101
|
Morang'a CM, Ngoi JM, Gyamfi J, Amuzu DSY, Nuertey BD, Soglo PM, Appiah V, Asante IA, Owusu-Oduro P, Armoo S, Adu-Gyasi D, Amoako N, Oliver-Commey J, Owusu M, Sylverken A, Fenteng ED, M'cormack VV, Tei-Maya F, Quansah EB, Ayivor-Djanie R, Amoako EK, Ogbe IT, Yemi BK, Osei-Wusu I, Mettle DNA, Saiid S, Tapela K, Dzabeng F, Magnussen V, Quaye J, Opurum PC, Carr RA, Ababio PT, Abass AK, Akoriyea SK, Amoako E, Kumi-Ansah F, Boakye OD, Mibut DK, Odoom T, Ofori-Boadu L, Allegye-Cudjoe E, Dassah S, Asoala V, Asante KP, Phillips RO, Osei-Atweneboana MY, Gyapong JO, Kuma-Aboagye P, Ampofo WK, Duedu KO, Ndam NT, Bediako Y, Quashie PK, Amenga-Etego LN, Awandare GA. Genetic diversity of SARS-CoV-2 infections in Ghana from 2020-2021. Nat Commun 2022; 13:2494. [PMID: 35523782 PMCID: PMC9076825 DOI: 10.1038/s41467-022-30219-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/21/2022] [Indexed: 01/26/2023] Open
Abstract
The COVID-19 pandemic is one of the fastest evolving pandemics in recent history. As such, the SARS-CoV-2 viral evolution needs to be continuously tracked. This study sequenced 1123 SARS-CoV-2 genomes from patient isolates (121 from arriving travellers and 1002 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana. The data show that initial local transmission was dominated by B.1.1 lineage, but the second wave was overwhelmingly driven by the Alpha variant. Subsequently, an unheralded variant under monitoring, B.1.1.318, dominated transmission from April to June 2021 before being displaced by Delta variants, which were introduced into community transmission in May 2021. Mutational analysis indicated that variants that took hold in Ghana harboured transmission enhancing and immune escape spike substitutions. The observed rapid viral evolution demonstrates the potential for emergence of novel variants with greater mutational fitness as observed in other parts of the world.
Collapse
Affiliation(s)
- Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Joyce M Ngoi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Jones Gyamfi
- University of Health and Allied Sciences COVID-19 Testing and Research Centre, Ho, Ghana
| | - Dominic S Y Amuzu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Benjamin D Nuertey
- Tamale Teaching Hospital Intensive Care Unit, Ghana Health Service, Tamale, Ghana
| | - Philip M Soglo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Vincent Appiah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Ivy A Asante
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | | | - Samuel Armoo
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research, Accra, Ghana
| | - Dennis Adu-Gyasi
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Nicholas Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | | | - Michael Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Augustina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Edward D Fenteng
- Accra Veterinary Laboratory, Veterinary Services Directorate, Accra, Ghana
| | - Violette V M'cormack
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Frederick Tei-Maya
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Evelyn B Quansah
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Reuben Ayivor-Djanie
- University of Health and Allied Sciences COVID-19 Testing and Research Centre, Ho, Ghana
| | - Enock K Amoako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Isaac T Ogbe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Bright K Yemi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Israel Osei-Wusu
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Deborah N A Mettle
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Samirah Saiid
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Francis Dzabeng
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Vanessa Magnussen
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Jerry Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Precious C Opurum
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Rosina A Carr
- University of Health and Allied Sciences COVID-19 Testing and Research Centre, Ho, Ghana
| | - Patrick T Ababio
- Accra Veterinary Laboratory, Veterinary Services Directorate, Accra, Ghana
| | - Abdul-Karim Abass
- Tamale Public Health and Reference Laboratory, Ghana Health Service, Tamale, Ghana
| | - Samuel K Akoriyea
- Institutional Care Division (ICD), Ghana Health Service, Accra, Ghana
| | - Emmanuella Amoako
- Cape Coast Teaching Hospital, Ghana Health Service, Cape Coast, Ghana
| | | | - Oliver D Boakye
- Takoradi Veterinary Services Department, Ghana Health Service, Takoradi, Ghana
| | - Dam K Mibut
