101
|
Impacts of electroacupuncture at auricular concha on gastrointestinal motility in the rats with type 2 diabetes. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
102
|
Potential roles of vagus nerve stimulation on traumatic brain injury: Evidence from in vivo and clinical studies. Exp Neurol 2021; 347:113887. [PMID: 34624329 DOI: 10.1016/j.expneurol.2021.113887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 01/08/2023]
Abstract
Traumatic Brain Injury (TBI) is a one of the leading causes of death and disability worldwide. The consequences of TBI can be divided into two stages: 1) the immediate neuronal destruction during the initial trauma, resulting in the primary brain injury and pathophysiologic sequelae, and 2) the secondary brain injury, encompassing mitochondrial dysfunction, inflammation, cellular excitotoxicity, oxidative stress, and cortical edema, resulting in increased intracranial pressure (ICP) with exacerbated brain damage. Although the pathophysiology in TBI has been thoroughly investigated, the effectivity of therapeutic approaches for TBI is still lacking. Vagus nerve stimulation (VNS) has been used for treating medical refractory epilepsy and chronic drug-resistant depression. Several previous studies also demonstrated that VNS has beneficial effects for TBI in animal models and patients. The neuroprotective effects of VNS on TBI are possibly explained through several mechanisms, including a noradrenergic mechanism, anti-inflammatory effects, regulation of neurotransmitters, and attenuation of blood brain barrier breakdown, and brain edema. The aims of this review are to summarize and discuss the current evidence pertinent to the effect of VNS on both primary and secondary brain injury following TBI from both in vivo and clinical studies.
Collapse
|
103
|
Cavalcanti-de-Albuquerque JP, Donato J. Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Front Neuroendocrinol 2021; 63:100944. [PMID: 34425188 DOI: 10.1016/j.yfrne.2021.100944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
Energy balance is the fine regulation of energy expenditure and energy intake. Negative energy balance causes body weight loss, while positive energy balance promotes weight gain. Modern societies offer a maladapted way of life, where easy access to palatable foods and the lack of opportunities to perform physical activity are considered the roots of the obesity pandemic. Physical exercise increases energy expenditure and, consequently, is supposed to promote weight loss. Paradoxically, physical exercise acutely drives anorexigenic-like effects, but the mechanisms are still poorly understood. Using an evolutionary background, this review aims to highlight the potential involvement of the melanocortin system and other hypothalamic neural circuitries regulating energy balance during and after physical exercise. The physiological significance of these changes will be explored, and possible signalling agents will be addressed. The knowledge discussed here might be important for clarifying obesity aetiology as well as new therapeutic approaches for body weight loss.
Collapse
Affiliation(s)
| | - José Donato
- Department of Physiology and Biophysics, University of São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
104
|
Antoniak K, Hansdorfer-Korzon R, Mrugacz M, Zorena K. Adipose Tissue and Biological Factors. Possible Link between Lymphatic System Dysfunction and Obesity. Metabolites 2021; 11:metabo11090617. [PMID: 34564433 PMCID: PMC8464765 DOI: 10.3390/metabo11090617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
The World Health Organization (WHO) has recognised obesity as one of the top ten threats to human health. Obesity is not only a state of abnormally increased adipose tissue in the body, but also of an increased release of biologically active metabolites. Moreover, obesity predisposes the development of metabolic syndrome and increases the incidence of type 2 diabetes (T2DM), increases the risk of developing insulin resistance, atherosclerosis, ischemic heart disease, polycystic ovary syndrome, hypertension and cancer. The lymphatic system is a one-directional network of thin-walled capillaries and larger vessels covered by a continuous layer of endothelial cells that provides a unidirectional conduit to return filtered arterial and tissue metabolites towards the venous circulation. Recent studies have shown that obesity can markedly impair lymphatic function. Conversely, dysfunction in the lymphatic system may also be involved in the pathogenesis of obesity. This review highlights the important findings regarding obesity related to lymphatic system dysfunction, including clinical implications and experimental studies. Moreover, we present the role of biological factors in the pathophysiology of the lymphatic system and we propose the possibility of a therapy supporting the function of the lymphatic system in the course of obesity.
Collapse
Affiliation(s)
- Klaudia Antoniak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Rita Hansdorfer-Korzon
- Department of Physical Therapy, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Małgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Kilinskiego 1, 15-089 Białystok, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
- Correspondence: ; Tel./Fax: +48-583491765
| |
Collapse
|
105
|
Cao J, Zhang Y, Li H, Yan Z, Liu X, Hou X, Chen W, Hodges S, Kong J, Liu B. Different modulation effects of 1 Hz and 20 Hz transcutaneous auricular vagus nerve stimulation on the functional connectivity of the periaqueductal gray in patients with migraine. J Transl Med 2021; 19:354. [PMID: 34404427 PMCID: PMC8371886 DOI: 10.1186/s12967-021-03024-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023] Open
Abstract
Background A growing body of evidence suggests that transcutaneous auricular vagus nerve stimulation (taVNS) may relieve symptoms of migraineurs. Frequency is one of the key stimulation parameters. The aim of this study is to investigate the modulation effect of taVNS frequency on the descending pain modulation system (DPMS) in patients with migraine. Methods Twenty-four episodic migraineurs without aura (21 females) were recruited for the single-blind, crossover, functional magnetic resonance imaging (fMRI) study. Each participant attended two separate fMRI scan sessions, one for 1 Hz and another for 20 Hz taVNS, in a random order. Seed-based functional connectivity analysis was applied using the ventrolateral periaqueductal gray (PAG) as the region of interest. Results Compared with the pre-taVNS resting state, continuous 1 Hz taVNS (during) produced a significant increase in functional connectivity between the PAG and the bilateral middle cingulate cortex (MCC), right precuneus, left middle frontal gyrus (MFG), and left cuneus. Compared with 20 Hz taVNS, 1 Hz taVNS produced greater PAG connectivity increases with the MCC, right precuneus/posterior cingulate cortex, left insula, and anterior cingulate cortex (ACC). A significant negative correlation was observed between the number of migraine attacks in the previous 4 weeks and the PAG-MCC functional connectivity in the pre-taVNS resting-state before 1 Hz taVNS. Conclusions Our findings suggest that taVNS with different frequencies may produce different modulation effects on the descending pain modulation system, demonstrating the important role of stimulation frequency in taVNS treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03024-9.
Collapse
Affiliation(s)
- Jin Cao
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Sierra Hodges
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Bo Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
106
|
Faraj J, Takanti V, Tavakoli HR. The Gut-Brain Axis: Literature Overview and Psychiatric Applications. Fed Pract 2021; 38:356-362. [PMID: 34733087 PMCID: PMC8560095 DOI: 10.12788/fp.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Literature exploring the relationship between the intestinal microbiome and its effects on general health and well-being has grown significantly in recent years, and our knowledge of this subject continues to grow. Mounting evidence indicates that the intestinal microbiome is a potential target for therapeutic intervention in psychiatric illness and in neurodegenerative disorders such as Alzheimer disease. It is reasonable to consider modulating not just a patient's neurochemistry, behavior, or cognitive habits, but also their intestinal microbiome in an effort to improve psychiatric symptoms. OBSERVATIONS In this review paper, we show that intestinal microbiota possess the ability to directly influence both physical and mental well-being; therefore, should be included in future discussions regarding psychiatric treatment. CONCLUSIONS Clinicians are encouraged to consider patients' gut health when evaluating and treating psychiatric conditions, such as anxiety and depression. Optimization and diversification of gut flora through the use of psychobiotics-probiotics that confer mental health benefits-may soon become standard practice in conjunction with traditional psychiatric treatment modalities such as pharmacotherapy and psychotherapy.
Collapse
Affiliation(s)
- Janine Faraj
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Varun Takanti
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Hamid R Tavakoli
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| |
Collapse
|
107
|
Mikami Y, Tsunoda J, Kiyohara H, Taniki N, Teratani T, Kanai T. Vagus nerve-mediated intestinal immune regulation: therapeutic implications for inflammatory bowel diseases. Int Immunol 2021; 34:97-106. [PMID: 34240133 DOI: 10.1093/intimm/dxab039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of inflammatory bowel disease (IBD) involves immunological, genetic and environmental factors. Through its ability to sense environmental stimuli, the autonomic nervous system plays a key role in the development and persistence of IBD. The vagus nerve (VN), which contains sensory and motor neurons, travels throughout the body to innervate the gut and other visceral organs in the thoracic and abdominopelvic cavities. Recent studies show that the VN has anti-inflammatory effects via the release of acetylcholine, in what is known as the cholinergic anti-inflammatory pathway (CAIP). In the gut immune system, the CAIP is proposed to be activated directly by signals from the gut and indirectly by signals from the liver, which receives gut-derived bioactive substances via the portal vein and senses the status of the gut. The gut-brain axis and liver-brain-gut reflex arc regulate a wide variety of peripheral immune cells to maintain homeostasis in the gut. Therefore, targeting the neural reflex by methods such as VN stimulation is now under investigation for suppressing intestinal inflammation associated with IBD. In this review, we describe the role of the VN in the regulation of intestinal immunity, and we discuss novel therapeutic approaches for IBD that target neuroimmune interactions.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
108
|
Conta G, Libanori A, Tat T, Chen G, Chen J. Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007502. [PMID: 34014583 DOI: 10.1002/adma.202007502] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Current solutions developed for the purpose of in and on body (IOB) electrical stimulation (ES) lack autonomous qualities necessary for comfortable, practical, and self-dependent use. Consequently, recent focus has been placed on developing self-powered IOB therapeutic devices capable of generating therapeutic ES for human use. With the recent invention of the triboelectric nanogenerator (TENG), harnessing passive human biomechanical energy to develop self-powered systems has allowed for the introduction of novel therapeutic ES solutions. TENGs are especially effective at providing ES for IOB therapeutic systems given their bioconformability, low cost, simple manufacturability, and self-powering capabilities. Due to the key role of naturally induced electrical signals in many physiological functions, TENG-induced ES holds promise to provide a novel paradigm in therapeutic interventions. The aim here is to detail research on IOB TENG devices applied for ES-based therapy in the fields of regenerative medicine, neurology, rehabilitation, and pharmaceutical engineering. Furthermore, considering TENG-produced ES can be measured for sensing applications, this technology is paving the way to provide a fully autonomous personalized healthcare system, capable of IOB energy generation, sensing, and therapeutic intervention. Considering these grounds, it seems highly relevant to review TENG-ES research and applications, as they could constitute the foundation and future of personalized healthcare.
