101
|
Yu CJ, Du JC, Chiou HC, Yang SH, Liao KW, Yang W, Chung MY, Chien LC, Hwang B, Chen ML. Attention Deficit/Hyperactivity Disorder and Urinary Nonylphenol Levels: A Case-Control Study in Taiwanese Children. PLoS One 2016; 11:e0149558. [PMID: 26890918 PMCID: PMC4758720 DOI: 10.1371/journal.pone.0149558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Objective Nonylphenol (NP) belongs to the family of endocrine disruptors, and it is widely used in industrial applications and is ubiquitous in daily foods. Animal studies have suggested that NP exposure might promote motor hyperactivity, likely by causing deficits in dopaminergic neurons. However, research assessing NP exposure and epidemiology studies on human populations are limited. The aim of this study was to explore the association between child NP exposure and ADHD while considering particular covariants, such as lead levels and dopamine-related gene variations. Methods A case-control study was conducted on patients with clinically diagnosed ADHD; the Swanson, Nolan and Pelham, Fourth Revision (SNAP-IV) questionnaire was used to identify normal controls aged 4–15 years. Participants were examined for urinary NP concentrations, blood lead levels, and select single-nucleotide polymorphisms of two dopamine-related genes (D4 dopamine receptor, DRD4, and dopamine transporter, DAT1). Socio-demographic variables, maternal lifestyle factors during pregnancy and family medical history were obtained using a questionnaire. Results A total of 97 children with doctor-diagnosed ADHD and 110 normal controls were enrolled. The blood lead levels in both groups were similar (1.57±0.73 vs. 1.73±0.77 μg/dL, p = 0.15). No significant difference in urinary NP concentration was found between the children with ADHD and the control subjects (4.52±3.22 μg/g cr. vs. 4.64±2.95 μg/g cr., p = 0.43). ADHD was significantly more prevalent among males in this study (male to female ratio: 5:1 for the ADHD group and 1.3:1 for the control group, p<0.01). The analysis was repeated after excluding the females, but this had no effect on the association between NP and ADHD. The regression model, including or excluding females, indicated no increased odds of having ADHD in the context of NP exposure after adjusting for covariants. Conclusion This study indicated that NP exposure might not promote ADHD in children, even though children in Taiwan had relatively high levels of NP compared to those reported previously and those in developed nations.
Collapse
Affiliation(s)
- Ching-Jung Yu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Jung-Chieh Du
- Department of Pediatrics, Taipei City Hospital, Zhongxiao branch, Taipei, Taiwan
| | - Hsien-Chih Chiou
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde branch, Taipei, Taiwan
| | - Shang-Han Yang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Kai-Wei Liao
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Winnie Yang
- Department of Pediatrics, Taipei City Hospital, Yangming branch, Taipei, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Betau Hwang
- Department of Pediatrics, Taipei City Hospital, Zhongxiao branch, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
102
|
Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, Bau CHD, Mota NR. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm (Vienna) 2016; 123:867-83. [DOI: 10.1007/s00702-016-1514-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
|
103
|
Gomez-Sanchez CI, Riveiro-Alvarez R, Soto-Insuga V, Rodrigo M, Tirado-Requero P, Mahillo-Fernandez I, Abad-Santos F, Carballo JJ, Dal-Ré R, Ayuso C. Attention deficit hyperactivity disorder: genetic association study in a cohort of Spanish children. Behav Brain Funct 2016; 12:2. [PMID: 26746237 PMCID: PMC4706690 DOI: 10.1186/s12993-015-0084-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) has a strong genetic component. The study is aimed to test the association of 34 polymorphisms with ADHD symptomatology considering the role of clinical subtypes and sex in a Spanish population. METHODS A cohort of ADHD 290 patients and 340 controls aged 6-18 years were included in a case-control study, stratified by sex and ADHD subtype. Multivariate logistic regression was used to detect the combined effects of multiple variants. RESULTS After correcting for multiple testing, we found several significant associations between the polymorphisms and ADHD (p value corrected ≤0.05): (1) SLC6A4 and LPHN3 were associated in the total population; (2) SLC6A2, SLC6A3, SLC6A4 and LPHN3 were associated in the combined subtype; and (3) LPHN3 was associated in the male sample. Multivariable logistic regression was used to estimate the influence of these variables for the total sample, combined and inattentive subtype, female and male sample, revealing that these factors contributed to 8.5, 14.6, 2.6, 16.5 and 8.5 % of the variance respectively. CONCLUSIONS We report evidence of the genetic contribution of common variants to the ADHD phenotype in four genes, with the LPHN3 gene playing a particularly important role. Future studies should investigate the contribution of genetic variants to the risk of ADHD considering their role in specific sex or subtype, as doing so may produce more predictable and robust models.
Collapse
Affiliation(s)
- Clara I Gomez-Sanchez
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| | - Rosa Riveiro-Alvarez
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| | - Victor Soto-Insuga
- Department of Pediatrics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Maria Rodrigo
- Department of Pediatrics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Pilar Tirado-Requero
- Department of Pediatrics, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Ignacio Mahillo-Fernandez
- Department of Epidemiology, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, C/Diego de Leon 62, 28006, Madrid, Spain.
| | - Juan J Carballo
- Department of Psychiatry, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Rafael Dal-Ré
- Clinical Research, BUC (Biosciences UAM + CSIC) Program, International Campus of Excellence, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Carmen Ayuso
- Department of Genetics, IIS-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Avda. Reyes Católicos 2, 28040, Madrid, Spain. .,Centre for Biomedical Research on Rare Diseases (CIBERER), C/Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
104
|
Lundwall RA, Dannemiller JL, Goldsmith HH. Genetic associations with reflexive visual attention in infancy and childhood. Dev Sci 2015; 20. [PMID: 26613685 DOI: 10.1111/desc.12371] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/28/2015] [Indexed: 12/11/2022]
Abstract
This study elucidates genetic influences on reflexive (as opposed to sustained) attention in children (aged 9-16 years; N = 332) who previously participated as infants in visual attention studies using orienting to a moving bar (Dannemiller, 2004). We investigated genetic associations with reflexive attention measures in infancy and childhood in the same group of children. The genetic markers (single nucleotide polymorphisms and variable number tandem repeats on the genes APOE, BDNF, CHRNA4, COMT, DRD4, HTR4, IGF2, MAOA, SLC5A7, SLC6A3, and SNAP25) are related to brain development and/or to the availability of neurotransmitters such as acetylcholine, dopamine, or serotonin. This study shows that typically developing children have differences in reflexive attention associated with their genes, as we found in adults (Lundwall, Guo & Dannemiller, 2012). This effort to extend our previous findings to outcomes in infancy and childhood was necessary because genetic influence may differ over the course of development. Although two of the genes that were tested in our adult study (Lundwall et al., 2012) were significant in either our infant study (SLC6A3) or child study (DRD4), the specific markers tested differed. Performance on the infant task was associated with SLC6A3. In addition, several genetic associations with an analogous child task occurred with markers on CHRNA4, COMT, and DRD4. Interestingly, the child version of the task involved an interaction such that which genotype group performed poorer on the child task depended on whether we were examining the higher or lower infant scoring group. These findings are discussed in terms of genetic influences on reflexive attention in infancy and childhood.
Collapse
|
105
|
Rauscher E, Conley D, Siegal ML. Sibling genes as environment: Sibling dopamine genotypes and adolescent health support frequency dependent selection. SOCIAL SCIENCE RESEARCH 2015; 54:209-220. [PMID: 26463544 DOI: 10.1016/j.ssresearch.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 04/16/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
While research consistently suggests siblings matter for individual outcomes, it remains unclear why. At the same time, studies of genetic effects on health typically correlate variants of a gene with the average level of behavioral or health measures, ignoring more complicated genetic dynamics. Using National Longitudinal Study of Adolescent Health data, we investigate whether sibling genes moderate individual genetic expression. We compare twin variation in health-related absences and self-rated health by genetic differences at three locations related to dopamine regulation and transport to test sibship-level cross-person gene-gene interactions. Results suggest effects of variation at these genetic locations are moderated by sibling genes. Although the mechanism remains unclear, this evidence is consistent with frequency dependent selection and suggests much genetic research may violate the stable unit treatment value assumption.
Collapse
Affiliation(s)
- Emily Rauscher
- University of Kansas, Department of Sociology, 1415 Jayhawk Blvd. Room 716, Lawrence, KS 66045, United States.
| | - Dalton Conley
- New York University & NBER, Department of Sociology, 6 Washington Square North Room 20, New York, NY 10003, United States.
| | - Mark L Siegal
- New York University, Center for Genomics and Systems Biology and the Department of Biology, 12 Waverly Place, New York, NY 10003, United States
| |
Collapse
|
106
|
van Rooij D, Hoekstra PJ, Bralten J, Hakobjan M, Oosterlaan J, Franke B, Rommelse N, Buitelaar JK, Hartman CA. Influence of DAT1 and COMT variants on neural activation during response inhibition in adolescents with attention-deficit/hyperactivity disorder and healthy controls. Psychol Med 2015; 45:3159-3170. [PMID: 26073896 DOI: 10.1017/s0033291715001130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Impairment of response inhibition has been implicated in attention-deficit/hyperactivity disorder (ADHD). Dopamine neurotransmission has been linked to the behavioural and neural correlates of response inhibition. The current study aimed to investigate the relationship of polymorphisms in two dopamine-related genes, the catechol-O-methyltransferase gene (COMT) and the dopamine transporter gene (SLC6A3 or DAT1), with the neural and behavioural correlates of response inhibition. METHOD Behavioural and neural measures of response inhibition were obtained in 185 adolescents with ADHD, 111 of their unaffected siblings and 124 healthy controls (mean age 16.9 years). We investigated the association of DAT1 and COMT variants on task performance and whole-brain neural activation during response inhibition in a hypothesis-free manner. Additionally, we attempted to explain variance in previously found ADHD effects on neural activation during response inhibition using these DAT1 and COMT polymorphisms. RESULTS The whole-brain analyses demonstrated large-scale neural activation changes in the medial and lateral prefrontal, subcortical and parietal regions of the response inhibition network in relation to DAT1 and COMT polymorphisms. Although these neural activation changes were associated with different task performance measures, no relationship was found between DAT1 or COMT variants and ADHD, nor did variants in these genes explain variance in the effects of ADHD on neural activation. CONCLUSIONS These results suggest that dopamine-related genes play a role in the neurobiology of response inhibition. The limited associations between gene polymorphisms and task performance further indicate the added value of neural measures in linking genetic factors and behavioural measures.
