101
|
Larrick JW, Mendelsohn AR. Supplementation with Brush Border Enzyme Alkaline Phosphatase Slows Aging. Rejuvenation Res 2021; 23:171-175. [PMID: 32253980 DOI: 10.1089/rej.2020.2335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diminished integrity of the intestinal epithelial barrier with advanced age is believed to contribute to aging-associated dysfunction and pathologies in animals. In mammals, diminished gut integrity contributes to inflammaging, the increase in inflammatory processes observed in old age. Recent work suggests that expression of intestinal alkaline phosphatase (IAP) plays a key role in maintaining gut integrity. IAP expression decreases with increasing age in mice and humans. Absence of IAP leads to liver inflammation and shortened life-spans in mice lacking the IAP gene. In normal mice, exogenous supplemental IAP reverses age-induced barrier dysfunction, improves aging-associated metabolic dysfunction, prevents microbiome dysbiosis (imbalance), and extends life-span. Consistent with IAP playing a conserved role in maintaining gut integrity, increased dietary IAP increases aging-diminished physical performance in flies. IAP helps maintain gut integrity in part by supporting the expression of tight junction proteins that maintain the intestinal epithelial barrier and by inactivating bacterial pro-inflammatory factors such as lipopolysaccharides (LPS) by dephosphorylation. Recombinant IAP is in late clinical trials for sepsis-associated acute kidney injury, suggesting it may soon become available as a therapeutic. Taken together, these reports support the idea that directly increasing IAP levels by supplemental recombinant IAP or by indirectly increasing IAP levels using dietary means to induce endogenous IAP may slow the development of aging-associated pathologies.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnydale, California.,Regenerative Sciences Institute, Sunnydale, California
| | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnydale, California.,Regenerative Sciences Institute, Sunnydale, California
| |
Collapse
|
102
|
Zając M, Kiczorowska B, Samolińska W, Kowalczyk-Pecka D, Andrejko D, Kiczorowski P. Effect of inclusion of micronized camelina, sunflower, and flax seeds in the broiler chicken diet on performance productivity, nutrient utilization, and intestinal microbial populations. Poult Sci 2021; 100:101118. [PMID: 34077850 PMCID: PMC8173300 DOI: 10.1016/j.psj.2021.101118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 11/12/2022] Open
Abstract
The aim of the study was to evaluate the effect of inclusion of micronized full-fat camelina, flax, or sunflower seeds in the diet for broiler chickens on the performance productivity, nutrient utilization, and composition of intestinal microbial populations and to assess the possibility of modification of the resistance of isolated bacteria to chemotherapeutic agents with different mechanisms of action. The use of micronized oilseeds improved the broiler chicken body weight (P = 0.035) and the FCR value (P = 0.045) in the final rearing stage by enhancement of the utilization of total protein and organic matter. Lactobacillus-Enterococcus spp., Bifidobacterium spp., Escherichia coli, and Salmonella spp. were isolated from small intestinal contents, and Enterobacteriaceae taxa were detected in the cecum and cloaca of the broiler chickens. The addition of micronized camelina seeds (CAM.IR) contributed to an increase in the Bifidobacterium counts in the small intestine, compared with the control treatment (P < 0.050). Escherichia coli bacteria were not isolated only in the CAM.IR treatment. Nitrofurantoin and chloramphenicol were the most effective agents against the isolates from the cecum and cloaca in all oilseed treatments, whereas streptomycin exhibited the lowest efficacy. In the CAM.IR and micronized sunflower seed (SUN.IR) treatments, there were higher counts of trimethoprim/sulfamethoxazole-resistant Enterobacteriaceae strains than in the control and micronized flax seed (FLA.IR) treatments (P < 0.05). There was a difference between strains isolated from the cecum and cloaca only in the FLA.IR treatment, i.e., increased tetracycline sensitivity was exhibited by strains isolated from the cloaca (13% vs. 50%), also in comparison with the control treatments (P = 0.054). In comparison with the CAM.IR and control treatments, reduced numbers of multi-resistant strains were found in the cloaca isolates from the for FLA.IR and SUN.IR variants. Micronized camelina, flax, and sunflower seeds can be used as part of an effective nutritional strategy focused on optimization of the efficiency of rearing broiler chickens, as they positively modify intestinal microbial populations and increase bacterial sensitivity to the analyzed chemotherapeutic agents.
Collapse
Affiliation(s)
- Malwina Zając
- Institute of Animal Nutrition and Bromatology, University of Life Sciences, Akademicka Street 13,20-950 Lublin, Poland
| | - Bożena Kiczorowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences, Akademicka Street 13,20-950 Lublin, Poland.
| | - Wioletta Samolińska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences, Akademicka Street 13,20-950 Lublin, Poland
| | - Danuta Kowalczyk-Pecka
- Department of Zoology and Animal Ecology, University of Life Sciences, Akademicka Street 13,20-950 Lublin, Poland
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka Street 28, 20-612 Lublin, Poland
| | - Piotr Kiczorowski
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka Street 28, 20-612 Lublin, Poland
| |
Collapse
|
103
|
Waehler R. Fatty acids: facts vs. fiction. INT J VITAM NUTR RES 2021:1-21. [PMID: 34041926 DOI: 10.1024/0300-9831/a000713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the last 100 years official dietary guidelines have recommended an increased consumption of fats derived from seeds while decreasing the consumption of traditional fats, especially saturated fats. These recommendations are being challenged by recent studies. Furthermore, the increased use of refining processes in fat production had deleterious health effects. Today, the number of high-quality studies on fatty acids is large enough to make useful recommendations on clinical application and everyday practice. Saturated fats have many beneficial functions and palmitic acid appears to be problematic only when it is synthesized due to excess fructose consumption. Trans fatty acids were shown to be harmful when they are manmade but beneficial when of natural origin. Conjugated linoleic acid has many benefits but the isomer mix that is available in supplement form differs from its natural origin and may better be avoided. The ω3 fatty acid linolenic acid has rather limited use as an anti-inflammatory agent - a fact that is frequently overlooked. On the other hand, the targeted use of long chain ω3 fatty acids based on blood analysis has great potential to supplement or even be an alternative to various pharmacological therapies. At the same time ω6 fatty acids like linoleic acid and arachidonic acid have important physiological functions and should not be avoided but their consumption needs to be balanced with long chain ω3 fatty acids. The quality and quantity of these fats together with appropriate antioxidative protection are critical for their positive health effects.
Collapse
|
104
|
Morais J, Marques C, Faria A, Teixeira D, Barreiros-Mota I, Durão C, Araújo J, Ismael S, Brito S, Cardoso M, Macedo I, Pereira E, Tomé T, Calhau C. Influence of Human Milk on Very Preterms' Gut Microbiota and Alkaline Phosphatase Activity. Nutrients 2021; 13:1564. [PMID: 34066473 PMCID: PMC8148101 DOI: 10.3390/nu13051564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/12/2023] Open
Abstract
The FEEDMI Study (NCT03663556) evaluated the influence of infant feeding (mother's own milk (MOM), donor human milk (DHM) and formula) on the fecal microbiota composition and alkaline phosphatase (ALP) activity in extremely and very preterm infants (≤32 gestational weeks). In this observational study, preterm infants were recruited within the first 24 h after birth. Meconium and fecal samples were collected at four time points (between the 2nd and the 26th postnatal days. Fecal microbiota was analyzed by RT-PCR and by 16S rRNA sequencing. Fecal ALP activity, a proposed specific biomarker of necrotizing enterocolitis (NEC), was evaluated by spectrophotometry at the 26th postnatal day. A total of 389 fecal samples were analyzed from 117 very preterm neonates. Human milk was positively associated with beneficial bacteria, such as Bifidobacterium, Bacteroides ovatus, and Akkermancia muciniphila, as well as bacterial richness. Neonates fed with human milk during the first week of life had increased Bifidobacterium content and fecal ALP activity on the 26th postnatal day. These findings point out the importance of MOM and DHM in the establishment of fecal microbiota on neonates prematurely delivered. Moreover, these results suggest an ALP pathway by which human milk may protect against NEC.
Collapse
Affiliation(s)
- Juliana Morais
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Cláudia Marques
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Faria
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Diana Teixeira
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Medical School, Unidade Universitária Lifestyle Medicine José de Mello Saúde, 1169-056 Lisboa, Portugal
| | - Inês Barreiros-Mota
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina Durão
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- EPIUnit-Institute of Public Health, Universidade do Porto, 4050-600 Porto, Portugal
| | - João Araújo
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Shámila Ismael
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CHRC-Comprehensive Health Research Centre, CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Sara Brito
- Pediatrics Department, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal; (S.B.); (I.M.); (E.P.); (T.T.)
| | - Manuela Cardoso
- Nutrition and Dietetics Unit, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal;
| | - Israel Macedo
- Pediatrics Department, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal; (S.B.); (I.M.); (E.P.); (T.T.)
| | - Esmeralda Pereira
- Pediatrics Department, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal; (S.B.); (I.M.); (E.P.); (T.T.)
| | - Teresa Tomé
- Pediatrics Department, Maternidade Dr. Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, 2890-495 Lisboa, Portugal; (S.B.); (I.M.); (E.P.); (T.T.)
| | - Conceição Calhau
- Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (J.M.); (C.M.); (A.F.); (D.T.); (I.B.-M.); (C.D.); (J.A.); (S.I.)