Collapse
Affiliation(s)
- Giorgio Conta
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
109
|
Singh A, Dawson TM, Kulkarni S. Neurodegenerative disorders and gut-brain interactions. J Clin Invest 2021; 131:e143775. [PMID: 34196307 DOI: 10.1172/jci143775] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders (NDs) affect essential functions not only in the CNS, but also cause persistent gut dysfunctions, suggesting that they have an impact on both CNS and gut-innervating neurons. Although the CNS biology of NDs continues to be well studied, how gut-innervating neurons, including those that connect the gut to the brain, are affected by or involved in the etiology of these debilitating and progressive disorders has been understudied. Studies in recent years have shown how CNS and gut biology, aided by the gut-brain connecting neurons, modulate each other's functions. These studies underscore the importance of exploring the gut-innervating and gut-brain connecting neurons of the CNS and gut function in health, as well as the etiology and progression of dysfunction in NDs. In this Review, we discuss our current understanding of how the various gut-innervating neurons and gut physiology are involved in the etiology of NDs, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, to cause progressive CNS and persistent gut dysfunction.
Collapse
Affiliation(s)
- Alpana Singh
- Center for Neurogastroenterology, Division of Gastroenterology and Hepatology, Department of Medicine
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering.,Department of Neurology.,Solomon H. Snyder Department of Neuroscience, and.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana, USA
| | - Subhash Kulkarni
- Center for Neurogastroenterology, Division of Gastroenterology and Hepatology, Department of Medicine
| |
Collapse
|
110
|
Ezquer F, Quintanilla ME, Moya‐Flores F, Morales P, Munita JM, Olivares B, Landskron G, Hermoso MA, Ezquer M, Herrera‐Marschitz M, Israel Y. Innate gut microbiota predisposes to high alcohol consumption. Addict Biol 2021; 26:e13018. [PMID: 33508889 DOI: 10.1111/adb.13018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Gut microbiota is known to be transferred from the mother to their offspring. This study determines whether the innate microbiota of rats selectively bred for generations as high alcohol drinkers play a role in their alcohol intake. Wistar-derived high-drinker UChB rats (intake 10-g ethanol/kg/day) administered nonabsorbable oral antibiotics before allowing access to alcohol, reducing their voluntary ethanol intake by 70%, an inhibition that remained after the antibiotic administration was discontinued. Oral administration of Lactobacillus rhamnosus Gorbach-Goldin (GG) induced the synthesis of FGF21, a vagal β-Klotho receptor agonist, and partially re-invoked a mechanism that reduces alcohol intake. The vagus nerve constitutes the main axis transferring gut microbiota information to the brain ("microbiota-gut-brain" axis). Bilateral vagotomy inhibited rat alcohol intake by 75%. Neither antibiotic treatment nor vagotomy affected total fluid intake. A microbiota-mediated marked inflammatory environment was observed in the gut of ethanol-naïve high-drinker rats, as gene expression of proinflammatory cytokines (TNF-α; IL-6; IL-1β) was significantly reduced by nonabsorbable antibiotic administration. Gut cytokines are known to activate the vagus nerve, while vagal activation induces pro-rewarding effects in nucleus accumbens. Both alcoholics and alcohol-preferring rats share a marked preference for sweet tastes-likely an evolutionary trait to seek sweet fermented fruits. Saccharin intake by UChB rats was inhibited by 75%-85% by vagotomy or oral antibiotic administration, despite saccharin-induced polydipsia. Overall, data indicate that the mechanisms that normally curtail heavy drinking are inhibited in alcohol-preferring animals and inform a gut microbiota origin. Whether it applies to other mammals and humans merits further investigation.
Collapse
Affiliation(s)
- Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine Clínica Alemana‐Universidad del Desarrollo Santiago Chile
| | - Maria Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine Universidad de Chile Santiago Chile
| | - Francisco Moya‐Flores
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R) Santiago Chile
- Genomics and Resistant Microbes Group, School of Medicine Clínica Alemana‐Universidad del Desarrollo Santiago Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine Universidad de Chile Santiago Chile
- Department of Neuroscience, School of Medicine Universidad de Chile Santiago Chile
| | - José Manuel Munita
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB‐R) Santiago Chile
- Genomics and Resistant Microbes Group, School of Medicine Clínica Alemana‐Universidad del Desarrollo Santiago Chile
| | - Belén Olivares
- Center for Medical Chemistry, School of Medicine Clínica Alemana‐Universidad del Desarrollo Santiago Chile
| | - Glauben Landskron
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Science, Faculty of Medicine Universidad de Chile Santiago Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Science, Faculty of Medicine Universidad de Chile Santiago Chile
| | - Marcelo Ezquer
- Center for Regenerative Medicine, School of Medicine Clínica Alemana‐Universidad del Desarrollo Santiago Chile
| | - Mario Herrera‐Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine Universidad de Chile Santiago Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine Universidad de Chile Santiago Chile
| |
Collapse
|
111
|
The Link between Obesity, Microbiota Dysbiosis, and Neurodegenerative Pathogenesis. Diseases 2021; 9:diseases9030045. [PMID: 34201465 PMCID: PMC8293145 DOI: 10.3390/diseases9030045] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Current research in medicine in several parts of the world has attempted to establish a link between the occurrence of neurodegenerative pathologies, microbiota dysbiosis, and the incidence of obesity. The body’s response to different physicochemical factors has also been influenced by the proper assimilation of bioactive compounds contained in the food that is ingested. Oxidative stress is one of the major factors that directly affects the functioning of the human microbiota. The body’s reaction to this imbalance is crucial to the progression of inflammatory processes, which are based on molecular mechanisms. Microbial dysbiosis can result in a possibly permanent alteration in the physiological response. This review aims to highlight recent contributions made to alleviating human dysbiosis in degenerative diseases, especially for neurodegenerative pathologies based on the rising prevalence of obesity. We discuss the significance of both microbiota modulation and possible alleviations of pathologies by a modulatory function. We argue that pre- and probiotics (including phenolic compounds stimulating the favorable strain from the microbiota) are an effective alternative that can support the microbiota pattern’s modulation over time and the attenuation of indirect causes that determine dysbiosis. Molecular aspects are presented in support of the modulating role of the microbiota following the use of probiotics.
Collapse
|
112
|
Pocheron AL, Le Dréan G, Billard H, Moyon T, Pagniez A, Heberden C, Le Chatelier E, Darmaun D, Michel C, Parnet P. Maternal Microbiota Transfer Programs Offspring Eating Behavior. Front Microbiol 2021; 12:672224. [PMID: 34211445 PMCID: PMC8239415 DOI: 10.3389/fmicb.2021.672224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 01/15/2023] Open
Abstract
Understanding the link between mother's obesity and regulation of the child's appetite is a prerequisite for the design of successful preventive strategies. Beyond the possible contributions of genetic heritage, family culture, and hormonal and metabolic environment during pregnancy, we investigate in the present paper the causal role of the transmission of the maternal microbiotas in obesity as microbiotas differ between lean and obese mothers, maternal microbiotas are the main determinants of a baby's gut colonization, and the intestinal microbiota resulting from the early colonization could impact the feeding behavior of the offspring with short- and long-term consequences on body weight. We thus investigated the potential role of vertical transfers of maternal microbiotas in programming the eating behavior of the offspring. Selectively bred obese-prone (OP)/obese-resistant (OR) Sprague-Dawley dams were used since differences in the cecal microbiota have been evidenced from males of that strain. Microbiota collected from vagina (at the end of gestation), feces, and milk (at postnatal days 1, 5, 10, and 15) of OP/OR dams were orally inoculated to conventional Fischer F344 recipient pups from birth to 15 days of age to create three groups of pups: F-OP, F-OR, and F-Sham group (that received the vehicle). We first checked microbiotal differences between inoculas. We then assessed the impact of transfer (from birth to adulthood) onto the intestinal microbiota of recipients rats, their growth, and their eating behavior by measuring their caloric intake, their anticipatory food reward responses, their preference for sweet and fat tastes in solutions, and the sensations that extend after food ingestion. Finally, we searched for correlation between microbiota composition and food intake parameters. We found that maternal transfer of microbiota differing in composition led to alterations in pups' gut microbiota composition that did not last until adulthood but were associated with specific eating behavior characteristics that were predisposing F-OP rats to higher risk of over consuming at subsequent periods of their life. These findings support the view that neonatal gut microbiotal transfer can program eating behavior, even without a significant long-lasting impact on adulthood microbiota composition.
Collapse
|
113
|
Probiotics Improve Eating Disorders in Mandarin Fish ( Siniperca chuatsi) Induced by a Pellet Feed Diet via Stimulating Immunity and Regulating Gut Microbiota. Microorganisms 2021; 9:microorganisms9061288. [PMID: 34204793 PMCID: PMC8231599 DOI: 10.3390/microorganisms9061288] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Eating disorders are directly or indirectly influenced by gut microbiota and innate immunity. Probiotics have been shown to regulate gut microbiota and stimulate immunity in a variety of species. In this study, three kinds of probiotics, namely, Lactobacillus plantarum, Lactobacillus rhamnosus and Clostridium butyricum, were selected for the experiment. The results showed that the addition of three probiotics at a concentration of 108 colony forming unit/mL to the culture water significantly increased the ratio of the pellet feed recipients and survival rate of mandarin fish (Siniperca chuatsi) under pellet-feed feeding. In addition, the three kinds of probiotics reversed the decrease in serum lysozyme and immunoglobulin M content, the decrease in the activity of antioxidant enzymes glutathione and catalase and the decrease in the expression of the appetite-stimulating regulator agouti gene-related protein of mandarin fish caused by pellet-feed feeding. In terms of intestinal health, the three probiotics reduced the abundance of pathogenic bacteria Aeromonas in the gut microbiota and increased the height of intestinal villi and the thickness of foregut basement membrane of mandarin fish under pellet-feed feeding. In general, the addition of the three probiotics can significantly improve eating disorders of mandarin fish caused by pellet feeding.
Collapse
|
114
|
Garrett A, Rakhilin N, Wang N, McKey J, Cofer G, Anderson RB, Capel B, Johnson GA, Shen X. Mapping the peripheral nervous system in the whole mouse via compressed sensing tractography. J Neural Eng 2021; 18. [PMID: 33979784 DOI: 10.1088/1741-2552/ac0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/12/2021] [Indexed: 11/12/2022]
Abstract
Objective.The peripheral nervous system (PNS) connects the central nervous system with the rest of the body to regulate many physiological functions and is therapeutically targeted to treat diseases such as epilepsy, depression, intestinal dysmotility, chronic pain, and more. However, we still lack understanding of PNS innervation in most organs because the large span, diffuse nature, and small terminal nerve bundle fibers have precluded whole-organism, high resolution mapping of the PNS. We sought to produce a comprehensive peripheral nerve atlas for use in future interrogation of neural circuitry and selection of targets for neuromodulation.Approach.We used diffusion tensor magnetic resonance imaging (DT-MRI) with high-speed compressed sensing to generate a tractogram of the whole mouse PNS. The tractography generated from the DT-MRI data is validated using lightsheet microscopy on optically cleared, antibody stained tissue.Main results.Herein we demonstrate the first comprehensive PNS tractography in a whole mouse. Using this technique, we scanned the whole mouse in 28 h and mapped PNS innervation and fiber network in multiple organs including heart, lung, liver, kidneys, stomach, intestines, and bladder at 70µm resolution. This whole-body PNS tractography map has provided unparalleled information; for example, it delineates the innervation along the gastrointestinal tract by multiple sacral levels and by the vagal nerves. The map enabled a quantitative tractogram that revealed relative innervation of the major organs by each vertebral foramen as well as the vagus nerve.Significance.This novel high-resolution nerve atlas provides a potential roadmap for future neuromodulation therapies and other investigations into the neural circuits which drive homeostasis and disease throughout the body.
