101
|
Song YJ, Xia P, Zhang XY, Zhang T. Systematic investigation on the rational design and optimization of bi-based metal oxide semiconductors in photocatalytic applications. NANOTECHNOLOGY 2024; 35:425703. [PMID: 39047757 DOI: 10.1088/1361-6528/ad66d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
To address the global energy shortage and mitigate greenhouse gas emissions on a massive scale, it is critical to explore novel and efficient photocatalysts for the utilization of renewable resources. Bi-based metal oxide (BixMOy) semiconductors composed of bismuth, transition metal, and oxygen atoms have demonstrated improved photocatalytic activity and product selectivity. The vast number of element combinations available for BixMOymaterials provides a huge compositional space for the rational design and isolation of promising photocatalysts for specific applications. In this study, we have systematically investigated the electronic and optical properties over Bi2O3and a series of selected BixMOygroup materials (BiVO4, BiFeO3, BiCoO3, and BiCrO3) by calculating band structure, basic optical property features, mobility and separation of charge carriers. It is clearly noted that the band gap and band edge position of the BixMOygroup materials can be tuned in a wide range in comparison to Bi2O3. Similarly, the light response of BixMOyalso can be broadened from the ultraviolet to the visible light region by adjusting the selection of transition metals. Additionally, the analysis of the effective mass of charge carriers of these materials further confirms their possibility in photocatalytic reaction applications because of the appropriate separation efficiency and mobility of carriers. A selection of experimental investigations on the crystal structure, composition, and optical properties of Bi2O3, BiVO4, and BiFeO3as well as their catalytic performance in the degradation of methylene blue over was also conducted, which agree well with the theoretical predictions.
Collapse
Affiliation(s)
- Yuan-Jun Song
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University Suzhou Campus, Suzhou, Jiangsu 215123, People's Republic of China
| | - Peng Xia
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University Suzhou Campus, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiao-Yang Zhang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University Suzhou Campus, Suzhou, Jiangsu 215123, People's Republic of China
| | - Tong Zhang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
- Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Southeast University Suzhou Campus, Suzhou, Jiangsu 215123, People's Republic of China
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, and School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
102
|
Jimenéz-Calvo P, Naciri Y, Sobolewska A, Isaacs M, Zhang Y, Leforestier A, Degrouard J, Rouzière S, Goldmann C, Vantelon D, Hettler S, Zaluzec NJ, Arenal R, Launois P, Ghazzal MN, Paineau E. Ti-Modified Imogolite Nanotubes as Promising Photocatalyst 1D Nanostructures for H 2 Production. SMALL METHODS 2024; 8:e2301369. [PMID: 38085685 DOI: 10.1002/smtd.202301369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Indexed: 08/18/2024]
Abstract
Imogolite nanotubes (INTs) are predicted as a unique 1D material with spatial separation of conduction and valence band edges but their large band gaps have inhibited their use as photocatalysts. The first step toward using these NTs in photocatalysis and exploiting the polarization-promoted charge separation across their walls is to reduce their band gap. Here, the modification of double-walled aluminogermanate INTs by incorporation of titanium into the NT walls is explored. The precursor ratio x = [Ti]/([Ge]+[Ti]) is modulated between 0 and 1. Structural and optical properties are determined at different scales and the photocatalytic performance is evaluated for H2 production. Although the incorporation of Ti atoms into the structure remains limited, the optimal condition is found around x = 0.4 for which the resulting NTs reveal a remarkable hydrogen production of ≈1500 µmol g-1 after 5 h for a noble metal-free photocatalyst, a 65-fold increase relative to a commercial TiO2-P25. This is correlated to a lowering of the recombination rate of photogenerated charge carriers for the most active structures. These results confirm the theoretical predictions regarding the potential of modified INTs as photoactive nanoreactors and pave the way for investigating and exploiting their polarization properties for energy applications.
Collapse
Affiliation(s)
- Pablo Jimenéz-Calvo
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Yassine Naciri
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
- Université Paris-Saclay, UMR 8000, CNRS, Institut de Chimie Physique, Orsay, 91405, France
| | - Anna Sobolewska
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
- Université Paris-Saclay, UMR 8000, CNRS, Institut de Chimie Physique, Orsay, 91405, France
| | - Mark Isaacs
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratories, Didcot, OX11 0FA, UK
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Yu Zhang
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, 0X11 0QX, UK
| | - Amélie Leforestier
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Stéphan Rouzière
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Claire Goldmann
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Delphine Vantelon
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, Cedex, 91192, France
| | - Simon Hettler
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Spain. Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza, E-50018, Spain
| | - Nestor J Zaluzec
- Argonne National Laboratory / Photon Science Directorate, Lemont, IL, 60439, USA
| | - Raul Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Spain. Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza, E-50018, Spain
- Araid Foundation, Zaragoza, E-50018, Spain
| | - Pascale Launois
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay, UMR 8000, CNRS, Institut de Chimie Physique, Orsay, 91405, France
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| |
Collapse
|
103
|
Khoo V, Ng SF, Haw CY, Ong WJ. Additive Manufacturing: A Paradigm Shift in Revolutionizing Catalysis with 3D Printed Photocatalysts and Electrocatalysts Toward Environmental Sustainability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401278. [PMID: 38634520 DOI: 10.1002/smll.202401278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Semiconductor-based materials utilized in photocatalysts and electrocatalysts present a sophisticated solution for efficient solar energy utilization and bias control, a field extensively explored for its potential in sustainable energy and environmental management. Recently, 3D printing has emerged as a transformative technology, offering rapid, cost-efficient, and highly customizable approaches to designing photocatalysts and electrocatalysts with precise structural control and tailored substrates. The adaptability and precision of printing facilitate seamless integration, loading, and blending of diverse photo(electro)catalytic materials during the printing process, significantly reducing material loss compared to traditional methods. Despite the evident advantages of 3D printing, a comprehensive compendium delineating its application in the realm of photocatalysis and electrocatalysis is conspicuously absent. This paper initiates by delving into the fundamental principles and mechanisms underpinning photocatalysts electrocatalysts and 3D printing. Subsequently, an exhaustive overview of the latest 3D printing techniques, underscoring their pivotal role in shaping the landscape of photocatalysts and electrocatalysts for energy and environmental applications. Furthermore, the paper examines various methodologies for seamlessly incorporating catalysts into 3D printed substrates, elucidating the consequential effects of catalyst deposition on catalytic properties. Finally, the paper thoroughly discusses the challenges that necessitate focused attention and resolution for future advancements in this domain.
Collapse
Affiliation(s)
- Valerine Khoo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Choon-Yian Haw
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou, 363200, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| |
Collapse
|
104
|
Cai W, Gan Z, Nan F, Wang S, Ji F, Zhan Y. Enhanced Capability of Hydrogen Evolution Photocathode by Laminated Interface Engineering of Co/MoS 2 QDs/pyramid-black Si. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40222-40230. [PMID: 39028921 DOI: 10.1021/acsami.4c07391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We present a novel and stable laminated structure to enhance the performance and stability of silicon (Si) photocathode devices for photoelectrochemical (PEC) water splitting. First, by utilizing Cu nanoparticle catalysts to work on a n+p-black Si substrate via the metal-assisted chemical etching, we can achieve the black silicon with a porous pyramid structure. The low depth holes on the surface of the pyramid caused by Cu etching not only help enhance the light capture capability with quite low surface reflectivity (<5%) but also efficiently protect the p-n junction from damage. To improve the charge migration efficiency and mitigate parasitic light absorption from cocatalysts at the same time, we drop casted quantum dots (QDs) MoS2 with the size of nanometer scale as the first layer of catalyst. Hence, we then can safely electrodeposit cocatalyst Co nanoparticles to further enhance interface transfer efficiency. The synergistic effects of cocatalysts and optimized light absorption from the morphology and QDs contributed to the overall enhancement of PEC performance, offering a promising pathway for an efficient, low cost, and stable (over 100 h) hydrogen production photocathode.
Collapse
Affiliation(s)
- Weidong Cai
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Feng Nan
- Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Shun Wang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Fuxiang Ji
- Institute of Computational Physics, Zurich University of Applied Sciences, Technikumstrasse 71, Winterthur 8400, Switzerland
| | - Yiqiang Zhan
- Center of Micro-Nano System, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| |
Collapse
|
105
|
Yang L, Huang M, Feng N, Wang M, Xu J, Jiang Y, Ma D, Deng F. Unraveling the atomic structure and dissociation of interfacial water on anatase TiO 2 (101) under ambient conditions with solid-state NMR spectroscopy. Chem Sci 2024; 15:11902-11911. [PMID: 39092109 PMCID: PMC11290427 DOI: 10.1039/d4sc02768j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Anatase TiO2 is a widely used component in photo- and electro-catalysts for water splitting, and the (101) facet of anatase TiO2 is the most commonly exposed surface. A detailed understanding of the behavior of H2O on this surface could provide fundamental insights into the catalytic mechanism. This, however, is challenging due to the complexity of the interfacial environments, the high mobility of interfacial H2O, and the interference from outer-layer H2O. Herein, we investigate the H2O/TiO2 interface using advanced solid-state NMR techniques. The atomic-level structures of surface O sites, OH groups, and adsorbed H2O have been revealed and the detailed interactions among them are identified on the (101) facet of anatase TiO2. By following the quantitative evolution of surface O and OH sites along with H2O loading, it is found that more than 40% of the adsorbed water spontaneously dissociated under ambient conditions on the TiO2 surface at a loading of 0.3 mmol H2O/g, due to the delicate interplay between water-surface and water-water interactions. Our study highlights the importance of understanding the atomic-level structures of H2O on the surface of TiO2 in catalytic reactions. Such knowledge can promote the design of more efficient catalytic systems for renewable energy production involving activation of water molecules.