- CINTESIS-Center for Health Technology Services Research, Faculdade de Ciências Médicas|NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Medical School, Unidade Universitária Lifestyle Medicine José de Mello Saúde, 1169-056 Lisboa, Portugal
| |
Collapse
|
105
|
Supplemental effects of fish oil and powdered/coated docosahexaenoic acid on the growth performance, nutrient digestibility, blood profile and fecal coliform and lactic acid bacteria counts in weaner pigs. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
106
|
Shek D, Chen D, Read SA, Ahlenstiel G. Examining the gut-liver axis in liver cancer using organoid models. Cancer Lett 2021; 510:48-58. [PMID: 33891996 DOI: 10.1016/j.canlet.2021.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022]
Abstract
The World Health Organization predicts that by 2030 liver cancer will cause 1 million deaths annually, thus becoming the third most lethal cancer worldwide. Hepatocellular carcinoma and cholangiocarcinoma are the two major primary cancer subtypes involving the liver. Both are often diagnosed late, and hence response to treatment and survival are poor. It is therefore of utmost importance to understand the mechanisms by which liver cancers initiate and progress. The causes of primary liver cancer are diverse, resulting primarily from obesity, chronic alcohol abuse or viral hepatitis. Importantly, both alcohol and high fat diet can promote intestinal permeability, enabling microbial translocation from the gut into the liver. As a result, these microbial antigens and metabolites exacerbate hepatic inflammation and fibrosis, increasing the risk of primary liver cancer. Organoids are primary, three-dimensional, stem cell derived liver models that can recapitulate many of the disease phenotypes observed in vivo. This review aims to summarize the advantages of organoid culture to examine the gut-liver axis with respect to cancer initiation and progression. In particular, the use of gut and liver organoid mono- and co-cultures together and with immune cell populations to best recapitulate disease mechanisms and develop therapeutic interventions.
Collapse
Affiliation(s)
- Dmitrii Shek
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia; Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia; Blacktown Hospital, Blacktown, NSW, Australia
| | - Dishen Chen
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Scott A Read
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia; Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia; Blacktown Hospital, Blacktown, NSW, Australia.
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia; Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia; Blacktown Hospital, Blacktown, NSW, Australia.
| |
Collapse
|
107
|
Zhang H, Yan A, Liu X, Ma Y, Zhao F, Wang M, Loor JJ, Wang H. Melatonin ameliorates ochratoxin A induced liver inflammation, oxidative stress and mitophagy in mice involving in intestinal microbiota and restoring the intestinal barrier function. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124489. [PMID: 33359973 DOI: 10.1016/j.jhazmat.2020.124489] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 05/10/2023]
Abstract
The mycotoxin ochratoxin A (OTA) is a widespread contaminant in human and animal food products. Previous studies in rats revealed that melatonin (Mel) exhibits a preventive effect against OTA-induced oxidative stress in liver. However, it remains unknown whether gut microbiota respond to Mel and, if so, whether it can prevent OTA-induced inflammation and mitophagy in the liver. In the present study, mice received an oral gavage of Mel and OTA for 3 weeks before harvesting colonic digesta and liver tissue for analyses. In another study, the role of intestinal microbiota on the effects of Mel on OTA-induced liver inflammation and mitophagy was assessed through clearance of intestinal microbiota with antibiotics followed by gut microbiota transplantation (GMT). Oral Mel supplementation ameliorated mitophagy in the liver and reversed gut microbiota dysbiosis. Intriguingly, in antibiotic-treated mice, Mel and OTA failed to induce mitophagy in the liver. Using the GMT approach in which mice were colonised with intestinal microbiota from control-, OTA-, or Mel + OTA-treated mice led us to elucidated the involvement of intestinal microbiota in liver inflammation and mitophagy induced by OTA. The findings suggested that intestinal microbiota play some role in the Mel-induced amelioration of liver inflammation and mitophagy induced by OTA.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Ani Yan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Fangfang Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Jaun J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, Urbana, IL 61801, USA
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
108
|
Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
109
|
Ye Z, Xu YJ, Liu Y. Influence of different dietary oil consumption on nutrient malabsorption: An animal trial using Sprague Dawley rats. J Food Biochem 2021; 45:e13695. [PMID: 33694208 DOI: 10.1111/jfbc.13695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
In the present study, the influences of five typical dietary oils (i.e., palm oil, PO; leaf lard oil, LO; rapeseed oil, RO; sunflower oil, SO; and linseed oil, LN) consumption on the nutrients malabsorption were studied using adult male Sprague Dawley rats. Results suggested that the C16:0 (24.534 ± 2.26% to 54.269 ± 1.28%) and C18:0 (18.433 ± 4.421% to 36.455 ± 3.316%) were the dominant fatty acids in fecal samples in different groups. After 6-week intervention by different dietary oils, the fecal moisture and water soluble protein content in PO group, the reducing sugar content in PO, LO, and RO groups were significantly increased compared with those in the control group (p < .05). Moreover, the Na, K, and Fe contents in LO group were all the highest among the all groups. These effects were probably due to the different fatty acids composition as illustrated in the correlation analysis results. The different effects were probably due to their distinct fatty acids composition as illustrated in the correlation analysis results. Results further indicated that the different dietary oils treatment, especially for the PO (SFAs, 43.17 ± 0.98%) and LO (SFAs, 36.44 ± 0.65%), increased the upstream inflammatory cytokine expression level in the Toll-like receptor signal pathway (i.e., TLR4 and MyD88), enhancing the gut permeability. This resulted in significant increase of serum lipopolysaccharide (LPS) levels (p < .05), which was closely connected with different metabolic diseases. The present study may provide basic understandings about different dietary oil enteral nutrition and their effects on gut health. PRACTICAL APPLICATIONS: The PO, LO, RO, SO, and LN are the five of the most typical dietary lipids in Asia countries, especially in China. They are the natural edible oils which are rich in C16:0, C18:0, C18:1, C18:2ω6, and C18:3ω3, respectively. The present study indicated that the different dietary lipid consumption may result in different dietary nutrients malabsorption, which are related with the dietary lipid fatty acid composition.
Collapse
Affiliation(s)
- Zhan Ye
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,School of Human Nutrition, McGill University, Montreal, QC, H9X 3V9, Canada
| | - Yong-Jiang Xu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China.,State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, No. 1800, Lihu street, Wuxi, Jiangsu, 214122, P.R. China
| |
Collapse
|
110
|
Gokulan K, Kumar A, Lahiani MH, Sutherland VL, Cerniglia CE, Khare S. Differential Toxicological Outcome of Corn Oil Exposure in Rats and Mice as Assessed by Microbial Composition, Epithelial Permeability, and Ileal Mucosa-Associated Immune Status. Toxicol Sci 2021; 180:89-102. [PMID: 33263755 DOI: 10.1093/toxsci/kfaa177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Studies to evaluate the toxicity of xenobiotics on the human gut microbiome and related health effects require a diligent selection of (1) an appropriate animal model to facilitate toxicity assessment in predicting human exposure, and (2) an appropriate non-interfering vehicle for the administration of water insoluble compounds. In biomedical studies with water insoluble xenobiotics, corn oil is one of the most commonly used nonaqueous vehicles. This study evaluated the suitability of corn oil as a vehicle in adult female Sprague Dawley rats and adult CD-1 mice; the rodent models that are often utilized in toxicological studies. We studied the host response in terms of change in the intestinal microbiome and mRNA expression of intestinal permeability and immune response-related genes when water (control) and corn oil (2 ml/kg) were administered as a vehicle through oral gavage. The results showed that the use of corn oil as a vehicle has no adverse impact in rats for either the immune response or the intestinal microbial population. On the other hand, mice treated with corn oil showed changes in bacterial community adhered to the ileum, as well as changes in the mRNA expression of intestinal permeability-related and ileal mucosa-associated immune response genes. Overall, results of this study suggest that the type of rodent species and vehicle used in toxicological risk assessments of xenobiotics studies should be taken into consideration in the experimental setup and study design.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Amit Kumar
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Mohamed H Lahiani
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Vicki L Sutherland
- National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27709, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079, USA
| |
Collapse
|
111
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
112
|
Obesity, Early Life Gut Microbiota, and Antibiotics. Microorganisms 2021; 9:microorganisms9020413. [PMID: 33671180 PMCID: PMC7922584 DOI: 10.3390/microorganisms9020413] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major public health problem that continues to be one of the leading risk factors for premature death. Early life is a critical period of time when the gut microbiota and host metabolism are developing in tandem and significantly contribute to long-term health outcomes. Dysbiosis of the gut microbiota, particularly in early life, can have detrimental effects on host health and increase the susceptibility of developing obesity later in life. Antibiotics are an essential lifesaving treatment; however, their use in early life may not be without risk. Antibiotics are a leading cause of intestinal dysbiosis, and early life administration is associated with obesity risk. The following review explores the relevant literature that simultaneously examines antibiotic-induced dysbiosis and obesity risk. Current evidence suggests that disruptions to the composition and maturation of the gut microbiota caused by antibiotic use in early life are a key mechanism linking the association between antibiotics and obesity. Without compromising clinical practice, increased consideration of the long-term adverse effects of antibiotic treatment on host health, particularly when used in early life is warranted. Novel adjunct interventions should be investigated (e.g., prebiotics) to help mitigate metabolic risk when antibiotic treatment is clinically necessary.