Collapse
Affiliation(s)
- Aliesha Garrett
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| | - Nian Wang
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Jennifer McKey
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - Gary Cofer
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Robert Bj Anderson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Blanche Capel
- Department of Cell Biology, School of Medicine, Duke University, Durham, NC, United States of America
| | - G Allan Johnson
- Duke Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States of America
| |
Collapse
|
115
|
Gars A, Ronczkowski NM, Chassaing B, Castillo-Ruiz A, Forger NG. First Encounters: Effects of the Microbiota on Neonatal Brain Development. Front Cell Neurosci 2021; 15:682505. [PMID: 34168540 PMCID: PMC8217657 DOI: 10.3389/fncel.2021.682505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
The microbiota plays important roles in host metabolism and immunity, and its disruption affects adult brain physiology and behavior. Although such findings have been attributed to altered neurodevelopment, few studies have actually examined microbiota effects on the developing brain. This review focuses on developmental effects of the earliest exposure to microbes. At birth, the mammalian fetus enters a world teeming with microbes which colonize all body sites in contact with the environment. Bacteria reach the gut within a few hours of birth and cause a measurable response in the intestinal epithelium. In adults, the gut microbiota signals to the brain via the vagus nerve, bacterial metabolites, hormones, and immune signaling, and work in perinatal rodents is beginning to elucidate which of these signaling pathways herald the very first encounter with gut microbes in the neonate. Neural effects of the microbiota during the first few days of life include changes in neuronal cell death, microglia, and brain cytokine levels. In addition to these effects of direct exposure of the newborn to microbes, accumulating evidence points to a role for the maternal microbiota in affecting brain development via bacterial molecules and metabolites while the offspring is still in utero. Hence, perturbations to microbial exposure perinatally, such as through C-section delivery or antibiotic treatment, alter microbiota colonization and may have long-term neural consequences. The perinatal period is critical for brain development and a close look at microbiota effects during this time promises to reveal the earliest, most primary effects of the microbiota on neurodevelopment.
Collapse
Affiliation(s)
- Aviva Gars
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | - Benoit Chassaing
- INSERM U1016, Team "Mucosal Microbiota in Chronic Inflammatory Diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
116
|
James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021; 9:662916. [PMID: 33937265 PMCID: PMC8081961 DOI: 10.3389/fcell.2021.662916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD's impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.
Collapse
Affiliation(s)
- David M. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | | | - Julio Yanes
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Baharak Moshiree
- Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
117
|
Wean JB, Smith BN. FGF19 in the Hindbrain Lowers Blood Glucose and Alters Excitability of Vagal Motor Neurons in Hyperglycemic Mice. Endocrinology 2021; 162:6127285. [PMID: 33534906 PMCID: PMC7906449 DOI: 10.1210/endocr/bqab021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 19 (FGF19) is a protein hormone that produces antidiabetic effects when administered intracerebroventricularly in the forebrain. However, no studies have examined how FGF19 affects hindbrain neurons that participate directly in autonomic control of systemic glucose regulation. Within the dorsal hindbrain, parasympathetic motor neurons of the dorsal motor nucleus of the vagus (DMV) express fibroblast growth factor receptors and their activity regulates visceral homeostatic processes, including energy balance. This study tested the hypothesis that FGF19 acts in the hindbrain to alter DMV neuron excitability and lower blood glucose concentration. Fourth ventricle administration of FGF19 produced no effect on blood glucose concentration in control mice, but induced a significant, peripheral muscarinic receptor-dependent decrease in systemic hyperglycemia for up to 12 h in streptozotocin-treated mice, a model of type 1 diabetes. Patch-clamp recordings from DMV neurons in vitro revealed that FGF19 application altered synaptic and intrinsic membrane properties of DMV neurons, with the balance of FGF19 effects being significantly modified by a recent history of systemic hyperglycemia. These findings identify central parasympathetic circuitry as a novel target for FGF19 and suggest that FGF19 acting in the dorsal hindbrain can alter vagal output to produce its beneficial metabolic effects.
Collapse
Affiliation(s)
- Jordan B Wean
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Correspondence: Bret N Smith, PhD, Department of Neuroscience, 800 Rose Street, Lexington, KY 40536-0298.
| |
Collapse
|
118
|
Huerta TS, Devarajan A, Tsaava T, Rishi A, Cotero V, Puleo C, Ashe J, Coleman TR, Chang EH, Tracey KJ, Chavan SS. Targeted peripheral focused ultrasound stimulation attenuates obesity-induced metabolic and inflammatory dysfunctions. Sci Rep 2021; 11:5083. [PMID: 33658532 PMCID: PMC7930257 DOI: 10.1038/s41598-021-84330-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity, a growing health concern, is associated with an increased risk of morbidity and mortality. Chronic low-grade inflammation is implicated in obesity-driven metabolic complications. Peripheral focused ultrasound stimulation (pFUS) is an emerging non-invasive technology that modulates inflammation. Here, we reasoned that focused ultrasound stimulation of the liver may alleviate obesity-related inflammation and other comorbidities. After 8 weeks on a high-fat high-carbohydrate "Western" diet, C57BL/6J mice were subjected to either sham stimulation or focused ultrasound stimulation at the porta hepatis. Daily liver-focused ultrasound stimulation for 8 weeks significantly decreased body weight, circulating lipids and mitigated dysregulation of adipokines. In addition, liver-focused ultrasound stimulation significantly reduced hepatic cytokine levels and leukocyte infiltration. Our findings demonstrate the efficacy of hepatic focused ultrasound for alleviating obesity and obesity-associated complications in mice. These findings suggest a previously unrecognized potential of hepatic focused ultrasound as a possible novel noninvasive approach in the context of obesity.
Collapse
Affiliation(s)
- Tomás S Huerta
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Alex Devarajan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tea Tsaava
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Arvind Rishi
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | | | | | - Jeffrey Ashe
- GE Research, 1 Research Circle, Niskayuna, NY, 12309, USA
| | - Thomas R Coleman
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
119
|
Khoury T, Ilan Y. Platform introducing individually tailored variability in nerve stimulations and dietary regimen to prevent weight regain following weight loss in patients with obesity. Obes Res Clin Pract 2021; 15:114-123. [PMID: 33653665 DOI: 10.1016/j.orcp.2021.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
Prevention of weight regain following successful weight loss is a major challenge in the treatment of obesity, irrespective of the weight reduction method used. The majority of individuals regain the lost weight over time; thus, achieving long-term sustainability in weight loss remains an unresolved issue. A compensatory adaptation to the weight loss methods occurs in several body organs and partly explains the lack of sustainable effect. Variability is inherent in many biological systems, and patterns of variability constitute a body mechanism that is active at several levels, starting from the genes and cellular pathways through to the whole-organ level. This study aimed to describe a platform that introduces individually tailored variability in vagal nerve stimulation and dietary regimen to ensure prolonged and sustainable weight loss and prevent weight regain. The platform is intended to provide a method that can overcome the body's compensatory adaptation mechanisms while ensuring a prolonged beneficial effect.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Gastroenterology, Galilee Medical Center, Nahariya, Israel; Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, PO Box 12000, IL-91120, Jerusalem, Israel.
| |
Collapse
|
120
|
Yang NN, Yang JW, Ye Y, Huang J, Wang L, Wang Y, Su XT, Lin Y, Yu FT, Ma SM, Qi LY, Lin LL, Wang LQ, Shi GX, Li HP, Liu CZ. Electroacupuncture ameliorates intestinal inflammation by activating α7nAChR-mediated JAK2/STAT3 signaling pathway in postoperative ileus. Am J Cancer Res 2021; 11:4078-4089. [PMID: 33754049 PMCID: PMC7977469 DOI: 10.7150/thno.52574] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory cytokines produced by muscularis macrophages largely contribute to the pathological signs of postoperative ileus (POI). Electroacupuncture (EA) can suppress inflammation, mainly or partly via activation of vagal efferent. The goal of this study was to investigate the mechanisms by which EA stimulation at an hindlimb region ameliorates inflammation in POI. Methods: Intestinal motility and inflammation were examined after 24 h after intestinal manipulation (IM)-induced POI in mice. Local immune response in the intestinal muscularis, expression of macrophages, α7 nicotinic acetylcholine receptor (α7nAChR), Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were determined by flow cytometry, Western Blot, qPCR and immunofluorescence. The effects of α7nAChR antagonists (methyllycaconitine and α-bungarotoxin) and JAK2/STAT3 inhibitors (AG490 and WP1066) were also administered in a subset of mice prior to EA. In the parasympathetic pathways, intestinal motility and inflammation were determined after cervical vagotomy and sub-diaphragmatic vagotomy. The expression of gamma absorptiometry aminobutyric acid (GABAA) receptor in dorsal motor nucleus of vagal (DMV) cholinergic neurons was assessed by immunofluorescence and the response to DMV microinjection of bicuculine (antagonist of GABAA receptor) or muscimol (agonist of GABAA receptor) were assessed. Results: EA suppressed intestinal inflammation and promoted gastrointestinal motility. Mechanistically, EA activated the α7nAChR-mediated JAK2/STAT3 signaling pathway in macrophages which reduced the production of inflammatory cytokines. Furthermore, we also demonstrated that hindlimb region stimulation drove vagal efferent output by inhibiting the expression of GABAA receptor in DMV to ameliorate inflammation. Conclusions: The present study revealed that EA of hindlimb regions inhibited the expression of GABAA receptor in DMV neurons, whose excited vagal nerve, in turn suppressed IM-induced inflammation via activation of α7nAChR-mediated JAK2/STAT3 signaling pathway.
