrice Kahl
- Department of Pediatrics, Division of Pediatric Cardiology, Pediatric Heart Centre, Medical University of Vienna, Vienna, Austria
| | - Thomas Wagner
- Department of Pediatrics and Adolescent Medicine, Clinic Donaustadt, Vienna, Austria
| | | | - Mathias Krainz
- St. Anna Children’s Hospital, Center for Children and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Thomas Frischer
- Department of Pediatrics and Adolescent Medicine, Clinic Ottakring, Sigmund Freud Private University, Vienna, Austria
| | - Iris Leeb
- Department of Pediatrics and Adolescent Medicine, State Hospital Mödling, Mödling, Austria
| | - Christine Schuster
- Department of Pediatrics and Adolescent Medicine, State Hospital Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Doris Ehringer-Schetitska
- Department of Pediatrics and Adolescent Medicine, State Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Milen Minkov
- Department of Pediatrics and Adolescent Medicine, Clinic Floridsdorf, Vienna, Austria
| | - Christoph Male
- Department of Pediatrics, Division of Pediatric Cardiology, Pediatric Heart Centre, Medical University of Vienna, Vienna, Austria
| | - Ina Michel-Behnke
- Department of Pediatrics, Division of Pediatric Cardiology, Pediatric Heart Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
150
|
Abstract
INTRODUCTION : Coronavirus disease 2019 (COVID-19) causes a long-term and persistent condition with clinical features similar to previous virulent outbreaks and other epidemics. Currently, post-COVID syndrome (PCS) is recognized as a new entity in the context of SARS-CoV-2 infection. Though its pathogenesis is not completely understood, persistent inflammation from acute illness and the development of autoimmunity play a critical role in its development. As the pandemic develops, the increasing latent and overt autoimmunity cases indicate that PCS is at the intersection of autoimmunity. AREAS COVERED The mechanisms involved in the emergence of PCS, their similarities with post-viral and post-care syndromes, its inclusion in the spectrum of autoimmunity and possible targets for its treatment. EXPERT OPINION An autoimmune phenomenon plays a major role in most causative theories explaining PCS. Due to the wide scope of symptoms and pathophysiology associated with PCS, there is a need for both PCS definition and classification criteria (including severity scores). Longitudinal and controlled studies are necessary to better understand this new entity, and to confirm that PCS is the chronic phase of COVID-19 as well as to find what additional factors participate into its development. With the high prevalence of COVID-19 cases worldwide, together with the current evidence on latent autoimmunity in PCS, we may observe an increase of autoimmune diseases (ADs) in the coming years. Vaccination's effect on the development of PCS and ADs will also receive attention in the future. Health and social care services need to develop a new framework to deal with PCS.
Collapse
Affiliation(s)
| | - María Herrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Santiago Beltrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Manuel Rojas
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia.,Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|