Collapse
|
113
|
Wang Y, Lim YY, He Z, Wong WT, Lai WF. Dietary phytochemicals that influence gut microbiota: Roles and actions as anti-Alzheimer agents. Crit Rev Food Sci Nutr 2021; 62:5140-5166. [PMID: 33559482 DOI: 10.1080/10408398.2021.1882381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The last decide has witnessed a growing research interest in the role of dietary phytochemicals in influencing the gut microbiota. On the other hand, recent evidence reveals that dietary phytochemicals exhibit properties of preventing and tackling symptoms of Alzheimer's disease, which is a neurodegenerative disease that has also been linked with the status of the gut microbiota over the last decade. Till now, little serious discussions, however, have been made to link recent understanding of Alzheimer's disease, dietary phytochemicals and the gut microbiota together and to review the roles played by phytochemicals in gut dysbiosis induced pathologies of Alzheimer's disease. Deciphering these connections can provide insights into the development and future use of dietary phytochemicals as anti-Alzheimer drug candidates. This review aims at presenting latest evidence in the modulating role of phytochemicals in the gut microbiota and its relevance to Alzheimer's disease and summarizing the mechanisms behind the modulative activities. Limitations of current research in this field and potential directions will also be discussed for future research on dietary phytochemicals as anti-Alzheimer agents.
Collapse
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia.,School of Dentistry, University of Queensland, Herston, Queensland, Australia
| | - Yau-Yan Lim
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
114
|
Leyrolle Q, Decoeur F, Briere G, Amadieu C, Quadros ARAA, Voytyuk I, Lacabanne C, Benmamar-Badel A, Bourel J, Aubert A, Sere A, Chain F, Schwendimann L, Matrot B, Bourgeois T, Grégoire S, Leblanc JG, De Moreno De Leblanc A, Langella P, Fernandes GR, Bretillon L, Joffre C, Uricaru R, Thebault P, Gressens P, Chatel JM, Layé S, Nadjar A. Maternal dietary omega-3 deficiency worsens the deleterious effects of prenatal inflammation on the gut-brain axis in the offspring across lifetime. Neuropsychopharmacology 2021; 46:579-602. [PMID: 32781459 PMCID: PMC8026603 DOI: 10.1038/s41386-020-00793-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) and poor maternal nutritional habits are risk factors for the occurrence of neurodevelopmental disorders (NDD). Human studies show the deleterious impact of prenatal inflammation and low n-3 polyunsaturated fatty acid (PUFA) intake on neurodevelopment with long-lasting consequences on behavior. However, the mechanisms linking maternal nutritional status to MIA are still unclear, despite their relevance to the etiology of NDD. We demonstrate here that low maternal n-3 PUFA intake worsens MIA-induced early gut dysfunction, including modification of gut microbiota composition and higher local inflammatory reactivity. These deficits correlate with alterations of microglia-neuron crosstalk pathways and have long-lasting effects, both at transcriptional and behavioral levels. This work highlights the perinatal period as a critical time window, especially regarding the role of the gut-brain axis in neurodevelopment, elucidating the link between MIA, poor nutritional habits, and NDD.
Collapse
Affiliation(s)
- Q. Leyrolle
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - F. Decoeur
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - G. Briere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France ,grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - C. Amadieu
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. R. A. A. Quadros
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - I. Voytyuk
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - C. Lacabanne
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Benmamar-Badel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - J. Bourel
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Aubert
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Sere
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - F. Chain
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - L. Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - B. Matrot
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - T. Bourgeois
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | - S. Grégoire
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - J. G. Leblanc
- CERELA-CONICET, San Miguel de Tucuman, 4000 Tucuman, Argentina
| | | | - P. Langella
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - G. R. Fernandes
- Rene Rachou Institute – Oswaldo Cruz Foundation, Belo Horizonte, MG Brazil
| | - L. Bretillon
- grid.462804.c0000 0004 0387 2525Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - C. Joffre
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - R. Uricaru
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Thebault
- grid.503269.b0000 0001 2289 8198CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - P. Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France ,grid.13097.3c0000 0001 2322 6764Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, SE1 7EH UK
| | - J. M. Chatel
- grid.460789.40000 0004 4910 6535Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - S. Layé
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A. Nadjar
- grid.488493.a0000 0004 0383 684XUniversity Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| |
Collapse
|
115
|
Hao X, Shang X, Liu J, Chi R, Zhang J, Xu T. The gut microbiota in osteoarthritis: where do we stand and what can we do? Arthritis Res Ther 2021; 23:42. [PMID: 33504365 PMCID: PMC7839300 DOI: 10.1186/s13075-021-02427-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is one of the most frequent musculoskeletal diseases characterized by degeneration of articular cartilage, subchondral bone remodeling, and synovial membrane inflammation, which is a leading cause of global disability, morbidity, and decreased quality of life. Interpreting the potential mechanisms of OA pathogenesis is essential for developing novel prevention and disease-modifying therapeutic interventions. Gut microbiota is responsible for a series of metabolic, immunological, and structural and neurological functions, potentially elucidating the heterogeneity of OA phenotypes and individual features. In this narrative review, we summarized research evidence supporting the hypothesis of a “gut-joint axis” and the interaction between gut microbiota and the OA-relevant factors, including age, gender, genetics, metabolism, central nervous system, and joint injury, elucidating the underlying mechanisms of this intricate interaction. In the context, we also speculated the promising manipulation of gut microbiota in OA management, such as exercise and fecal microbiota transplantation (FMT), highlighting the clinical values of gut microbiota. Additionally, future research directions, such as more convincing studies by the interventions of gut microbiota, the gene regulation of host contributing to or attributed to the specific phenotypes of gut microbiota related to OA, and the relevance of distinct cell subgroups to gut microbiota, are expected. Moreover, gut microbiota is also the potential biomarker related to inflammation and gut dysbiosis that is able to predict OA progression and monitor the efficacy of therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China. .,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
116
|
Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediators Inflamm 2021; 2021:8879227. [PMID: 33488295 PMCID: PMC7801035 DOI: 10.1155/2021/8879227] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), which are essential fatty acids that humans should obtain from diet, have potential benefits for human health. In addition to altering the structure and function of cell membranes, omega-3 PUFAs (docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), and docosapentaenoic acid (DPA)) exert different effects on intestinal immune tolerance and gut microbiota maintenance. Firstly, we review the effect of omega-3 PUFAs on gut microbiota. And the effects of omega-3 PUFAs on intestinal immunity and inflammation were described. Furthermore, the important roles of omega-3 PUFAs in maintaining the balance between gut immunity and the gut microbiota were discussed. Additional factors, such as obesity and diseases (NAFLD, gastrointestinal malignancies or cancer, bacterial and viral infections), which are associated with variability in omega-3 PUFA metabolism, can influence omega-3 PUFAs–microbiome–immune system interactions in the intestinal tract and also play roles in regulating gut immunity. This review identifies several pathways by which the microbiota modulates the gut immune system through omega-3 PUFAs. Omega-3 supplementation can be targeted to specific pathways to prevent and alleviate intestinal diseases, which may help researchers identify innovative diagnostic methods.
Collapse
|
117
|
Romanenko M, Kholin V, Koliada A, Vaiserman A. Nutrition, Gut Microbiota, and Alzheimer's Disease. Front Psychiatry 2021; 12:712673. [PMID: 34421687 PMCID: PMC8374099 DOI: 10.3389/fpsyt.2021.712673] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Nutrition is known to play an important role in the pathogenesis of Alzheimer's disease. Evidence is obtained that the gut microbiota is a key player in these processes. Dietary changes (both adverse and beneficial) may influence the microbiome composition, thereby affecting the gut-brain axis and the subsequent risk for Alzheimer's disease progression. In this review, the research findings that support the role of intestinal microbiota in connection between nutritional factors and the risk for Alzheimer's disease onset and progression are summarized. The mechanisms potentially involved in these processes as well as the potential of probiotics and prebiotics in therapeutic modulation of contributed pathways are discussed.
Collapse
Affiliation(s)
- Mariana Romanenko
- Laboratory of Dietetics, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | - Victor Kholin
- Department of Age Physiology and Pathology of the Nervous System, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | | | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
118
|
Wang C, Han D, Feng X, Wu J. Omega-3 fatty acid supplementation is associated with favorable outcomes in patients with sepsis: an updated meta-analysis. J Int Med Res 2020; 48:300060520953684. [PMID: 33373266 PMCID: PMC7783898 DOI: 10.1177/0300060520953684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objectives The efficacy of omega-3 fatty acids in the treatment of sepsis is
controversial. We conducted an updated meta-analysis to clarify the efficacy
of omega-3 fatty acids in patients with sepsis. Methods PubMed, EMBASE, and the Cochrane Library were searched for randomized
clinical trials (RCTs) on omega-3 fatty acid supplementation in adults with
sepsis. Results Twenty eligible RCTs involving 1514 patients were included in the
meta-analysis. Omega-3 fatty acid supplementation was linked to reductions
of mortality (I2 = 0, relative risk [RR] = 0.82,
95% confidence interval [CI] = 0.69–0.97), the duration of mechanical
ventilation (DMV; I2 = 74%, weighted mean
difference [WMD] = −2.20, 95% CI = −4.00 to −0.40), and intensive care unit
(ICU) length of stay (LOS; I2 = 91%,
WMD = −3.86, 95% CI = −5.72 to −2.01). Subgroup analysis illustrated that
mortality was significantly reduced in patients with sepsis and
gastrointestinal dysfunction (RR = 0.5, 95% CI = 0.29–0.86,
I2 = 0). Conclusion Omega-3 fatty acid supplementation might be associated with reduced mortality
in patients with sepsis, especially those with gastrointestinal dysfunction.