Collapse
Affiliation(s)
- Longxiao Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Wuhan 430071 Beijing 100049 P. R. China
| | - Min Huang
- School of Physics, Hubei University Wuhan 430062 P. R. China
| | - Ningdong Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Wuhan 430071 Beijing 100049 P. R. China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Wuhan 430071 Beijing 100049 P. R. China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University Beijing P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Wuhan 430071 Beijing 100049 P. R. China
| |
Collapse
|
106
|
Kato D, Suzuki H, Abe R, Kageyama H. Band engineering of layered oxyhalide photocatalysts for visible-light water splitting. Chem Sci 2024; 15:11719-11736. [PMID: 39092126 PMCID: PMC11290441 DOI: 10.1039/d4sc02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The band structure offers fundamental information on electronic properties of solid state materials, and hence it is crucial for solid state chemists to understand and predict the relationship between the band structure and electronic structure to design chemical and physical properties. Here, we review layered oxyhalide photocatalysts for water splitting with a particular emphasis on band structure control. The unique feature of these materials including Sillén and Sillén-Aurivillius oxyhalides lies in their band structure including a remarkably high oxygen band, allowing them to exhibit both visible light responsiveness and photocatalytic stability unlike conventional mixed anion compounds, which show good light absorption, but frequently encounter stability issues. For band structure control, simple strategies effective in mixed-anion compounds, such as anion substitution forming high energy p orbitals in accordance with its electronegativity, is not effective for oxyhalides with high oxygen bands. We overview key concepts for band structure control of oxyhalide photocatalysts such as lone-pair interactions and electrostatic interactions. The control of the band structure of inorganic solid materials is a crucial challenge across a wide range of materials chemistry fields, and the insights obtained by the development of oxyhalide photocatalysts are expected to provide knowledge for diverse materials chemistry.
Collapse
Affiliation(s)
- Daichi Kato
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Hajime Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
107
|
Khan I, Khan S, Al Alwan B, El Jery A, Shayan M, Ullah R, Ali S, Rizwan M, Khan A. Dimensionally Intact Construction of Ultrathin S-Scheme CuFe 2O 4/ZnIn 2S 4 Heterojunctional Photocatalysts for CO 2 Photoreduction. Inorg Chem 2024; 63:14004-14020. [PMID: 38873892 DOI: 10.1021/acs.inorgchem.4c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The conversion of CO2 into carbon-neutral fuels such as methane (CH4) through selective photoreduction is highly sought after yet remains challenging due to the slow multistep proton-electron transfer processes and the formation of various C1 intermediates. This research highlights the cooperative interaction between Fe3+ and Cu2+ ions transitioning to Fe2+ and Cu+ ions, enhancing the photocatalytic conversion of CO2 to methane. We introduce an S-scheme heterojunction photocatalyst, CuFe2O4/ZnIn2S4, which demonstrates significant efficiency in CO2 methanation under light irradiation. The CuFe2O4/ZnIn2S4 heterojunction forms an internal electric field that aids in the mobility and separation of exciton carriers under a wide solar spectrum for exceptional photocatalytic performance. Remarkably, the optimal CuFe2O4/ZnIn2S4 heterojunction system achieved an approximately 68-time increase in CO2 conversion compared with ZnIn2S4 and CuFe2O4 nanoparticles using only pure water, with nearly complete CO selectivity and yields of CH4 and CO reaching 172.5 and 202.4 μmol g-1 h-1, respectively, via a 2-electron oxygen reduction reaction (ORR) process. The optimally designed CuFe2O4/ZnIn2S4 heterojunctional system achieved approximately 96% conversion of BA and 98.5% selectivity toward benzaldehyde (BAD). Additionally, this photocatalytic system demonstrated excellent cyclic stability and practical applicability. The photogenerated electrons in the CuFe2O4 conduction band enhance the reduction of Fe3+/Cu2+ to Fe2+/Cu+, creating a microenvironment conducive to CO2 reduction to CO and CH4. Simultaneously, the appearance of holes in the ZnIn2S4 valence band facilitates water oxidation to O2. The synergistic function within the CuFe2O4/ZnIn2S4 heterojunction plays a pivotal role in facilitating charge transfer, accelerating water oxidation, and thereby enhancing CO2 reduction kinetics. This study offers valuable insights and a strategic framework for designing efficient S-scheme heterojunctions aimed at achieving carbon neutrality through solar fuel production.
Collapse
Affiliation(s)
- Imran Khan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Materials Science, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
- School of Physics and Electronics Central South University, Changsha 410083, P. R. China
| | - Salman Khan
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Harbin 150080, P. R. China
| | - Basem Al Alwan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
| | - Atef El Jery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
| | - Muhammad Shayan
- Department of Chemistry Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Rizwan Ullah
- University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Sharafat Ali
- University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Afsar Khan
- School of minerals processing and bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
108
|
Psathas P, Zindrou A, Spyrou AV, Deligiannakis Y. Engineering of LiTaO 3 Nanoparticles by Flame Spray Pyrolysis: Understanding In Situ Li-Incorporation into the Ta 2O 5 Lattice. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1257. [PMID: 39120362 PMCID: PMC11314277 DOI: 10.3390/nano14151257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Lithium tantalate (LiTaO3) perovskite finds wide use in pyroelectric detectors, optical waveguides and piezoelectric transducers, stemming from its good mechanical and chemical stability and optical transparency. Herein, we present a method for synthesis of LiTaO3 nanoparticles using a scalable Flame Spray Pyrolysis (FSP) technology, that allows the formation of LiTaO3 nanomaterials in a single step. Raman, XRD and TEM studies allow for comprehension of the formation mechanism of the LiTaO3 nanophases, with particular emphasis on the penetration of Li atoms into the Ta-oxide lattice. We show that, control of the High-Temperature Particle Residence Time (HTPRT) in the FSP flame, is the key-parameter that allows successful penetration of the -otherwise amorphous- Li phase into the Ta2O5 nanophase. In this way, via control of the HTPRT in the FSP process, we synthesized a series of nanostructured LiTaO3 particles of varying phase composition from {amorphous Li/Ta2O5/LiTaO3} to {pure LiTaO3, 15-25 nm}. Finally, the photophysical activity of the FSP-made LiTaO3 was validated for photocatalytic H2 production from H2O. These data are discussed in conjunction with the role of the phase composition of the LiTaO3 nanoparticles. More generally, the present work allows a better understanding of the mechanism of ABO3 perovskite formation that requires the incorporation of two cations, A and B, into the nanolattice.
Collapse
Affiliation(s)
| | | | | | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece; (P.P.); (A.Z.); (A.V.S.)
| |
Collapse
|
109
|
Shundo Y, Tam Nguyen T, Akrami S, Edalati P, Itagoe Y, Ishihara T, Arita M, Guo Q, Fuji M, Edalati K. Oxygen vacancy-rich high-pressure rocksalt phase of zinc oxide for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 666:22-34. [PMID: 38583207 DOI: 10.1016/j.jcis.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The generation of hydrogen as a clean energy carrier by photocatalysis, as a zero-emission technology, is of significant scientific and industrial interest. However, the main drawback of photocatalytic hydrogen generation from water splitting is its low efficiency compared to traditional chemical or electrochemical methods. Zinc oxide (ZnO) with the wurtzite phase is one of the most investigated photocatalysts for hydrogen production, but its activity still needs to be improved. In this study, an oxygen-deficient high-pressure ZnO rocksalt phase is stabilized using a high-pressure torsion (HPT) method, and the product is used for photocatalysis under ambient pressure. The simultaneous introduction of oxygen vacancies and the rocksalt phase effectively improved photocatalytic hydrogen production to levels comparable to benchmark P25 TiO2, due to improving light absorbance and providing active sites for photocatalysis without any negative effect on electron-hole recombination. These results confirm the high potential of high-pressure phases for photocatalytic hydrogen generation.
Collapse
Affiliation(s)
- Yu Shundo
- WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc. - Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan
| | - Thanh Tam Nguyen
- WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc. - Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan
| | - Saeid Akrami
- Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
| | - Parisa Edalati
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Tajimi 507-0033, Japan
| | - Yuta Itagoe
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Tatsumi Ishihara
- WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc. - Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Makoto Arita
- Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Qixin Guo
- Department of Electrical and Electronic Engineering, Synchrotron Light Application Center, Saga University, Saga 840-8502, Japan
| | - Masayoshi Fuji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Tajimi 507-0033, Japan; Advanced Ceramics Research Center, Nagoya Institute of Technology, Tajimi 507-0033, Japan
| | - Kaveh Edalati
- WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc. - Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
110
|
Lai Y, Zeng Y, Li F, Chen X, Wang T, Guo Q. Wavelength-Dependent Activity of Oxygen Species in Propane Conversion on Rutile TiO 2(110). J Phys Chem Lett 2024; 15:6943-6951. [PMID: 38940377 DOI: 10.1021/acs.jpclett.4c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Photocatalytic oxidative dehydrogenation of propane (C3H8) into propene (C3H6) under mild conditions holds great potential in the chemical industry, but understanding how active species participate in C3H8 conversion remains a significant challenge. Here, the wavelength-dependent activities of bridging oxygen (Ob2-) and the Ti5c-bound oxygen adatom (OTi2-) of model rutile (R) TiO2(110) in C3H8 conversion have been investigated. Under 257 and 343 nm irradiation, hole-trapped OTi- and Ob- can abstract the hydrogen atom of C3H8, forming the CH3CH•CH3 radical and C3H6. However, the rate of C3H8 conversion with hole-trapped Ob- is strongly dependent on the wavelength, primarily producing the C3H7• radical. In the case of hole-trapped OTi-, C3H6 is the main product, which is nearly independent of wavelength. The differences in the wavelength-dependent activity and product selectivity are likely due to dynamic control rather than thermodynamic control. The result provides a deeper understanding of the dynamic processes involved in the conversion of light alkanes in TiO2 photocatalysis.