Collapse
|
121
|
The acidified drinking water-induced changes in the behavior and gut microbiota of wild-type mice depend on the acidification mode. Sci Rep 2021; 11:2877. [PMID: 33536529 PMCID: PMC7858586 DOI: 10.1038/s41598-021-82570-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Acidification of drinking water to a pH between 2.5 and 3.0 is widely used to prevent the spread of bacterial diseases in animal colonies. Besides hydrochloric acid (HCl), sulfuric acid (H2SO4) is also used to acidify drinking water. Here we examined the effects of H2SO4-acidified drinking water (pH = 2.8) received from weaning (postnatal day 21) on the behavior and gut microflora of 129S6/SvEv mice, a mouse strain commonly used in transgenic studies. In contrast to HCl-acidified water, H2SO4-acidified water only temporarily impaired the pole-descending ability of mice (at 3 months of age), and did not change the performance in an accelerating rotarod test. As compared to 129S6/SvEv mice receiving non-acidified or HCl-acidified drinking water, the gut microbiota of 129S6/SvEv mice on H2SO4-acidified water displayed significant alterations at every taxonomic level especially at 6 months of age. Our results demonstrate that the effects of acidified drinking water on the behavior and gut microbiota of 129S6/SvEv mice depends on the acid used for acidification. To shed some light on how acidified drinking water affects the physiology of 129S6/SvEv mice, we analyzed the serum and fecal metabolomes and found remarkable, acidified water-induced alterations.
Collapse
|
122
|
Pitra S, Smith BN. Musings on the wanderer: What's new in our understanding of vago-vagal reflexes? VI. Central vagal circuits that control glucose metabolism. Am J Physiol Gastrointest Liver Physiol 2021; 320:G175-G182. [PMID: 33205998 PMCID: PMC7938771 DOI: 10.1152/ajpgi.00368.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurons in the brain stem dorsal vagal complex (DVC) take part in a continuous bidirectional crosstalk, in which they receive and respond to a vast array of signaling molecules, including glucose. Importantly, chronic dysregulation of blood glucose concentration, a hallmark of high prevalence pathologies, such as diabetes and metabolic syndrome, can induce neuroplasticity in DVC neural networks, which is hypothesized to either contribute to or compensate for the glycemic or insulinemic dysregulation observed in these conditions. Here, we revisit the topic of vagal reflexes to review recent research on the importance of DVC function in regulating systemic glucose homeostasis and the neuroplastic changes in this brain region that are associated with systemic glucose alterations. We also discuss the critical connection between these nuclei and the gut and the role of central vagal circuits in the favorable outcomes associated with bariatric surgical procedures for metabolic disorders.
Collapse
Affiliation(s)
- Soledad Pitra
- 1Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Bret N. Smith
- 1Department of Neuroscience, University of Kentucky, Lexington, Kentucky,2Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
123
|
Akhtar K, Hirschstein Z, Stefanelli A, Iannilli E, Srinivasan A, Barenboim L, Balkaya M, Cunha A, Audil A, Kochman EM, Chua F, Ravi M, Mikkilineni S, Watkins H, O'Connor W, Fan Y, Cotero V, Ashe J, Puleo C, Kao TJ, Shin DS. Non-invasive peripheral focused ultrasound neuromodulation of the celiac plexus ameliorates symptoms in a rat model of inflammatory bowel disease. Exp Physiol 2021; 106:1038-1060. [PMID: 33512049 DOI: 10.1113/ep088848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/26/2021] [Indexed: 01/17/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does peripheral non-invasive focused ultrasound targeted to the celiac plexus improve inflammatory bowel disease? What is the main finding and its importance? Peripheral non-invasive focused ultrasound targeted to the celiac plexus in a rat model of ulcerative colitis improved stool consistency and reduced stool bloodiness, which coincided with a longer and healthier colon than in animals without focused ultrasound treatment. The findings suggest that this novel neuromodulatory technology could serve as a plausible therapeutic approach for improving symptoms of inflammatory bowel disease. ABSTRACT Individuals suffering from inflammatory bowel disease (IBD) experience significantly diminished quality of life. Here, we aim to stimulate the celiac plexus with non-invasive peripheral focused ultrasound (FUS) to modulate the enteric cholinergic anti-inflammatory pathway. This approach may have clinical utility as an efficacious IBD treatment given the non-invasive and targeted nature of this therapy. We employed the dextran sodium sulfate (DSS) model of colitis, administering lower (5%) and higher (7%) doses to rats in drinking water. FUS on the celiac plexus administered twice a day for 12 consecutive days to rats with severe IBD improved stool consistency scores from 2.2 ± 1 to 1.0 ± 0.0 with peak efficacy on day 5 and maximum reduction in gross bleeding scores from 1.8 ± 0.8 to 0.8 ± 0.8 on day 6. Similar improvements were seen in animals in the low dose DSS group, who received FUS only once daily for 12 days. Moreover, animals in the high dose DSS group receiving FUS twice daily maintained colon length (17.7 ± 2.5 cm), while rats drinking DSS without FUS exhibited marked damage and shortening of the colon (13.8 ± 0.6 cm) as expected. Inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-17, tumour necrosis factor-α and interferon-γ were reduced with DSS but coincided with control levels after FUS, which is plausibly due to a loss of colon crypts in the former and healthier crypts in the latter. Lastly, overall, these results suggest non-invasive FUS of peripheral ganglion can deliver precision therapy to improve IBD symptomology.
Collapse
Affiliation(s)
- Kainat Akhtar
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Zall Hirschstein
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Allison Stefanelli
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Emilia Iannilli
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Aditya Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Linda Barenboim
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Mustafa Balkaya
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Alexandra Cunha
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Aliyah Audil
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Eliyahu M Kochman
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Fuyee Chua
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Maya Ravi
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Saisree Mikkilineni
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Hanel Watkins
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - William O'Connor
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Ying Fan
- General Electric Global Research Center, Niskayuna, NY, USA
| | | | - Jeffrey Ashe
- General Electric Global Research Center, Niskayuna, NY, USA
| | | | - Tzu-Jen Kao
- General Electric Global Research Center, Niskayuna, NY, USA
| | - Damian S Shin
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Department of Neurology, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
124
|
Malbert CH. Vagally Mediated Gut-Brain Relationships in Appetite Control-Insights from Porcine Studies. Nutrients 2021; 13:nu13020467. [PMID: 33573329 PMCID: PMC7911705 DOI: 10.3390/nu13020467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/07/2023] Open
Abstract
Signals arising from the upper part of the gut are essential for the regulation of food intake, particularly satiation. This information is supplied to the brain partly by vagal nervous afferents. The porcine model, because of its sizeable gyrencephalic brain, omnivorous regimen, and comparative anatomy of the proximal part of the gut to that of humans, has provided several important insights relating to the relevance of vagally mediated gut-brain relationships to the regulation of food intake. Furthermore, its large size combined with the capacity to become obese while overeating a western diet makes it a pivotal addition to existing murine models, especially for translational studies relating to obesity. How gastric, proximal intestinal, and portal information relating to meal arrival and transit are encoded by vagal afferents and their further processing by primary and secondary brain projections are reviewed. Their peripheral and central plasticities in the context of obesity are emphasized. We also present recent insights derived from chronic stimulation of the abdominal vagi with specific reference to the modulation of mesolimbic structures and their role in the restoration of insulin sensitivity in the obese miniature pig model.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, INRAE, Saint-Gilles, 35590 Paris, France;
- National Academy of Medicine, 75000 Paris, France
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
125
|
Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021; 16:254-263. [PMID: 32859772 PMCID: PMC7896240 DOI: 10.4103/1673-5374.290883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The adaptability of the central nervous system has been revealed in several model systems. Of particular interest to central nervous system-injured individuals is the ability for neural components to be modified for regain of function. In both types of neurotrauma, traumatic brain injury and spinal cord injury, the primary parasympathetic control to the gastrointestinal tract, the vagus nerve, remains anatomically intact. However, individuals with traumatic brain injury or spinal cord injury are highly susceptible to gastrointestinal dysfunctions. Such gastrointestinal dysfunctions attribute to higher morbidity and mortality following traumatic brain injury and spinal cord injury. While the vagal efferent output remains capable of eliciting motor responses following injury, evidence suggests impairment of the vagal afferents. Since sensory input drives motor output, this review will discuss the normal and altered anatomy and physiology of the gastrointestinal vagal afferents to better understand the contributions of vagal afferent plasticity following neurotrauma.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Emily M Besecker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA
| |
Collapse
|
126
|
Increased risk of subsequent benign prostatic hyperplasia in non-Helicobacter pylori-infected peptic ulcer patients: a population-based cohort study. Sci Rep 2020; 10:21719. [PMID: 33303936 PMCID: PMC7728766 DOI: 10.1038/s41598-020-78913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/01/2020] [Indexed: 11/08/2022] Open
Abstract
The vagus nerve plays an essential role in homeostasis and inflammation. Clinically, peptic ulcer patients without helicobacter pylori (HP) infection may provide a population for studying the effect of vagal hyperactivity. There were interests in the association of gastrointestinal disease and urogenital disorders. Herein, we try to investigate subsequent risk of benign prostatic hyperplasia (BPH) in non-HP infected peptic ulcer patients. We identified 17,672 peptic ulcer admission male patients newly diagnosed in 1998-2007 from Taiwan Health Insurance Database, and 17,672 male comparison without peptic ulcer, frequency matched by age, and index-year. We assessed subsequent incidence of BPH in each cohort by the end of 2013, and then compared the risk of developing BPH between individuals with and without peptic ulcer. In addition, peptic ulcer patients underwent surgery were also examined. There were 2954 peptic ulcer patients and 2291 comparisons noted with the occurrence of BPH (25.35 and 16.70 per 1000 person-years, respectively). Compared to comparisons, peptic ulcer patients had a 1.45- and 1.26-fold BPH risk in multivariable Cox model and Fine and Gray model (95% CI 1.37-1.54 and 1.19-1.34). In age-stratified analysis, the highest risk of BPH was in 45-59 years (interaction p < 0.05). Regarding surgery types, peptic ulcer patients who underwent simple suture surgery (i.e.: with integrated vagus nerve) had a significant higher BPH risk than comparison (HR 1.50 and 95% CI 1.33-1.74; SHR 1.26 and 95% CI 1.07-1.48), while patients underwent truncal vagotomy/pyloroplasty showed a lower incidence of BPH. In this study, non-HP-infected male peptic ulcer patients were found to have an increased risk of subsequent BPH. Indicating that there might be a role of vagus nerve. Based on the limitations of retrospective nature, further studies are required.