- Tamale Teaching Hospital Intensive Care Unit, Ghana Health Service, Tamale, Ghana
| | - Theophilus Odoom
- Takoradi Veterinary Services Department, Ghana Health Service, Takoradi, Ghana
| | | | - Emmanuel Allegye-Cudjoe
- Pong-Tamale Central Veterinary Laboratory, National Veterinary Services Directorate, Tamale, Ghana
| | - Sylvester Dassah
- Navrongo Health Research Centre, Research and Development Division, Ghana Health Service, Navrongo, Ghana
| | - Victor Asoala
- Navrongo Health Research Centre, Research and Development Division, Ghana Health Service, Navrongo, Ghana
| | - Kwaku P Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mike Y Osei-Atweneboana
- Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research, Accra, Ghana
| | - John O Gyapong
- University of Health and Allied Sciences COVID-19 Testing and Research Centre, Ho, Ghana
| | | | - William K Ampofo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Kwabena O Duedu
- University of Health and Allied Sciences COVID-19 Testing and Research Centre, Ho, Ghana
| | - Nicaise T Ndam
- Institut de Recherche pour le Développement, Marseille, France
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Yemaachi Biotechnology, Accra, Ghana
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
| |
Collapse
|
102
|
Cantoni D, Mayora-Neto M, Thakur N, Elrefaey AME, Newman J, Vishwanath S, Nadesalingam A, Chan A, Smith P, Castillo-Olivares J, Baxendale H, Charleston B, Heeney J, Bailey D, Temperton N. Pseudotyped Bat Coronavirus RaTG13 is efficiently neutralised by convalescent sera from SARS-CoV-2 infected patients. Commun Biol 2022; 5:409. [PMID: 35505237 PMCID: PMC9065041 DOI: 10.1038/s42003-022-03325-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.
Collapse
Affiliation(s)
- Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, UK
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, UK
| | - Nazia Thakur
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Joseph Newman
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK
| | - Sneha Vishwanath
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Andrew Chan
- DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK
| | - Peter Smith
- DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK
| | | | | | | | - Jonathan Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- DIOSynVax, University of Cambridge, Madingley Road, CB3-0ES, Cambridge, UK
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, GU24 0NF, UK.
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham, UK.
| |
Collapse
|
103
|
El Karoui K, De Vriese AS. COVID-19 in dialysis: clinical impact, immune response, prevention, and treatment. Kidney Int 2022; 101:883-894. [PMID: 35176326 PMCID: PMC8842412 DOI: 10.1016/j.kint.2022.01.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/01/2022] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
The COVID-19 pandemic has profound adverse effects on the population on dialysis. Patients requiring dialysis are at an increased risk of SARS-CoV-2 infection and mortality, and many have experienced psychological distress as well as delayed or suboptimal care. COVID-19 survivors have prolonged viral shedding, but generally develop a robust and long-lasting humoral immune response that correlates with initial disease severity. However, protection against reinfection is incomplete. A growing body of evidence reveals delayed and blunted immune responses to SARS-CoV-2 vaccination. Administration of a third dose within 1 to 2 months of prime-boost vaccination significantly increases antibody levels, in particular in patients with poor initial responses. Patients on dialysis have inferior immune responses to adenoviral vector vaccines than to mRNA vaccines. The immunogenicity of the mRNA-1273 vaccine is markedly better than that of the BNT162b2 vaccine, most likely by virtue of its higher mRNA content. Despite suboptimal immune responses in patients on dialysis, preliminary data suggest that vaccination partially protects against infection and severe disease requiring hospitalization. However, progressive waning of immunity and emergence of SARS-CoV-2 variants with a high potential of immune escape call for a booster dose in all patients on dialysis 4 to 6 months after prime-boost vaccination. Patients with persistent poor vaccine responses may be candidates for primary prophylaxis strategies. In the absence of specific data in patients on dialysis, therapeutic strategies in the event of established COVID-19 must be extrapolated from evidence obtained in the population not on dialysis. Neutralizing monoclonal antibodies may be an attractive option after a high-risk exposure or during the early course of infection.