Furthermore, omega-3 fatty acid administration could shorten DMV and ICU
LOS.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
119
|
Chen YL, Shirakawa H, Lu NS, Peng HC, Xiao Q, Yang SC. Impacts of fish oil on the gut microbiota of rats with alcoholic liver damage. J Nutr Biochem 2020; 86:108491. [DOI: 10.1016/j.jnutbio.2020.108491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/03/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
|
120
|
Alvarenga L, Cardozo LFMF, Lindholm B, Stenvinkel P, Mafra D. Intestinal alkaline phosphatase modulation by food components: predictive, preventive, and personalized strategies for novel treatment options in chronic kidney disease. EPMA J 2020; 11:565-579. [PMID: 33240450 PMCID: PMC7680467 DOI: 10.1007/s13167-020-00228-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Alkaline phosphatase (AP) is a ubiquitous membrane-bound glycoprotein that catalyzes phosphate monoesters' hydrolysis from organic compounds, an essential process in cell signaling. Four AP isozymes have been described in humans, placental AP, germ cell AP, tissue nonspecific AP, and intestinal AP (IAP). IAP plays a crucial role in gut microbial homeostasis, nutrient uptake, and local and systemic inflammation, and its dysfunction is associated with persistent inflammatory disorders. AP is a strong predictor of mortality in the general population and patients with cardiovascular and chronic kidney disease (CKD). However, little is known about IAP modulation and its possible consequences in CKD, a disease characterized by gut microbiota imbalance and persistent low-grade inflammation. Mitigating inflammation and dysbiosis can prevent cardiovascular complications in patients with CKD, and monitoring factors such as IAP can be useful for predicting those complications. Here, we review IAP's role and the results of nutritional interventions targeting IAP in experimental models to prevent alterations in the gut microbiota, which could be a possible target of predictive, preventive, personalized medicine (PPPM) to avoid CKD complications. Microbiota and some nutrients may activate IAP, which seems to have a beneficial impact on health; however, data on CKD remains scarce.
Collapse
Affiliation(s)
- L. Alvarenga
- Post Graduation Program in Medical Sciences, (UFF) Federal Fluminense University Niterói-Rio de Janeiro (RJ), Niterói, Brazil
| | - L. F. M. F. Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ) Brazil
| | - B. Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - P. Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - D. Mafra
- Post Graduation Program in Medical Sciences, (UFF) Federal Fluminense University Niterói-Rio de Janeiro (RJ), Niterói, Brazil
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói, Rio de Janeiro (RJ) Brazil
| |
Collapse
|
121
|
Zhang M, Zhao D, Zhou G, Li C. Dietary Pattern, Gut Microbiota, and Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12800-12809. [PMID: 32090565 DOI: 10.1021/acs.jafc.9b08309] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease is the most common neurodegenerative disease. Until now, there has been no specific medicine that can cure Alzheimer's disease or effectively reverse the disease process. A good dietary pattern is an efficient way to prevent or delay the progression of the disease. Evidence suggests that diet may affect β-amyloid production and tau processing or may regulate inflammation, metabolism, and oxidative stress associated with Alzheimer's disease, which can be exerted by gut microbiota. The gut microbiota is a complex microbial community that affects not only various digestive diseases but also neurodegenerative diseases. Studies have shown that gut microbial metabolites, such as pro-inflammatory factors, short-chain fatty acids, and neurotransmitters, can affect the pathogenesis of Alzheimer's disease. Clinical studies suggested that the gut microbial composition of patients with Alzheimer's disease is different, in particular to lower abundances of Eubacterium rectale and Bacteroides fragilis, which have an anti-inflammatory activity. The purpose of this review is to summarize the neuropathological pathogenesis of Alzheimer's disease, and the modulation of dietary patterns rather than single dietary components on Alzheimer's disease through the gut-brain axis was discussed.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Synergistic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
122
|
Hardesty JE, Warner JB, Song YL, Rouchka EC, Chen CY, Kang JX, McClain CJ, Warner DR, Kirpich IA. Transcriptional signatures of the small intestinal mucosa in response to ethanol in transgenic mice rich in endogenous n3 fatty acids. Sci Rep 2020; 10:19930. [PMID: 33199802 PMCID: PMC7670449 DOI: 10.1038/s41598-020-76959-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
The intestine interacts with many factors, including dietary components and ethanol (EtOH), which can impact intestinal health. Previous studies showed that different types of dietary fats can modulate EtOH-induced changes in the intestine; however, mechanisms underlying these effects are not completely understood. Here, we examined intestinal transcriptional responses to EtOH in WT and transgenic fat-1 mice (which endogenously convert n6 to n3 polyunsaturated fatty acids [PUFAs]) to identify novel genes and pathways involved in EtOH-associated gut pathology and discern the impact of n3 PUFA enrichment. WT and fat-1 mice were chronically fed EtOH, and ileum RNA-seq and bioinformatic analyses were performed. EtOH consumption led to a marked down-regulation of genes encoding digestive and xenobiotic-metabolizing enzymes, and transcription factors involved in developmental processes and tissue regeneration. Compared to WT, fat-1 mice exhibited a markedly plastic transcriptome response to EtOH. Cell death, inflammation, and tuft cell markers were downregulated in fat-1 mice in response to EtOH, while defense responses and PPAR signaling were upregulated. This transcriptional reprogramming may contribute to the beneficial effects of n3 PUFAs on EtOH-induced intestinal pathology. In summary, our study provides a reference dataset of the intestinal mucosa transcriptional responses to chronic EtOH exposure for future hypothesis-driven mechanistic studies.
Collapse
Affiliation(s)
- Josiah E Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, 505 Hancock St., Louisville, KY, 40202, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jeffrey B Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, 505 Hancock St., Louisville, KY, 40202, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ying L Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, 505 Hancock St., Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Department of Computer Science and Engineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, 505 Hancock St., Louisville, KY, 40202, USA.,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY, USA.,University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY, USA.,Robley Rex Veterans Medical Center, Louisville, KY, USA
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, 505 Hancock St., Louisville, KY, 40202, USA
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, 505 Hancock St., Louisville, KY, 40202, USA. .,Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA. .,University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, KY, USA. .,University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
123
|
Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Crit Rev Food Sci Nutr 2020; 62:1427-1452. [PMID: 33198506 DOI: 10.1080/10408398.2020.1843396] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The oral antibiotic therapies administered widely to people and animals can cause gut dysbiosis and barrier disruption inevitably. Increasing attention has been directed toward antibiotic-induced gut dysbiosis, which involves a loss of diversity, changes in the abundances of certain taxa and consequent effects on their metabolic capacity, and the spread of antibiotic-resistant bacterial strains. Treatment with beta-lactam, glycopeptide, and macrolide antibiotics is associated with the depletion of beneficial commensal bacteria in the genera Bifidobacterium and Lactobacillus. The gut microbiota is a reservoir for antibiotic resistance genes, the prevalence of which increases sharply after antibiotic ingestion. The intestinal barrier, which comprises secretory, physical, and immunological barriers, is also a target of antibiotics. Antibiotic induced changes in the gut microbiota composition could induce weakening of the gut barrier through changes in mucin, cytokine, and antimicrobial peptide production by intestinal epithelial cells. Reports have indicated that dietary interventions involving prebiotics, probiotics, omega-3 fatty acids, and butyrate supplementation, as well as fecal microbiota transplantation, can alleviate antibiotic-induced gut dysbiosis and barrier injuries. This review summarizes the characteristics of antibiotic-associated gut dysbiosis and barrier disruption, as well as the strategies for alleviating this condition. This information is intended to provide a foundation for the exploration of safer, more efficient, and affordable strategies to prevent or relieve antibiotic-induced gut injuries.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
124
|
Cross-Talk between Diet-Associated Dysbiosis and Hand Osteoarthritis. Nutrients 2020; 12:nu12113469. [PMID: 33198220 PMCID: PMC7696908 DOI: 10.3390/nu12113469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hand osteoarthritis (OA) is a degenerative joint disease which leads to pain and disability. Recent studies focus on the role of obesity and metabolic syndrome in inducing or worsening joint damage in hand OA patients, suggesting that chronic low-grade systemic inflammation may represent a possible linking factor. The gut microbiome has a crucial metabolic role which is fundamental for immune system development, among other important functions. Intestinal microbiota dysbiosis may favour metabolic syndrome and low-grade inflammation-two important components of hand OA onset and evolution. The aim of this narrative is to review the recent literature concerning the possible contribution of dysbiosis to hand OA onset and progression, and to discuss the importance of gut dysbiosis on general health and disease.
Collapse
|
125
|
Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats. Nutrients 2020; 12:nu12113451. [PMID: 33187208 PMCID: PMC7697261 DOI: 10.3390/nu12113451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are not yet all established. Herein, we investigated the effects of maternal and weaning linoleic acid (LA)-rich diet interactions on gut intestinal and adipose tissue physiology in young (3-month-old) and older (6-month-old) adult offspring. Pregnant rats were fed a control diet (2% LA) or an LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring were either maintained on the maternal diet or fed the other diet for 3 or 6 months. At 3 months of age, the maternal LA-diet favored low-grade inflammation and greater adiposity, while at 6 months of age, offspring intestinal barrier function, adipose tissue physiology and hepatic conjugated linoleic acids were strongly influenced by the weaning diet. The maternal LA-diet impacted offspring cecal microbiota diversity and composition at 3 months of age, but had only few remnant effects upon cecal microbiota composition at 6 months of age. Our study suggests that perinatal exposure to high LA levels induces a differential metabolic response to weaning diet exposure in adult life. This programming effect of a maternal LA-diet may be related to the alteration of offspring gut microbiota.