Collapse
|
127
|
Ragozzino FJ, Arnold RA, Fenwick AJ, Riley TP, Lindberg JEM, Peterson B, Peters JH. TRPM3 expression and control of glutamate release from primary vagal afferent neurons. J Neurophysiol 2020; 125:199-210. [PMID: 33296617 DOI: 10.1152/jn.00229.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vagal afferent fibers contact neurons in the nucleus of the solitary tract (NTS) and release glutamate via three distinct release pathways: synchronous, asynchronous, and spontaneous. The presence of TRPV1 in vagal afferents is predictive of activity-dependent asynchronous glutamate release along with temperature-sensitive spontaneous vesicle fusion. However, pharmacological blockade or genetic deletion of TRPV1 does not eliminate the asynchronous profile and only attenuates the temperature-dependent spontaneous release at high temperatures (>40°C), indicating additional temperature-sensitive calcium conductance(s) contributing to these release pathways. The transient receptor potential cation channel melastatin subtype 3 (TRPM3) is a calcium-selective channel that functions as a thermosensor (30-37°C) in somatic primary afferent neurons. We predict that TRPM3 is expressed in vagal afferent neurons and contributes to asynchronous and spontaneous glutamate release pathways. We investigated these hypotheses via measurements on cultured nodose neurons and in brainstem slice preparations containing vagal afferent to NTS synaptic contacts. We found histological and genetic evidence that TRPM3 is highly expressed in vagal afferent neurons. The TRPM3-selective agonist, pregnenolone sulfate, rapidly and reversibly activated the majority (∼70%) of nodose neurons; most of which also contained TRPV1. We confirmed the role of TRPM3 with pharmacological blockade and genetic deletion. In the brain, TRPM3 signaling strongly controlled both basal and temperature-driven spontaneous glutamate release. Surprisingly, genetic deletion of TRPM3 did not alter synchronous or asynchronous glutamate release. These results provide convergent evidence that vagal afferents express functional TRPM3 that serves as an additional temperature-sensitive calcium conductance involved in controlling spontaneous glutamate release onto neurons in the NTS.NEW & NOTEWORTHY Vagal afferent signaling coordinates autonomic reflex function and informs associated behaviors. Thermosensitive transient receptor potential (TRP) channels detect temperature and nociceptive stimuli in somatosensory afferent neurons, however their role in vagal signaling remains less well understood. We report that the TRPM3 ion channel provides a major thermosensitive point of control over vagal signaling and synaptic transmission. We conclude that TRPM3 translates physiological changes in temperature to neurophysiological outputs and can serve as a cellular integrator in vagal afferent signaling.
Collapse
Affiliation(s)
- Forrest J Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Rachel A Arnold
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Timothy P Riley
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jonathan E M Lindberg
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - BreeAnne Peterson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
128
|
Xie H, Yepuri N, Meng Q, Dhawan R, Leech CA, Chepurny OG, Holz GG, Cooney RN. Therapeutic potential of α7 nicotinic acetylcholine receptor agonists to combat obesity, diabetes, and inflammation. Rev Endocr Metab Disord 2020; 21:431-447. [PMID: 32851581 PMCID: PMC7572644 DOI: 10.1007/s11154-020-09584-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory reflex (CAIR) represents an important homeostatic regulatory mechanism for sensing and controlling the body's response to inflammatory stimuli. Vagovagal reflexes are an integral component of CAIR whose anti-inflammatory effects are mediated by acetylcholine (ACh) acting at α7 nicotinic acetylcholine receptors (α7nAChR) located on cells of the immune system. Recently, it is appreciated that CAIR and α7nAChR also participate in the control of metabolic homeostasis. This has led to the understanding that defective vagovagal reflex circuitry underlying CAIR might explain the coexistence of obesity, diabetes, and inflammation in the metabolic syndrome. Thus, there is renewed interest in the α7nAChR that mediates CAIR, particularly from the standpoint of therapeutics. Of special note is the recent finding that α7nAChR agonist GTS-21 acts at L-cells of the distal intestine to stimulate the release of two glucoregulatory and anorexigenic hormones: glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Furthermore, α7nAChR agonist PNU 282987 exerts trophic factor-like actions to support pancreatic β-cell survival under conditions of stress resembling diabetes. This review provides an overview of α7nAChR function as it pertains to CAIR, vagovagal reflexes, and metabolic homeostasis. We also consider the possible usefulness of α7nAChR agonists for treatment of obesity, diabetes, and inflammation.
Collapse
Affiliation(s)
- Han Xie
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Natesh Yepuri
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Qinghe Meng
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Ravi Dhawan
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Colin A Leech
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Oleg G Chepurny
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - George G Holz
- Departments of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Robert N Cooney
- Departments of Surgery, State University of New York (SUNY), Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
129
|
Time-of-Day-Dependent Gating of the Liver-Spinal Axis Initiates an Anti-Inflammatory Reflex in the Rat. eNeuro 2020; 7:ENEURO.0463-20.2020. [PMID: 33203733 PMCID: PMC7729296 DOI: 10.1523/eneuro.0463-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/23/2023] Open
Abstract
The autonomic nervous system (ANS) modulates the immune response through the engagement of an anti-inflammatory reflex. There is controversy regarding which efferent branch of the ANS, sympathetic or parasympathetic, downregulates the intensity of the inflammatory response. Furthermore, how information about the immune status of the body reaches the CNS to engage this reflex remains unclear. The present study demonstrates the existence of a liver-spinal axis that conveys early circulating inflammatory information to the CNS in response to lipopolysaccharide (LPS) and serves as the afferent arm of a sympathetic anti-inflammatory reflex. Furthermore, brainstem and spinal cord visceral sensory neurons show a time-of-day-dependent sensitivity to the incoming inflammatory information, in particular, prostaglandins (PG). Consequentially, the liver-spinal axis promotes the retention of tumor necrosis factor α (TNFα) in the liver and spleen during the resting period, resulting in low plasmatic TNFα levels. Consistently, low sensitivity for LPS during the active period promotes the release of TNFα from the organs into the circulation, resulting in high plasmatic TNFα levels. The present novel findings illustrate how the time-of-day-dependent activation of the liver-spinal axis contributes to the daily fluctuations of the inflammatory response.
Collapse
|
130
|
Sullivan SG, Paolacci S, Kiani AK, Bertelli M. Chiropractic care for hypertension: Review of the literature and study of biological and genetic bases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020017. [PMID: 33170172 PMCID: PMC8023135 DOI: 10.23750/abm.v91i13-s.10524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIM Hypertension is a multifactorial condition that is among the leading causes of mortality worldwide. Regulation of blood pressure greatly depends upon the activity of the autonomic nervous system. Alterations in the autonomic nervous system can lead to hypertension. In addition to nervous system control and individual physiologic state, various genes can directly influence autonomic responses. The complexity of blood pressure control is reflected in the 20-30% of individuals resistant to traditional pharmacological treatment, this indicates the need for alternative interventions. This article provides an integrative review and discussion of the key neurophysiologic and genetic factors that contribute to blood pressure regulation, the autonomic nervous system (ANS) and manual therapy literature, and the manual therapy and blood pressure literature. METHODS To assess the effects of chiropractic on the management of hypertension we searched articles published from 1980 to 2019 in PubMed, the Index to Chiropractic Literature and CINAHL, using the keywords: chiropractic, spinal manipulation, hypertension, and blood pressure. RESULTS We found 38 original studies that analyzed the effect of chiropractic therapy on hypertension. Of these studies, 10 were case reports and the statistical significance of the effects of chiropractic on blood pressure was not evaluated on these articles, so we focused on the remaining 28 articles. CONCLUSIONS The results of the review relative to chiropractic care were promising, but often contradictory, suggesting more research should be done. In consideration of the complexity of ANS blood pressure control, an evaluation of patient presenting physiologic and genetic characteristics is recommended and could provide valuable insight relative to the likelihood of patient blood pressure related responsiveness to care.
Collapse
Affiliation(s)
- Stephanie Gb Sullivan
- Office for Senior Health and Wellness, Dr. Sid E. Williams Center for Chiropractic Research, Life University, Marietta, GA, USA.
| | | | | | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
131
|
Kaur H, Singh Y, Singh S, Singh RB. Gut microbiome-mediated epigenetic regulation of brain disorder and application of machine learning for multi-omics data analysis. Genome 2020; 64:355-371. [PMID: 33031715 DOI: 10.1139/gen-2020-0136] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gut-brain axis (GBA) is a biochemical link that connects the central nervous system (CNS) and enteric nervous system (ENS). Clinical and experimental evidence suggests gut microbiota as a key regulator of the GBA. Microbes living in the gut not only interact locally with intestinal cells and the ENS but have also been found to modulate the CNS through neuroendocrine and metabolic pathways. Studies have also explored the involvement of gut microbiota dysbiosis in depression, anxiety, autism, stroke, and pathophysiology of other neurodegenerative diseases. Recent reports suggest that microbe-derived metabolites can influence host metabolism by acting as epigenetic regulators. Butyrate, an intestinal bacterial metabolite, is a known histone deacetylase inhibitor that has shown to improve learning and memory in animal models. Due to high disease variability amongst the population, a multi-omics approach that utilizes artificial intelligence and machine learning to analyze and integrate omics data is necessary to better understand the role of the GBA in pathogenesis of neurological disorders, to generate predictive models, and to develop precise and personalized therapeutics. This review examines our current understanding of epigenetic regulation of the GBA and proposes a framework to integrate multi-omics data for prediction, prevention, and development of precision health approaches to treat brain disorders.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Yuvraj Singh
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Surjeet Singh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Raja B Singh
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
132
|
Vallejo-Castillo L, Favari L, Vázquez-Leyva S, Mellado-Sánchez G, Macías-Palacios Z, López-Juárez LE, Valencia-Flores L, Medina-Rivero E, Chacón-Salinas R, Pavón L, Pérez-Tapia SM. Sequencing Analysis and Identification of the Primary Peptide Component of the Dialyzable Leukocyte Extract "Transferon Oral": The Starting Point to Understand Its Mechanism of Action. Front Pharmacol 2020; 11:569039. [PMID: 33117165 PMCID: PMC7577238 DOI: 10.3389/fphar.2020.569039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023] Open
Abstract
"Transferon Oral" is a peptide-derived product with immunomodulatory properties obtained from the lysis and dialysis of human buffy coat. Its active pharmaceutical ingredient, generically known as Dialyzable Leucocyte Extract, is a mixture of peptide populations with reproducible proportions among batches. "Transferon Oral" modulates IFN-γ, TNF-α, and IL-6 and increases the survival rate in a herpes infection murine model when oropharyngeally (ORO) administered, which correlate with clinical observations where "Transferon Oral" is used as a therapeutic auxiliary in inflammatory diseases. Notwithstanding, how a peptide-derived product elicits systemic modulation of cytokines when ORO administered remains unclear. To shed light on the pharmacology of "Transferon Oral" its peptide components must be known. Ten "Transferon Oral" batches were sequenced by mass spectrometry and the intact peptides were identified. The most abundant peptides were the monomeric human Ubiquitin (Ub), a globular low-molecular mass protein, and an Ub variant which lacks the two-terminal Gly (Ub-GG). Recombinant Ub prevented murine death when ORO administered in a herpes infection murine model. Besides, the percentage of survival increased in groups treated with Transferon Oral+Ub and decreased in groups treated with Ub-depleted "Transferon Oral" respect to the group treated with "Transferon Oral" only. Our findings indicate that the biological properties of "Transferon Oral" are partially associated to the Ub content. They suggest that Ub may activate its extracellular receptor (CXCR-4) in the stomach eliciting systemic immunomodulatory effects via vagus nerve. This is the first report that identifies an active component of "Transferon Oral" with the potential for the development of oral peptide immunomodulators.