Collapse
Affiliation(s)
- Khalil El Karoui
- Department of Nephrology and Transplantation, Hôpitaux Universitaires Henri Mondor, Fédération Hospitalo-Universitaire TRUE, Université Paris Est, Créteil, France
| | - An S De Vriese
- Division of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
104
|
Suk JE, Pharris A, Beauté J, Colzani E, Needham H, Kinsman J, Niehus R, Grah R, Omokanye A, Plachouras D, Baka A, Prasse B, Sandmann F, Severi E, Alm E, Wiltshire E, Ciancio B. Public health considerations for transitioning beyond the acute phase of the COVID-19 pandemic in the EU/EEA. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35485272 PMCID: PMC9052765 DOI: 10.2807/1560-7917.es.2022.27.17.2200155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many countries, including some within the EU/EEA, are in the process of transitioning from the acute pandemic phase. During this transition, it is crucial that countries’ strategies and activities remain guided by clear COVID-19 control objectives, which increasingly will focus on preventing and managing severe outcomes. Therefore, attention must be given to the groups that are particularly vulnerable to severe outcomes of SARS-CoV-2 infection, including individuals in congregate and healthcare settings. In this phase of pandemic management, a strong focus must remain on transitioning testing approaches and systems for targeted surveillance of COVID-19, capitalising on and strengthening existing systems for respiratory virus surveillance. Furthermore, it will be crucial to focus on lessons learned from the pandemic to enhance preparedness and to enact robust systems for the preparedness, detection, rapid investigation and assessment of new and emerging SARS-CoV-2 variants. Filling existing knowledge gaps, including behavioural insights, can help guide the response to future resurgences of SARS-CoV-2 and/or the emergence of other pandemics. Finally, ‘vaccine agility’ will be needed to respond to changes in people’s behaviours, changes in the virus, and changes in population immunity, all the while addressing issues of global health equity.
Collapse
Affiliation(s)
- Jonathan E Suk
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Anastasia Pharris
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Julien Beauté
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Edoardo Colzani
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Howard Needham
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - John Kinsman
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Rene Niehus
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Rok Grah
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ajibola Omokanye
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Agoritsa Baka
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Bastian Prasse
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Frank Sandmann
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ettore Severi
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Erik Alm
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Emma Wiltshire
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Bruno Ciancio
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| |
Collapse
|
105
|
Ikemura N, Taminishi S, Inaba T, Arimori T, Motooka D, Katoh K, Kirita Y, Higuchi Y, Li S, Suzuki T, Itoh Y, Ozaki Y, Nakamura S, Matoba S, Standley DM, Okamoto T, Takagi J, Hoshino A. An engineered ACE2 decoy neutralizes the SARS-CoV-2 Omicron variant and confers protection against infection in vivo. Sci Transl Med 2022; 14:eabn7737. [PMID: 35471044 PMCID: PMC9097879 DOI: 10.1126/scitranslmed.abn7737] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Omicron (B.1.1.529) SARS-CoV-2 variant contains an unusually high number of mutations in the spike protein, raising concerns of escape from vaccines, convalescent serum and therapeutic drugs. Here we analyzed the degree to which Omicron pseudovirus evades neutralization by serum or therapeutic antibodies. Serum samples obtained 3 months after two doses of BNT162b2 vaccination exhibited 18-fold lower neutralization titers against Omicron than parental virus. Convalescent serum samples from individuals infected with the Alpha and Delta variants allowed similar frequencies of Omicron breakthrough infections. Domain-wise analysis using chimeric spike proteins revealed that this efficient evasion was primarily achieved by mutations clustered in the receptor-binding domain, but that multiple mutations in the N-terminal domain contributed as well. Omicron escaped a therapeutic cocktail of imdevimab and casirivimab, whereas sotrovimab, which targets a conserved region to avoid viral mutation, remains effective. Angiotensin-converting enzyme 2 (ACE2) decoys are another virus-neutralizing drug modality that are free, at least in theory, from complete escape. Deep mutational analysis demonstrated that, indeed, an engineered ACE2 molecule prevented escape for each single-residue mutation in the receptor-binding domain, similar to immunized serum. Engineered ACE2 neutralized Omicron comparably to the Wuhan strain and also showed a therapeutic effect against Omicron infection in hamsters and human ACE2 transgenic mice. Like previous SARS-CoV-2 variants, some sarbecoviruses showed high sensitivity against engineered ACE2, confirming the therapeutic value against diverse variants, including those that are yet to emerge.