Collapse
|
126
|
Correlations between α-Linolenic Acid-Improved Multitissue Homeostasis and Gut Microbiota in Mice Fed a High-Fat Diet. mSystems 2020; 5:5/6/e00391-20. [PMID: 33144308 PMCID: PMC7646523 DOI: 10.1128/msystems.00391-20] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that α-linolenic acid (ALA) has a significant regulatory effect on related disorders induced by high-fat diets (HFDs), but little is known regarding the correlation between the gut microbiota and disease-related multitissue homeostasis. We systematically investigated the effects of ALA on the body composition, glucose homeostasis, hyperlipidemia, metabolic endotoxemia and systemic inflammation, white adipose tissue (WAT) homeostasis, liver homeostasis, intestinal homeostasis, and gut microbiota of mice fed an HFD (HFD mice). We found that ALA improved HFD-induced multitissue metabolic disorders and gut microbiota disorders to various degrees. Importantly, we established a complex but clear network between the gut microbiota and host parameters. Several specific differential bacteria were significantly associated with improved host parameters. Rikenellaceae_RC9_gut_group and Parasutterella were positively correlated with HFD-induced "harmful indicators" and negatively correlated with "beneficial indicators." Intriguingly, Bilophila showed a strong negative correlation with HFD-induced multitissue metabolic disorders and a significant positive correlation with most beneficial indicators, which is different from its previous characterization as a "potentially harmful genus." Turicibacter might be the key beneficial bacterium for ALA-improved metabolic endotoxemia, while Blautia might play an important role in ALA-improved gut barrier integrity and anti-inflammatory effects. The results suggested that the gut microbiota, especially some specific bacteria, played an important role in the process of ALA-improved multitissue homeostasis in HFD mice, and different bacteria might have different divisions of regulation.IMPORTANCE Insufficient intake of n-3 polyunsaturated fatty acids is an important issue in modern Western-style diets. A large amount of evidence now suggests that a balanced intestinal microecology is considered an important part of health. Our results show that α-linolenic acid administration significantly improved the host metabolic phenotype and gut microbiota of mice fed a high-fat diet, and there was a correlation between the improved gut microbiota and metabolic phenotype. Some specific bacteria may play a unique regulatory role. Here, we have established correlation networks between gut microbiota and multitissue homeostasis, which may provide a new basis for further elucidating the relationship between the gut microbiota and host metabolism.
Collapse
|
127
|
Rackerby B, Kim HJ, Dallas DC, Park SH. Understanding the effects of dietary components on the gut microbiome and human health. Food Sci Biotechnol 2020; 29:1463-1474. [PMID: 33088595 PMCID: PMC7561657 DOI: 10.1007/s10068-020-00811-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
The gut microbiome is the complex microbial ecosystem found in the gastrointestinal tract of humans and animals. It plays a vital role in host development, physiology and metabolism, and has been implicated as a factor in brain function, behavior, mental health, and many disease states. While many factors, including host genetics and environmental factors, contribute to the composition of the gut microbiome, diet plays a large role. Microorganisms differ in their nutrient requirements, and alterations in host dietary composition can have strong impacts on the microbial inhabitants of the gastrointestinal tract. The health implications of these dietary and microbial changes are relevant as various global populations consume diets comprised of different macronutrient ratios, and many diets promote alterations to recommended macronutrient ratios to promote health. This review will outline the ways in which specific macro- and micronutrients impact the gut microbiome and host health.
Collapse
Affiliation(s)
- Bryna Rackerby
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331 USA
| | - Hyun Jung Kim
- Korea Food Research Institute, Wanju, Jeollabuk-do 55365 South Korea
| | - David C. Dallas
- School of Biological and Population Health Sciences, Nutrition, Oregon State University, Corvallis, OR 97331 USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331 USA
| |
Collapse
|
128
|
Zhang J, Tu M, Liu Z, Zhang G. Soluble epoxide hydrolase as a therapeutic target for obesity-induced disorders: roles of gut barrier function involved. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102180. [PMID: 33038829 PMCID: PMC7669660 DOI: 10.1016/j.plefa.2020.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Emerging research supports that soluble epoxide hydrolase (sEH), an enzyme involved in eicosanoid metabolism, could be a promising target for obesity-associated disorders. The sEH enzyme is overexpressed in many tissues of obese animals. Genetic ablation or pharmacological inhibition of sEH attenuates the development of a wide range of obesity-induced disorders, including endoplasmic reticulum stress, metabolic syndrome, kidney diseases, insulin resistance, fatty liver, hepatic steatosis, inflammation, and endothelial dysfunction. Furthermore, our recent research showed that genetic ablation or inhibition of sEH attenuated obesity-induced intestinal barrier dysfunction and its resulted bacterial translocation, which is widely regarded to be a central mechanism for the pathogenesis of various obesity-induced disorders. Together, these results support that targeting sEH could be a promising strategy to reduce risks of obesity-induced disorders, at least in part through blocking obesity-induced leaky gut syndrome.
Collapse
Affiliation(s)
- Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA, United States; Department of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhenhua Liu
- Nutrition and Cancer Prevention Laboratory, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States; Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, United States; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.
| |
Collapse
|
129
|
Abstract
In this systematic review, we critically evaluated human clinical trials that assessed the effects of dietary fat quality on metabolic endotoxaemia. The studies were selected from three databases (PubMed, Scopus and Cochrane Library), and the keywords were defined according to the Medical Subject Headings indexing terminology. Two authors searched independently, according to the pre-defined selection criteria. Quality and risk assessment of bias for each selected study were also evaluated. The results of the included studies demonstrated associations between higher SFA intake and increased postprandial lipopolysaccharide (LPS) concentrations. On the other hand, after the consumption of PUFA, bloodstream LPS concentrations were lower. However, in none of the long-term studies, the consumption of dietary fats did not seem to exert effects on LPS concentration. Hence, SFA seem to act as a risk factor for transient increase in endotoxaemia, while PUFA demonstrated exerting a protective effect. Taken together, the evidence suggests that the dietary fatty acid profile may influence bloodstream endotoxin concentrations through modulation of factors such LPS clearance, alkaline phosphatase activity, bile acid metabolism, intestinal permeability and intestinal microbiota composition.
Collapse
|
130
|
Bhatt DL, Hull MA, Song M, Van Hulle C, Carlsson C, Chapman MJ, Toth PP. Beyond cardiovascular medicine: potential future uses of icosapent ethyl. Eur Heart J Suppl 2020; 22:J54-J64. [PMID: 33061868 PMCID: PMC7537800 DOI: 10.1093/eurheartj/suaa119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The REDUCE-IT trial demonstrated that icosapent ethyl, an ethyl ester of eicosapentaenoic acid (EPA), reduced cardiovascular events in an at-risk population by a substantial degree. While the cardiovascular protective properties of this compound are now proven, several other potential uses are being actively explored in clinical studies. These areas of investigation include cancer, inflammatory bowel disease, infections, Alzheimer's disease, dementia, and depression. The next decade promises to deepen our understanding of the beneficial effects that EPA may offer beyond cardiovascular risk reduction.
Collapse
Affiliation(s)
- Deepak L Bhatt
- Brigham and Women’s Hospital, Heart & Vascular Center and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Mark A Hull
- Division of Gastrointestinal and Surgical Sciences, Leeds Institute of Medical Research, St James’s University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge Street, Boston, MA 02114, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 50 Fruit Street, Boston, MA 02114, USA
| | - Carol Van Hulle
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Cindy Carlsson
- William S. Middleton Memorial Veterans Hospital, Madison VA Geriatric Research, Education and Clinical Center (GRECC), 2500 Overlook Terrace, Madison, WI 53705, USA
- Division of Geriatrics and Gerontology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center (ADRC), 600 Highland Ave, J5/1 Mezzanine, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute (WAI), 610 Walnut St Suite 957, Madison, WI 53726, USA
| | - M John Chapman
- Sorbonne University, 21, Rue de l'Ecole de Medicine, 75006 Paris, France
- Endocrinology-Metabolism Division, Pitie-Salpetriere University Hospital, 47-83, Boulevard de lopital, 75651 Paris Cedex, France
| | - Peter P Toth
- CGH Medical Center, 101 East Miller Road, Sterling, IL 61081, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
131
|
Kalupahana NS, Goonapienuwala BL, Moustaid-Moussa N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu Rev Nutr 2020; 40:25-49. [DOI: 10.1146/annurev-nutr-122319-034142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) are involved in whole-body energy homeostasis and metabolic regulation. Changes to mass and function of these tissues impact glucose homeostasis and whole-body energy balance during development of obesity, weight loss, and subsequent weight regain. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), which have known hypotriglyceridemic and cardioprotective effects, can also impact WAT and BAT function. In rodent models, these fatty acids alleviate obesity-associated WAT inflammation, improve energy metabolism, and increase thermogenic markers in BAT. Emerging evidence suggests that ω-3 PUFAs can also modulate gut microbiota impacting WAT function and adiposity. This review discusses molecular mechanisms, implications of these findings, translation to humans, and future work, especially with reference to the potential of these fatty acids in weight loss maintenance.