Collapse
Affiliation(s)
- D van Rooij
- Department of Psychiatry,University of Groningen,University Medical Center Groningen,Groningen,The Netherlands
| | - P J Hoekstra
- Department of Psychiatry,University of Groningen,University Medical Center Groningen,Groningen,The Netherlands
| | - J Bralten
- Department of Cognitive Neuroscience,Radboud University Medical Center,Donders Institute for Brain,Cognition and Behaviour,Nijmegen,The Netherlands
| | - M Hakobjan
- Department of Human Genetics,Radboud University Medical Center,Donders Institute for Brain,Cognition and Behaviour,Nijmegen,The Netherlands
| | - J Oosterlaan
- Department of Neuropsychology,VU University Amsterdam,Amsterdam,The Netherlands
| | - B Franke
- Department of Human Genetics,Radboud University Medical Center,Donders Institute for Brain,Cognition and Behaviour,Nijmegen,The Netherlands
| | - N Rommelse
- Department of Psychiatry,Radboud University Medical Center,Donders Institute for Brain,Cognition and Behaviour,Nijmegen,The Netherlands
| | - J K Buitelaar
- Department of Cognitive Neuroscience,Radboud University Medical Center,Donders Institute for Brain,Cognition and Behaviour,Nijmegen,The Netherlands
| | - C A Hartman
- Department of Psychiatry,University of Groningen,University Medical Center Groningen,Groningen,The Netherlands
| |
Collapse
|
107
|
Kasparek T, Theiner P, Filova A. Neurobiology of ADHD From Childhood to Adulthood: Findings of Imaging Methods. J Atten Disord 2015; 19:931-43. [PMID: 24097847 DOI: 10.1177/1087054713505322] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To review the pattern of morphological and functional brain changes in both children and adults with ADHD that emerges from the recent literature. In addition, the task of the present review is to explore how to understand the nature of the brain changes. METHODS Literature review. RESULTS Neuroimaging studies provide a multitude of information that currently allows us to expand the notions of ADHD neurobiology beyond its traditional understanding as a manifestation of frontostriatal dysfunction. They point to disorders of several other areas of the brain, particularly the anterior cingulum, the dorsolateral as well as ventrolateral prefrontal cortex, the orbitofrontal cortex, the superior parietal regions, the caudate nucleus, the thalamus, the amygdala and the cerebellum. Imaging studies point to the persistence of changes in both brain structure and function into adulthood, although there might be a tendency for improvement of caudate nucleus pathology. Changes in neuronal (dendritic) plasticity, which are under the modulatory influence of the dopaminergic system, may be in the background of disorders of brain morphology and anatomical connectivity with subsequent brain dysfunction. Growing evidence suggest that methylphenidate treatment can lead to improvement of brain changes seen in neuroimaging by its positive effect on neuroplasticity. CONCLUSION Changes in neuronal plasticity may be behind persisting brain changes in ADHD. Current treatment approaches seem to improve these neuroplastic processes, and, therefore, may have a positive effect on the neuropathology of ADHD.
Collapse
Affiliation(s)
- Tomas Kasparek
- Masaryk University, Brno, Czech Republic University Hospital Brno, Czech Republic
| | - Pavel Theiner
- Masaryk University, Brno, Czech Republic University Hospital Brno, Czech Republic
| | | |
Collapse
|
108
|
Zuo L, Saba L, Lin X, Tan Y, Wang K, Krystal JH, Tabakoff B, Luo X. Significant association between rare IPO11-HTR1A variants and attention deficit hyperactivity disorder in Caucasians. Am J Med Genet B Neuropsychiatr Genet 2015; 168:544-56. [PMID: 26079129 PMCID: PMC4851708 DOI: 10.1002/ajmg.b.32329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/22/2015] [Indexed: 12/28/2022]
Abstract
We comprehensively examined the rare variants in the IPO11-HTR1A region to explore their roles in neuropsychiatric disorders. Five hundred seventy-three to 1,181 rare SNPs in subjects of European descent and 1,234-2,529 SNPs in subjects of African descent (0 < minor allele frequency (MAF) < 0.05) were analyzed in a total of 49,268 subjects in 21 independent cohorts with 11 different neuropsychiatric disorders. Associations between rare variant constellations and diseases and associations between individual rare variants and diseases were tested. RNA expression changes of this region were also explored. We identified a rare variant constellation across the entire IPO11-HTR1A region that was associated with attention deficit hyperactivity disorder (ADHD) in Caucasians (T5: P = 7.9 × 10(-31) ; Fp: P = 1.3 × 10(-32) ), but not with any other disorder examined; association signals mainly came from IPO11 (T5: P = 3.6 × 10(-10) ; Fp: P = 3.2 × 1 0(-10) ) and the intergenic region between IPO11 and HTR1A (T5: P = 4.1 × 10(-30) ; Fp: P = 5.4 × 10(-32) ). One association between ADHD and an intergenic rare variant, i.e., rs10042956, exhibited region- and cohort-wide significance (P = 5.2 × 10(-6) ) and survived correction for false discovery rate (q = 0.006). Cis-eQTL analysis showed that, 29 among the 41 SNPs within or around IPO11 had replicable significant regulatory effects on IPO11 exon expression (1.5 × 10(-17) ≤P < 0.002) in human brain or peripheral blood mononuclear cell tissues. We concluded that IPO11-HTR1A was a significant risk gene region for ADHD in Caucasians.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Laura Saba
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Xiandong Lin
- Provincial Key Laboratory of Translational Cancer Medicine, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Alcohol Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
109
|
Eslami Amirabadi MR, Davari-Ashtiani R, Khademi M, RajeziEsfahani S, Emamalizadeh B, Movafagh A, Arabgol F, Sadr S, Darvish H, Razjouyan K. No Evidence for Association Between Norepinephrine Transporter-3081 (A/T) Polymorphism and Attention Deficit Hyperactivity Disorder in Iranian Population. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e22996. [PMID: 26421175 PMCID: PMC4584105 DOI: 10.5812/ircmj.229961v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/09/2014] [Accepted: 11/09/2014] [Indexed: 11/23/2022]
Abstract
Background: Attention Deficit Hyperactivity Disorder (ADHD) can lead to drastic problems for the patient and its worldwide prevalence is 5%-12%. It also has many comorbidities with other disorders, and the genetic contribution seems the most significant cause. Objectives: The current study was conducted to investigate the association between norepinephrine transporter-3081 (A/T) polymorphisms and ADHD in Iranian population. Patients and Methods: Participants were chosen from children and adolescents diagnosed with ADHD referred to Imam Hoseyn Hospital. A child and adolescent psychiatrist confirmed the diagnosis using the Kiddie-Sads-Present and Lifetime Version (K-SADS-PL) semi-structural interview. The control group was from pupils of schools in Tehran (capital city of Iran) who had no history or presence of psychiatric and medical complications. Also, a child and adolescent psychiatrist confirmed their health using the K-SADS-PL semi-structural interview. Genetic examinations were DNA distraction, Polymerase Chain Reaction (PCR), and Restricted Fragment Length Polymorphism (RFLP), which were conducted according to standard protocols. The statistical analysis was performed using chi-square and Fisher's exact test in SPSS version 21. Results: The percentages of ADHD subtypes for combined, inattentive, and hyperactive/impulsive were 72.2%, 17.2%, and 11.9%, respectively. There was no significant association between norepinephrine transporter polymorphism and ADHD (P = 0.81). Moreover, no significant relationship was found between gender [male (P = 0.92) and female (P = 0.63)] and polymorphism. No significant association was found between subtypes of ADHD [combined (P = 0.46), inattentive (P = 0.41), hyperactive/impulsive (P = 0.32)] and polymorphism SCL6A2. This lack of association can also be seen in gender in every subtype. Conclusions: The results of the study show no significant association between norepinephrine transporter polymorphism SCL6A2 and ADHD.
Collapse
Affiliation(s)
| | - Rozita Davari-Ashtiani
- Department of Psychiatry, Imam Hosein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mojgan Khademi
- Department of Psychiatry, Imam Hosein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Sepideh RajeziEsfahani
- Behavioral Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Babak Emamalizadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Fariba Arabgol
- Department of Psychiatry, Imam Hosein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Said Sadr
- Department of Psychiatry, Imam Hosein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hossein Darvish
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding Authors: Katayoon Razjoyan, Department of Psychiatry, Imam Hosein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-2123872572, E-mail: ; Hossein Darvish, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-2123872572, E-mail:
| | - Katayoon Razjouyan
- Department of Psychiatry, Imam Hosein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding Authors: Katayoon Razjoyan, Department of Psychiatry, Imam Hosein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-2123872572, E-mail: ; Hossein Darvish, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-2123872572, E-mail:
| |
Collapse
|
110
|
Abstract
Visual attention functions as a filter to select environmental information for learning and memory, making it the first step in the eventual cascade of thought and action systems. Here, we review studies of typical and atypical visual attention development and explain how they offer insights into the mechanisms of adult visual attention. We detail interactions between visual processing and visual attention, as well as the contribution of visual attention to memory. Finally, we discuss genetic mechanisms underlying attention disorders and how attention may be modified by training.