Collapse
Affiliation(s)
- Nariko Ikemura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tohru Inaba
- Department of Infection Control and Molecular Laboratory Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takao Arimori
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Kazutaka Katoh
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Department of Systems Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Songling Li
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Department of Systems Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yuki Ozaki
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Department of Systems Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
106
|
Chia PY, Ong SWX, Chiew CJ, Ang LW, Chavatte JM, Mak TM, Cui L, Kalimuddin S, Chia WN, Tan CW, Chai LYA, Tan SY, Zheng S, Lin RTP, Wang L, Leo YS, Lee VJ, Lye DC, Young BE. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine breakthrough infections: a multicentre cohort study. Clin Microbiol Infect 2022; 28:612.e1-612.e7. [PMID: 34826623 DOI: 10.1101/2021.1107.1128.21261295v21261291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/16/2021] [Accepted: 11/06/2021] [Indexed: 05/23/2023]
Abstract
OBJECTIVES Highly effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed but variants of concerns are worrisome, especially B.1.617.2 (Delta) which has rapidly spread across the world. We aim to study if vaccination alters virological and serological kinetics in breakthrough infections. METHODS We conducted a multicentre retrospective cohort study of patients in Singapore who had received a licensed mRNA vaccine and been admitted to hospital with B.1.617.2 SARS-CoV-2 infection. We compared clinical features, virological and serological kinetics (anti-nucleocapsid, anti-spike and surrogate virus neutralization titres) between fully vaccinated and unvaccinated individuals. RESULTS Out of 218 individuals with B.1.617.2 infection, 84 received an mRNA vaccine of which 71 were fully vaccinated, 130 were unvaccinated and four received a non-mRNA vaccine. Despite significantly older age in the vaccine breakthrough group, only 2.8% (2/71) developed severe COVID-19 requiring oxygen supplementation compared with 53.1% (69/130) in the unvaccinated group (p < 0.001). Odds of severe COVID-19 following vaccination were significantly lower (adjusted odds ratio 0.07 95% CI 0.015-0.335, p 0.001). PCR cycle threshold values were similar between vaccinated and unvaccinated groups at diagnosis, but viral loads decreased faster in vaccinated individuals. Early, robust boosting of anti-spike protein antibodies was observed in vaccinated patients; however, these titres were significantly lower against B.1.617.2 than the wildtype vaccine strain. DISCUSSION The mRNA vaccines are highly effective at preventing symptomatic and severe COVID-19 associated with B.1.617.2 infection. Vaccination is associated with faster decline in viral RNA load and a robust serological response. Vaccination remains a key strategy for control of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore
| | - Calvin J Chiew
- National Centre for Infectious Diseases, Singapore; Ministry of Health, Singapore
| | - Li Wei Ang
- National Centre for Infectious Diseases, Singapore
| | | | - Tze-Minn Mak
- National Centre for Infectious Diseases, Singapore
| | - Lin Cui
- National Centre for Infectious Diseases, Singapore
| | - Shirin Kalimuddin
- Singapore General Hospital, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wan Ni Chia
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Chee Wah Tan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Louis Yi Ann Chai
- National University Health System, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | - Linfa Wang
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - David Chien Lye
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
107
|
Chia PY, Ong SWX, Chiew CJ, Ang LW, Chavatte JM, Mak TM, Cui L, Kalimuddin S, Chia WN, Tan CW, Chai LYA, Tan SY, Zheng S, Lin RTP, Wang L, Leo YS, Lee VJ, Lye DC, Young BE. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine breakthrough infections: a multicentre cohort study. Clin Microbiol Infect 2022. [PMID: 34826623 DOI: 10.1101/2021.07.28.21261295] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Highly effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed but variants of concerns are worrisome, especially B.1.617.2 (Delta) which has rapidly spread across the world. We aim to study if vaccination alters virological and serological kinetics in breakthrough infections. METHODS We conducted a multicentre retrospective cohort study of patients in Singapore who had received a licensed mRNA vaccine and been admitted to hospital with B.1.617.2 SARS-CoV-2 infection. We compared clinical features, virological and serological kinetics (anti-nucleocapsid, anti-spike and surrogate virus neutralization titres) between fully vaccinated and unvaccinated individuals. RESULTS Out of 218 individuals with B.1.617.2 infection, 84 received an mRNA vaccine of which 71 were fully vaccinated, 130 were unvaccinated and four received a non-mRNA vaccine. Despite significantly older age in the vaccine breakthrough group, only 2.8% (2/71) developed severe COVID-19 requiring oxygen supplementation compared with 53.1% (69/130) in the unvaccinated group (p < 0.001). Odds of severe COVID-19 following vaccination were significantly lower (adjusted odds ratio 0.07 95% CI 0.015-0.335, p 0.001). PCR cycle threshold values were similar between vaccinated and unvaccinated groups at diagnosis, but viral loads decreased faster in vaccinated individuals. Early, robust boosting of anti-spike protein antibodies was observed in vaccinated patients; however, these titres were significantly lower against B.1.617.2 than the wildtype vaccine strain. DISCUSSION The mRNA vaccines are highly effective at preventing symptomatic and severe COVID-19 associated with B.1.617.2 infection. Vaccination is associated with faster decline in viral RNA load and a robust serological response. Vaccination remains a key strategy for control of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore
| | - Calvin J Chiew
- National Centre for Infectious Diseases, Singapore; Ministry of Health, Singapore
| | - Li Wei Ang
- National Centre for Infectious Diseases, Singapore
| | | | - Tze-Minn Mak
- National Centre for Infectious Diseases, Singapore
| | - Lin Cui
- National Centre for Infectious Diseases, Singapore
| | - Shirin Kalimuddin
- Singapore General Hospital, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wan Ni Chia
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Chee Wah Tan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Louis Yi Ann Chai
- National University Health System, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | - Linfa Wang
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - David Chien Lye
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
108
|
Chia PY, Ong SWX, Chiew CJ, Ang LW, Chavatte JM, Mak TM, Cui L, Kalimuddin S, Chia WN, Tan CW, Chai LYA, Tan SY, Zheng S, Lin RTP, Wang L, Leo YS, Lee VJ, Lye DC, Young BE. Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine breakthrough infections: a multicentre cohort study. Clin Microbiol Infect 2022; 28:612.e1-612.e7. [PMID: 34826623 PMCID: PMC8608661 DOI: 10.1016/j.cmi.2021.11.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/16/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Highly effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed but variants of concerns are worrisome, especially B.1.617.2 (Delta) which has rapidly spread across the world. We aim to study if vaccination alters virological and serological kinetics in breakthrough infections. METHODS We conducted a multicentre retrospective cohort study of patients in Singapore who had received a licensed mRNA vaccine and been admitted to hospital with B.1.617.2 SARS-CoV-2 infection. We compared clinical features, virological and serological kinetics (anti-nucleocapsid, anti-spike and surrogate virus neutralization titres) between fully vaccinated and unvaccinated individuals. RESULTS Out of 218 individuals with B.1.617.2 infection, 84 received an mRNA vaccine of which 71 were fully vaccinated, 130 were unvaccinated and four received a non-mRNA vaccine. Despite significantly older age in the vaccine breakthrough group, only 2.8% (2/71) developed severe COVID-19 requiring oxygen supplementation compared with 53.1% (69/130) in the unvaccinated group (p < 0.001). Odds of severe COVID-19 following vaccination were significantly lower (adjusted odds ratio 0.07 95% CI 0.015-0.335, p 0.001). PCR cycle threshold values were similar between vaccinated and unvaccinated groups at diagnosis, but viral loads decreased faster in vaccinated individuals. Early, robust boosting of anti-spike protein antibodies was observed in vaccinated patients; however, these titres were significantly lower against B.1.617.2 than the wildtype vaccine strain. DISCUSSION The mRNA vaccines are highly effective at preventing symptomatic and severe COVID-19 associated with B.1.617.2 infection. Vaccination is associated with faster decline in viral RNA load and a robust serological response. Vaccination remains a key strategy for control of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore
| | - Calvin J Chiew
- National Centre for Infectious Diseases, Singapore; Ministry of Health, Singapore
| | - Li Wei Ang
- National Centre for Infectious Diseases, Singapore
| | | | - Tze-Minn Mak
- National Centre for Infectious Diseases, Singapore
| | - Lin Cui
- National Centre for Infectious Diseases, Singapore
| | - Shirin Kalimuddin
- Singapore General Hospital, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - Wan Ni Chia
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Chee Wah Tan
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Louis Yi Ann Chai
- National University Health System, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | - Linfa Wang
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - David Chien Lye
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore; Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
109
|
Fahrner JE, Lahmar I, Goubet AG, Haddad Y, Carrier A, Mazzenga M, Drubay D, Alves Costa Silva C, de Sousa E, Thelemaque C, Melenotte C, Dubuisson A, Geraud A, Ferrere G, Birebent R, Bigenwald C, Picard M, Cerbone L, Lérias JR, Laparra A, Bernard-Tessier A, Kloeckner B, Gazzano M, Danlos FX, Terrisse S, Pizzato E, Flament C, Ly P, Tartour E, Benhamouda N, Meziani L, Ahmed-Belkacem A, Miyara M, Gorochov G, Barlesi F, Trubert A, Ungar B, Estrada Y, Pradon C, Gallois E, Pommeret F, Colomba E, Lavaud P, Deloger M, Droin N, Deutsch E, Gachot B, Spano JP, Merad M, Scotté F, Marabelle A, Griscelli F, Blay JY, Soria JC, Merad M, André F, Villemonteix J, Chevalier MF, Caillat-Zucman S, Fenollar F, Guttman-Yassky E, Launay O, Kroemer G, La Scola B, Maeurer M, Derosa L, Zitvogel L. The Polarity and Specificity of Antiviral T Lymphocyte Responses Determine Susceptibility to SARS-CoV-2 Infection in Patients with Cancer and Healthy Individuals. Cancer Discov 2022; 12:958-983. [PMID: 35179201 PMCID: PMC9394394 DOI: 10.1158/2159-8290.cd-21-1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/07/2023]