Collapse
Affiliation(s)
- Yuemiao Lai
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yi Zeng
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Fangliang Li
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiao Chen
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, P. R. China
| | - Tao Wang
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Qing Guo
- Shenzhen Key Laboratory of Energy Chemistry and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
111
|
Ariga K. Liquid-Liquid and Liquid-Solid Interfacial Nanoarchitectonics. Molecules 2024; 29:3168. [PMID: 38999120 PMCID: PMC11243083 DOI: 10.3390/molecules29133168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Nanoscale science is becoming increasingly important and prominent, and further development will necessitate integration with other material chemistries. In other words, it involves the construction of a methodology to build up materials based on nanoscale knowledge. This is also the beginning of the concept of post-nanotechnology. This role belongs to nanoarchitectonics, which has been rapidly developing in recent years. However, the scope of application of nanoarchitectonics is wide, and it is somewhat difficult to compile everything. Therefore, this review article will introduce the concepts of liquid and interface, which are the keywords for the organization of functional material systems in biological systems. The target interfaces are liquid-liquid interface, liquid-solid interface, and so on. Recent examples are summarized under the categories of molecular assembly, metal-organic framework and covalent organic framework, and living cell. In addition, the latest research on the liquid interfacial nanoarchitectonics of organic semiconductor film is also discussed. The final conclusive section summarizes these features and discusses the necessary components for the development of liquid interfacial nanoarchitectonics.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki 305-0044, Japan;
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
112
|
Jiang S, Zhang M, Xu C, Liu G, Zhang K, Zhang Z, Peng HQ, Liu B, Zhang W. Recent Developments in Nickel-Based Layered Double Hydroxides for Photo(-/)electrocatalytic Water Oxidation. ACS NANO 2024; 18:16413-16449. [PMID: 38904346 DOI: 10.1021/acsnano.4c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Layered double hydroxides (LDHs), especially those containing nickel (Ni), are increasingly recognized for their potential in photo(-/)electrocatalytic water oxidation due to the abundant availability of Ni, their corrosion resistance, and their minimal toxicity. This review provides a comprehensive examination of Ni-based LDHs in electrocatalytic (EC), photocatalytic (PC), and photoelectrocatalytic (PEC) water oxidation processes. The review delves into the operational principles, highlighting similarities and distinctions as well as the benefits and limitations associated with each method of water oxidation. It includes a detailed discussion on the synthesis of monolayer, ultrathin, and bulk Ni-based LDHs, focusing on the merits and drawbacks inherent to each synthesis approach. Regarding the EC oxygen evolution reaction (OER), strategies to improve catalytic performance and insights into the structural evolution of Ni-based LDHs during the electrocatalytic process are summarized. Furthermore, the review extensively covers the advancements in Ni-based LDHs for PEC OER, including an analysis of semiconductors paired with Ni-based LDHs to form photoanodes, with a focus on their enhanced activity, stability, and underlying mechanisms facilitated by LDHs. The review concludes by addressing the challenges and prospects in the development of innovative Ni-based LDH catalysts for practical applications. The comprehensive insights provided in this paper will not only stimulate further research but also engage the scientific community, thus driving the field of photo(-/)electrocatalytic water oxidation forward.
Collapse
Affiliation(s)
- Shuai Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mengyang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Cui Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guangzu Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kefan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhenyu Zhang
- Renewable Energy Group, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall TR10 9FE, U.K
| | - Hui-Qing Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bin Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
113
|
Wei S, Xia X, Bi S, Hu S, Wu X, Hsu HY, Zou X, Huang K, Zhang DW, Sun Q, Bard AJ, Yu ET, Ji L. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting. Chem Soc Rev 2024; 53:6860-6916. [PMID: 38833171 DOI: 10.1039/d3cs00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.
Collapse
Affiliation(s)
- Shice Wei
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuewen Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shen Hu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuefeng Wu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Hsien-Yi Hsu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xingli Zou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Kai Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - David W Zhang
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Qinqqing Sun
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Allen J Bard
- Department of Chemistry, The University of Texas at Austin, Texas 78713, USA
| | - Edward T Yu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78758, USA.
| | - Li Ji
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
114
|
Zhang L, Jia J, Yan J. Challenges and Strategies for Synthesizing High Performance Micro and Nanoscale High Entropy Oxide Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309586. [PMID: 38348913 DOI: 10.1002/smll.202309586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/22/2024] [Indexed: 07/13/2024]
Abstract
High-entropy oxide micro/nano materials (HEO MNMs) have shown broad application prospects and have become hot materials in recent years. This review comprehensively provides an overview of the latest developments and covers key aspects of HEO MNMs, by discussing design principles, computer-aided structural design, synthesis challenges and strategies, as well as application areas. The analysis of the synthesis process includes the role of high-throughput process in large-scale synthesis of HEOs MNMs, along with the effects of temperature elevation and undercooling on the formation of HEO MNMs. Additionally, the article summarizes the application of high-precision and in situ characterization devices in the field of HEO MNMs, offering robust support for related research. Finally, a brief introduction to the main applications of HEO MNMs is provided, emphasizing their key performances. This review offers valuable guidance for future research on HEO MNMs, outlining critical issues and challenges in the current field.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jiru Jia
- School of Textile Garment and Design, Changshu Institute of Technology, Suzhou, Jiangsu Province, 215500, China
| | - Jianhua Yan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
115
|
Zhang X, Puttaswamy M, Bai H, Hou B, Kumar Verma S. CdS/ZnS core-shell nanorod heterostructures co-deposited with ultrathin MoS 2 cocatalyst for competent hydrogen evolution under visible-light irradiation. J Colloid Interface Sci 2024; 665:430-442. [PMID: 38485632 DOI: 10.1016/j.jcis.2024.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024]
Abstract
Hydrogen generation via semiconductor photocatalysts has gained significant attention as a sustainable fuel generation process. To demonstrate the performance of nanoscale core-shell heterostructure in photocatalytic hydrogen production, we have fabricated CdS nanorods coated with ZnS photocatalyst via wet-chemical reaction followed by deposition of ultrathin MoS2 nanosheets by photo reduction process. The effect of ZnS content and suitable amount of MoS2 loading over the visible-light induced photocatalytic hydrogen evolution was examined in Na2S and Na2SO3 aqueous solutions. Interestingly, it is apparent that a close connection (or heterojunction) between CdS and ZnS is believed to easily tunnel the charge carriers to the surplus surface states, making its electrons and holes energetically favourable to transfer from ZnS to MoS2 for photocatalytic reactions and subsequently, enhances the H2 evolution activity in CdS/ZnS type I core-shell heterostructures. The optimal MoS2 concentration is resolved to be 7 mol% and the subsequent visible-light induced H2 generation rate was 13589 μmol h-1g-1, which is 19 and 158 fold higher than pristine CdS and ZnS respectively. The probable photocatalytic mechanism of CdS/ZnS type I core-shell heterostructure with MoS2 cocatalyst is proposed. Our inexpensive and convenient preparation strategy may offer novel prospects in the engineering of desirable nanoheterostructures with better performance.
Collapse
Affiliation(s)
- Xingyu Zhang
- School of Material Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Madhusudan Puttaswamy
- Department of Civil and Environmental Engineering, Environmental Materials Laboratory, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Haiqiang Bai
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, PR China
| | - Bofang Hou
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, PR China
| | | |
Collapse
|
116
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
117
|
Tamura Y, Okazaki M, Ueki H, Aihara K, Kanazawa T, Fan D, Haruki R, Iwase A, Nozawa S, Ishiwari F, Sugimoto K, Saeki A, Maeda K. Modification of Visible-Light-Responsive Pb 2Ti 2O 5.4F 1.2 with Metal Oxide Cocatalysts to Improve Photocatalytic O 2 Evolution toward Z-Scheme Overall Water Splitting. CHEMSUSCHEM 2024; 17:e202400408. [PMID: 38622065 DOI: 10.1002/cssc.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
The development of a highly active photocatalyst for visible-light water splitting requires a high-quality semiconductor material and a cocatalyst, which promote both the migration of photogenerated charge carriers and surface redox reactions. In this work, a cocatalyst was loaded onto an oxyfluoride photocatalyst, Pb2Ti2O5.4F1.2, to improve the water oxidation activity. Among the metal oxides examined as cocatalysts, RuO2 was found to be the most suitable, and the O2 evolution activity depended on the preparation conditions for Ru/Pb2Ti2O5.4F1.2. The highest activity was obtained with RuCl3-impregnated Pb2Ti2O5.4F1.2 heated under a flow of H2 at 523 K. The H2-treated Ru/Pb2Ti2O5.4F1.2 showed an O2 evolution rate an order of magnitude higher than those for the analogues without the H2 treatment (e. g., RuO2/Pb2Ti2O5.4F1.2). Physicochemical analyses by X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and time-resolved microwave conductivity measurements indicated that the optimized photocatalyst contained partially reduced RuO2 species with a particle size of ~5 nm. These partially reduced species effectively trapped the photogenerated charge carriers and promoted the oxidation of water into O2. The optimized Ru/Pb2Ti2O5.4F1.2 could function as an O2-evolving photocatalyst in Z-scheme overall water splitting, in combination with an Ru-loaded, Rh-doped SrTiO3 photocatalyst.
Collapse
Affiliation(s)
- Yoshitaka Tamura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Megumi Okazaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hiroto Ueki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kenta Aihara
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tomoki Kanazawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Dongxiao Fan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Rie Haruki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Akihide Iwase
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8571, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Kunihisa Sugimoto
- Department of Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 5778502, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
118
|
Yin F, Wang H, Zhao Z, Luo L, Tang Y, Zhang Y, Xue Q. Doping and strain modulation of the electronic, optical and photocatalytic properties of the GaN/C 2N heterostructure. Phys Chem Chem Phys 2024; 26:17223-17231. [PMID: 38855975 DOI: 10.1039/d4cp01836b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The electronic, optical and photocatalytic properties of GaN/C2N van der Waals heterostructures are investigated using the first-principles theory, and effective regulation through element doping or strain is achieved further. The results show that the GaN/C2N heterostructure exhibits a type-II band alignment with an indirect band gap of 2.25 eV, which benefits photocatalytic water splitting. In this study, both type-I and type-II band alignments can be obtained through doping or strain modulation. Doping with P or As atoms reduces the band gap of the GaN/C2N heterostructure and transforms it to a type-I direct bandgap semiconductor, which makes the doped GaN/C2N heterostructure more suitable for optoelectronic devices. In addition, the GaN/C2N heterostructure retains type-II band alignment and has a decreased band gap under tensile strain (0 to +4%), which is more favorable for photocatalytic water splitting. Compressive strain (0 to -4%) converts the type-II band alignment to type-I, resulting in a wider light absorption range, making the GaN/C2N heterostructure more suitable for optoelectronic devices. These theoretical results are helpful for the design of GaN/C2N vdW heterostructures in the fields of optoelectronic devices and photocatalysts.