Collapse
Affiliation(s)
- Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Favari
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Zaira Macías-Palacios
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leonardo E. López-Juárez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Valencia-Flores
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente., Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
133
|
Jiman AA, Ratze DC, Welle EJ, Patel PR, Richie JM, Bottorff EC, Seymour JP, Chestek CA, Bruns TM. Multi-channel intraneural vagus nerve recordings with a novel high-density carbon fiber microelectrode array. Sci Rep 2020; 10:15501. [PMID: 32968177 PMCID: PMC7511947 DOI: 10.1038/s41598-020-72512-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023] Open
Abstract
Autonomic nerves convey essential neural signals that regulate vital body functions. Recording clearly distinctive physiological neural signals from autonomic nerves will help develop new treatments for restoring regulatory functions. However, this is very challenging due to the small nature of autonomic nerves and the low-amplitude signals from their small axons. We developed a multi-channel, high-density, intraneural carbon fiber microelectrode array (CFMA) with ultra-small electrodes (8-9 µm in diameter, 150-250 µm in length) for recording physiological action potentials from small autonomic nerves. In this study, we inserted CFMA with up to 16 recording carbon fibers in the cervical vagus nerve of 22 isoflurane-anesthetized rats. We recorded action potentials with peak-to-peak amplitudes of 15.1-91.7 µV and signal-to-noise ratios of 2.0-8.3 on multiple carbon fibers per experiment, determined conduction velocities of some vagal signals in the afferent (0.7-4.4 m/s) and efferent (0.7-8.8 m/s) directions, and monitored firing rate changes in breathing and blood glucose modulated conditions. Overall, these experiments demonstrated that CFMA is a novel interface for in-vivo intraneural action potential recordings. This work is considerable progress towards the comprehensive understanding of physiological neural signaling in vital regulatory functions controlled by autonomic nerves.
Collapse
Affiliation(s)
- Ahmad A Jiman
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David C Ratze
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Julianna M Richie
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth C Bottorff
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - John P Seymour
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
134
|
Chapin AA, Rajasekaran PR, Quan DN, Hu L, Herberholz J, Bentley WE, Ghodssi R. Electrochemical measurement of serotonin by Au-CNT electrodes fabricated on microporous cell culture membranes. MICROSYSTEMS & NANOENGINEERING 2020; 6:90. [PMID: 34567700 PMCID: PMC8433419 DOI: 10.1038/s41378-020-00184-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 05/06/2023]
Abstract
Gut-brain axis (GBA) communication relies on serotonin (5-HT) signaling between the gut epithelium and the peripheral nervous system, where 5-HT release patterns from the basolateral (i.e., bottom) side of the epithelium activate nerve afferents. There have been few quantitative studies of this gut-neuron signaling due to a lack of real-time measurement tools that can access the basolateral gut epithelium. In vitro platforms allow quantitative studies of cultured gut tissue, but they mainly employ offline and endpoint assays that cannot resolve dynamic molecular-release patterns. Here, we present the modification of a microporous cell culture membrane with carbon nanotube-coated gold (Au-CNT) electrodes capable of continuous, label-free, and direct detection of 5-HT at physiological concentrations. Electrochemical characterization of single-walled carbon nanotube (SWCNT)-coated Au electrodes shows increased electroactive surface area, 5-HT specificity, sensitivity, and saturation time, which are correlated with the CNT film drop-cast volume. Two microliters of CNT films, with a 10-min saturation time, 0.6 μA/μM 5-HT sensitivity, and reliable detection within a linear range of 500 nM-10 μM 5-HT, can be targeted for high-concentration, high-time-resolution 5-HT monitoring. CNT films (12.5 μL) with a 2-h saturation time, 4.5 μA/μM 5-HT sensitivity, and quantitative detection in the linear range of 100 nM-1 μM can target low concentrations with low time resolution. These electrodes achieved continuous detection of dynamic diffusion across the porous membrane, mimicking basolateral 5-HT release from cells, and detection of cell-released 5-HT from separately cultured RIN14B cell supernatant. Electrode-integrated cell culture systems such as this can improve in vitro molecular detection mechanisms and aid in quantitative GBA signaling studies.
Collapse
Affiliation(s)
- Ashley A. Chapin
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Systems Research, College Park, MD 20740 USA
| | | | - David N. Quan
- Fischell Department of Bioengineering, College Park, MD 20742 USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, College Park, MD 20740 USA
| | - Jens Herberholz
- Department of Psychology and Neuroscience and Cognitive Science Program, College Park, MD 20740 USA
| | - William E. Bentley
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850 USA
- Robert E. Fischell Institute for Biomedical Devices, Rockville, MD 20850 USA
| | - Reza Ghodssi
- Fischell Department of Bioengineering, College Park, MD 20742 USA
- Institute for Systems Research, College Park, MD 20740 USA
- Robert E. Fischell Institute for Biomedical Devices, Rockville, MD 20850 USA
- Department of Electrical and Computer Engineering, College Park, MD 20742 USA
| |
Collapse
|
135
|
Hodges EA, Propper CB, Estrem H, Schultz MB. Feeding During Infancy: Interpersonal Behavior, Physiology, and Obesity Risk. CHILD DEVELOPMENT PERSPECTIVES 2020; 14:185-191. [PMID: 34707686 PMCID: PMC8547759 DOI: 10.1111/cdep.12376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infancy is a sensitive developmental period that presents both opportunities and challenges for caregivers to feed their infants in ways that support healthy growth and development. The capacity to eat in a way that supports energy (caloric) intake aligned with the body's physiologic need for growth and development appear to diminish in the years following infancy, but the reasons for this and whether this is developmentally typical are unclear. Feeding interactions that undermine infants' ability to regulate their intake in response to hunger and satiety are thought to confer risk for obesity in infancy and beyond. In this integrative review, we consider what we know about the emergence of self-regulation of behavior and emotion from both a behavioral and a physiological perspective. Then, we apply this information to our emerging understanding of how self-regulation of energy intake may be derailed through feeding interactions between caregivers and infants.
Collapse
|
136
|
Aviello G, Cristiano C, Luckman SM, D'Agostino G. Brain control of appetite during sickness. Br J Pharmacol 2020; 178:2096-2110. [DOI: 10.1111/bph.15189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gabriella Aviello
- Department of Pharmacy, School of Medicine and Surgery University of Naples Federico II Naples Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine and Surgery University of Naples Federico II Naples Italy
| | - Simon M. Luckman
- Faculty of Biology, Medicine and Health, School of Medical Sciences University of Manchester Manchester UK
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences University of Manchester Manchester UK
| |
Collapse
|
137
|
Xiao J, Zhang G, Gao S, Shen J, Feng H, He Z, Xu C. Combined administration of SHP2 inhibitor SHP099 and the α7nAChR agonist PNU282987 protect mice against DSS‑induced colitis. Mol Med Rep 2020; 22:2235-2244. [PMID: 32705242 PMCID: PMC7411392 DOI: 10.3892/mmr.2020.11324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/28/2020] [Indexed: 01/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition with complex pathogenesis that currently has no cure. α7 nicotinic acetylcholine receptor (α7nAChR) is known to regulate multiple aspects of immune function. The present study aimed to evaluate the protective effects of PNU282987 and SHP099, which are a selective agonist of α7nAChR and an SHP2 inhibitor, respectively, in dextran sulfate sodium (DSS)‑induced colitis in mice. Acute colitis was induced in mice using 3% DSS, and weight loss, colonic histology and cytokine production from colonic lamina propria were analyzed to evaluate disease severity. Bone marrow‑derived macrophages were treated with lipopolysaccharide (LPS) to induce an inflammatory response. Cytokine expression and reactive oxygen species (ROS) levels were quantified. The α7nAChR agonist, PNU282987, and the SHP2 inhibitor, SHP099, were administered alone or in combination to LPS‑induced macrophages or to colitic model mice to evaluate the inflammatory response and protective efficacy in colitis. α7nAChR protein levels were found to be markedly increased in the colon of DSS‑induced colitic mice, and were found to co‑localize with macrophages. Consistently, α7nAChR mRNA and protein levels were upregulated with colitis progression in DSS‑induced colitic mice. Colonic inflammation was attenuated by PNU282987 treatment in DSS‑induced mice, as evidenced by reduced weight loss and alleviated colonic epithelial cell disruption. These effects of PNU282987 on colitis were enhanced when it was combined with SHP099. Cytokine production and ROS levels induced by LPS in macrophages were decreased by a combination treatment of PNU282987 and SHP099. These findings identified α7nAChR as an essential element in the role of intestinal macrophages in colonic repair and demonstrated a synergistic effect of PNU282987 and SHP099, suggesting a new potential therapy for IBD.
Collapse
Affiliation(s)
- Junhua Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gufang Zhang
- Department of Pharmacology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sujun Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiaqing Shen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhilong He
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
138
|
Yi W, Wei Q, Pan R, Song S, Gao J, Xu Z, Duan J, He Y, Tang C, Liu X, Zhou Y, Su H. Gastroenteritis exposure and the risk of schizophrenia onset: A systematic review and meta-analysis. J Psychosom Res 2020; 134:110136. [PMID: 32417692 DOI: 10.1016/j.jpsychores.2020.110136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The association between gastroenteritis exposure and schizophrenia (SCZ) onset has been investigated, but the findings were inconsistent. This study aimed to determine whether gastroenteritis would increase the risk of SCZ onset. METHODS We performed a systematic literature search in PubMed, Cochrane Library and the Web of Science database up to 23 November 2019. The pooled relative risk (RR) with 95% confidence interval (CI) was used to estimate the effect of gastroenteritis on SCZ. Stratified analysis was conducted by study design, diagnostic criteria, region, adjustment for confounders, gastroenteritis sub-classification and data source. RESULTS This meta-analysis included nine published articles with 13,830,871 subjects. Overall, there was no significant relationship between gastroenteritis and SCZ onset (N [number of studies] = 11, RR = 1.06, 95% CI: 0.81-1.39). However, pooled results from cohort studies suggested that gastroenteritis significantly increased the risk of SCZ (N = 7, RR = 1.27, 95% CI = 1.05-1.53). Increased risk of SCZ was observed in America (N = 3) and Australia (N = 2), whereas no association was found in Europe (N = 1) and Asia (N = 5). The pooled RR, adjusting for ≥2 confounders (N = 5), was higher than those adjusting for <2 confounders (N = 6). The effects also varied in diagnostic criteria, gastroenteritis sub-classification and data source. CONCLUSION Based on current research evidence, it is not yet certain that gastroenteritis is a risk factor for SCZ, and more research on the association between specific gastroenteritis and SCZ is needed.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Jiaojiao Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Zihan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Jun Duan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Yu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China.
| |
Collapse
|
139
|
Wang YB, de Lartigue G, Page AJ. Dissecting the Role of Subtypes of Gastrointestinal Vagal Afferents. Front Physiol 2020; 11:643. [PMID: 32595525 PMCID: PMC7300233 DOI: 10.3389/fphys.2020.00643] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the brain. Numerous subtypes of GI vagal afferent have been identified but their individual roles in gut function and feeding regulation are unclear. In the past decade, technical approaches to selectively target vagal afferent subtypes and to assess their function has significantly progressed. This review examines the classification of GI vagal afferent subtypes and discusses the current available techniques to study vagal afferents. Investigating the distribution of GI vagal afferent subtypes and understanding how to access and modulate individual populations are essential to dissect their fundamental roles in the gut-brain axis.