Collapse
Affiliation(s)
- Dima Amso
- Department of Cognitive, Linguistic &Psychological Sciences, Brown University, Providence, Rhode Island 02912, USA
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
| |
Collapse
|
111
|
Sokolova E, Hoogman M, Groot P, Claassen T, Vasquez AA, Buitelaar JK, Franke B, Heskes T. Causal discovery in an adult ADHD data set suggests indirect link between DAT1 genetic variants and striatal brain activation during reward processing. Am J Med Genet B Neuropsychiatr Genet 2015; 168:508-515. [PMID: 25847847 DOI: 10.1002/ajmg.b.32310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/05/2015] [Indexed: 12/16/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder affecting both children and adults. One of the candidate genes for ADHD is DAT1, encoding the dopamine transporter. In an attempt to clarify its mode of action, we assessed brain activity during the reward anticipation phase of the Monetary Incentive Delay (MID) task in a functional MRI paradigm in 87 adult participants with ADHD and 77 controls (average age 36.5 years). The MID task activates the ventral striatum, where DAT1 is most highly expressed. A previous analysis based on standard statistical techniques did not show any significant dependencies between a variant in the DAT1 gene and brain activation [Hoogman et al. (2013); Neuropsychopharm 23:469-478]. Here, we used an alternative method for analyzing the data, that is, causal modeling. The Bayesian Constraint-based Causal Discovery (BCCD) algorithm [Claassen and Heskes (2012); Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence] is able to find direct and indirect dependencies between variables, determines the strength of the dependencies, and provides a graphical visualization to interpret the results. Through BCCD one gets an opportunity to consider several variables together and to infer causal relations between them. Application of the BCCD algorithm confirmed that there is no evidence of a direct link between DAT1 genetic variability and brain activation, but suggested an indirect link mediated through inattention symptoms and diagnostic status of ADHD. Our finding of an indirect link of DAT1 with striatal activity during reward anticipation might explain existing discrepancies in the current literature. Further experiments should confirm this hypothesis. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elena Sokolova
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Perry Groot
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Tom Claassen
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Alejandro Arias Vasquez
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Heskes
- Faculty of Science, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
112
|
Thissen AJAM, Bralten J, Rommelse NNJ, Arias-Vasquez A, Greven CU, Heslenfeld D, Luman M, Oosterlaan J, Hoekstra PJ, Hartman C, Franke B, Buitelaar JK. The role of age in association analyses of ADHD and related neurocognitive functioning: A proof of concept for dopaminergic and serotonergic genes. Am J Med Genet B Neuropsychiatr Genet 2015; 168:471-479. [PMID: 25586935 DOI: 10.1002/ajmg.b.32290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/01/2014] [Indexed: 11/08/2022]
Abstract
Elucidating genetic mechanisms involved in Attention-Deficit/Hyperactivity Disorder (ADHD) has been challenging. Relatively unexplored is the fact that genetic mechanisms can differ with age. The current study explored the association between dopaminergic and serotonergic genes, ADHD symptoms, and neurocognitive functioning in relation to age. Associations of three genetic ADHD risk factors, DAT1, DRD4, and 5-HTT with symptoms and six neurocognitive measures were explored in two samples of the NeuroIMAGE study: 756 children, adolescents, and young adults with ADHD, their siblings, and controls (M age 17 years, SD 3.2), and 393 parents with and without ADHD (M age 48 years, SD 4.8). Association analyses were performed in both samples, and effects were compared to address dichotomous age effects. Gene*age interactions were examined to address continuous age effects. Moderating effects of age were found for DRD4-7R carriership and ADHD symptoms in the adult group only; in the adolescents the 5-HTT LL genotype was differentially associated with inhibition and with motor timing at different ages, and to inhibition in adults; DAT1 10-6 haplotype carriership showed differential working memory performance depending on age. None of our effects survived correction for multiple comparisons. Our results are preliminary, but may point to differential genotype-phenotype associations at different ages. This can be seen as a proof of concept for the importance of age in dopaminergic and serotonergic genetic association analyses. Our findings are consistent with the idea that genetic and neurocognitive mechanisms underlying ADHD may change throughout life. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrieke J A M Thissen
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Janita Bralten
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, Nijmegen, The Netherlands
| | - Nanda N J Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Alejandro Arias-Vasquez
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Corina U Greven
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, Nijmegen, The Netherlands.,King's College London, Institute of Psychiatry, United Kingdom
| | - Dirk Heslenfeld
- Department of Psychology, VU University, Amsterdam, The Netherlands
| | - Marjolein Luman
- Department of Psychology, VU University, Amsterdam, The Netherlands
| | - Jaap Oosterlaan
- Department of Psychology, VU University, Amsterdam, The Netherlands
| | - Pieter J Hoekstra
- Department of Psychiatry, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Catharina Hartman
- Department of Psychiatry, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
113
|
Wetterling F, McCarthy H, Tozzi L, Skokauskas N, O'Doherty JP, Mulligan A, Meaney J, Fagan AJ, Gill M, Frodl T. Impaired reward processing in the human prefrontal cortex distinguishes between persistent and remittent attention deficit hyperactivity disorder. Hum Brain Mapp 2015; 36:4648-63. [PMID: 26287509 DOI: 10.1002/hbm.22944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 11/08/2022] Open
Abstract
Symptoms of attention deficit hyperactivity disorder (ADHD) in children often persist into adulthood and can lead to severe antisocial behavior. However, to-date it remains unclear whether neuro-functional abnormalities cause ADHD, which in turn can then provide a marker of persistent ADHD. Using event-related functional magnetic resonance imaging (fMRI), we measured blood oxygenation level dependent (BOLD) signal changes in subjects during a reversal learning task in which choice of the correct stimulus led to a probabilistically determined 'monetary' reward or punishment. Participants were diagnosed with ADHD during their childhood (N=32) and were paired with age, gender, and education matched healthy controls (N=32). Reassessment of the ADHD group as adults resulted in a split between either persistent (persisters, N=17) or remitted ADHDs (remitters, N=15). All three groups showed significantly decreased activation in the medial prefrontal cortex (PFC) and the left striatum during punished correct responses, however only remitters and controls presented significant psycho-physiological interaction between these fronto-striatal reward and outcome valence networks. Comparing persisters to remitters and controls showed significantly inverted responses to punishment (P<0.05, family-wise error corrected) in left PFC region. Interestingly, the decreased activation shown after punishment was located in different areas of the PFC for remitters compared with controls, suggesting that remitters might have learned compensation strategies to overcome their ADHD symptoms. Thus, fMRI helps understanding the neuro-functional basis of ADHD related behavior differences and differentiates between persistent and remittent ADHD.
Collapse
Affiliation(s)
- Friedrich Wetterling
- Department of Psychiatry, School of Medicine, Trinity College, the University of Dublin, Dublin 2, Ireland
| | - Hazel McCarthy
- Department of Psychiatry, School of Medicine, Trinity College, the University of Dublin, Dublin 2, Ireland
| | - Leonardo Tozzi
- Department of Psychiatry, School of Medicine, Trinity College, the University of Dublin, Dublin 2, Ireland
| | - Norbert Skokauskas
- Regional Centre for Child and Youth Mental Health and Child Welfare, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - John P O'Doherty
- Division of the Humanities and Social Sciences and Computation and Neural Systems Program, California Institute of Technology, Pasadena, California
| | - Aisling Mulligan
- Department of Psychiatry, School of Medicine, Trinity College, the University of Dublin, Dublin 2, Ireland
| | - James Meaney
- Centre for Advanced Medical Imaging (CAMI), St. James's Hospital/School of Medicine, Trinity College, the University of Dublin, Dublin 8, Ireland
| | - Andrew J Fagan
- Centre for Advanced Medical Imaging (CAMI), St. James's Hospital/School of Medicine, Trinity College, the University of Dublin, Dublin 8, Ireland
| | - Michael Gill
- Department of Psychiatry, School of Medicine, Trinity College, the University of Dublin, Dublin 2, Ireland
| | - Thomas Frodl
- Department of Psychiatry, School of Medicine, Trinity College, the University of Dublin, Dublin 2, Ireland.,Department of Psychiatry, University Hospital, Otto Von Guericke University Magdeburg, Germany
| |
Collapse
|
114
|
Fontana C, Vitolo MR, Campagnolo PDB, Mattevi VS, Genro JP, Almeida S. DRD4 and SLC6A3 gene polymorphisms are associated with food intake and nutritional status in children in early stages of development. J Nutr Biochem 2015; 26:1607-12. [PMID: 26350252 DOI: 10.1016/j.jnutbio.2015.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 01/14/2023]
Abstract
Variants of dopamine system genes such as the DRD4 and the SLC6A3 genes may be involved in food intake regulation because the dopaminergic system influences food reward. We investigated an association of polymorphisms in the DRD4 (exon 3 VNTR) and SLC6A3 (3'UTR VNTR, rs2550948, rs2652511 and rs1048953) genes with food intake and nutritional status in children. This prospective cohort study recruited 359 children at birth. Dietary data and nutritional status were collected at 1 year, 3-4 years, and 7-8 years of age. The polymorphisms were analyzed using polymerase chain reaction based techniques. Food intake and nutritional status were compared among the different SNP genotypes. In the first year of life, DRD4.7R- children showed higher BMI Z-scores (P=.019) than the DRD4.7R+ cohort. At 3-4 years old, DRD4.7R- and SLC6A3.10R/10R children showed a higher intake of palatable foods (P=.024) and a higher waist circumference (P=.017). The rs1048953 SLC6A3 polymorphism was associated with average daily energy intake (P=.003) at 3-4 years and with a waist-to-height ratio of children at 7-8 years (P=.041). Carriers of high dopamine activity alleles of the VNTRs studied in DRD4 and SLC6A3 genes and carriers of T/T genotype of the variant rs1048953 SLC6A3 can present an increased risk for obesity related to overeating because high dopamine activity can increase the perceived incentive value of food reward.
Collapse
Affiliation(s)
- Crisciele Fontana
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil
| | - Márcia R Vitolo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil; Departamento de Nutrição, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil
| | - Paula D B Campagnolo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil
| | - Vanessa S Mattevi
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil
| | - Júlia P Genro
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil
| | - Silvana Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, 90050-170, Porto Alegre RS, Brazil.
| |
Collapse
|
115
|
Iessa N, Bérard A. Update on Prepregnancy Maternal Obesity: Birth Defects and Childhood Outcomes. J Pediatr Genet 2015; 4:71-83. [PMID: 27617118 PMCID: PMC4918711 DOI: 10.1055/s-0035-1556739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/25/2015] [Indexed: 12/16/2022]
Abstract
Obesity is a growing global health epidemic. It is estimated that more than 20% of pregnancies are complicated by obesity. Prepregnancy obesity has been associated with birth defects such as neural tube defects, macrosomia, fetal death, and long-term effects such as asthma on the offspring. We provide a summary of the most recent studies and meta-analyses on obesity and birth outcome. Possible mechanisms of actions are explored and recommendations for further research are highlighted.