Abstract
Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Jean-Eudes Fahrner
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Transgene S.A., Illkirch-Graffenstaden, France
| | - Imran Lahmar
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Anne-Gaëlle Goubet
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Yacine Haddad
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Agathe Carrier
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marine Mazzenga
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Damien Drubay
- Gustave Roussy, Villejuif, France.,Département de Biostatistique et d'Epidémiologie, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Carolina Alves Costa Silva
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Lyon COVID Study Group
- Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France. R&D – Immunoassay, bioMérieux S.A., Marcy l'Etoile, France.,Joint Research Unit Hospices Civils de Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France.,International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France.,Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Eric de Sousa
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Cassandra Thelemaque
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Cléa Melenotte
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Aix-Marseille Université, Institut Hospitalo-Universitaire, Institut de Recherche pour le Développement, Assistance Publique – Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Marseille, France
| | - Agathe Dubuisson
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Arthur Geraud
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Gladys Ferrere
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Roxanne Birebent
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Camille Bigenwald
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marion Picard
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Luigi Cerbone
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Joana R. Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Ariane Laparra
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Alice Bernard-Tessier
- Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Benoît Kloeckner
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Marianne Gazzano
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - François-Xavier Danlos
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Safae Terrisse
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Eugenie Pizzato
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Caroline Flament
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Pierre Ly
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Eric Tartour
- Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Department of Immunology, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Nadine Benhamouda
- Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Department of Immunology, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | | | | | - Makoto Miyara
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Guy Gorochov
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Fabrice Barlesi
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Sorbonne Université/Institut National de la Santé et de la Recherche Médicale, U1135, Centre d'Immunologie et des Maladies Infectieuses, Hôpital Pitié-Salpêtrière, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Alexandre Trubert
- Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France
| | - Benjamin Ungar
- Aix Marseille University, CNRS, INSERM, CRCM, Marseille, France
| | - Yeriel Estrada
- Department of Dermatology, Center of Excellence in Eczema Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Caroline Pradon
- Gustave Roussy, Villejuif, France.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York.,Centre de Ressources Biologiques, ET-EXTRA, Gustave Roussy, Villejuif, France
| | - Emmanuelle Gallois
- Gustave Roussy, Villejuif, France.,Département de Biologie Médicale et Pathologie Médicales, Service de Biochimie, Gustave Roussy, Villejuif, France
| | - Fanny Pommeret
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Emeline Colomba
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Pernelle Lavaud
- Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Marc Deloger
- Département de Biologie Médicale et Pathologie Médicales, Service de Microbiologie, Gustave Roussy, Villejuif, France
| | - Nathalie Droin
- Gustave Roussy, Plateforme de Bioinformatique, Université Paris-Saclay, INSERM US23, CNRS UMS, Villejuif, France
| | - Eric Deutsch
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Gustave Roussy, Plateforme de génomique, Université Paris-Saclay, INSERM US23, CNRS UMS, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U1030, Gustave Roussy, Villejuif, France
| | - Bertrand Gachot
- Gustave Roussy, Villejuif, France.,Département de Radiothérapie, Gustave Roussy, Villejuif, France
| | | | - Mansouria Merad
- Gustave Roussy, Villejuif, France.,Department of Medical Oncology, Pitié-Salpétrière Hospital, APHP, Sorbonne Université, Paris, France
| | - Florian Scotté
- Gustave Roussy, Villejuif, France.,Service de Médecine aigue d’Urgence en Cancérologie, Gustave Roussy, Villejuif, France
| | - Aurélien Marabelle
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Département Interdisciplinaire d'Organisation des Parcours Patients, Gustave Roussy, Villejuif, France
| | - Frank Griscelli