Collapse
Affiliation(s)
- Fu Yin
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Hui Wang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhengqin Zhao
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - LiJia Luo
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yongliang Tang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yanbo Zhang
- School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Qiang Xue
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
119
|
Alotaibi M. Investigating the Electronic Properties and Stability of Rh 3 Clusters on Rutile TiO 2 for Potential Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1051. [PMID: 38921927 PMCID: PMC11206997 DOI: 10.3390/nano14121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Addressing the pressing needs for alternatives to fossil fuel-based energy sources, this research explores the intricate interplay between Rhodium (Rh3) clusters and titanium dioxide (TiO2) to improve photocatalytic water splitting for the generation of eco-friendly hydrogen. This research applies the density functional theory (DFT) coupled with the Hartree-Fock theory to meticulously examine the structural and electronic structures of Rh3 clusters on TiO2 (110) interfaces. Considering the photocatalytic capabilities of TiO2 and its inherent limitations in harnessing visible light, the potential for metals such as Rh3 clusters to act as co-catalysts is assessed. The results show that triangular Rh3 clusters demonstrate remarkable stability and efficacy in charge transfer when integrated into rutile TiO2 (110), undergoing oxidation in optimal adsorption conditions and altering the electronic structures of TiO2. The subsequent analysis of TiO2 surfaces exhibiting defects indicates that Rh3 clusters elevate the energy necessary for the formation of an oxygen vacancy, thereby enhancing the stability of the metal oxide. Additionally, the combination of Rh3-cluster adsorption and oxygen-vacancy formation generates polaronic and localized states, crucial for enhancing the photocatalytic activity of metal oxide in the visible light range. Through the DFT analysis, this study elucidates the importance of Rh3 clusters as co-catalysts in TiO2-based photocatalytic frameworks, paving the way for empirical testing and the fabrication of effective photocatalysts for hydrogen production. The elucidated impact on oxygen vacancy formation and electronic structures highlights the complex interplay between Rh3 clusters and TiO2 surfaces, providing insightful guidance for subsequent studies aimed at achieving clean and sustainable energy solutions.
Collapse
Affiliation(s)
- Moteb Alotaibi
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
120
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
121
|
Wang G, Xie W, Guo S, Chang J, Chen Y, Long X, Zhou L, Ang YS, Yuan H. Two-Dimensional GeC/MXY (M = Zr, Hf; X, Y = S, Se) Heterojunctions Used as Highly Efficient Overall Water-Splitting Photocatalysts. Molecules 2024; 29:2793. [PMID: 38930861 PMCID: PMC11206627 DOI: 10.3390/molecules29122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogen generation by photocatalytic water-splitting holds great promise for addressing the serious global energy and environmental crises, and has recently received significant attention from researchers. In this work, a method of assembling GeC/MXY (M = Zr, Hf; X, Y = S, Se) heterojunctions (HJs) by combining GeC and MXY monolayers (MLs) to construct direct Z-scheme photocatalytic systems is proposed. Based on first-principles calculations, we found that all the GeC/MXY HJs are stable van der Waals (vdW) HJs with indirect bandgaps. These HJs possess small bandgaps and exhibit strong light-absorption ability across a wide range. Furthermore, the built-in electric field (BIEF) around the heterointerface can accelerate photoinduced carrier separation. More interestingly, the suitable band edges of GeC/MXY HJs ensure sufficient kinetic potential to spontaneously accomplish water redox reactions under light irradiation. Overall, the strong light-harvesting ability, wide light-absorption range, small bandgaps, large heterointerfacial BIEFs, suitable band alignments, and carrier migration paths render GeC/MXY HJs highly efficient photocatalysts for overall water decomposition.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing 408100, China; (W.X.); (X.L.)
| | - Wenjie Xie
- School of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing 408100, China; (W.X.); (X.L.)
| | - Sandong Guo
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;
| | - Junli Chang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
| | - Ying Chen
- School of Electronic and Information Engineering, Anshun University, Anshun 561000, China;
| | - Xiaojiang Long
- School of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing 408100, China; (W.X.); (X.L.)
| | - Liujiang Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Yee Sin Ang
- Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
122
|
Zhao D, Zhu J, Huang Z, Wang Q, Liu Z, Zhang C, Liu Y, Fu Z. Nickel-Doped Decatungstate as a Robust Photocatalyst for Violet Light-Triggered Redox Coupling Conversion of Alcohol and Water to Aldehyde/Ketone and Hydrogen. Inorg Chem 2024; 63:10881-10896. [PMID: 38784969 DOI: 10.1021/acs.inorgchem.4c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The effective coupling of photoinduced alcohol oxidation and water reduction may economically produce hydrogen (H2) from water, which is of great significance in solving the current energy crisis. This study discloses that decatungstate (DT) and especially Ni2+ions-doped DTs are active for the photoreaction of benzyl alcohol with H2O, and under 48 h of violet light illumination, the best 1%Ni-DT yields ca. 86.1% benzoic acid and a 4.65 h-1 H2 generation efficiency (turnover frequency, TOF). Also, 1%Ni-DT is efficient for the photoredox coupling reaction of aliphatic and especially aromatic primary/secondary alcohols with water. A series of characterizations support that the doubled-reduced H2DT produced from the photoreaction plays a key role in water reduction to H2, which is accelerated by the doped Ni2+. In particular, it and the derived Ni3+ may construct a Z-type catalyst for water overall splitting, thereby hoisting the acid yield and H2 amount in the later stage of the photoreaction.
Collapse
Affiliation(s)
- Dan Zhao
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jiekun Zhu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Ziqin Huang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Qian Wang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Zhangzhen Liu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Chao Zhang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yachun Liu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Zaihui Fu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
123
|
Inerbaev TM, Abuova AU, Zakiyeva ZY, Abuova FU, Mastrikov YA, Sokolov M, Gryaznov D, Kotomin EA. Effect of Rh Doping on Optical Absorption and Oxygen Evolution Reaction Activity on BaTiO 3 (001) Surfaces. Molecules 2024; 29:2707. [PMID: 38893580 PMCID: PMC11173917 DOI: 10.3390/molecules29112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize. It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction intermediates on the catalyst's surface, reducing the overpotential value.
Collapse
Affiliation(s)
- Talgat M. Inerbaev
- Department of Technical Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (T.M.I.); (Z.Y.Z.); (F.U.A.)
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science, 119991 Moscow, Russia
| | - Aisulu U. Abuova
- Department of Technical Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (T.M.I.); (Z.Y.Z.); (F.U.A.)
| | - Zhadyra Ye. Zakiyeva
- Department of Technical Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (T.M.I.); (Z.Y.Z.); (F.U.A.)
| | - Fatima U. Abuova
- Department of Technical Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan; (T.M.I.); (Z.Y.Z.); (F.U.A.)
| | - Yuri A. Mastrikov
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia; (Y.A.M.); (M.S.); (E.A.K.)
| | - Maksim Sokolov
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia; (Y.A.M.); (M.S.); (E.A.K.)
| | - Denis Gryaznov
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia; (Y.A.M.); (M.S.); (E.A.K.)
| | - Eugene A. Kotomin
- Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia; (Y.A.M.); (M.S.); (E.A.K.)
| |
Collapse
|
124
|
Werner V, Lora FB, Chai Z, Hörndl J, Praxmair J, Luber S, Haussener S, Pokrant S. Stability and degradation of (oxy)nitride photocatalysts for solar water splitting. RSC SUSTAINABILITY 2024; 2:1738-1752. [PMID: 38845685 PMCID: PMC11152140 DOI: 10.1039/d4su00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024]
Abstract
Advancing towards alternative technologies for the sustainable production of hydrogen is a necessity for the successful integration of this potentially green fuel in the future. Photocatalytic and photoelectrochemical water splitting are promising concepts in this context. Over the past decades, researchers have successfully explored several materials classes, such as oxides, nitrides, and oxynitrides, in their quest for suitable photocatalysts with a focus on reaching higher efficiencies. However, to pave the way towards practicability, understanding degradation processes and reaching stability is essential, a domain where research has been scarcer. This perspective aims at providing an overview on recent progress concerning stability and degradation with a focus on (oxy)nitride photocatalysts and at providing insights into the opportunities and challenges coming along with the investigation of degradation processes and the attempts to improve the stability of photocatalysts.
Collapse
Affiliation(s)
- Valérie Werner
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg Jakob-Haringer-Str. 2A 5020 Salzburg Austria
| | - Franky Bedoya Lora
- Laboratory of Renewable Energy Science and Engineering, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Ziwei Chai
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Julian Hörndl
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg Jakob-Haringer-Str. 2A 5020 Salzburg Austria
| | - Jakob Praxmair
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg Jakob-Haringer-Str. 2A 5020 Salzburg Austria
| | - Sandra Luber
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Sophia Haussener
- Laboratory of Renewable Energy Science and Engineering, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Simone Pokrant
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg Jakob-Haringer-Str. 2A 5020 Salzburg Austria
| |
Collapse
|
125
|
Pada Sarker H, Abild-Pedersen F, Bajdich M. Prediction of Feasibility of Polaronic OER on (110) Surface of Rutile TiO 2. Chemphyschem 2024; 25:e202400060. [PMID: 38427793 DOI: 10.1002/cphc.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
The polaronic effects at the atomic level hold paramount significance for advancing the efficacy of transition metal oxides in applications pertinent to renewable energy. The lattice-distortion mediated localization of photoexcited carriers in the form of polarons plays a pivotal role in the photocatalysis. This investigation focuses on rutile TiO2, an important material extensively explored for solar energy conversion in artificial photosynthesis, specifically targeting the generation of green H2 through photoelectrochemical (PEC) H2O splitting. By employing Hubbard-U corrected and hybrid density functional theory (DFT) methods, we systematically probe the polaronic effects in the catalysis of oxygen evolution reaction (OER) on the (110) surface of rutile TiO2. Theoretical understanding of polarons within the surface, coupled with simulations of OER at distinct titanium (Ti) and oxygen (O) active sites, reveals diverse polaron formation energies within the lattice sites with strong preference for bulk and surface bridge (Ob) oxygen sites. Moreover, we provide the evidence for the facilitative role of polarons in OER. We find that hole polarons situated at the equatorial oxygen sites near the Ti-active site, along with bridge site hole polarons distal from the Ob active site yield a small reduction in OER overpotential by ~0.06 eV and ~0.12 eV, respectively. However, subsurface, equatorial, and bridge site hole polarons significantly reduce the Ti-active site OER overpotential by ~0.4 eV through the peroxo-type oxygen pathway. We also observe that the presence of hole polarons stabilizes the *OH, *O, and *OOH intermediate species compared to the scenario without hole polarons. Overall, this study provides a detailed mechanistic insight into polaron-mediated OER, offering a promising avenue for improving the catalytic activity of transition metal oxide-based photocatalysts catering to renewable energy requisites.