Collapse
Affiliation(s)
- Noha Iessa
- Faculty of Pharmacy, University of Montreal, Montreal, Québec, Canada
- Research Center, CHU Sainte-Justine, Montreal, Québec, Canada
| | - Anick Bérard
- Faculty of Pharmacy, University of Montreal, Montreal, Québec, Canada
- Research Center, CHU Sainte-Justine, Montreal, Québec, Canada
| |
Collapse
|
116
|
Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH, Bau CH, Contini V. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 2015; 15:1365-81. [PMID: 25155937 DOI: 10.2217/pgs.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.
Collapse
Affiliation(s)
- Diego L Rovaris
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Multilevel analysis of ADHD, anxiety and depression symptoms aggregation in families. Eur Child Adolesc Psychiatry 2015; 24:525-36. [PMID: 25156273 DOI: 10.1007/s00787-014-0604-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/18/2014] [Indexed: 01/09/2023]
Abstract
A strong genetic role in the etiology of attention-deficit hyperactivity disorder (ADHD) has been demonstrated by several studies using different methodologies. Shortcomings of genetic studies often include the lack of golden standard practices for diagnosis for ADHD, the use of categorical instead of a dimensional approach, and the disregard for assortative mating phenomenon in parents. The current study aimed to overcome these shortcomings and analyze data through a novel statistical approach, using multilevel analyses with Bayesian procedures and a specific mathematical model, which takes into account data with an elevated number of zero responses (expected in samples with few or no ADHD symptoms). Correlations of parental clinical variables (ADHD, anxiety and depression) to offspring psychopathology may vary according to gender and type of symptoms. We aimed to investigate how those variables interact within each other. One hundred families, comprising a proband child or adolescent with ADHD or a typically developing child or adolescent were included and all family members (both biological parents, the proband child or adolescent and their sibling) were examined through semi-structured interviews using DSM-IV criteria. Results indicated that: (a) maternal clinical variables (ADHD, anxiety and depression) were more correlated with offspring variables than paternal ones; (b) maternal inattention (but not hyperactivity) was correlated with both inattention and hyperactivity in the offspring; (c) maternal anxiety was correlated with offspring inattention; on the other hand, maternal inattention was correlated with anxiety in the offspring. Although a family study design limits the possibility of revealing causality and cannot disentangle genetic and environmental factors, our findings suggest that ADHD, anxiety and depression are variables that correlate in families and should be addressed together. Maternal variables significantly correlated with offspring variables, but the paternal variables did not.
Collapse
|
118
|
von Rhein D, Cools R, Zwiers MP, van der Schaaf M, Franke B, Luman M, Oosterlaan J, Heslenfeld DJ, Hoekstra PJ, Hartman CA, Faraone SV, van Rooij D, van Dongen EV, Lojowska M, Mennes M, Buitelaar J. Increased neural responses to reward in adolescents and young adults with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry 2015; 54:394-402. [PMID: 25901776 PMCID: PMC4417499 DOI: 10.1016/j.jaac.2015.02.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) is a heritable neuropsychiatric disorder associated with abnormal reward processing. Limited and inconsistent data exist about the neural mechanisms underlying this abnormality. Furthermore, it is not known whether reward processing is abnormal in unaffected siblings of participants with ADHD. METHOD We used event-related functional magnetic resonance imaging (fMRI) to investigate brain responses during reward anticipation and receipt with an adapted monetary incentive delay task in a large sample of adolescents and young adults with ADHD (n = 150), their unaffected siblings (n = 92), and control participants (n = 108), all of the same age. RESULTS Participants with ADHD showed, relative to control participants, increased responses in the anterior cingulate, anterior frontal cortex, and cerebellum during reward anticipation, and in the orbitofrontal, occipital cortex and ventral striatum. Responses of unaffected siblings were increased in these regions as well, except for the cerebellum during anticipation and ventral striatum during receipt. CONCLUSION ADHD in adolescents and young adults is associated with enhanced neural responses in frontostriatal circuitry to anticipation and receipt of reward. The findings support models emphasizing aberrant reward processing in ADHD, and suggest that processing of reward is subject to familial influences. Future studies using standard monetary incentive delay task parameters are needed to replicate our findings.
Collapse
Affiliation(s)
- Daniel von Rhein
- Radboud University Medical Center, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Zayats T, Athanasiu L, Sonderby I, Djurovic S, Westlye LT, Tamnes CK, Fladby T, Aase H, Zeiner P, Reichborn-Kjennerud T, Knappskog PM, Knudsen GP, Andreassen OA, Johansson S, Haavik J. Genome-wide analysis of attention deficit hyperactivity disorder in Norway. PLoS One 2015; 10:e0122501. [PMID: 25875332 PMCID: PMC4395400 DOI: 10.1371/journal.pone.0122501] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/22/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a highly heritable neuropsychiatric condition, but it has been difficult to identify genes underlying this disorder. This study aimed to explore genetics of ADHD in an ethnically homogeneous Norwegian population by means of a genome-wide association (GWA) analysis followed by examination of candidate loci. MATERIALS AND METHODS Participants were recruited through Norwegian medical and birth registries as well as the general population. Presence of ADHD was defined according to DSM-IV criteria. Genotyping was performed using Illumina Human OmniExpress-12v1 microarrays. Statistical analyses were divided into several steps: (1) genome-wide association in the form of logistic regression in PLINK and follow-up pathway analyses performed in DAPPLE and INRICH softwares, (2) SNP-heritability calculated using genome-wide complex trait analysis (GCTA) tool, (3) gene-based association tests carried out in JAG software, and (4) evaluation of previously reported genome-wide signals and candidate genes of ADHD. RESULTS In total, 1.358 individuals (478 cases and 880 controls) and 598.384 autosomal SNPs were subjected to GWA analysis. No single polymorphism reached genome-wide significance. The strongest signal was observed at rs9949006 in the ENSG00000263745 gene (OR=1.51, 95% CI 1.28-1.79, p=1.38E-06). Pathway analyses of the top SNPs implicated genes involved in the regulation of gene expression, cell adhesion and inflammation. Among previously identified ADHD candidate genes, prominent association signals were observed for SLC9A9 (rs1393072, OR=1.46, 95% CI = 1.21-1.77, p=9.95E-05) and TPH2 (rs17110690, OR = 1.38, 95% CI = 1.14-1.66, p=8.31E-04). CONCLUSION This study confirms the complexity and heterogeneity of ADHD etiology. Taken together with previous findings, our results point to a spectrum of biological mechanisms underlying the symptoms of ADHD, providing targets for further genetic exploration of this complex disorder.
Collapse
Affiliation(s)
- Tetyana Zayats
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Lavinia Athanasiu
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida Sonderby
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars T. Westlye
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Christian K. Tamnes
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University Of Oslo, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Heidi Aase
- Division of Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Zeiner
- Oslo University Hospital, Child and Adolescent Mental Health Research Unit, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Division of Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Per M. Knappskog
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Gun Peggy Knudsen
- Division of Mental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stefan Johansson
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
120
|
Gao Q, Liu L, Chen Y, Li H, Yang L, Wang Y, Qian Q. Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:132-9. [PMID: 25445064 DOI: 10.1016/j.pnpbp.2014.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUNDS N-ethylmaleimide-sensitive attachment protein receptor (SNARE) complex involved in neurotransmission via exocytosis was implicated in attention-deficit/hyperactivity disorder (ADHD). The present study investigated the influence of SNARE related genes and their interaction on ADHD susceptibility and their cognitive functions. METHODS We genotyped eight single nucleotide polymorphisms (SNP) of Syntaxin 1A (STX1A), vesicle-associated membrane protein 2 (VAMP2) and synaptosomal-associated protein 25 kDa (SNAP25) and conducted case-control studies in 1404 male ADHD and 617 male controls. Quantitative analyses were performed for genotypes and performance on the Rey-Osterrieth complex figure test (RCFT), digit span test and Stroop test in 383 ADHD males. In addition, we explored gene-gene interactions by generalized multifactor dimensionality reduction (GMDR) followed with logistic regression and analyses of covariance for verifying. RESULTS Genotypic distribution of rs875342 of STX1A was significantly different between ADHD and controls. The SNPs, rs363039 of SNAP25 and rs1150 of VAMP2, were significantly associated with RCFT scores, while rs875342 of STX1A with digit span. We found genetic interaction models between these three genes and ADHD susceptibility as well as working memory function evaluated by RCFT. CONCLUSION SNARE complex genes and their interactions may play a significant role in susceptibility and working memory of ADHD.
Collapse
Affiliation(s)
- Qian Gao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yun Chen
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Li Yang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| |
Collapse
|
121
|
The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives. Eur Child Adolesc Psychiatry 2015; 24:265-81. [PMID: 25012461 DOI: 10.1007/s00787-014-0573-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of ADHD. The NeuroIMAGE study is a follow-up of the Dutch part of the International Multicenter ADHD Genetics (IMAGE) project. It is a multi-site prospective cohort study designed to investigate the course of ADHD, its genetic and environmental determinants, its cognitive and neurobiological underpinnings, and its consequences in adolescence and adulthood. From the original 365 ADHD families and 148 control (CON) IMAGE families, consisting of 506 participants with an ADHD diagnosis, 350 unaffected siblings, and 283 healthy controls, 79 % participated in the NeuroIMAGE follow-up study. Combined with newly recruited participants the NeuroIMAGE study comprehends an assessment of 1,069 children (751 from ADHD families; 318 from CON families) and 848 parents (582 from ADHD families; 266 from CON families). For most families, data for more than one child (82 %) and both parents (82 %) were available. Collected data include a diagnostic interview, behavioural questionnaires, cognitive measures, structural and functional neuroimaging, and genome-wide genetic information. The NeuroIMAGE dataset allows examining the course of ADHD over adolescence into young adulthood, identifying phenotypic, cognitive, and neural mechanisms associated with the persistence versus remission of ADHD, and studying their genetic and environmental underpinnings. The inclusion of siblings of ADHD probands and controls allows modelling of shared familial influences on the ADHD phenotype.