Collapse
Affiliation(s)
- Nishan Sudheera Kalupahana
- Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Bimba Lakmini Goonapienuwala
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, Texas 79409-1270, USA;,
| |
Collapse
|
132
|
Hughes RL, Arnold CD, Young RR, Ashorn P, Maleta K, Fan YM, Ashorn U, Chaima D, Malamba-Banda C, Kable ME, Dewey KG. Infant gut microbiota characteristics generally do not modify effects of lipid-based nutrient supplementation on growth or inflammation: secondary analysis of a randomized controlled trial in Malawi. Sci Rep 2020; 10:14861. [PMID: 32908192 PMCID: PMC7481312 DOI: 10.1038/s41598-020-71922-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
An unhealthy gut microbial community may act as a barrier to improvement in growth and health outcomes in response to nutritional interventions. The objective of this analysis was to determine whether the infant microbiota modified the effects of a randomized controlled trial of lipid-based nutrient supplements (LNS) in Malawi on growth and inflammation at 12 and 18 months, respectively. We characterized baseline microbiota composition of fecal samples at 6 months of age (n = 506, prior to infant supplementation, which extended to 18 months) using 16S rRNA gene sequencing of the V4 region. Features of the gut microbiota previously identified as being involved in fatty acid or micronutrient metabolism or in outcomes relating to growth and inflammation, especially in children, were investigated. Prior to correction for multiple hypothesis testing, the effects of LNS on growth appeared to be modified by Clostridium (p-for-interaction = 0.02), Ruminococcus (p-for-interaction = 0.007), and Firmicutes (p-for-interaction = 0.04) and effects on inflammation appeared to be modified by Faecalibacterium (p-for-interaction = 0.03) and Streptococcus (p-for-interaction = 0.004). However, after correction for multiple hypothesis testing these findings were not statistically significant, suggesting that the gut microbiota did not alter the effect of LNS on infant growth and inflammation in this cohort.
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Nutrition, University of California, Davis, CA, USA
| | - Charles D Arnold
- Department of Nutrition, University of California, Davis, CA, USA
| | - Rebecca R Young
- Department of Nutrition, University of California, Davis, CA, USA
| | - Per Ashorn
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Ken Maleta
- College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Yue-Mei Fan
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ulla Ashorn
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - David Chaima
- School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Chikondi Malamba-Banda
- School of Public Health and Family Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Mary E Kable
- Immunity and Disease Prevention, Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA, USA
| | - Kathryn G Dewey
- Department of Nutrition, University of California, Davis, CA, USA.
| |
Collapse
|
133
|
The Potential Effects of Probiotics and ω-3 Fatty Acids on Chronic Low-Grade Inflammation. Nutrients 2020; 12:nu12082402. [PMID: 32796608 PMCID: PMC7468753 DOI: 10.3390/nu12082402] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic low-grade inflammation negatively impacts health and is associated with aging and obesity, among other health outcomes. A large number of immune mediators are present in the digestive tract and interact with gut bacteria to impact immune function. The gut microbiota itself is also an important initiator of inflammation, for example by releasing compounds such as lipopolysaccharides (LPS) that may influence cytokine production and immune cell function. Certain nutrients (e.g., probiotics, ω-3 fatty acids [FA]) may increase gut microbiota diversity and reduce inflammation. Lactobacilli and Bifidobacteria, among others, prevent gut hyperpermeability and lower LPS-dependent chronic low-grade inflammation. Furthermore, ω-3 FA generate positive effects on inflammation-related conditions (e.g., hypertriglyceridemia, diabetes) by interacting with immune, metabolic, and inflammatory pathways. Ω-3 FA also increase LPS-suppressing bacteria (i.e., Bifidobacteria) and decrease LPS-producing bacteria (i.e., Enterobacteria). Additionally, ω-3 FA appear to promote short-chain FA production. Therefore, combining probiotics with ω-3 FA presents a promising strategy to promote beneficial immune regulation via the gut microbiota, with potential beneficial effects on conditions of inflammatory origin, as commonly experienced by aged and obese individuals, as well as improvements in gut-brain-axis communication.
Collapse
|
134
|
Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr 2020; 61:3211-3232. [PMID: 32715724 DOI: 10.1080/10408398.2020.1793728] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota is a complex ecosystem seen as an extension of human genome. It represents a major metabolic interface of interaction with food components and xenobiotics in the gastrointestinal (GI) environment. In this context, the advent of modern bacterial genome sequencing technology has enabled the identification of dietary nutrients as key determinants of gut microbial ecosystem able to modulate the host-microbiome symbiotic relationship and its effects on human health. This article provides a literature review on functional and molecular interactions between a specific group of lipids and essential nutrients, e.g., fat-soluble vitamins (FSVs), and the gut microbiota. A two-way relationship appears to emerge from the available literature with important effects on human metabolism, nutrition, GI physiology and immune function. First, FSV directly or indirectly modify the microbial composition involving for example immune system-mediated and/or metabolic mechanisms of bacterial growth or inhibition. Second, the gut microbiota influences at different levels the synthesis, metabolism and transport of FSV including their bioactive metabolites that are either introduced with the diet or released in the gut via entero-hepatic circulation. A better understanding of these interactions, and of their impact on intestinal and metabolic homeostasis, will be pivotal to design new and more efficient strategies of disease prevention and therapy, and personalized nutrition.
Collapse
Affiliation(s)
- Valentina Stacchiotti
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Serge Rezzi
- Swiss Vitamin Institute, Epalinges, Switzerland
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Francesco Galli
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
135
|
Gut microbial composition in patients with atrial fibrillation: effects of diet and drugs. Heart Vessels 2020; 36:105-114. [PMID: 32683492 PMCID: PMC7788021 DOI: 10.1007/s00380-020-01669-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Atrial fibrillation (AF) reduces the quality of life by triggering stroke and heart failure. The association between AF onset and gut metabolites suggests a causal relationship between AF and gut microbiota dysbiosis; however, the relationship remains poorly understood. We prospectively enrolled 34 hospitalized patients with AF and 66 age-, sex-, and comorbidity-matched control subjects without a history of AF. Gut microbial compositions were evaluated by amplicon sequencing targeting the 16S ribosomal RNA gene. We assessed differences in dietary habits by using a brief-type self-administered diet history questionnaire (BDHQ). Gut microbial richness was lower in AF patients, although the diversity of gut microbiota did not differ between the two groups. At the genus level, Enterobacter was depleted, while Parabacteroides, Lachnoclostridium, Streptococcus, and Alistipes were enriched in AF patients compared to control subjects. The BDHQ revealed that the intake of n-3 polyunsaturated fatty acids and eicosadienoic acid was higher in AF patients. Our results suggested that AF patients had altered gut microbial composition in connection with dietary habits.
Collapse
|
136
|
Bear TLK, Dalziel JE, Coad J, Roy NC, Butts CA, Gopal PK. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv Nutr 2020; 11:890-907. [PMID: 32149335 PMCID: PMC7360462 DOI: 10.1093/advances/nmaa016] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that an unhealthy dietary pattern may increase the risk of developing depression or anxiety, whereas a healthy dietary pattern may decrease it. This nascent research suggests that dietary interventions could help prevent, or be an alternative or adjunct therapy for, depression and anxiety. The relation, however, is complex, affected by many confounding variables, and is also likely to be bidirectional, with dietary choices being affected by stress and depression. This complexity is reflected in the data, with sometimes conflicting results among studies. As the research evolves, all characteristics of the relation need to be considered to ensure that we obtain a full understanding, which can potentially be translated into clinical practice. A parallel and fast-growing body of research shows that the gut microbiota is linked with the brain in a bidirectional relation, commonly termed the microbiome-gut-brain axis. Preclinical evidence suggests that this axis plays a key role in the regulation of brain function and behavior. In this review we discuss possible reasons for the conflicting results in diet-mood research, and present examples of areas of the diet-mood relation in which the gut microbiota is likely to be involved, potentially explaining some of the conflicting results from diet and depression studies. We argue that because diet is one of the most significant factors that affects human gut microbiota structure and function, nutritional intervention studies need to consider the gut microbiota as an essential piece of the puzzle.
Collapse
Affiliation(s)
- Tracey L K Bear
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Julie E Dalziel
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Pramod K Gopal
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
137
|
Weir TL, Trikha SRJ, Thompson HJ. Diet and cancer risk reduction: The role of diet-microbiota interactions and microbial metabolites. Semin Cancer Biol 2020; 70:53-60. [PMID: 32574813 DOI: 10.1016/j.semcancer.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
According to recent estimates, over one third of the human population will be diagnosed with cancer at some point in their lifetime. While genetic factors play a large part in cancer risk, as much as 50 % of cancers may be preventable through various lifestyle modifications. Nutrition is a major modifiable risk factor, both through its impacts on obesity as well as through dietary chemical exposures that can either increase or decrease cancer risk. However, specific associations and mechanistic links between diet and cancer risk are either inconsistent or elusive. New insights regarding the reciprocal interactions between diet and the gut microbiota, the trillions of organisms that reside in our intestines, may help clarify how diet impacts cancer. The gut microbiota is largely shaped by an individual's diet and has far-reaching effects on metabolism, the immune system, and inflammation- important factors in the development and progression of various cancers. Likewise, the microbiota modifies dietary components, and consequently, exposure to metabolites that can influence cancer. This review explores some of these diet-microbiota interactions in the context of their potential impacts on cancer prevention.