Collapse
Affiliation(s)
- Hori Pada Sarker
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Chemical Engineering, Stanford University, 43 Via Ortega, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Frank Abild-Pedersen
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, CA, 91125, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Michal Bajdich
- Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, CA, 91125, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| |
Collapse
|
126
|
Yu W, Chamkouri H, Chen L. Recent advancement on quantum dot-coupled heterojunction structures in catalysis:A review. CHEMOSPHERE 2024; 357:141944. [PMID: 38614402 DOI: 10.1016/j.chemosphere.2024.141944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Photoelectrocatalysis stands as an exceptionally efficient and sustainable method, significantly addressing both energy scarcity and environmental pollution challenges. Within this realm, quantum dots (QDs) have garnered immense attention for their outstanding catalytic properties. Their unique features-cost-effectiveness, high efficiency, remarkable stability, and exceptional photovoltaic characteristics-set them apart from other tunable semiconductor materials. Heterojunction structures based on quantum dots remarkably boost solar energy conversion efficiency. This review aims to provide a comprehensive overview of the impacts generated by heterojunctions formed using diverse quantum dots and delve into their catalytic applications. Moreover, it sheds light on recent advancements utilizing quantum dots in modifying optoelectronic semiconductor materials for diverse purposes, ranging from hydrogen (H2) generation to carbon and nitrogen reduction, as well as pollutant degradation. Additionally, the paper offers valuable insights into challenges faced by quantum dot applications and outlines promising future prospects.
Collapse
Affiliation(s)
- Wenkai Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hossein Chamkouri
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lei Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China; Intelligent Manufacturing Institute of HFUT, Hefei, 230051, China.
| |
Collapse
|
127
|
Shiraishi Y, Akiyama S, Hiramatsu W, Adachi K, Ichikawa S, Hirai T. Sunlight-Driven Nitrate-to-Ammonia Reduction with Water by Iron Oxyhydroxide Photocatalysts. JACS AU 2024; 4:1863-1874. [PMID: 38818053 PMCID: PMC11134386 DOI: 10.1021/jacsau.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 06/01/2024]
Abstract
The photocatalytic reduction of harmful nitrates (NO3-) in strongly acidic wastewater to ammonia (NH3) under sunlight is crucial for the recycling of limited nitrogen resources. This study reports that a naturally occurring Cl--containing iron oxyhydroxide (akaganeite) powder with surface oxygen vacancies (β-FeOOH(Cl)-OVs) facilitates this transformation. Ultraviolet light irradiation of the catalyst suspended in a Cl--containing solution promoted quantitative NO3--to-NH3 reduction with water under ambient conditions. The photogenerated conduction band electrons promoted the reduction of NO3--to-NH3 over the OVs. The valence band holes promoted self-oxidation of Cl- as the direct electron donor and eliminated Cl- was compensated from the solution. Photodecomposition of the generated hypochlorous acid (HClO) produced O2, facilitating catalytic reduction of NO3--to-NH3 with water as the electron donor in the entire system. Simulated sunlight irradiation of the catalyst in a strongly acidic nitric acid (HNO3) solution (pH ∼ 1) containing Cl- stably generated NH3 with a solar-to-chemical conversion efficiency of ∼0.025%. This strategy paves the way for sustainable NH3 production from wastewater.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Innovative Catalysis Science
Division, Institute for Open and Transdisciplinary Research Initiatives
(ICS-OTRI), Osaka University, Suita 565-0871, Japan
| | - Shotaro Akiyama
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Wataru Hiramatsu
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Kazutoshi Adachi
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High
Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Takayuki Hirai
- Research Center
for Solar Energy Chemistry and Division of Chemical Engineering, Graduate
School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
128
|
Higashi T, Seki K, Nandal V, Pihosh Y, Nakabayashi M, Shibata N, Domen K. Understanding the Activation Mechanism of RhCrO x Cocatalysts for Hydrogen Evolution with Nanoparticulate Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26325-26339. [PMID: 38716494 DOI: 10.1021/acsami.4c04841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Mixed oxides of Rh-Cr (RhCrOx), containing Rh3+ and Cr3+ cations, are commonly used as cocatalysts for the hydrogen evolution reaction (HER) on particulate photocatalysts. The precise physicochemical mechanisms of the HER at the catalytic sites of these oxides are not well understood. In this study, model cocatalyst electrodes, composed of nanoparticulate RhCrOx, were fabricated to investigate the physicochemical mechanisms of the HER. Electroanalytical and X-ray photoelectron spectroscopic measurements revealed that nanoparticulate RhCrOx produces reduced Rh (Rh0) species by maintaining an electrode potential more negative than 0.03 V versus the reversible hydrogen electrode (VRHE). This results in significant enhancement of the HER activity. The catalytic activity for the HER stems from the reduced Rh species, and the inclusion of Cr3+ (CrOx) aided in the electron transfer process at the solid/liquid interface, resulting in a higher current density during the HER. To achieve a solar-to-hydrogen efficiency of over 3%, the conduction band minimum of the particulate photocatalyst should be positioned more negatively than -0.10 VRHE. Moreover, the formation of electron trap states at potentials more positive than 0.03 VRHE should be avoided. This study highlights the importance of understanding the catalytic sites on metal oxide cocatalysts. Moreover, it offers a design strategy for enhancing the efficiency of photocatalytic water splitting.
Collapse
Affiliation(s)
- Tomohiro Higashi
- Institute for Tenure Track Promotion, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Kazuhiko Seki
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Vikas Nandal
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yuriy Pihosh
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mamiko Nakabayashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8533, Japan
| |
Collapse
|
129
|
Shabbir SA, Ali I, Haris M, Latif H, Sabah A, Alshomrany AS, Bakkour Y. Bifunctional Co 3O 4/g-C 3N 4 Hetrostructures for Photoelectrochemical Water Splitting. ACS OMEGA 2024; 9:21450-21458. [PMID: 38764640 PMCID: PMC11097156 DOI: 10.1021/acsomega.4c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/21/2024]
Abstract
This study explored the synergistic potential of photoelectrochemical water splitting through bifunctional Co3O4/g-C3N4 heterostructures. This novel approach merged solar panel technology with electrochemical cell technology, obviating the need for external voltage from batteries. Scanning electron microscopy and X-ray diffraction were utilized to confirm the surface morphology and crystal structure of fabricated nanocomposites; Co3O4, Co3O4/g-C3N4, and Co3O4/Cg-C3N4. The incorporation of carbon into g-C3N4 resulted in improved catalytic activity and charge transport properties during the visible light-driven hydrogen evolution reaction and oxygen evolution reaction. Optical properties were examined using UV-visible spectroscopy, revealing a maximum absorption edge at 650 nm corresponding to a band gap of 1.31 eV for Co3O4/Cg-C3N4 resulting in enhanced light absorption. Among the three fabricated electrodes, Co3O4/Cg-C3N4 exhibited a significantly lower overpotential of 30 mV and a minimum Tafel slope of 112 mV/dec This enhanced photoelectrochemical efficiency was found due to the established Z scheme heterojunction between Co3O4 and gC3N4. This heterojunction reduced the recombination of photogenerated electron-hole pairs and thus promoted charge separation by extending visible light absorption range chronoamperometric measurements confirmed the steady current flow over time under constant potential from the solar cell, and thus it provided the effective utilization of bifunctional Co3O4/g-C3N4 heterostructures for efficient solar-driven water splitting.
Collapse
Affiliation(s)
- Syeda Ammara Shabbir
- Department
of Physics, Forman Christian College (A
Chartered University), Lahore 54600, Pakistan
| | - Iqra Ali
- Department
of Physics, Forman Christian College (A
Chartered University), Lahore 54600, Pakistan
| | - Muhammad Haris
- Institute
of Materials Science Kaunas, University of Technology, Kaunas 51423, Lithuania
| | - Hamid Latif
- Department
of Physics, Forman Christian College (A
Chartered University), Lahore 54600, Pakistan
| | - Aneeqa Sabah
- Department
of Physics, Lahore College for Women University, Lahore 53201, Pakistan
| | - Ali S. Alshomrany
- Department
of Physics, College of Sciences Umm Al-Qura
University Al Taif HWY, Mecca 24381, Saudi Arabia
| | - Youssef Bakkour
- Department
of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
130
|
Mohanty C, Samal A, Behera AK, Das N. Poly Meta-Aminophenol (PmAP) as a Solid-State Electron Mediator in the Z-Scheme, Ag 3PO 4/CoFe 2O 4 Heterojunction: Mineralization of Highly Concentrated Bisphenol-A and Reactive Dyes Water Pollutants. ACS OMEGA 2024; 9:19968-19981. [PMID: 38737034 PMCID: PMC11080028 DOI: 10.1021/acsomega.3c09943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
This study demonstrated the effectiveness of poly meta-aminophenol (PmAP) as a solid electron mediator in the Z-scheme photocatalytic system for organic pollutants (viz. bisphenol-A and reactive dyes) mineralization and also illustrated how PmAP transported the photogenerated electrons from an O2-emitting photocatalyst (Ag3PO4) to a H2-emitting photocatalyst (CoFe2O4) enabling enhanced photocatalytic activity under visible light irradiation. The PmAP/Ag3PO4-CoFe2O4 (PAC-10), was prepared by a two-step process and characterized by various analytical methods to assess the impact of PmAP on optical, photocatalytic, and electrochemical characteristics of the CoFe2O4 (CFO)/Ag3PO4 composite. The morphological investigation revealed that the PmAP sheet was nicely decorated with evenly distributed Ag3PO4 and CoFe2O4 particles. The M-S plot and impedance analyses were used to assess the electrochemical capabilities of the catalyst. Z-scheme charge transfer pathways were well supported by the radical trapping experiment and HRTEM analysis of Pt photodeposited PAC-10 photocatalysts during the photoreaction. Because of its magnetic nature and ease of synthesis, the PAC-10 offers an easily recyclable Z-scheme photocatalytic system that has the potential for purifying wastewater with high concentrations (up to 100 mg/L) of organic pollutants within 30 min of visible light exposition.