Collapse
|
122
|
Differential susceptibility to maternal expressed emotion in children with ADHD and their siblings? Investigating plasticity genes, prosocial and antisocial behaviour. Eur Child Adolesc Psychiatry 2015; 24:209-17. [PMID: 24929324 PMCID: PMC4266623 DOI: 10.1007/s00787-014-0567-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
Abstract
The differential susceptibility theory states that children differ in their susceptibility towards environmental experiences, partially due to plasticity genes. Individuals carrying specific variants in such genes will be more disadvantaged in negative but, conversely, more advantaged in positive environments. Understanding gene-environment interactions may help unravel the causal mechanisms involved in multifactorial psychiatric disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD). The differential susceptibility theory was examined by investigating the presence of interaction effects between maternal expressed emotion (EE; warmth and criticism) and the solitary and combined effects of plasticity genes (DAT1, DRD4, 5-HTT) on prosocial and antisocial behaviour (measured with parent- and self-reports) in children with ADHD and their siblings (N = 366, M = 17.11 years, 74.9% male). Maternal warmth was positively associated with prosocial behaviour and negatively with antisocial behaviour, while maternal criticism was positively associated with antisocial behaviour and negatively with prosocial behaviour. No evidence of differential susceptibility was found. The current study found no evidence for differential susceptibility based on the selected plasticity genes, in spite of strong EE-behaviour associations. It is likely that additional factors play a role in the complex relationship between genes, environment and behaviour.
Collapse
|
123
|
Liu L, Cheng J, Li H, Yang L, Qian Q, Wang Y. The possible involvement of genetic variants of NET1 in the etiology of attention-deficit/hyperactivity disorder comorbid with oppositional defiant disorder. J Child Psychol Psychiatry 2015; 56:58-66. [PMID: 24942521 DOI: 10.1111/jcpp.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) often coexist and shared some genetic influences. Evidence from the existing literature indicated that comorbid with ODD may increase the heterogeneity of ADHD genetics. Our present study sought to investigate the role of norepinephrine transporter gene (NET1) for ADHD comorbid with ODD. METHODS Six single nucleotide polymorphisms (SNPs) of NET1 were genotyped for a total of 1,815 ADHD cases, including 587 subjects (32.3%) with ODD. Chi-square tests were conducted for pseudo case-control study comparing allelic and genotypic distributions between ADHD with and without ODD. Among them, there were 1,249 probands together with their parents composing trios for family-based association studies using transmission disequilibrium tests (TDTs). In addition, 1,337 ADHD probands have detailed information of ODD symptoms and were included for quantitative analyses with genotypes using analyses of covariance (ANCOVA). To consider the overlap and correlation of other comorbidities with ODD and eliminate their potential confounding effect, we further repeated above analyses for 'pure ADHD+ODD' versus 'ADHD-only' after excluding other comorbidities except for ODD. RESULTS The pseudo case-control study showed different allelic and genotypic distributions of SNP rs3785143 between ADHD with ODD and those without ODD. Family-based association tests indicated overtransmission of the T allele of rs3785143 in ADHD with ODD trios, but no biased transmission in those without ODD. ANCOVA showed association between genotypes of rs3785143 with ODD symptoms in ADHD probands, especially with 'Argumentative/Defiant Behavior (ADB)' dimension after controlling gender, age, clinical subtypes and intelligence. Above association still existed after removing the samples with other comorbidities. CONCLUSION NET1 was associated with comorbidity of ODD and ODD symptoms in ADHD probands. Our findings emphasize the importance of considering the comorbidity of ODD in ADHD genetic studies, especially ADHD with ADB. However, further replication in independent sample or different populations is still needed.
Collapse
Affiliation(s)
- Lu Liu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | | | | | | | | | | |
Collapse
|
124
|
Gao Q, Liu L, Li HM, Tang YL, Wu ZM, Chen Y, Wang YF, Qian QJ. Interactions between MAOA and SYP polymorphisms were associated with symptoms of attention-deficit/hyperactivity disorder in Chinese Han subjects. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:45-53. [PMID: 25487813 DOI: 10.1002/ajmg.b.32273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022]
Abstract
As candidate genes of attention--deficit/hyperactivity disorder (ADHD), monoamine oxidase A (MAOA), and synaptophysin (SYP) are both on the X chromosome, and have been suggested to be associated with the predominantly inattentive subtype (ADHD-I). The present study is to investigate the potential gene-gene interaction (G × G) between rs5905859 of MAOA and rs5906754 of SYP for ADHD in Chinese Han subjects. For family-based association study, 177 female trios were included. For case-control study, 1,462 probands and 807 normal controls were recruited. The ADHD Rating Scale-IV (ADHD-RS-IV) was used to evaluate ADHD symptoms. Pedigree-based generalized multifactor dimensionality reduction (PGMDR) for female ADHD trios indicated significant gene interaction effect of rs5905859 and rs5906754. Generalized multifactor dimensionality reduction (GMDR) indicated potential gene-gene interplay on ADHD RS-IV scores in female ADHD-I. No associations were observed in male subjects in case-control analysis. In conclusion, our findings suggested that the interaction of MAOA and SYP may be involved in the genetic mechanism of ADHD-I subtype and predict ADHD symptoms.
Collapse
Affiliation(s)
- Qian Gao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Rommelse N, Bunte T, Matthys W, Anderson E, Buitelaar J, Wakschlag L. Contextual variability of ADHD symptoms: embracement not erasement of a key moderating factor. Eur Child Adolesc Psychiatry 2015; 24:1-4. [PMID: 25534928 DOI: 10.1007/s00787-014-0665-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Nanda Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
126
|
van der Meer D, Hartman CA, Richards J, Bralten JB, Franke B, Oosterlaan J, Heslenfeld DJ, Faraone SV, Buitelaar JK, Hoekstra PJ. The serotonin transporter gene polymorphism 5-HTTLPR moderates the effects of stress on attention-deficit/hyperactivity disorder. J Child Psychol Psychiatry 2014; 55:1363-71. [PMID: 24797917 PMCID: PMC4218913 DOI: 10.1111/jcpp.12240] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The role of the serotonin transporter gene polymorphism 5-HTTLPR in attention-deficit/hyperactivity disorder (ADHD) is unclear. Heterogeneity of findings may be explained by gene-environment interactions (GxE), as it has been suggested that S-allele carriers are more reactive to psychosocial stress than L-allele homozygotes. This study aimed to investigate whether 5-HTTLPR genotype moderates the effects of stress on ADHD in a multisite prospective ADHD cohort study. METHODS 5-HTTLPR genotype, as well as the number of stressful life events in the past 5 years and ongoing long-term difficulties, was determined in 671 adolescents and young adults with ADHD, their siblings, and healthy controls (57.4% male, average age 17.3 years). Linear mixed models, accounting for family relatedness, were applied to investigate the effects of genotype, experienced stress, and their interaction on ADHD severity at time point T2, while controlling for ADHD severity at T1 (mean follow-up time 5.9 years) and for comorbid internalizing problems at T2. RESULTS The interaction between genotype and stress significantly predicted ADHD severity at T2 (p = .006), which was driven by the effect on hyperactivity-impulsivity (p = .004). Probing of the interaction effect made clear that S-allele carriers had a significantly more positive correlation between stress and ADHD severity than L-allele homozygotes. CONCLUSION The results show that the interaction between 5-HTTLPR and stress is a mechanism involved particularly in the hyperactivity/impulsivity dimension of ADHD, and that this is independent of comorbid internalizing problems. Further research into the neurobiological mechanisms underlying this interaction effect is warranted.
Collapse
Affiliation(s)
- Dennis van der Meer
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Catharina A. Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Jennifer Richards
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, Netherlands,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, Netherlands
| | - Janita B. Bralten
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, Netherlands,Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics, Nijmegen, The Netherlands
| | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Human Genetics, Nijmegen, The Netherlands,Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Psychiatry, Nijmegen, The Netherlands
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Dirk J. Heslenfeld
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, the Netherlands
| | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, USA
| | - Jan K. Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, Netherlands,Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, Netherlands
| | - Pieter J. Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
127
|
Marín AM, Seco FL, Serrano SM, García SA, Gaviria Gómez AM, Ney I. Do firstborn children have an increased risk of ADHD? J Atten Disord 2014; 18:594-7. [PMID: 22826511 DOI: 10.1177/1087054712445066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Although previous reports have found no birth-order influence on ADHD risk, the authors hypothesize that being the firstborn is a risk factor for developing ADHD. METHOD They selected all of the currently treated ADHD outpatients (n = 748) from our database. Families with adopted sons, nonnuclear families, and families with only one child and with sons (affected or unaffected) younger than 6 or older than 18 years were excluded. A total of 181 families with 213 ADHD sons met the inclusion criteria. We used all siblings without a clinical diagnosis of ADHD and who had no contact with our service as our unaffected controls (n = 173). RESULTS The bivariate analysis showed that ADHD was associated with birth order and that firstborn children had nearly twice the ADHD risk of children with other birth orders. CONCLUSION birth order can be an ADHD risk factor in clinical samples.
Collapse
Affiliation(s)
- Adela Masana Marín
- Child and Adolescent Mental Health Centers. Pere Mata Group, IISP, Universitat Rovira i Virgili, Spain
| | - Fernando Lopez Seco
- Child and Adolescent Mental Health Centers. Pere Mata Group, IISP, Universitat Rovira i Virgili, Spain
| | - Susana Martí Serrano
- Child and Adolescent Mental Health Centers. Pere Mata Group, IISP, Universitat Rovira i Virgili, Spain
| | - Silvia Acosta García
- Child and Adolescent Mental Health Centers. Pere Mata Group, IISP, Universitat Rovira i Virgili, Spain
| | - Ana Milena Gaviria Gómez
- Child and Adolescent Mental Health Centers. Pere Mata Group, IISP, Universitat Rovira i Virgili, Spain
| | - Inti Ney
- Child and Adolescent Mental Health Centers. Pere Mata Group, IISP, Universitat Rovira i Virgili, Spain
| |
Collapse
|
128
|
Li Z, Chang SH, Zhang LY, Gao L, Wang J. Molecular genetic studies of ADHD and its candidate genes: a review. Psychiatry Res 2014; 219:10-24. [PMID: 24863865 DOI: 10.1016/j.psychres.2014.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/31/2014] [Accepted: 05/04/2014] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder with high heritability. In recent years, numerous molecular genetic studies have been published to investigate susceptibility loci for ADHD. These results brought valuable candidates for further research, but they also presented great challenge for profound understanding of genetic data and general patterns of current molecular genetic studies of ADHD since they are scattered and heterogeneous. In this review, we presented a retrospective review of more than 300 molecular genetic studies for ADHD from two aspects: (1) the main achievements of various studies were summarized, including linkage studies, candidate-gene association studies, genome-wide association studies and genome-wide copy number variation studies, with a special focus on general patterns of study design and common sample features; (2) candidate genes for ADHD have been systematically evaluated in three ways for better utilization. The thorough summary of the achievements from various studies will provide an overview of the research status of molecular genetics studies for ADHD. Meanwhile, the analysis of general patterns and sample characteristics on the basis of these studies, as well as the integrative review of candidate ADHD genes, will propose new clues and directions for future experiment design.