- Gustave Roussy, Villejuif, France.,Département de Biologie Médicale et Pathologie Médicales, Service de Biochimie, Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale – UMR935/UA9, Université Paris-Saclay, Villejuif, France.,INGESTEM National IPSC Infrastructure, Université de Paris-Saclay, Villejuif, France.,Université de Paris, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon, France.,Université Claude Bernard, Lyon, France.,Unicancer, Paris, France
| | - Jean-Charles Soria
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, New York.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fabrice André
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, U981, Gustave Roussy, Villejuif, France
| | - Juliette Villemonteix
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, APHP, Université de Paris, Paris, France
| | - Mathieu F. Chevalier
- INSERM UMR 976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, APHP, Université de Paris, Paris, France.,INSERM UMR 976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Florence Fenollar
- IHU Méditérranée Infection, VITROME, IRD, AP-HM, SSA, Aix-Marseille University, Marseille, France
| | - Emma Guttman-Yassky
- Department of Dermatology, Center of Excellence in Eczema Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Odile Launay
- Université de Paris, Inserm CIC 1417, I-Reivac, APHP, Hopital Cochin, Paris, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France.,Pôle de Biologie, Hôpital Européen George Pompidou, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire, Méditerranée Infection, Marseille, France
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Lisboa, Portugal.,Medizinische Klinik, Johannes Gutenberg University Mainz, Germany
| | - Lisa Derosa
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
| | - Laurence Zitvogel
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France.,Gustave Roussy, Villejuif, France.,Institut National de la Santé et de la Recherche Médicale, UMR1015, Gustave Roussy, Villejuif, France.,Center of clinical investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France.,Corresponding Author: Laurence Zitvogel, University Paris-Saclay, Gustave Roussy Cancer Center, 114 rue Edouard Vaillant, Villejuif Cedex 94805, France. Phone: 331-4211-5041; E-mail:
| |
Collapse
|
110
|
Gao Y, Liang WQ, Li YR, He JX, Guan WJ. The Short- and Long-Term Clinical, Radiological and Functional Consequences of COVID-19. Arch Bronconeumol 2022; 58:32-38. [PMID: 35431398 PMCID: PMC9005221 DOI: 10.1016/j.arbres.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 01/08/2023]
Abstract
As with the rapid increase of the number of patients who have recovered from COVID-19 globally, there needs to be a major shift of the focus from rapid pathogen detection, treatment and prevention to the promotion of better recovery. Notwithstanding the scarcity of our understandings, recent studies have unraveled a plethora of pulmonary and systemic consequences which require medical attention. These consequences remained as of the end of follow-up which ranged from 1 month to 1 year. Here, we review the consequences of COVID-19 in terms of the residual symptoms, radiological and functional manifestations, and identify the potential risk factors that contribute to a prolonged recovery. We also summarize the benefits of clinical interventions (particularly the pulmonary rehabilitation program), and address several undetermined concerns and key future research directions.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei-Quan Liang
- Department of Respiratory and Critical Care Medicine, Foshan Second People's Hospital, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Yi-Ran Li
- Department of Respiratory and Critical Care Medicine, Foshan Second People's Hospital, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong, China
| | - Jian-Xing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China.
| | - Wei-Jie Guan
- Department of Respiratory and Critical Care Medicine, Foshan Second People's Hospital, Affiliated Foshan Hospital of Southern Medical University, Foshan, Guangdong, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, China.
| |
Collapse
|
111
|
Inactivated SARS-CoV-2 Vaccine Shows Cross-Protection against Bat SARS-Related Coronaviruses in Human ACE2 Transgenic Mice. J Virol 2022; 96:e0016922. [PMID: 35343762 PMCID: PMC9044931 DOI: 10.1128/jvi.00169-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.
Collapse
|
112
|
Ong SWX, Chia T, Young BE. SARS-CoV-2 variants of concern and vaccine escape, from Alpha to Omicron and beyond. Expert Rev Respir Med 2022; 16:499-502. [PMID: 35320058 PMCID: PMC9115790 DOI: 10.1080/17476348.2022.2057299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Travis Chia
- National Centre for Infectious Diseases, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
113
|
Abstract
A diverse array of successful, first-generation SARS-CoV-2 vaccines have played a huge role in efforts to bring the COVID-19 pandemic under control, even though inequitable distribution still leaves many vulnerable. Additional challenges loom for the next phase. These include optimizing the immunological rationale for boosting-how often and with what-and the best approaches for building a future-proofed, durable immune repertoire to protect against oncoming viral variants, including in children. The landscape of vaccine producers and technologies is likely to become even more heterogeneous. There is a need now for appraisal of future approaches: While some favor frequent boosting with the first-generation, ancestral spike vaccines, others propose frequent readjustment using current variant sequences, polyvalent vaccines, or pan-coronavirus strategies.