Collapse
Affiliation(s)
| | - Alaka Samal
- Department of Chemistry, Utkal University, Vani Vihar, Odisha 751004, India
| | - Ajaya K. Behera
- Department of Chemistry, Utkal University, Vani Vihar, Odisha 751004, India
| | - Nigamananda Das
- Department of Chemistry, Utkal University, Vani Vihar, Odisha 751004, India
| |
Collapse
|
131
|
Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici MM, Zhou H. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307412. [PMID: 38251820 DOI: 10.1002/adma.202307412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The contemporary production of carbon materials heavily relies on fossil fuels, contributing significantly to the greenhouse effect. Biomass is a carbon-neutral resource whose organic carbon is formed from atmospheric CO2. Employing biomass as a precursor for synthetic carbon materials can fix atmospheric CO2 into solid materials, achieving negative carbon emissions. Hydrothermal carbonization (HTC) presents an attractive method for converting biomass into carbon materials, by which biomass can be transformed into materials with favorable properties in a distinct hydrothermal environment, and these carbon materials have made extensive progress in many fields. However, the HTC of biomass is a complex and interdisciplinary problem, involving simultaneously the physical properties of the underlying biomass and sub/supercritical water, the chemical mechanisms of hydrothermal synthesis, diverse applications of resulting carbon materials, and the sustainability of the entire technological routes. This review starts with the analysis of biomass composition and distinctive characteristics of the hydrothermal environment. Then, the factors influencing the HTC of biomass, the reaction mechanism, and the properties of resulting carbon materials are discussed in depth, especially the different formation mechanisms of primary and secondary hydrochars. Furthermore, the application and sustainability of biomass-derived carbon materials are summarized, and some insights into future directions are provided.
Collapse
Affiliation(s)
- Shijie Yu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiangkai He
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Mengyin Xie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongqing Xu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xuan Bie
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Qinghai Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yanguo Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Marta Sevilla
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo, 33011, Spain
| | | | - Hui Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
132
|
Su Y, Li K, Li Z, Tian Y, Liu B, Yue G, Tian Y. Visible light to the second near-infrared light-harvesting donor-acceptor 1-donor-acceptor 2-type terpolymers for boosted photocatalytic hydrogen evolution via dual-sulfone-acceptor engineering. J Colloid Interface Sci 2024; 661:333-344. [PMID: 38301470 DOI: 10.1016/j.jcis.2024.01.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Developing visible to near-infrared light-absorbing conjugated polymer photocatalysts is crucial for enhancing solar energy utilization efficiency, as most conjugated organic polymers only absorb light in the visible range. In this work, we firstly developed a novel thiophene S,S-dioxide (TDO) monomer with the stronger electron-withdrawing character, and then prepared a series of donor-acceptor1-donor-acceptor2-type (D-A1-D-A2-type) conjugated terpolymers (THTDB-1-THTDB-5) by statistically adjusting the molar ratio of two sulfone-based acceptor monomers, dibenzothiophene-S,S-dioxide (BTDO, A1) and TDO (A2). These terpolymers demonstrate a gradually expanding absorption range from visible light to the second near-infrared (Vis-to-NIR-II) region with the gradual increase of the TDO contents in the polymer skeleton, showcasing excellent absorption properties and efficient light-capturing capabilities. The optimized D-A1-D-A2 polymer photocatalyst THTDB-4 exhibits a high hydrogen evolution rate of 21.27 mmol g-1 h-1 under visible light without any co-catalyst. The dual-sulfone-acceptor engineering offers a viable approach for developing efficient the longer Vis-to-NIR-II light-harvesting polymer photocatalysts.
Collapse
Affiliation(s)
- Yuanle Su
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Keming Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yanting Tian
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baoyou Liu
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan 750003, PR China
| | - Gang Yue
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan 750003, PR China
| | - Yue Tian
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|
133
|
Trepte S, Kutzer-Schulze C, Langklotz U, Krug M. Electrochemically produced nano-TiO 2-coated SiC membranes for photocatalytic water treatment: Preparation, characterization, and hydroxyl radical formation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2783-2795. [PMID: 38822614 DOI: 10.2166/wst.2024.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Photocatalytically active ceramic flat sheet membranes based on a nanostructured titanium dioxide (TiO2) coating were produced for photocatalytic water treatment. The nano-TiO2 layer was produced by a novel combination of magnetron sputtering of a thin titanium layer on silicon carbide (SiC) membranes, followed by electrochemical oxidation (anodization) and subsequent heat treatment (HT). Characterization by Raman spectra and field emission scanning electron microscopy proved the presence of a nanostructured anatase layer on the membranes. The influence of the titanium layer thickness on the TiO2 formation process and the photocatalytic properties were investigated using anodization curves, by using cyclovoltammetry measurements, and by quantifying the generated hydroxyl radicals (OH•) under UV-A irradiation in water. Promising photocatalytic activity and permeability of the nano-TiO2-coated membranes could be demonstrated. A titanium layer of at least 2 μm was necessary for significant photocatalytic effects. The membrane sample with a 10 μm Ti/TiO2 layer had the highest photocatalytic activity showing a formation rate of 1.26 × 10-6 mmol OH• s-1. Furthermore, the membranes were tested several times, and a decrease in radical formation was observed. Assuming that these can be attributed to adsorption processes of the reactants, initial experiments were carried out to reactivate the photocatalyzer.
Collapse
Affiliation(s)
- Sarah Trepte
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, Dresden 01277, Germany E-mail:
| | - Claudia Kutzer-Schulze
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, Dresden 01277, Germany
| | - Ulrike Langklotz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, Dresden 01277, Germany
| | - Mario Krug
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, Dresden 01277, Germany
| |
Collapse
|
134
|
Zeng J, Xie L, Liu T, He Y, Liu W, Zhang Q, Li J, Li X, Qiu B, Zhou S, Liang Q, Wang X, Liang K, Tang J, Liu J, Jiang L, Huang G, Kong B. Super-Assembled Multilayered Mesoporous TiO 2 Nanorockets for Light-Powered Space-Confined Microfluidic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38661542 DOI: 10.1021/acsami.3c19302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the field of sustainable chemistry, it is still a significant challenge to realize efficient light-powered space-confined catalysis and propulsion due to the limited solar absorption efficiency and the low mass and heat transfer efficiency. Here, novel semiconductor TiO2 nanorockets with asymmetric, hollow, mesoporous, and double-layer structures are successfully constructed through a facile interfacial superassembly strategy. The high concentration of defects and unique topological features improve light scattering and reduce the distance for charge migration and directed charge separation, resulting in enhanced light harvesting in the confined nanospace and resulting in enhanced catalysis and self-propulsion. The movement velocity of double-layered nanorockets can reach up to 10.5 μm s-1 under visible light, which is approximately 57 and 119% higher than that of asymmetric single-layered TiO2 and isotropic hollow TiO2 nanospheres, respectively. In addition, the double-layered nanorockets improve the degradation rate of the common pollutant methylene blue under sustainable visible light with a 247% rise of first-order rate constant compared to isotropic hollow TiO2 nanospheres. Furthermore, FEA simulations reveal and confirm the double-layered confined-space enhanced catalysis and self-propulsion mechanism.
Collapse
Affiliation(s)
- Jie Zeng
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanjun He
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Weiyan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Qing Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Junyan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Xiaofeng Li
- The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Beilei Qiu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xudong Wang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jinyao Tang
- The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Shandong 250103, China
| |
Collapse
|
135
|
Awe OF, Eya HI, Amaral R, Komalla N, Nbelayim P, Dzade NY. Unraveling the origin of the high photocatalytic properties of earth-abundant TiO 2/FeS 2 heterojunctions: insights from first-principles density functional theory. Phys Chem Chem Phys 2024; 26:12869-12879. [PMID: 38625375 DOI: 10.1039/d3cp04453j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, first-principles density functional theory calculations have been employed to unravel the interfacial geometries (composition and stability), electronic properties (density of states and differential charge densities), and charge carrier transfers (work function and energy band alignment) of a TiO2(001)/FeS2(100) heterojunction. Analyses of the structure and electronic properties reveal the formation of strong interfacial Fe-O and Ti-S ionic bonds, which stabilize the interface with an adhesion energy of -0.26 eV Å-2. The work function of the TiO2(001)/FeS2(100) heterojunction is predicted to be much smaller than those of the isolated FeS2(100) and TiO2(001) layers, indicating that less energy will be needed for electrons to transfer from the ground state to the surface to promote photochemical reactions. The difference in the work function between the FeS2(100) and TiO2(001) heterojunction components caused an electron density rearrangement at the heterojunction interface, which induces an electric field that separates the photo-generated electrons and holes. Consistently, a staggered band alignment is predicted at the interface with the conduction band edge and the valence-band edge of FeS2 lying 0.37 and 2.62 eV above those of anatase. These results point to efficient charge carrier separation in the TiO2(001)/FeS2(100) heterojunction, wherein photoinduced electrons would transfer from the FeS2 to the TiO2 layer. The atomistic insights into the mechanism of enhanced charge separation and transfer across the interface rationalize the observed high photocatalytic activity of the mixed TiO2(001)/FeS2(100) heterojunction over the individual components.
Collapse
Affiliation(s)
- Oluwayomi F Awe
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Henry I Eya
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Ricardo Amaral
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Nikhil Komalla
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Pascal Nbelayim
- Department of Materials Science and Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
| | - Nelson Y Dzade
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
136
|
Lei L, Luan TX, Li PZ, Qiu Y, Su J, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B, Liu Y. Strong Second-Harmonic Generation Induced by a Triphenylamine-Based Bismuth-Organic Framework for Photocatalytic Activity Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603468 DOI: 10.1021/acsami.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Taking advantage of the well-defined geometry of metal centers and highly directional metal-ligand coordination bonds, metal-organic frameworks (MOFs) have emerged as promising candidates for nonlinear optical (NLO) materials. In this work, taking a photoresponsive carboxylate triphenylamine derivative as an organic ligand, a bismuth-based MOF, Bi-NBC, NBC = 4',4‴,4‴″-nitrilotris(([1,1'-biphenyl]-4-carboxylic acid)) is obtained. Structure determination reveals that it is a potential NLO material derived from its noncentrosymmetric structure, which is finally confirmed by its rarely strong second harmonic generation (SHG) effect. Theoretical calculations reveal that the potential difference around Bi atoms is large; therefore, it leads to a strong local built-in electric field, which greatly facilitates the charge separation and transfer and finally improves the photocatalytic performance. Our results provide a reference for the exploration of MOFs with NLO properties.