Collapse
Affiliation(s)
- Zhao Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Su-Hua Chang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Liu-Yan Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lei Gao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
129
|
Davies W. Sex differences in attention Deficit Hyperactivity Disorder: candidate genetic and endocrine mechanisms. Front Neuroendocrinol 2014; 35:331-46. [PMID: 24680800 DOI: 10.1016/j.yfrne.2014.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a developmental condition characterised by severe inattention, pathological impulsivity and hyperactivity; it is relatively common affecting up to 6% of children, and is associated with a risk of long-term adverse educational and social consequences. Males are considerably more likely to be diagnosed with ADHD than females; the course of the disorder and its associated co-morbidities also appear to be sensitive to sex. Here, I discuss fundamental biological (genetic and endocrine) mechanisms that have been shown to, or could theoretically, contribute towards these sexually dimorphic phenomena. Greater understanding of how and why the sexes differ with respect to ADHD vulnerability should allow us to identify and characterise novel protective and risk factors for the disorder, and should ultimately facilitate improved diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
| |
Collapse
|
130
|
GAO Q, LIU L, QIAN Q, WANG Y. Advances in molecular genetic studies of attention deficit hyperactivity disorder in China. SHANGHAI ARCHIVES OF PSYCHIATRY 2014; 26:194-206. [PMID: 25317006 PMCID: PMC4194002 DOI: 10.3969/j.issn.1002-0829.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/16/2014] [Indexed: 12/05/2022]
Abstract
SUMMARY Attention deficit hyperactivity disorder (ADHD) is a common psychiatric condition in children worldwide that typically includes a combination of symptoms of inattention and hyperactivity/impulsivity. Genetic factors are believed to be important in the development and course of ADHD so many candidate genes studies and genome-wide association studies (GWAS) have been conducted in search of the genetic mechanisms that cause or influence the condition. This review provides an overview of gene association and pharmacogenetic studies of ADHD from mainland China and elsewhere that use Han Chinese samples. To date, studies from China and elsewhere remain inconclusive so future studies need to consider alternative analytic techniques and test new biological hypotheses about the relationship of neurotransmission and neurodevelopment to the onset and course of this disabling condition.
Collapse
Affiliation(s)
- Qian GAO
- Peking University Sixth Hospital Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Lu LIU
- Peking University Sixth Hospital Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Qiujin QIAN
- Peking University Sixth Hospital Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yufeng WANG
- Peking University Sixth Hospital Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
131
|
Saha T, Dutta S, Rajamma U, Sinha S, Mukhopadhyay K. A pilot study on the contribution of folate gene variants in the cognitive function of ADHD probands. Neurochem Res 2014; 39:2058-67. [PMID: 25079255 DOI: 10.1007/s11064-014-1393-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/28/2022]
Abstract
Genetic abnormalities in components important for the folate cycle confer risk for various disorders since adequate folate turnover is necessary for normal methylation, gene expression and chromosome structure. However, the system has rarely been studied in children diagnosed with attention deficit hyperactivity disorder (ADHD). We hypothesized that ADHD related cognitive deficit could be attributed to abnormalities in the folate cycle and explored functional single nucleotide polymorphisms in methylenetetrahydrofolate dehydrogenase (rs2236225), reduced folate carrier (rs1051266), and methylenetetrahydrofolate reductase (rs1801131 and rs1801133) in families with ADHD probands (N = 185) and ethnically matched controls (N = 216) recruited following the DSM-IV. After obtaining informed written consent for participation, peripheral blood was collected for genomic DNA isolation and PCR-based analysis of target sites. Data obtained was analyzed by UNPHASED. Interaction between sites was analyzed by the multi dimensionality reduction (MDR) program. Genotypic frequencies of the Indian population were strikingly different from other ethnic groups. rs1801133 "T" allele showed biased transmission in female probands (p < 0.05). Significant difference in genotypic frequencies for female probands was also noticed. rs1801131 and rs1801133 showed an association with low intelligence quotient (IQ). MDR analysis exhibited independent effects and contribution of these sites to IQ, thus indicating a role of these genes in ADHD related cognitive deficit.
Collapse
Affiliation(s)
- T Saha
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot I-24, Sec.-J, E.M. Bypass, Kolkata, 700107, India
| | | | | | | | | |
Collapse
|
132
|
Song J, Hong HJ, Lee BO, Yook KH. Association of Norepinephrine Transporter Gene and Side Effects of Osmotic-Release Oral System Methylphenidate in Attention-Deficit Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak 2014. [DOI: 10.5765/jkacap.2014.25.2.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
133
|
Kwon HJ, Jin HJ, Lim MH. Association between monoamine oxidase gene polymorphisms and attention deficit hyperactivity disorder in Korean children. Genet Test Mol Biomarkers 2014; 18:505-9. [PMID: 24977324 DOI: 10.1089/gtmb.2014.0066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common disorder of the school-age population. ADHD is familial and genetic studies estimate heritability at 80-90%. The aim of the present study was to investigate the association between the genetic type and alleles for the monoamine oxidase (MAO) gene in Korean children with ADHD. The sample consisted of 180 ADHD children and 159 control children. We diagnosed ADHD according to DSM-IV. ADHD symptoms were evaluated with Conners' Parent Rating Scales and Dupaul Parent ADHD Rating Scales. Blood samples were taken from the 339 subjects, DNA was extracted from blood lymphocytes, and polymerase chain reaction was performed for MAO polymorphism. Allele and genotype frequencies were compared using the chi-square test. We compared the allele and genotype frequencies of MAO gene polymorphism in the ADHD and control groups. This study showed that there was a significant correlation among the frequencies of the rs5906883 (odds ratio [OR]=1.47, 95% confidence interval [CI]=1.08-2.00, p=0.014) and the rs3027407 (OR=1.41, 95% CI=1.03-1.91, p=0.029) alleles of MAO, but the final conclusions are not definite. Follow-up studies with larger patient or pure subgroups are expected. These results suggested that MAO might be related to ADHD symptoms.
Collapse
Affiliation(s)
- Ho Jang Kwon
- 1 Environmental Health Center, Dankook Medical Hospital , Cheonan, South Korea
| | | | | |
Collapse
|
134
|
Kondapalli KC, Prasad H, Rao R. An inside job: how endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci 2014; 8:172. [PMID: 25002837 PMCID: PMC4066934 DOI: 10.3389/fncel.2014.00172] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/04/2014] [Indexed: 12/02/2022] Open
Abstract
Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na(+)/H(+) exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder (ADHD), intellectual disability, and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na(+), K(+)) content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo. Drawing upon insights from model organisms and mammalian cells we show how eNHE affect surface expression and function of membrane receptors and neurotransmitter transporters. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
135
|
Dumontheil I, Jensen SKG, Wood NW, Meyer ML, Lieberman MD, Blakemore SJ. Preliminary investigation of the influence of dopamine regulating genes on social working memory. Soc Neurosci 2014; 9:437-51. [PMID: 24889756 PMCID: PMC4131246 DOI: 10.1080/17470919.2014.925503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Working memory (WM) refers to mental processes that enable temporary retention and manipulation of information, including information about other people ("social working memory"). Previous studies have demonstrated that nonsocial WM is supported by dopamine neurotransmission. Here, we investigated in 131 healthy adults whether dopamine is similarly involved in social WM by testing whether social and nonsocial WM are influenced by genetic variants in three genes coding for molecules regulating the availability of dopamine in the brain: catechol-O-methyltransferase (COMT), dopamine active transporter (DAT), and monoamine-oxidase A (MAOA). An advantage for the Met allele of COMT was observed in the two standard WM tasks and in the social WM task. However, the influence of COMT on social WM performance was not accounted for by its influence on either standard WM paradigms. There was no main effect of DAT1 or MAOA, but a significant COMT x DAT1 interaction on social WM performance. This study provides novel preliminary evidence of effects of genetic variants of the dopamine neurotransmitter system on social cognition. The results further suggest that the effects observed on standard WM do not explain the genetic effects on effortful social cognition.
Collapse
Affiliation(s)
- Iroise Dumontheil
- a Institute of Cognitive Neuroscience , University College London , London , UK
| | | | | | | | | | | |
Collapse
|
136
|
Oerlemans AM, van der Meer JMJ, van Steijn DJ, de Ruiter SW, de Bruijn YGE, de Sonneville LMJ, Buitelaar JK, Rommelse NNJ. Recognition of facial emotion and affective prosody in children with ASD (+ADHD) and their unaffected siblings. Eur Child Adolesc Psychiatry 2014; 23:257-71. [PMID: 23824472 DOI: 10.1007/s00787-013-0446-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022]
Abstract
Autism is a highly heritable and clinically heterogeneous neuropsychiatric disorder that frequently co-occurs with other psychopathologies, such as attention-deficit/hyperactivity disorder (ADHD). An approach to parse heterogeneity is by forming more homogeneous subgroups of autism spectrum disorder (ASD) patients based on their underlying, heritable cognitive vulnerabilities (endophenotypes). Emotion recognition is a likely endophenotypic candidate for ASD and possibly for ADHD. Therefore, this study aimed to examine whether emotion recognition is a viable endophenotypic candidate for ASD and to assess the impact of comorbid ADHD in this context. A total of 90 children with ASD (43 with and 47 without ADHD), 79 ASD unaffected siblings, and 139 controls aged 6-13 years, were included to test recognition of facial emotion and affective prosody. Our results revealed that the recognition of both facial emotion and affective prosody was impaired in children with ASD and aggravated by the presence of ADHD. The latter could only be partly explained by typical ADHD cognitive deficits, such as inhibitory and attentional problems. The performance of unaffected siblings could overall be considered at an intermediate level, performing somewhat worse than the controls and better than the ASD probands. Our findings suggest that emotion recognition might be a viable endophenotype in ASD and a fruitful target in future family studies of the genetic contribution to ASD and comorbid ADHD. Furthermore, our results suggest that children with comorbid ASD and ADHD are at highest risk for emotion recognition problems.