Collapse
Affiliation(s)
- Yoko B Wang
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States.,Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, United States
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Nutrition, Diabetes and Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
140
|
Li XJ, You XY, Wang CY, Li XL, Sheng YY, Zhuang PW, Zhang YJ. Bidirectional Brain-gut-microbiota Axis in increased intestinal permeability induced by central nervous system injury. CNS Neurosci Ther 2020; 26:783-790. [PMID: 32472633 PMCID: PMC7366750 DOI: 10.1111/cns.13401] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Central nervous system injuries may lead to the disorders of the hypothalamic‐pituitary‐adrenal axis, autonomic nervous system, and enteric nervous system. These effects then cause the changes in the intestinal microenvironment, such as a disordered intestinal immune system as well as alterations of intestinal bacteria. Ultimately, this leads to an increase in intestinal permeability. Inflammatory factors produced by the interactions between intestinal neurons and immune cells as well as the secretions and metabolites of intestinal flora can then migrate through the intestinal barrier, which will aggravate any peripheral inflammation and the central nervous system injury. The brain‐gut‐microbiota axis is a complex system that plays a crucial role in the occurrence and development of central nervous system diseases. It may also increase the consequences of preventative treatment. In this context, here we have summarized the factors that can lead to the increased intestinal permeability and some of the possible outcomes.
Collapse
Affiliation(s)
- Xiao-Jin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin-Yu You
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cong-Ying Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue-Li Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Yuan Sheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, China
| | - Yan-Jun Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, China
| |
Collapse
|
141
|
Ji W, Yu X, Gao Y, Ren B, Zhang S, Wang Q, Wang X. Majie cataplasm provides a shield against asthmatic punch from the neuroimmune system. Heliyon 2020; 6:e03896. [PMID: 32478182 PMCID: PMC7251768 DOI: 10.1016/j.heliyon.2020.e03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/12/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
Asthma poses a threat to human health, and its pathogenesis is closely related to the neuroimmune system. Majie cataplasm can not only regulate the immune system but also the nervous system in asthma patients for its components. We speculate that Majie cataplasm may relieve asthmatic patients with sensitivity to hormone or not by regulating the body's neuroimmune system. Methods In this experiment, a mouse model of asthma was well established by ovalbumin. The lung function of animals was examined and pathological changes in the lung tissue were assessed by hematoxylin-eosin staining. Serum immunoglobulin E (IgE), calcitonin gene-related peptide (CGRP) and neurokinin A (NKA) were measured by ELISA. The location of CGRP, CD3 and neutrophil in lung tissue and their expressions were detected by immunofluorescence staining. In addition, contents of CGRP mRNA, Substance P (SP) mRNA, interleukin (IL)-17 mRNA and interleukin(IL)-13 mRNA were detected by quantitative polymerase chain reaction. Results Compared with the asthma model group, Majie cataplasm and dexamethasone can not only equivalently relieve airway hyperresponsiveness, but also make the content of serum IgE reduced. In addition, they can lower the content of serum CGRP and NKA after OVA stimulation, and this effect was more obvious for Majie cataplasm. Our results also showed that Majie Cataplasm and dexamethasone could inhibit the secretion of CGRP and the infiltration of T lymphocytes together with neutrophils in lung tissue and reduce expressions of CGRP mRNA, SP mRNA, IL-17 mRNA and IL-13 mRNA in lung tissue. Conclusion Majie cataplasm effectively relieves expressions of neuropeptides such as CGRP, reduces the infiltration of immune cells in lung tissue, regulates the body's neuroimmune system, and has a therapeutic potential for both Th2 asthma and neutrophilic asthma.
Collapse
Affiliation(s)
- Wenting Ji
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Yu
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yushan Gao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beida Ren
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuang Zhang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingguo Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xueqian Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
142
|
Thompson N, Ravagli E, Mastitskaya S, Iacoviello F, Aristovich K, Perkins J, Shearing PR, Holder D. MicroCT optimisation for imaging fascicular anatomy in peripheral nerves. J Neurosci Methods 2020; 338:108652. [PMID: 32179090 PMCID: PMC7181190 DOI: 10.1016/j.jneumeth.2020.108652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Due to the lack of understanding of the fascicular organisation, vagus nerve stimulation (VNS) leads to unwanted off-target effects. Micro-computed tomography (microCT) can be used to trace fascicles from periphery and image fascicular anatomy. NEW METHOD In this study, we present a simple and reproducible method for imaging fascicles in peripheral nerves with iodine staining and microCT for the determination of fascicular anatomy and organisation. RESULTS At the determined optimal pre-processing steps and scanning parameters, the microCT protocol allowed for segmentation and tracking of fascicles within the nerves. This was achieved after 24 hours and 120 hours of staining with Lugol's solution (1% total iodine) for rat sciatic and pig vagus nerves, respectively, and the following scanning parameters: 4 μm voxel size, 35 kVp energy, 114 μA current, 4 W power, 0.25 fps in 4 s exposure time, 3176 projections and a molybdenum target. COMPARISON WITH EXISTING METHOD(S) This optimised method for imaging fascicles provides high-resolution, three-dimensional images and full imaging penetration depth not obtainable with methods typically used such as histology, magnetic resonance imaging and optical coherence tomography whilst obviating time-consuming pre-processing methods, the amount of memory required, destruction of the samples and the cost associated with current microCT methods. CONCLUSION The optimised microCT protocol facilitates segmentation and tracking of the fascicles within the nerve. The resulting segmentation map of the functional anatomical organisation of the vagus nerve will enable selective VNS ultimately allowing for the avoidance of the off-target effects and improving its therapeutic efficacy.
Collapse
Affiliation(s)
- Nicole Thompson
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - Enrico Ravagli
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Svetlana Mastitskaya
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Francesco Iacoviello
- Electrochemical Innovation Lab, Chemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Kirill Aristovich
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Justin Perkins
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, United Kingdom
| | - Paul R Shearing
- Electrochemical Innovation Lab, Chemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - David Holder
- EIT and Neurophysiology Lab, Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
143
|
Pascale A, Marchesi N, Govoni S, Barbieri A. Targeting the microbiota in pharmacology of psychiatric disorders. Pharmacol Res 2020; 157:104856. [PMID: 32389857 DOI: 10.1016/j.phrs.2020.104856] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
There is increasing interest in the role of the gut microbiota in health and disease. In particular, gut microbiota influences the Central Nervous System (CNS) development and homeostasis through neural pathways or routes involving the immune and circulatory systems. The CNS, in turn, shapes the intestinal flora through endocrine or stress-mediated responses. These overall bidirectional interactions, known as gut microbiota-brain axis, profoundly affect some brain functions, such as neurogenesis and the production of neurotransmitters, up to influence behavioral aspects of healthy subjects. Consequently, a dysfunction within this axis, as observed in case of dysbiosis, can have an impact on the behavior of a given individual (e.g. anxiety and depression) or on the development of pathologies affecting the CNS, such as autism spectrum disorders and neurodegenerative diseases (e.g. Alzheimer's disease and Parkinson's disease). It should be considered that the whole microbiota has a significant role not only on aspects concerning human physiology, such as harvesting of nutrients and energy from the ingested food or production of a wide range of bioactive compounds, but also has positive effects on the gastrointestinal barrier function and actively contributes to the pharmacokinetics of several compounds including neuropsychiatric drugs. Indeed, the microbiota is able to affect drug absorption and metabolism up to have an impact on drug activity and/or toxicity. On the other hand, drugs are able to shape the human gut microbiota itself, where these changes may contribute to their pharmacologic profile. Therefore, the emerging picture on the complex drug-microbiota bidirectional interplay will have considerable implications in the future not only in terms of clinical practice but also, upstream, on drug development.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy.
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| |
Collapse
|
144
|
Dagbasi A, Lett AM, Murphy K, Frost G. Understanding the interplay between food structure, intestinal bacterial fermentation and appetite control. Proc Nutr Soc 2020; 79:1-17. [PMID: 32383415 DOI: 10.1017/s0029665120006941] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological and clinical evidence highlight the benefit of dietary fibre consumption on body weight. This benefit is partly attributed to the interaction of dietary fibre with the gut microbiota. Dietary fibre possesses a complex food structure which resists digestion in the upper gut and therefore reaches the distal gut where it becomes available for bacterial fermentation. This process yields SCFA which stimulate the release of appetite-suppressing hormones glucagon-like peptide-1 and peptide YY. Food structures can further enhance the delivery of fermentable substrates to the distal gut by protecting the intracellular nutrients during upper gastrointestinal digestion. Domestic and industrial processing can disturb these food structures that act like barriers towards digestive enzymes. This leads to more digestible products that are better absorbed in the upper gut. As a result, less resistant material (fibre) and intracellular nutrients may reach the distal gut, thus reducing substrates for bacterial fermentation and its subsequent benefits on the host metabolism including appetite suppression. Understanding this link is essential for the design of diets and food products that can promote appetite suppression and act as a successful strategy towards obesity management. This article reviews the current evidence in the interplay between food structure, bacterial fermentation and appetite control.
Collapse
Affiliation(s)
- A Dagbasi
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| | - A M Lett
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| | - K Murphy
- Department of Medicine, Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - G Frost
- Department of Medicine, Section for Nutrition Research, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
145
|
Yu CD, Xu QJ, Chang RB. Vagal sensory neurons and gut-brain signaling. Curr Opin Neurobiol 2020; 62:133-140. [PMID: 32380360 PMCID: PMC7560965 DOI: 10.1016/j.conb.2020.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Our understanding of the gut system has been revolutionized over the past decade, in particular regarding its role in immune control and psychological regulation. The vagus nerve is a crucial link between gut and brain, transmitting diverse gut-derived signals, and has been implicated in many gastrointestinal, neurological, and immunological disorders. Using state-of-the-art technologies including single-cell genomic analysis, real-time neural activity recording, trans-synaptic tracing, and electron microscopy, novel physiological functions of vagal gut afferents have been uncovered, and new gut-to-brain pathways have been revealed. Here, we review the most recent findings on vagal sensory neurons and the gut-brain signaling, focusing on the anatomical basis and the underlying molecular and cellular mechanisms. Such new discoveries explain some of the old puzzling problems and also raise new questions in this exciting and rapidly growing field.