Collapse
Affiliation(s)
- Longfei Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Ying Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
137
|
Alammar T, Mudring AV. Synthesis and Exploration of Barium Stannate-Zirconate BaSn 1-xZr xO 3 (0 ≤ X ≤ 1) Solid Solutions as Photocatalysts. Inorg Chem 2024; 63:6132-6140. [PMID: 38536673 PMCID: PMC11005035 DOI: 10.1021/acs.inorgchem.3c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
Employing ionic liquid-assisted microwave synthesis and moderate heat treatment allows for the preparation of otherwise difficult-to-obtain perovskite-type BaSn1-xZrxO3 solid solutions (0 ≤ x ≤ 1). The impact of substituting Sn for the crystal structure, crystallinity, morphology, and photocatalytic performance was investigated. The obtained materials are characterized by X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, and Raman and IR spectroscopy. SEM images show that the morphology of the samples varies from rods for x = 0, 0.2 to spherical for x = 0.5, 0.8, 1. Upon Zr for Sn substitution, the band gap changes from 3.1 to 5.0 eV as the valence and conduction bands move to lower and higher energies. The photocatalytic activities of the BaSn1-xZrxO3 samples in the hydroxylation of terephthalic acid (TA) follow the order BaSn0.5Zr0.5O3> BaSn0.8Zr0.2O3> BaSnO3> BaSn0.2Zr0.8O3> BaZrO3. The superior photocatalytic activity of BaSn0.5Zr0.5O3 can be attributed to the synergistically favorable combination of a suitable band structure, band gap size, and increased surface area-to-volume ratio, resulting in a diminished crystalline particle size unattainable from samples prepared via traditional synthetic routes or without ionic liquid.
Collapse
Affiliation(s)
- Tarek Alammar
- Department
of Chemistry, College of Science, King Faisal
University, P.O Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Anja-Verena Mudring
- Department
of Biological & Chemical Engineering, Intelligent Advanced Materials, Aarhus University, Aarhus 8200, Denmark
- Department
of Physics, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
138
|
Kim J, Jeon JP, Kim YH, Anh NTD, Chung K, Seo JM, Baek JB. Simple Functionalization of a Donor Monomer to Enhance Charge Transfer in Porous Polymer Networks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319395. [PMID: 38353410 DOI: 10.1002/anie.202319395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 02/29/2024]
Abstract
Porous polymer networks (PPNs) are promising candidates as photocatalysts for hydrogen production. Constructing a donor-acceptor structure is known to be an effective approach for improving photocatalytic activity. However, the process of how a functional group of a monomer can ensure photoexcited charges transfer and improve the hydrogen evolution rate (HER) has not yet been studied on the molecular level. Herein, we design and synthesize two kinds of triazatruxene (TAT)-based PPNs: TATR-PPN with a hexyl (R) group and TAT-PPN without the hexyl group, to understand the relationship between the presence of the functional group and charge transfer. The hexyl group on the TAT unit was found to ensure the transfer of photoexcited electrons from a donor unit to an acceptor unit and endowed the TATR-PPN with stable hydrogen production.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Pil Jeon
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Young Hyun Kim
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Nguyen Thi Dieu Anh
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Kunook Chung
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jeong-Min Seo
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
139
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
140
|
Naciri Y, Ghazzal MN, Paineau E. Nanosized tubular clay minerals as inorganic nanoreactors for energy and environmental applications: A review to fill current knowledge gaps. Adv Colloid Interface Sci 2024; 326:103139. [PMID: 38552380 DOI: 10.1016/j.cis.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Modern society pays further and further attention to environmental protection and the promotion of sustainable energy solutions. Heterogeneous photocatalysis is widely recognized as one of the most economically viable and ecologically sound technologies to combat environmental pollution and the global energy crisis. One challenge is finding a suitable photocatalytic material for an efficient process. Inorganic nanotubes have garnered attention as potential candidates due to their optoelectronic properties, which differ from their bulk equivalents. Among them, clay nanotubes (halloysite, imogolite, and chrysotile) are attracting renewed interest for photocatalysis applications thanks to their low production costs, their unique physical and chemical properties, and the possibility to functionalize or dope their structure to enhance charge-carriers separation into their structure. In this review, we provide new insights into the potential of these inorganic nanotubes in photocatalysis. We first discuss the structural and morphological features of clay nanotubes. Applications of photocatalysts based on clay nanotubes across a range of photocatalytic reactions, including the decomposition of organic pollutants, elimination of NOx, production of hydrogen, and disinfection of bacteria, are discussed. Finally, we highlight the obstacles and outline potential avenues for advancing the current photocatalytic system based on clay nanotubes. Our aim is that this review can offer researchers new opportunities to advance further research in the field of clay nanotubes-based photocatalysis with other vital applications in the future.
Collapse
Affiliation(s)
- Yassine Naciri
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France; Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France.
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
| |
Collapse
|
141
|
Sun X, Yang J. A Mini Review on Borate Photocatalysts for Water Decomposition: Synthesis, Structure, and Further Challenges. Molecules 2024; 29:1549. [PMID: 38611829 PMCID: PMC11013113 DOI: 10.3390/molecules29071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The development of novel photocatalysts, both visible and UV-responsive, for water decomposition reactions is of great importance. Here we focused on the application of the borates as photocatalysts in water decomposition reactions, including water splitting reaction, hydrogen evolution half-reaction, and oxygen evolution half-reaction. In addition, the rates of photocatalytic hydrogen evolution and oxygen evolution by these borate photocatalysts in different water decomposition reactions were summarized. Further, the review summarized the synthetic chemistry and structural features of existing borate photocatalysts for water decomposition reactions. Synthetic chemistry mainly includes high-temperature solid-state method, sol-gel method, precipitation method, hydrothermal method, boric acid flux method, and high-pressure method. Next, we summarized the crystal structures of the borate photocatalysts, with a particular focus on the form of the B-O unit and metal-oxygen polyhedral in the borates, and used this to classify borate photocatalysts, which are rarely mentioned in the current photocatalysis literature. Finally, we analyzed the relationship between the structural features of the borate photocatalysts and photocatalytic performance to discuss the further challenges faced by the borate photocatalysts for water decomposition reactions.
Collapse
Affiliation(s)
- Xiaorui Sun
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China;
| | - Jia Yang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China;
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Universities Key Laboratory of Nonferrous Metal Oxide Electronic Functional Materials and Devices, Guilin 541004, China
| |
Collapse
|
142
|
Tian Y, Liu K, Wang Y, Zhou Y, Lu P. Proton tunneling in the dissociation of H2+ and its asymmetric isotopologues driven by circularly polarized THz laser pulses. J Chem Phys 2024; 160:114311. [PMID: 38501475 DOI: 10.1063/5.0195867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Light-induced deprotonation of molecules is an important process in photochemical reactions. Here, we theoretically investigate the tunneling deprotonation of H2+ and its asymmetric isotopologues driven by circularly polarized THz laser pulses. The quasi-static picture shows that the field-dressed potential barrier is significantly lowered for the deprotonation channel when the mass asymmetry of the diatomic molecule increases. Our numerical simulations demonstrate that when the mass symmetry breaks, the tunneling deprotonation is significantly enhanced and the proton tunneling becomes the dominant dissociation channel in the THz driving fields. In addition, the simulated nuclear momentum distributions show that the emission of the proton is directed by the effective vector potential for the deprotonation channel and, meanwhile, the angular distribution of the emitting proton is affected by the alignment and rotation of the molecule induced by the rotating field.
Collapse
Affiliation(s)
- Yidian Tian
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kunlong Liu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen Wang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peixiang Lu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
143
|
Qi Y, Zhang F. Recent Advances in Redox-Based Z-Scheme Overall Water Splitting under Visible Light Irradiation. J Phys Chem Lett 2024; 15:2976-2987. [PMID: 38457286 DOI: 10.1021/acs.jpclett.3c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photocatalytic overall water splitting (OWS) using suspended particulate photocatalysts to produce green hydrogen has inspired continuous interest due to its low cost for easy large-scale application. The two-step photoexcitation system (Z-scheme) mimicking natural photosynthesis was proposed to efficiently use visible light for realization of efficient conversion of solar irradiation. In this Perspective, we will introduce recent advances in redox-based Z-scheme OWS systems, including iodine-based, iron-based, metal complex-based, and other special ion redox couples. The advantages and challenges of each couple and the factors affecting the Z-scheme OWS efficiency are discussed in detail. Finally, the challenges and feasible solutions for the achievement of highly efficient Z-scheme OWS are then outlined. This Perspective provides guidance on how to construct a Z-scheme OWS system and enhance photocatalytic performance.
Collapse
Affiliation(s)
- Yu Qi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| |
Collapse
|
144
|
Becker K, Xiao C, Assavachin S, Kundmann A, Osterloh FE. 14.8% Quantum Efficient Gallium Phosphide Photocatalyst for Hydrogen Evolution. J Am Chem Soc 2024; 146:7723-7733. [PMID: 38451833 PMCID: PMC10958512 DOI: 10.1021/jacs.3c14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Gallium phosphide is an established photoelectrode material for H2 or O2 evolution from water, but particle-based GaP photocatalysts for H2 evolution are very rare. To understand the reasons, we investigated the photocatalytic H2 evolution reaction (HER) of suspended n-type GaP particles with iodide, sulfite, ferricyanide, ferrous ion, and hydrosulfide as sacrificial electron donors, and using Pt, RhyCr2-yO3, and Ni2P HER cocatalysts. A record apparent quantum efficiency of 14.8% at 525 nm was achieved after removing gallium and oxide charge trapping states from the GaP surface, adding a Ni2P cocatalyst to reduce the proton reduction overpotential, lowering the Schottky-barrier at the GaP-cocatalyst interface, adjusting the polarity of the depletion layer at the GaP-liquid interface, and optimizing the electrochemical potential of the electron donor. The work not only showcases the main factors that control charge separation in suspended photocatalysts, but it also explains why most known HER photocatalysts in the literature are based on n-type and not p-type semiconductors.