Collapse
Affiliation(s)
- Anoek M Oerlemans
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Karmakar A, Maitra S, Verma D, Chakraborti B, Goswami R, Ghosh P, Sinha S, Mohanakumar KP, Usha R, Mukhopadhyay K. Potential contribution of monoamine oxidase a gene variants in ADHD and behavioral co-morbidities: scenario in eastern Indian probands. Neurochem Res 2014; 39:843-52. [PMID: 24652311 DOI: 10.1007/s11064-014-1276-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed behavioral disorder in children with a high frequency of co-morbid conditions like conduct disorder (CD) and oppositional defiant disorder (ODD). These traits are controlled by neurotransmitters like dopamine, serotonin and norepinephrine. Monoamine oxidase A (MAOA), a mitochondrial enzyme involved in the degradation of amines, has been reported to be associated with aggression, impulsivity, depression, and mood changes. We hypothesized that MAOA can have a potential role in ADHD associated CD/ODD and analyzed 24 markers in a group of Indo-Caucasoid subjects. ADHD probands and controls (N = 150 each) matched for ethnicity and gender were recruited following the Diagnostic and Statistical Manual for Mental Disorders-IV. Appropriate scales were used for measuring CD and ODD traits. Markers were genotyped by PCR-based methods and data obtained analyzed using the Cocaphase program under UNPHASED. Only eight markers were found to be polymorphic. rs6323 "G" allele showed higher frequencies in ADHD (P = 0.0023), ADHD + CD (P = 0.03) and ADHD + ODD (P = 0.01) as compared to controls. Haplotype analysis revealed statistically significant difference for three haplotypes in ADHD cases (P < 0.02). Statistically significant differences were also noticed for haplotypes in ADHD + CD and ADHD + ODD cases (P < 0.01). LD analysis showed significant variation in different groups. Multidimensionality reduction analysis showed independent as well as interactive effects of markers. Genotypes showed correlation with behavioral problems in ADHD and ADHD + CD. We interpret that MAOA gene variants may contribute to the etiology of ADHD as well as associated co-morbid CD and ODD in this ethnic group.
Collapse
Affiliation(s)
- A Karmakar
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot I-24, Sec.-J, E.M. Bypass, Kolkata, 700107, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Gold MS, Blum K, Oscar-Berman M, Braverman ER. Low dopamine function in attention deficit/hyperactivity disorder: should genotyping signify early diagnosis in children? Postgrad Med 2014; 126:153-77. [PMID: 24393762 DOI: 10.3810/pgm.2014.01.2735] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is present in 8% to 12% of children, and 4% of adults worldwide. Children with ADHD can have learning impairments, poor selfesteem, social dysfunction, and an increased risk of substance abuse, including cigarette smoking. Overall, the rate of treatment with medication for patients with ADHD has been increasing since 2008, with ≥ 2 million children now being treated with stimulants. The rise of adolescent prescription ADHD medication abuse has occurred along with a concomitant increase of stimulant medication availability. Of adults presenting with a substance use disorder (SUD), 20% to 30% have concurrent ADHD, and 20% to 40% of adults with ADHD have a history of SUD. Following a brief review of the etiology of ADHD, its diagnosis and treatment, we focus on the benefits of early and appropriate testing for a predisposition to ADHD. We suggest that by genotyping patients for a number of known, associated dopaminergic polymorphisms, especially at an early age, misdiagnoses and/or over-diagnosis can be reduced. Ethical and legal issues of early genotyping are considered. As many as 30% of individuals with ADHD are estimated to either have secondary side-effects or are not responsive to stimulant medication. We also consider the benefits of non-stimulant medication and alternative treatment modalities, which include diet, herbal medications, iron supplementation, and neurofeedback. With the goals of improving treatment of patients with ADHD and SUD prevention, we encourage further work in both genetic diagnosis and novel treatment approaches.
Collapse
Affiliation(s)
- Mark S Gold
- Department of Psychiatry, School of Medicine and McKnight Brain Institute, University of Florida, Gainesville, FL.
| | | | | | | |
Collapse
|
139
|
Richards JS, Vásquez AA, Rommelse NN, Oosterlaan J, Hoekstra PJ, Franke B, Hartman CA, Buitelaar JK. A follow-up study of maternal expressed emotion toward children with Attention-Deficit/Hyperactivity Disorder (ADHD): relation with severity and persistence of ADHD and comorbidity. J Am Acad Child Adolesc Psychiatry 2014; 53:311-9.e1. [PMID: 24565358 PMCID: PMC4066112 DOI: 10.1016/j.jaac.2013.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/28/2013] [Accepted: 11/26/2013] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Attention-deficit/hyperactivity disorder (ADHD) is associated with conflicted parent-child relationships. The underlying mechanisms of this association are not yet fully understood. We investigated the cross-sectional and longitudinal relationships between externalizing psychopathology in children with ADHD, and expressed emotion (EE; warmth and criticism) and psychopathology in mothers. METHOD In this 6-year follow-up study, 385 children with an ADHD combined subtype were included at baseline (mean, 11.5 years, 83.4% male), of which 285 children (74%) were available at follow-up (mean, 17.5 years, 83.5% male). At both time points, measures of child psychopathology (i.e., ADHD severity, oppositional, and conduct problems), maternal EE, and maternal psychopathology (i.e., ADHD and affective problems) were obtained. RESULTS EE was not significantly correlated over time. At baseline, we found a nominally negative association (p ≤ .05) between maternal warmth and child ADHD severity. At follow-up, maternal criticism was significantly associated with child oppositional problems, and nominally with child conduct problems. Maternal warmth was nominally associated with child oppositional and conduct problems. These associations were independent of maternal psychopathology. No longitudinal associations were found between EE at baseline and child psychopathology at follow-up, or child psychopathology at baseline and EE at follow-up. CONCLUSIONS The results support previous findings of cross-sectional associations between parental EE and child psychopathology. This, together with the finding that EE was not stable over 6 years, suggests that EE is a momentary state measure varying with contextual and developmental factors. EE does not appear to be a risk factor for later externalizing behavior in children with ADHD.
Collapse
Affiliation(s)
- Jennifer S. Richards
- Donders Institute for Brain, Cognition and Behavior, Radboud
University Medical Centre, Nijmegen, the Netherlands,Karakter Child and Adolescent Psychiatry University Centre,
Nijmegen, the Netherlands
| | - Alejandro Arias Vásquez
- Donders Institute for Brain, Cognition and Behavior, Radboud
University Medical Centre, Nijmegen, the Netherlands
| | - Nanda N.J. Rommelse
- Karakter Child and Adolescent Psychiatry University Centre,
Nijmegen, the Netherlands
| | | | - Pieter J. Hoekstra
- University Medical Centre Groningen, University of Groningen, the
Netherlands
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behavior, Radboud
University Medical Centre, Nijmegen, the Netherlands
| | | | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and Behavior, Radboud
University Medical Centre, Nijmegen, the Netherlands,Karakter Child and Adolescent Psychiatry University Centre,
Nijmegen, the Netherlands
| |
Collapse
|
140
|
Heinrich H, Hoegl T, Moll GH, Kratz O. A bimodal neurophysiological study of motor control in attention-deficit hyperactivity disorder: a step towards core mechanisms? ACTA ACUST UNITED AC 2014; 137:1156-66. [PMID: 24574502 DOI: 10.1093/brain/awu029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Knowledge about the core neural mechanisms of attention-deficit hyperactivity disorder, a pathophysiologically heterogeneous psychiatric disorder starting in childhood, is still limited. Progress may be achieved by combining different methods and levels of investigation. In the present study, we investigated neural mechanisms of motor control in 19 children with attention-deficit hyperactivity disorder (aged 9-14 years) and 21 age-matched typically developing children by relating neural markers of attention and response control (using event-related potentials) and measures of motor excitability/inhibition (evoked by transcranial magnetic stimulation). Thus, an interplay of processes at a subsecond scale could be studied. Using a monetary incentives-based cued Go/No-Go task, parameters that are well-known to be reduced in attention-deficit hyperactivity disorder were analysed: event-related potential components P3 (following cue stimuli; in Go and No-Go trials) and contingent negative variation as well as the transcranial magnetic stimulation-based short-interval intracortical inhibition measured at different latencies in Go and No-Go trials. For patient and control groups, different associations were obtained between performance, event-related potential and transcranial magnetic stimulation measures. In children with attention-deficit hyperactivity disorder, the P3 amplitude in Go trials was not correlated with reaction time measures but with short-interval intracortical inhibition at rest (r=0.56, P=0.01). In No-Go trials, P3 and short-interval intracortical inhibition after inhibiting the response (at 500 ms post-stimulus) were correlated in these children only (r=0.62; P=0.008). A classification rate of 90% was achieved when using short-interval intracortical inhibition (measured shortly before the occurrence of a Go or No-Go stimulus) and the amplitude of the P3 in cue trials as input features in a linear discriminant analysis. Findings indicate deviant neural implementation of motor control in children with attention-deficit hyperactivity disorder reflecting compensatory cognitive mechanisms as a result of a basal motor cortical inhibitory deficit (reduced activation of inhibitory intracortical interneurons). Both deviant inhibitory and attentional processes, which are not related to each other, seem to be characteristic for attention-deficit hyperactivity disorder at the neural level in motor control tasks. The underlying neural mechanisms, which are probably not restricted to the motor cortex and the posterior attention network, may play a key role in the pathophysiology of this child psychiatric disorder. The high classification rate can further be interpreted as a step towards the development of neural markers. In summary, the bimodal neurophysiological concept may contribute to developing an integrative framework for attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Hartmut Heinrich
- 1 Department of Child and Adolescent Mental Health, University Hospital of Erlangen, Schwabachanlage 6+10, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
141
|
Nijmeijer JS, Arias-Vásquez A, Rommelse NNJ, Altink ME, Buschgens CJM, Fliers EA, Franke B, Minderaa RB, Sergeant JA, Buitelaar JK, Hoekstra PJ, Hartman CA. Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder: Significant Locus on Chromosome 7q11. J Autism Dev Disord 2014; 44:1671-80. [DOI: 10.1007/s10803-014-2039-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
142
|
Genro JP, Kieling C, Rohde LA, Hutz MH. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother 2014; 10:587-601. [DOI: 10.1586/ern.10.17] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
143
|
Staller JA, Faraone SV. Targeting the dopamine system in the treatment of attention-deficit/hyperactivity disorder. Expert Rev Neurother 2014; 7:351-62. [PMID: 17425490 DOI: 10.1586/14737175.7.4.351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable condition that affects a significant number of children and adults worldwide. During the past 30 years, the diagnosis and treatment of ADHD has relied on clinical assessment and empirical experience with stimulant medications. More recently, advances in family genetic studies, molecular genetic studies, preclinical research, radiographic imaging techniques and neuropsychological evaluation have significantly enhanced our understanding of the neurobiology of ADHD. This review highlights the current central role of dopamine in the pathophysiology and treatment of ADHD and implications for future advances in diagnosis and treatment.