Collapse
Affiliation(s)
- Chuyue D Yu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
146
|
Yokoyama R, Akiyama Y, Enatsu R, Suzuki H, Suzuki Y, Kanno A, Ochi S, Mikuni N. The Immediate Effects of Vagus Nerve Stimulation in Intractable Epilepsy: An Intra-operative Electrocorticographic Analysis. Neurol Med Chir (Tokyo) 2020; 60:244-251. [PMID: 32295979 PMCID: PMC7246227 DOI: 10.2176/nmc.oa.2019-0221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The purpose of this study was to investigate whether and how vagus nerve stimulation (VNS) reduces the epileptogenic activity in the bilateral cerebral cortex in patients with intractable epilepsy. We analyzed the electrocorticograms (ECoGs) of five patients who underwent callosotomy due to intractable epilepsy even after VNS implantation. We recorded ECoGs and analyzed power spectrum in both VNS OFF and ON phases. We counted the number of spikes and electrodes with epileptic spikes, distinguishing unilaterally and bilaterally hemispherically spread spikes as synchronousness of the epileptic spikes in both VNS OFF and ON phases. There were 24.80 ± 35.55 and 7.20 ± 9.93 unilaterally spread spikes in the VNS OFF and ON phases, respectively (P = 0.157), and 35.8 ± 29.21 and 10.6 ± 13.50 bilaterally spread spikes in the VNS OFF and ON phases, respectively (P = 0.027). The number of electrodes with unilaterally and bilaterally spread spikes in the VNS OFF and ON phases was 3.84 ± 2.13 and 3.59 ± 1.82 (P = 0.415), and 8.20 ± 3.56 and 6.89 ± 2.89 (P = 0.026), respectively. The ECoG background power spectra recordings in the VNS OFF and ON phases were also analyzed. The spectral power tended to be greater in the high-frequency band at VNS ON phase than OFF phase. This study showed the reduction of epileptogenic spikes and spread areas of the spikes by VNS as immediate effects, electrophysiologically.
Collapse
Affiliation(s)
| | | | - Rei Enatsu
- Department of Neurosurgery, Sapporo Medical University
| | - Hime Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | - Yuto Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | - Aya Kanno
- Department of Neurosurgery, Sapporo Medical University
| | - Satoko Ochi
- Department of Neurosurgery, Sapporo Medical University
| | | |
Collapse
|
147
|
Pradhananga S, Tashtush AA, Allen-Vercoe E, Petrof EO, Lomax AE. Protease-dependent excitation of nodose ganglion neurons by commensal gut bacteria. J Physiol 2020; 598:2137-2151. [PMID: 32134496 DOI: 10.1113/jp279075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS The vagus nerve has been implicated in mediating behavioural effects of the gut microbiota on the central nervous system. This study examined whether the secretory products of commensal gut bacteria can modulate the excitability of vagal afferent neurons with cell bodies in nodose ganglia. Cysteine proteases from commensal bacteria increased the excitability of vagal afferent neurons via activation of protease-activated receptor 2 and modulation of the voltage dependence of Na+ conductance activation. Lipopolysaccharide, a component of the cell wall of gram-negative bacteria, increased the excitability of nodose ganglia neurons via TLR4-dependent activation of nuclear factor kappa B. Our study identified potential mechanisms by which gut microbiota influences the activity of vagal afferent pathways, which may in turn impact on autonomic reflexes and behaviour. ABSTRACT Behavioural studies have implicated vagal afferent neurons as an important component of the microbiota-gut-brain axis. However, the mechanisms underlying the ability of the gut microbiota to affect vagal afferent pathways are unclear. We examined the effect of supernatant from a community of 33 commensal gastrointestinal bacterial derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) on the excitability of mouse vagal afferent neurons. Perforated patch clamp electrophysiology was used to measure the excitability of dissociated nodose ganglion (NG) neurons. NG neuronal excitability was assayed by measuring the amount of current required to elicit an action potential, the rheobase. MET-1 supernatant increased the excitability of NG neurons by hyperpolarizing the voltage dependence of activation of Na+ conductance. The increase in excitability elicited by MET-1 supernatant was blocked by the cysteine protease inhibitor E-64 (30 nm). The protease activated receptor-2 (PAR2 ) antagonist (GB 83, 10 μm) also blocked the effect of MET-1 supernatant on NG neurons. Supernatant from Lactobacillus paracasei 6MRS, a component of MET-1, recapitulated the effect of MET-1 supernatant on NG neurons. Lastly, we compared the effects of MET-1 supernatant and lipopolysaccharide (LPS) from Escherichia coli 05:B5 on NG neuron excitability. LPS increased the excitability of NG neurons in a toll-like receptor 4 (TLR4 )-dependent and PAR2 -independent manner, whereas the excitatory effects of MET-1 supernatant were independent of TLR4 activation. Together, our findings suggest that cysteine proteases from commensal bacteria increase the excitability of vagal afferent neurons by the activation of PAR2 .
Collapse
Affiliation(s)
- Sabindra Pradhananga
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, Ontario, K7L2V7, Canada
| | - Ayssar A Tashtush
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, Ontario, K7L2V7, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, N1G2W1, Canada
| | - Elaine O Petrof
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, Ontario, K7L2V7, Canada
| | - Alan E Lomax
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, Ontario, K7L2V7, Canada
| |
Collapse
|
148
|
Zhu Q, Weng J, Shen M, Fish J, Shen Z, Coschigano KT, Davidson WS, Tso P, Shi H, Lo CC. Apolipoprotein A-IV Enhances Fatty Acid Uptake by Adipose Tissues of Male Mice via Sympathetic Activation. Endocrinology 2020; 161:5802681. [PMID: 32157301 PMCID: PMC7100924 DOI: 10.1210/endocr/bqaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Apolipoprotein A-IV (ApoA-IV) synthesized by the gut regulates lipid metabolism. Sympathetic innervation of adipose tissues also controls lipid metabolism. We hypothesized that ApoA-IV required sympathetic innervation to increase fatty acid (FA) uptake by adipose tissues and brown adipose tissue (BAT) thermogenesis. After 3 weeks feeding of either a standard chow diet or a high-fat diet (HFD), mice with unilateral denervation of adipose tissues received intraperitoneal administration of recombinant ApoA-IV protein and intravenous infusion of lipid mixture with radioactive triolein. In chow-fed mice, ApoA-IV administration increased FA uptake by intact BAT but not the contralateral denervated BAT or intact white adipose tissue (WAT). Immunoblots showed that, in chow-fed mice, ApoA-IV increased expression of lipoprotein lipase and tyrosine hydroxylase in both intact BAT and inguinal WAT (IWAT), while ApoA-IV enhanced protein levels of β3 adrenergic receptor, adipose triglyceride lipase, and uncoupling protein 1 in the intact BAT only. In HFD-fed mice, ApoA-IV elevated FA uptake by intact epididymal WAT (EWAT) but not intact BAT or IWAT. ApoA-IV increased sympathetic activity assessed by norepinephrine turnover (NETO) rate in BAT and EWAT of chow-fed mice, whereas it elevated NETO only in EWAT of HFD-fed mice. These observations suggest that, in chow-fed mice, ApoA-IV activates sympathetic activity of BAT and increases FA uptake by BAT via innervation, while in HFD-fed mice, ApoA-IV stimulates sympathetic activity of EWAT to shunt FAs into the EWAT.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Biology, Miami University, Oxford, OH
| | - Jonathan Weng
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Minqian Shen
- Department of Biology, Miami University, Oxford, OH
| | - Jace Fish
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Zhujun Shen
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Karen T Coschigano
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH
| | - Chunmin C Lo
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
- Correspondence: Chunmin C Lo, Department of Biomedical Sciences, Irvine Hall 228, 1 Ohio University, Athens, OH 45701-2979. E-mail:
| |
Collapse
|
149
|
Pados BF, Davitt ES. Pathophysiology of Gastroesophageal Reflux Disease in Infants and Nonpharmacologic Strategies for Symptom Management. Nurs Womens Health 2020; 24:101-114. [PMID: 32101759 DOI: 10.1016/j.nwh.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/10/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Gastroesophageal reflux is common in young infants, particularly those born prematurely or with a history of medical complexity. The most recent clinical practice guidelines recommend the use of nonpharmacologic management strategies because of concerns about the safety of acid-reducing medications and a lack of evidence of their effectiveness. Our purpose in this article is to holistically review the pathophysiology of gastroesophageal reflux disease, identify symptom management targets, and describe nonpharmacologic strategies that nurses can implement and/or teach to parents to manage symptoms of gastroesophageal reflux. Strategies targeting stress, dysbiosis, food intolerances, feeding difficulties, and positioning are discussed. Nurses can work with families to identify factors contributing to gastroesophageal reflux disease and determine individualized strategies that can be used in lieu of, or in addition to, medication.
Collapse
|
150
|
Al Rubaye H, Adamson CC, Jadavji NM. The role of maternal diet on offspring gut microbiota development: A review. J Neurosci Res 2020; 99:284-293. [PMID: 32112450 DOI: 10.1002/jnr.24605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
In offspring, an adequate maternal diet is important for neurodevelopment. One mechanism by which maternal diet impacts neurodevelopment is through its dynamic role in the development of the gut microbiota. Communication between the gut, and its associated microbiota, and the brain is facilitated by the vagus nerve, in addition to other routes. Currently, the mechanisms through which maternal diet impacts offspring microbiota development are not well-defined. Therefore, this review aims to investigate the relationship between maternal diet during pregnancy and offspring microbiota development and its impact on neurodevelopment. Both human and animal model studies were reviewed to understand the impact of maternal diet on offspring microbiota development and potential consequences on neurodevelopment. In the period after birth, as reported in both human and model system studies, maternal diet impacts offspring bacterial colonization (e.g., decreased presence of Lactobacillus reuteri as a result of a high-fat maternal diet). It remains unknown whether these changes persist into adulthood and whether they impact vulnerability to disease. Therefore, further long-term studies are required in both human and model systems to study these changes. Our survey of the literature indicates that maternal diet influences early postnatal microbiota development, which in turn, may serve as a mechanism through which maternal diet impacts neurodevelopment.
Collapse
Affiliation(s)
- Hiba Al Rubaye
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Chelsea C Adamson
- Biomedical Sciences Program, Midwestern University, Glendale, AZ, USA
| | - Nafisa M Jadavji
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada.,Biomedical Sciences Program, Midwestern University, Glendale, AZ, USA
| |
Collapse
|