Collapse
Affiliation(s)
- Kathleen Becker
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Chengcan Xiao
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Samutr Assavachin
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Anna Kundmann
- Department of Chemistry, University
of California, Davis, California 95616, United States
| | - Frank E. Osterloh
- Department of Chemistry, University
of California, Davis, California 95616, United States
| |
Collapse
|
145
|
Gu CC, Ni CQ, Wu RJ, Deng L, Zou J, Li H, Tong CY, Xu FH, Weng BC, Zhu RL. Donor-acceptor moiety functionalized covalent organic frameworks for boosting charge separation and H 2 photogeneration. J Colloid Interface Sci 2024; 658:450-458. [PMID: 38118191 DOI: 10.1016/j.jcis.2023.12.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/22/2023]
Abstract
Covalent organic frameworks (COFs) have a broad prospect to be used as a photocatalytic platform to convert solar energy into valuable chemicals due to their tunable structures and rich active catalytic sites. However, constructing COFs with tuned sp2-carbon donor-acceptor moiety remains an enormous challenge. Herein, we synthesized two new fully π-conjugated cyano-ethylene-linked COFs containing benzotrithiophene as functional group by Knoevenagel polycondensation reaction. The accetpor 2,2'-bipyridine unit in BTT-BpyDAN-COF skeleton favored the formation of a intermolecular specific electron transport pathway with the donor benzotrithiophene, and thereby promoted charge separation and transfer efficiency. Specifically, a donor-acceptor (D-A) type BTT-BpyDAN-COF exhibited high hydrogen evolution rate of 10.1 mmol g-1h-1 and an excellent apparent quantum efficiency of 4.83 % under visible light irradiation.
Collapse
Affiliation(s)
- Chang-Cheng Gu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chen-Quan Ni
- Key Laboratory of Biohydrometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Run-Juan Wu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lu Deng
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Zou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hao Li
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chun-Yi Tong
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng-Hua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bai-Cheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ri-Long Zhu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
146
|
Lin J, Zhang B. Novel C 4P 2 monolayers: forming Z-scheme heterojunction and Janus structure for high-efficiency metal-free photocatalytic water splitting. Phys Chem Chem Phys 2024; 26:8982-8992. [PMID: 38439739 DOI: 10.1039/d3cp06143d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Metal-free two-dimensional (2D) semiconductors have garnered significant attention in the realm of photocatalytic water splitting, primarily owing to their inherent clean, stable, and efficient photoresponsive properties. Motivated by it, we have proposed two types of stable C4P2 monolayers with indirect band gaps, mediocre carrier mobility and excellent optical absorption in visible-light and ultraviolet regions. Although the too-low work function of monolayer α-C4P2 and the too-high work function of monolayer β-C4P2 make them only suitable for single-side redox reaction in photocatalytic water splitting, the creation of an α-C4P2/β-C4P2 Z-scheme heterojunction, combined with the Janus monolayer γ-C4P2 that integrates features of both α and β structures, effectively addresses this limitation, fulfilling the prerequisites for comprehensive photocatalytic water splitting. Furthermore, the calculations indicate that the α-C4P2/β-C4P2 Z-scheme heterojunction and Janus monolayer γ-C4P2 not only demonstrate improved carrier mobility and optical absorption but also feature internal electric fields that effectively enhance driving energy and photo-induced charge separation. Notably, Janus monolayer γ-C4P2 achieves a high electron mobility of ∼105 cm2 V-1 s-1 and an impressive solar-to-hydrogen conversion efficiency of 25.62%.
Collapse
Affiliation(s)
- Jiahe Lin
- School of Science, Jimei University, Xiamen, 361021, China.
| | - Bofeng Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
147
|
Ren K, Liu JZ, Palummo M, Sun M. Editorial: Theoretical study of two-dimensional materials for photocatalysis and photovoltaics. Front Chem 2024; 12:1387236. [PMID: 38510812 PMCID: PMC10951059 DOI: 10.3389/fchem.2024.1387236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Affiliation(s)
- Kai Ren
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Maurizia Palummo
- Dipartimento di Fisica and INFN, Università di Roma ‟Tor Vergata”, Roma, Italy
| | - Minglei Sun
- Department of Physics and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
148
|
Yang J, Wang R, Sun X, Li Y, Liu J, Kuang X. Au/Ti 3C 2/g-C 3N 4 Ternary Composites Boost H 2 Evolution Efficiently with Remarkable Long-Term Stability by Synergistic Strategies. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38430126 DOI: 10.1021/acsami.3c15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The use of novel two-dimensional MXene materials and conventional g-C3N4 photocatalysts to fabricate the composites for hydrogen evolution reaction (HER) has attracted much attention, for which there is plenty of room for the enhancement of hydrogen evolution rates particularly under visible light and photostability. Herein, g-C3N4 was modified by copolymerization of malonamide and melamine and used to fabricate the ternary composites of Au particles and Ti3C2 MXene, and based on the synergistic effect, the composites enhanced the hydrogen evolution rates by 2.1, 99.8, and ∞ times compared with the unmodified g-C3N4 under UV, simulated sunlight, and visible light illumination, respectively. Moreover, the composite exhibited a sustained hydrogen evolution capacity in the cycle test for up to 120 h. Theoretical calculations and experimental results indicated that the hot electrons of Au are injected into the modified g-C3N4 and transferred to Ti3C2 simultaneously along with the photogenerated electrons of the modified g-C3N4 and then further transferred to Au, forming a photogenerated electron transfer channel of Au and modified g-C3N4 → Ti3C2 → Au within the composite. Ti3C2 acts as a bridge for fast separation of photogenerated electrons and holes on Au and modified g-C3N4, playing a key role in the enhanced photocatalytic performance. In addition, the visible light absorption ability of Au also positively contributed to the enhancement of visible light photocatalytic performance by providing hot electrons. Therefore, the selection of suitable cocatalysts for the design of composites is a crucial research direction to improve the photocatalytic performance and photostability of photocatalysts.
Collapse
Affiliation(s)
- Jia Yang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, Chongqing, P. R. China
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Universities Key Laboratory of Nonferrous Metal Oxide Electronic Functional Materials and Devices, Guilin University of Technology, Guilin 541004, P. R. China
| | - Rong Wang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Xiaorui Sun
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling 408100, Chongqing, P. R. China
| | - Yan Li
- Guangxi Key Laboratory of Electrochemical and Magentochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jian Liu
- Guangxi Key Laboratory of Electrochemical and Magentochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Xiaojun Kuang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magentochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Universities Key Laboratory of Nonferrous Metal Oxide Electronic Functional Materials and Devices, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
149
|
Satheesh D, Baskar L, Jayavelu Y, Dekshinamoorthy A, Sakthinathan VR, Daniel PJ, Vijayaraghavan S, Krishnan K, Rajendran R, Pachaiappan R, Manavalan K. Efficient electrochemical hydrogen evolution activity of nanostructured Ag 3PO 4/MoS 2 heterogeneous composite catalyst. CHEMOSPHERE 2024; 351:141220. [PMID: 38224749 DOI: 10.1016/j.chemosphere.2024.141220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Hydrogen (H2) generation by electrochemical water splitting is a key technique for sustainable energy applications. Two-dimensional (2D) transition-metal dichalcogenide (MoS2) and silver phosphate (Ag3PO4) possess excellent electrochemical hydrogen evolution reaction (HER) properties when they are combined together as a composite rather than individuals. Reports examining the HER activity by using Ag3PO4, especially, in combination with the 2D layered MoS2 are limited in literature. The weight fraction of MoS2 in Ag3PO4 is optimized for 1, 3, and 5 wt%. The Ag3PO4/1 wt % MoS2 combination exhibits enhanced HER activity with least overpotential of 235 mV among the other samples in the acidic medium. The synergistic effect of optimal nano-scale 2D layered MoS2 structure and Ag3PO4 is essential for creating higher electrochemical active surface area of 217 mF/cm2, and hence this leads to faster reaction kinetics in the HER. This work suggests the advantages of Ag3PO4/1 wt % MoS2 heterogeneous composite catalyst for electrochemical analysis and HER indicating lower resistivity and low Tafel slope value (179 mV/dec) among the prepared catalysts making it a promising candidate for its use in practical energy applications.
Collapse
Affiliation(s)
- Divyadharshini Satheesh
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Leena Baskar
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Yuvashree Jayavelu
- Department of Physics, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Amuthan Dekshinamoorthy
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Vishwath Rishaban Sakthinathan
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Paul Joseph Daniel
- Department of Physics, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Saranyan Vijayaraghavan
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Karthik Krishnan
- Corrosion and Materials Protection Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamilnadu, India
| | - Rathika Rajendran
- Department of Physics, St. Theresa's Arts & Science College for Women, Tharangambadi, Mayiladuthurai District, Tamilnadu, 609313, India
| | - Rekha Pachaiappan
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Universidad de Tarapacá, Avda. General Velasquez 1775 , Arica, Chile
| | - Kovendhan Manavalan
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India.
| |
Collapse
|
150
|
Hong YH, Nilajakar M, Lee YM, Nam W, Fukuzumi S. Artificial Photosynthesis for Regioselective Reduction of NAD(P) + to NAD(P)H Using Water as an Electron and Proton Source. J Am Chem Soc 2024; 146:5152-5161. [PMID: 38350862 DOI: 10.1021/jacs.3c10369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
In photosynthesis, four electrons and four protons taken from water in photosystem II (PSII) are used to reduce NAD(P)+ to produce NAD(P)H in photosystem I (PSI), which is the most important reductant to reduce CO2. Despite extensive efforts to mimic photosynthesis, artificial photosynthesis to produce NAD(P)H using water electron and proton sources has yet to be achieved. Herein, we report the photocatalytic reduction of NAD(P)+ to NAD(P)H and its analogues in a molecular model of PSI, which is combined with water oxidation in a molecular model of PSII. Photoirradiation of a toluene/trifluoroethanol (TFE)/borate buffer aqueous solution of hydroquinone derivatives (X-QH2), 9-mesityl-10-methylacridinium ion, cobaloxime, and NAD(P)+ (PSI model) resulted in the quantitative and regioselective formation of NAD(P)H and p-benzoquinone derivatives (X-Q). X-Q was reduced to X-QH2, accompanied by the oxidation of water to dioxygen under the photoirradiation of a toluene/TFE/borate buffer aqueous solution of [(N4Py)FeII]2+ (PSII model). The PSI and PSII models were combined using two glass membranes and two liquid membranes to produce NAD(P)H using water as an electron and proton source with the turnover number (TON) of 54. To the best of our knowledge, this is the first time to achieve the stoichiometry of photosynthesis, photocatalytic reduction of NAD(P)+ by water to produce NAD(P)H and O2.
Collapse
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|