Collapse
Affiliation(s)
- Jud A Staller
- Division of Child & Adolescent Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
144
|
Akutagava-Martins GC, Salatino-Oliveira A, Kieling CC, Rohde LA, Hutz MH. Genetics of attention-deficit/hyperactivity disorder: current findings and future directions. Expert Rev Neurother 2014; 13:435-45. [DOI: 10.1586/ern.13.30] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
145
|
Thompson MD, Cole DEC, Capra V, Siminovitch KA, Rovati GE, Burnham WM, Rana BK. Pharmacogenetics of the G protein-coupled receptors. Methods Mol Biol 2014; 1175:189-242. [PMID: 25150871 DOI: 10.1007/978-1-4939-0956-8_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacogenetics investigates the influence of genetic variants on physiological phenotypes related to drug response and disease, while pharmacogenomics takes a genome-wide approach to advancing this knowledge. Both play an important role in identifying responders and nonresponders to medication, avoiding adverse drug reactions, and optimizing drug dose for the individual. G protein-coupled receptors (GPCRs) are the primary target of therapeutic drugs and have been the focus of these studies. With the advance of genomic technologies, there has been a substantial increase in the inventory of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms and insertion or deletions that have potential to alter GPCR expression of function. In vivo and in vitro studies have determined functional roles for many GPCR variants, but genetic association studies that define the physiological impact of the majority of these common variants are still limited. Despite the breadth of pharmacogenetic data available, GPCR variants have not been included in drug labeling and are only occasionally considered in optimizing clinical use of GPCR-targeted agents. In this chapter, pharmacogenetic and genomic studies on GPCR variants are reviewed with respect to a subset of GPCR systems, including the adrenergic, calcium sensing, cysteinyl leukotriene, cannabinoid CB1 and CB2 receptors, and the de-orphanized receptors such as GPR55. The nature of the disruption to receptor function is discussed with respect to regulation of gene expression, expression on the cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (altered ligand binding, G protein coupling, constitutive activity). The large body of experimental data generated on structure and function relationships and receptor-ligand interactions are being harnessed for the in silico functional prediction of naturally occurring GPCR variants. We provide information on online resources dedicated to GPCRs and present applications of publically available computational tools for pharmacogenetic studies of GPCRs. As the breadth of GPCR pharmacogenomic data becomes clearer, the opportunity for routine assessment of GPCR variants to predict disease risk, drug response, and potential adverse drug effects will become possible.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | | | | | |
Collapse
|
146
|
Association between the DAT1 gene and spatial working memory in attention deficit hyperactivity disorder. Int J Neuropsychopharmacol 2014; 17:9-21. [PMID: 24008096 DOI: 10.1017/s1461145713000783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An association between attention deficit hyperactivity disorder (ADHD) and the dopamine transporter gene (DAT1) was reported in clinical samples. This study aimed to explore whether there was an association between DAT1 and spatial working memory (SWM), a promising endophenotype for ADHD. This family-based association sample consisted of 382 probands with DSM-IV ADHD and their family members (n = 1298) in Taiwan. The SWM task of the Cambridge Neuropsychological Test Automated Battery (CANTAB) was used to measure SWM of all participants. We screened 15 polymorphisms across the DAT1 gene, including 14 single nucleotide polymorphisms (SNPs) and the variable number of tandem repeat polymorphism in the 3'-untranslated region. We used the Family-Based Association Test (FBAT) to test the associations of genetic polymorphisms with the SWM measures. In single locus association analyses, two SNPs (rs2617605 and rs37020) were significantly associated with the double errors (adjusted p = 0.03 and 0.03, respectively) after adjustment for multiple testing. In haplotype analyses, a haplotype rs403636 (G)/rs463379 (C)/rs393795 (C)/rs37020 (G) was significantly associated with total within-search errors (minimal p = 0.001), within-search errors in eight boxes (minimal p = 0.002), total double errors (minimal p = 0.001) and double errors in eight boxes (minimal p = 0.004). Our finding of the haplotype rs403636 (G)/rs463379 (C)/rs393795 (C)/rs37020 (G) as a novel genetic marker for spatial working memory suggests that variation in DAT1 may provide insight into the pathways leading from genotype to phenotype of ADHD.
Collapse
|
147
|
Association between SYP with attention-deficit/hyperactivity disorder in Chinese Han subjects: differences among subtypes and genders. Psychiatry Res 2013; 210:308-14. [PMID: 23726717 DOI: 10.1016/j.psychres.2013.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 01/06/2023]
Abstract
Dysfunction of neurotransmitters has been suggested to be involved in the etiology of attention-deficit/hyperactivity disorder (ADHD). Hence, genes encoding proteins involved in the vesicular release process of those neurotransmitters are attractive candidates in ADHD genetics. One of these genes is SYP, which encodes synaptophysin, a protein known to participate in regulating neurotransmitter release and synaptic plasticity. Several studies have reported an association between SYP and ADHD, but more work is needed to refine the association. In the present study, we attempt to investigate their association in Chinese Han subjects by family-based and case-control studies. Transmission disequilibrium tests (TDTs) in 1112 trios found significant association between SYP and the predominantly inattentive subtype (ADHD-I), especially for males with ADHD-I, both from single nucleotide polymorphism (SNP) and haplotypic analyses. Chi-square tests in 1682 ADHD probands and 957 comparison subjects indicated possible association of SYP with female ADHD and female ADHD-I. However, the associated alleles and haplotypes between males and females were reversed. In conclusion, our results suggested that SYP may be primarily associated with ADHD-I and its genetic mechanism may be gender-specific. Thus, it is necessary to take subtype and gender into account in ADHD genetic studies.
Collapse
|
148
|
Bralten J, Franke B, Waldman I, Rommelse N, Hartman C, Asherson P, Banaschewski T, Ebstein RP, Gill M, Miranda A, Oades RD, Roeyers H, Rothenberger A, Sergeant JA, Oosterlaan J, Sonuga-Barke E, Steinhausen HC, Faraone SV, Buitelaar JK, Arias-Vásquez A. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD. J Am Acad Child Adolesc Psychiatry 2013; 52:1204-1212.e1. [PMID: 24157394 DOI: 10.1016/j.jaac.2013.08.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/05/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. METHOD The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. RESULTS Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). CONCLUSION The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to identify biological risk factors involved in this disorder.
Collapse
Affiliation(s)
- Janita Bralten
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Castro T, Mateus HE, Fonseca DJ, Forero D, Restrepo CM, Talero C, Vélez A, Laissue P. Sequence analysis of the ADRA2A coding region in children affected by attention deficit hyperactivity disorder. Neurol Sci 2013; 34:2219-22. [PMID: 24178896 DOI: 10.1007/s10072-013-1569-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/24/2013] [Indexed: 02/08/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurobehavioral pathology characterized by distinct degrees of inattention, hyperactivity and impulsivity. Although ADHD etiology remains elusive, the ADRA2A candidate gene underlies a particular interest, since it participates in the prefrontal cortex regulation of executive function. Three SNPs located on 5' and 3'UTR regions of the gene have been extensively explored but none of them have been definitely validated as a predisposition or a causative sequence variation. In this study, in order to determine whether ADRA2A non-synonymous sequence variants, resulting in biochemical modifications of the protein, are a common cause of the disease we sequenced the complete ADRA2A coding region in a panel of ADHD children of Colombian origin. We identified the c.1138 C>A (p.Arg380Arg) silent substitution. We conclude that ADRA2A non-synonymous sequence variants do not cause ADHD in our sample population. We cannot formerly discard a potential role of this gene during ADHD pathogenesis since only the coding region was analysed. We hope that these results will encourage further researchers to sequence the promoter and coding regions of ADRA2A in large panels of ADHD patients from distinct ethnical origins.
Collapse
Affiliation(s)
- Taryn Castro
- Unidad de Genética. Grupo GENIUROS. Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Fentress HM, Klar R, Krueger JJ, Sabb T, Redmon SN, Wallace NM, Shirey-Rice JK, Hahn MK. Norepinephrine transporter heterozygous knockout mice exhibit altered transport and behavior. GENES, BRAIN, AND BEHAVIOR 2013; 12:749-59. [PMID: 24102798 PMCID: PMC3852905 DOI: 10.1111/gbb.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/26/2013] [Accepted: 09/06/2013] [Indexed: 01/07/2023]
Abstract
The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET(+/-) ), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET(+/-) mouse establishes an activated state of existing surface NET proteins. The NET(+/-) mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET(+/-) mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET(+/-) mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders.
Collapse
Affiliation(s)
- H M Fentress
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|