Collapse
Affiliation(s)
- Tiffany L Weir
- Intestinal Health Laboratory, Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, United States.
| | - S Raj J Trikha
- Intestinal Health Laboratory, Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, United States
| | - Henry J Thompson
- Cancer Prevention Laboratory, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
138
|
Dietary Supplementation with Omega-6 LC-PUFA-Rich Microalgae Regulates Mucosal Immune Response and Promotes Microbial Diversity in the Zebrafish Gut. BIOLOGY 2020; 9:biology9060119. [PMID: 32517017 PMCID: PMC7344589 DOI: 10.3390/biology9060119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
The effect of dietary omega-6 long-chain polyunsaturated fatty acid (LC-PUFA) on host microbiome and gut associated immune function in fish is unexplored. The effect of dietary supplementation with the omega-6 LC-PUFA-rich microalga Lobosphaera incisa wild type (WT) and its delta-5 desaturase mutant (MUT), rich in arachidonic-acid and dihomo-gamma-linolenic acid (DGLA), respectively, on intestinal gene expression and microbial diversity was analyzed in zebrafish. For 1 month, fish were fed diets supplemented with broken biomass at 7.5% and 15% (w/w) of the two L. incisa strains and a control nonsupplemented commercial diet. Dietary supplementation resulted in elevated expression of genes related to arachidonic acid metabolism-cyclooxygenase 2 (cox-2), lipoxygenase 1(lox-1), anti-inflammatory cytokine-interleukin 10 (il-10), immune defense-lysozyme (lys), intestinal alkaline phosphatase (iap), complement (c3b), and antioxidants-catalase (cat), glutathione peroxidase (gpx). Microbiome analysis of the gut showed higher diversity indices for microbial communities in fish that were fed the supplemented diets compared to controls. Different treatment groups shared 237 operational taxonomic units (OTUs) that corresponded to the core microbiome, and unique OTUs were evident in different dietary groups. Overall, the zebrafish gut microbiome was dominated by the phylum Fusobacteria and Proteobacteria (averaging 38.4% and 34.6%, respectively), followed by Bacteroidetes (12.9%), Tenericutes, Planctomycetes, and Actinobacteria (at 3.1–1.3%). Significant interaction between some of the immune-related genes and microbial community was demonstrated.
Collapse
|
139
|
Sun HY, Yun HM, Kim IH. Effects of dietary n-6/n-3 polyunsaturated fatty acids ratio on growth performance, apparent digestibility, blood lipid profiles, fecal microbiota, and meat quality in finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of dietary omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acid (PUFA) ratios on growth performance, digestibility, blood lipid profiles, fecal microbial counts, and meat quality in finishing pigs were examined by using linseed and fish oil. A total of 140 crossbred finishing pigs [(Landrace × Yorkshire) × Duroc] were used in a 10 wk trial. Pigs were blocked based on body weight (BW) and sex and randomly allotted to four dietary treatments formulated to have n-6/n-3 ratios of 5/1, 10/1, 15/1, and 17/1 (control). Throughout the experiment, BW, average daily gain, and average daily feed intake were significantly (P < 0.05) increased with a decreased ratio of n-6/n-3 PUFA. Energy digestibility and fecal Lactobacillus count showed a linear (P < 0.05) increase in week 10. The high-density lipoprotein cholesterol and blood triglyceride concentrations increased (P < 0.1) during week 10. However, low-density lipoprotein cholesterol was reduced (P < 0.05) linearly during week 5 and week 10 with a reduction in dietary n-6/n-3 ratio. This study provides a basis for future research on altering n-6/n-3 ratio by using linseed oil and refined fish oil in finishing pigs.
Collapse
Affiliation(s)
- Hao Yang Sun
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
| | - Hyeok Min Yun
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
| |
Collapse
|
140
|
Wang JP, Xu YC, Hou JQ, Li JY, Xing J, Yang BX, Zhang ZH, Zhang BL, Li HH, Li P. Effects of Dietary Fat Profile on Gut Microbiota in Valproate Animal Model of Autism. Front Med (Lausanne) 2020; 7:151. [PMID: 32478081 PMCID: PMC7235405 DOI: 10.3389/fmed.2020.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a developmental disability which may cause significant social, communication, and behavioral challenges. Besides certain essential symptoms, a lot of ASD individuals also suffer the comorbidity of gut microbiota dysbiosis, which possibly causes a variety of gastrointestinal (GI) difficulties. Interestingly, evidence has indicated that behavioral output may be modulated through the communication between the central nervous system and gut microbiota via the gut-brain axis. Polyunsaturated fatty acids (PUFAs) and n-3 fatty acids (n-3 PUFA) are structurally and functionally crucial components for the brain, and the state of n-3 PUFAs also affects the gut microbiota. However, how varying intake ratios of n-3/n6 PUFAs affect the gut microbiota composition in ASDs is not well-understood. Pregnant female Wistar rats with intraperitoneal administration of valproate acid (VPA) at embryonic day (E) 12.5 and their male offspring were grouped and fed three diets: a control chow (VPA group), omega-3 deficient (A group), and n-3/n6 (1:5) diet (B group). The diet of pregnant female Wistar rats with intraperitoneal administration of saline and their male offspring was a control chow (normal group). Microbial composition and species abundance were investigated accordingly by the 16S rRNA gene-based metagenomics analysis on the fecal samples. Results showed that fecal microbial abundance was decreased because of VPA administration in the period of pregnancy, and the changing pattern of gut microbiota was similar to that reported in ASD patients. Furthermore, the n-3/n6 (1:5) diet increased the fecal microbial abundance and decreased the elevated Firmicutes. In conclusion, n-3/n6 PUFAs (1:5) diet supplementation may alter gut microbiota composition in VPA-exposed rats. This study put forward a new strategy for the intervention and treatment of autism by n-3/n-6 PUFAs ratio supplementation intakes.
Collapse
Affiliation(s)
- Jin-Peng Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Yang-Chun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Qiu Hou
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Yu Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jie Xing
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Bao-Xia Yang
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Ze-Hui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Bei-Lin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
141
|
Zhuang P, Zhang Y, Shou Q, Li H, Zhu Y, He L, Chen J, Jiao J. Eicosapentaenoic and Docosahexaenoic Acids Differentially Alter Gut Microbiome and Reverse High-Fat Diet-Induced Insulin Resistance. Mol Nutr Food Res 2020; 64:e1900946. [PMID: 32298529 DOI: 10.1002/mnfr.201900946] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/10/2020] [Indexed: 12/23/2022]
Abstract
SCOPE To assess the individual effects of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on insulin resistance (IR), gut microbiome, and gut metabolites in high-fat-diet-induced obese (DIO) mice. METHODS AND RESULTS DIO mice are fed an either high-fat diet (HFD), EPA (1% w/w) enriched HFD, or DHA (1% wt/wt) enriched HFD for 15 weeks. Both EPA and DHA supplements reverse hyperglycemia and IR but do not affect body weight in DIO mice while DHA exhibits a more pronounced ameliorative effect in male mice. Both EPA- and DHA-enriched Lactobacillus and short-chain fatty acids (SCFAs)-producing species from Lachnospiraceae while reduced lipopolysaccharide (LPS)-producing Bilophila and Escherichia/Shigella. Compared with EPA, DHA-supplemented mice have more abundant propionic/butyric acid-producing bacteria, including Coprococcus, Butyricimonas synergistica, Bacteroides acidifaciens, and Intestinimonas, and less-abundant LPS-correlated species Streptococcus and p-75-a5. The shifts in gut microbiome co-occurred with the changes in levels of propionic/butyric acid, circulating LPS, and serotonin. Additionally, EPA/DHA supplementation attenuates adipose inflammation with upregulated glucose transporter 4 and Akt phosphorylation, indicating the improvement of insulin signaling. CONCLUSION EPA and DHA differentially reverse IR and relieve adipose inflammation while modulating gut microbiome and SCFAs/LPS production, underscoring the gut-adipose axis as a primary target of EPA/DHA.
Collapse
Affiliation(s)
- Pan Zhuang
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiyang Shou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Haoyu Li
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ya'er Zhu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lilin He
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jingnan Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
142
|
Wan Y, Tang J, Li J, Li J, Yuan J, Wang F, Li D. Contribution of diet to gut microbiota and related host cardiometabolic health: diet-gut interaction in human health. Gut Microbes 2020; 11:603-609. [PMID: 31964203 PMCID: PMC7524383 DOI: 10.1080/19490976.2019.1697149] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Obesity and cardiometabolic diseases in both developed and developing counties in a state of nutrition transition are often related to diet, which also play a major role in shaping human gut microbiota. The human gut harbors diverse microbes that play an essential role in the well-being of their host. Complex interactions between diet and microorganisms may lead to beneficial or detrimental outcomes to host cardiometabolic health. Despite numerous studies using rodent models indicated that high-fat diet may disrupt protective functions of the intestinal barrier and contribute to inflammatory processes, evidence from population-based study is still limited. In our recent study of a 6-month randomized controlled-feeding trial, we showed that high-fat, low-carbohydrate diet was associated with unfavorable changes in gut microbiota, fecal microbial metabolites, and plasma proinflammatory factors in healthy young adults. Here, we provide an overview and extended discussion of our key findings, and outline important future directions.
Collapse
Affiliation(s)
- Yi Wan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Jun Tang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jiaomei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jie Li
- No. 1 Department of Nutrition, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Jihong Yuan
- No. 1 Department of Nutrition, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Fenglei Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China,CONTACT Duo Li Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao266071, China
| |
Collapse
|
143
|
Ji Y, Yin Y, Sun L, Zhang W. The Molecular and Mechanistic Insights Based on Gut-Liver Axis: Nutritional Target for Non-Alcoholic Fatty Liver Disease (NAFLD) Improvement. Int J Mol Sci 2020; 21:ijms21093066. [PMID: 32357561 PMCID: PMC7247681 DOI: 10.3390/ijms21093066] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized as the most frequent classification of liver disease around the globe. Along with the sequencing technologies, gut microbiota has been regarded as a vital factor for the maintenance of human and animal health and the mediation of multiple diseases. The modulation of gut microbiota as a mechanism affecting the pathogenesis of NAFLD is becoming a growing area of concern. Recent advances in the communication between gut and hepatic tissue pave novel ways to better explain the molecular mechanisms regarding the pathological physiology of NAFLD. In this review, we recapitulate the current knowledge of the mechanisms correlated with the development and progression of NAFLD regulated by the gut microbiome and gut-liver axis, which may provide crucial therapeutic strategies for NAFLD. These mechanisms predominantly involve: (1) the alteration in gut microbiome profile; (2) the effects of components and metabolites from gut bacteria (e.g., lipopolysaccharides (LPS), trimethylamine-N-oxide (TMAO), and N,N,N-trimethyl-5-aminovaleric acid (TMAVA)); and (3) the impairment of intestinal barrier function and bile acid homeostasis. In particular, the prevention and therapy of NAFLD assisted by nutritional strategies are highlighted, including probiotics, functional oligosaccharides, dietary fibers, ω-3 polyunsaturated fatty acids, functional amino acids (L-tryptophan and L-glutamine), carotenoids, and polyphenols, based on the targets excavated from the gut-liver axis.
Collapse
Affiliation(s)
| | - Yue Yin
- Correspondence: (Y.Y.); (W.Z.); Fax.: +86-10-82802183 (Y.Y.); +86-10-82802183 (W.Z.)
| | | | - Weizhen Zhang
- Correspondence: (Y.Y.); (W.Z.); Fax.: +86-10-82802183 (Y.Y.); +86-10-82802183 (W.Z.)
| |
Collapse
|
144
|
Szczuko M, Kaczkan M, Małgorzewicz S, Rutkowski P, Dębska-Ślizień A, Stachowska E. The C18:3n6/C22:4n6 ratio is a good lipid marker of chronic kidney disease (CKD) progression. Lipids Health Dis 2020; 19:77. [PMID: 32303226 PMCID: PMC7164198 DOI: 10.1186/s12944-020-01258-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
Background Chronic kidney disease (CKD) is a major challenge for public health due to increased risk of cardiovascular diseases (CVD) and premature death. The aim of this study was to determine the clinical picture of FA and the course of the pathophysiological mechanisms of CKD. Methods The study involved 149 patients with CKD and a control group including 43 people. Fatty acid profiles were investigated using gas chromatography. A total of 30 fatty acids and their derivatives were identified and quantified. The omega3, omega6, SFA, MUFA, and PUFA fatty acid contents were calculated. The correlation matrix was obtained for parameters relating to patients with CKD vs. FA, taking patients’ sex into consideration. The index C18:3n6/C22:4n6 was calculated according to the length of the treatment. Statistica 12.0 software (Tulsa, Oklahoma, USA) was used for the statistical analyses. Results The results showed decreased levels of total PUFA and increased concentrations of MUFA, including the activation of the palmitic and oleic acid pathway. An increase in the levels of n-6 9C22: 4n6 family fatty acids in all the patients and a reduction in the n-3 family (EPA, DHA) were observed. C18:3n6 was negatively correlated and C22:4n6 was positively correlated with the duration of the treatment. The index C18:3n6/C22:4n6 was defined as a new marker in the progression of the disease. Moreover, the index C18:3n6/ C22:4n6 was drastically decreased in later period. Nervonic acid was higher in the CKD group. In the group of men with CKD, there was a negative correlation between the excretion of K+, anthropometric measurements, and the levels of EPA and DHA. Conclusions The course of inflammation in CKD occurs through the decrease in PUFA and the synthesis of MUFA. The dominating cascade of changes is the elongation of GLA-C18:3n6 into DGLA-C20:3n6 and AA-C20:4n6. As CKD progresses, along with worsening anthropometrical parameters and increased secretion of potassium, the activity of Ʌ6-desaturase decreases, reducing the synthesis of EPA and DHA. The synthesis of AdA-C22:4n6 increases and the ratio C18:3n6/C22:4n6 drastically decreases after 5 years. This parameter can be used to diagnose disease progression.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Małgorzata Kaczkan
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Przemysław Rutkowski
- Department of General Nursery, Medical University of Gdańsk and Diaverum Hemodialysis Unit, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
145
|
Jamar G, Ribeiro DA, Pisani LP. High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr 2020; 61:836-854. [DOI: 10.1080/10408398.2020.1747046] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Giovana Jamar
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, Santos, SP, Brazil
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Luciana Pellegrini Pisani
- Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Santos, SP, Brazil
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo, Santos, SP, Brazil
| |
Collapse
|
146
|
Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clin Nutr 2020; 39:994-1018. [DOI: 10.1016/j.clnu.2019.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
|
147
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
148
|
Marrone MC, Coccurello R. Dietary Fatty Acids and Microbiota-Brain Communication in Neuropsychiatric Diseases. Biomolecules 2019; 10:E12. [PMID: 31861745 PMCID: PMC7022659 DOI: 10.3390/biom10010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
The gut-brain axis is a multimodal communication system along which immune, metabolic, autonomic, endocrine and enteric nervous signals can shape host physiology and determine liability, development and progression of a vast number of human diseases. Here, we broadly discussed the current knowledge about the either beneficial or deleterious impact of dietary fatty acids on microbiota-brain communication (MBC), and the multiple mechanisms by which different types of lipids can modify gut microbial ecosystem and contribute to the pathophysiology of major neuropsychiatric diseases (NPDs), such as schizophrenia (SCZ), depression and autism spectrum disorders (ASD).
Collapse
Affiliation(s)
- Maria Cristina Marrone
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, 00161 Rome, Italy;
| | - Roberto Coccurello
- National Research Council (CNR), Institute for Complex System (ISC), 00185 Rome, Italy
- IRCCS–S. Lucia Foundation (FSL), 00143 Rome, Italy
| |
Collapse
|
149
|
Intestinal Alkaline Phosphatase Deficiency Is Associated with Ischemic Heart Disease. DISEASE MARKERS 2019; 2019:8473565. [PMID: 31915470 PMCID: PMC6930721 DOI: 10.1155/2019/8473565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
Background We have previously shown that the deficiency of the gut enzyme intestinal alkaline phosphatase (IAP) is associated with type 2 diabetes mellitus (T2DM) in humans, and mice deficient in IAP develop the metabolic syndrome, a precipitant of T2DM and ischemic heart disease (IHD). We hypothesized that IAP deficiency might also be associated with IHD in humans. We aimed to determine the correlation between the IAP level and IHD in humans. Methods and Results The IHD patients were recruited from the National Institute of Cardiovascular Diseases (NICVD), Dhaka, Bangladesh, and the control healthy participants were recruited from a suburban community of Dhaka. We determined the IAP level in the stools of 292 IHD patients (187 males, 105 females) and 331 healthy control people (84 males, 247 females). We found that compared to controls, IHD patients have approx. 30% less IAP (mean ± SEM: 63.7 ± 3.5 vs. 44.9 ± 2.1 U/g stool, respectively; p < 0.000001), which indicates that IAP deficiency is associated with IHD, and a high level of IAP is probably protective against IHD in humans. The adjusted generalized linear model (GLM) of regression analysis predicted a strong association of IAP with IHD (p = 0.0035). Multiple logistic regression analysis showed an independent inverse relationship between the IAP level and the IHD status (odds ratio, OR = 0.993 with 95% CI 0.987-0.998; p < 0.01). Conclusions IAP deficiency is associated with IHD, and a high level of IAP might be protective against IHD.
Collapse
|
150
|
He Z, Hao W, Kwek E, Lei L, Liu J, Zhu H, Ma KY, Zhao Y, Ho HM, He WS, Chen ZY. Fish Oil Is More Potent than Flaxseed Oil in Modulating Gut Microbiota and Reducing Trimethylamine- N-oxide-Exacerbated Atherogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13635-13647. [PMID: 31736303 DOI: 10.1021/acs.jafc.9b06753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trimethylamine-N-oxide (TMAO) is a risk factor for atherosclerosis. We compared the potency of fish oil with flaxseed oil in reducing TMAO-exacerbated atherogenesis. Five groups of ApoE-/- mice were given one of five diets, namely, a low-fat diet, a Western high fat diet (WD), a WD plus 0.2% TMAO, and two WDs containing 0.2% TMAO with 50% lard being replaced by flaxseed oil or fish oil. TMAO accelerated atherosclerosis and disturbed cholesterol homeostasis. Compared with flaxseed oil, fish oil was more effective in inhibiting TMAO-induced atherogenesis by lowering plasma cholesterol and inflammatory cytokines. Both oils could reverse TMAO-induced decrease in fecal acidic sterols. Fish oil promoted fecal output of neutral sterols and downregulated hepatic cholesterol biosynthesis. Fish oil was more effective than flaxseed oil in promoting the growth of short-chain fatty acid-producing bacteria and lowering microbial generation of lipopolysaccharide. In conclusion, fish oil is more potent than flaxseed oil to ameliorate TMAO-exacerbated atherogenesis.
Collapse
Affiliation(s)
- Zouyan He
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Wangjun Hao
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Erika Kwek
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Lin Lei
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
- College of Food Science , Southwest University , Chongqing 400715 , China
| | - Jianhui Liu
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Hanyue Zhu
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Ka Ying Ma
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Yimin Zhao
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| | - Hing Man Ho
- School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| | - Wen-Sen He
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang 212013 , Jiangsu , China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences , The Chinese University of Hong Kong , Shatin , NT, Hong Kong , China
| |
Collapse
|