Collapse
Affiliation(s)
- Daniel M Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK.,Lung Division, Royal Brompton & Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
114
|
Walls AC, Sprouse KR, Bowen JE, Joshi A, Franko N, Navarro MJ, Stewart C, Cameroni E, McCallum M, Goecker EA, Degli-Angeli EJ, Logue J, Greninger A, Corti D, Chu HY, Veesler D. SARS-CoV-2 breakthrough infections elicit potent, broad, and durable neutralizing antibody responses. Cell 2022; 185:872-880.e3. [PMID: 35123650 PMCID: PMC8769922 DOI: 10.1016/j.cell.2022.01.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Elisabetta Cameroni
- Humabs Biomed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin A Goecker
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Emily J Degli-Angeli
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Alex Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
115
|
Woldemeskel BA, Dykema AG, Garliss CC, Cherfils S, Smith KN, Blankson JN. CD4+ T cells from COVID-19 mRNA vaccine recipients recognize a conserved epitope present in diverse coronaviruses. J Clin Invest 2022; 132:e156083. [PMID: 35061630 PMCID: PMC8884904 DOI: 10.1172/jci156083] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have shown that vaccinated individuals harbor T cells that can cross-recognize SARS-CoV-2 and endemic human common cold coronaviruses. However, it is still unknown whether CD4+ T cells from vaccinated individuals recognize peptides from bat coronaviruses that may have the potential of causing future pandemics. In this study, we identified a SARS-CoV-2 spike protein epitope (S815-827) that is conserved in coronaviruses from different genera and subgenera, including SARS-CoV, MERS-CoV, multiple bat coronaviruses, and a feline coronavirus. Our results showed that S815-827 was recognized by 42% of vaccinated participants in our study who received the Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) COVID-19 vaccines. Using T cell expansion and T cell receptor sequencing assays, we demonstrated that S815-827-reactive CD4+ T cells from the majority of responders cross-recognized homologous peptides from at least 6 other diverse coronaviruses. Our results support the hypothesis that the current mRNA vaccines elicit T cell responses that can cross-recognize bat coronaviruses and thus might induce some protection against potential zoonotic outbreaks. Furthermore, our data provide important insights that inform the development of T cell-based pan-coronavirus vaccine strategies.
Collapse
Affiliation(s)
| | - Arbor G. Dykema
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Kellie N. Smith
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
116
|
Tomalka JA, Suthar MS, Deeks SG, Sekaly RP. Fighting the SARS-CoV-2 pandemic requires a global approach to understanding the heterogeneity of vaccine responses. Nat Immunol 2022; 23:360-370. [PMID: 35210622 DOI: 10.1038/s41590-022-01130-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022]
Abstract
Host genetic and environmental factors including age, biological sex, diet, geographical location, microbiome composition and metabolites converge to influence innate and adaptive immune responses to vaccines. Failure to understand and account for these factors when investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy may impair the development of the next generation of vaccines. Most studies aimed at identifying mechanisms of vaccine-mediated immune protection have focused on adaptive immune responses. It is well established, however, that mobilization of the innate immune response is essential to the development of effective cellular and humoral immunity. A comprehensive understanding of the innate immune response and environmental factors that contribute to the development of broad and durable cellular and humoral immune responses to SARS-CoV-2 and other vaccines requires a holistic and unbiased approach. Along with optimization of the immunogen and vectors, the development of adjuvants based on our evolving understanding of how the innate immune system shapes vaccine responses will be essential. Defining the innate immune mechanisms underlying the establishment of long-lived plasma cells and memory T cells could lead to a universal vaccine for coronaviruses, a key biomedical priority.
Collapse
Affiliation(s)
- Jeffrey A Tomalka
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pediatrics, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven G Deeks
- Department of Medicine, University of California at San Francisco School of Medicine, San Francisco, CA, USA
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA. .,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
117
|
Wang LF, Tan CW, Chia WN, Zhu F, Young B, Chantasrisawad N, Hwa SH, Yeoh AYY, Lim BL, Yap WC, Pada SK, Tan SY, Jantarabenjakul W, Chen S, Zhang J, Mah YY, Chen V, Chen M, Wacharapluesadee S, Putcharoen O, Lye D. Differential escape of neutralizing antibodies by SARS-CoV-2 Omicron and pre-emergent sarbecoviruses. RESEARCH SQUARE 2022:rs.3.rs-1362541. [PMID: 35233568 PMCID: PMC8887082 DOI: 10.21203/rs.3.rs-1362541/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The SARS-CoV-2 B.1.1.529 lineage, Omicron variant, was first detected in November 2021 and carries 32 amino acid mutations in the spike protein (15 in RBD) and exhibits significant escape of neutralizing antibodies targeting the parental SARS-CoV-2 virus. Here, we performed a high-resolution multiplex (16-plex) surrogate virus neutralization assay covering all major SARS-CoV-2 variants and pre-emergent ACE2-binding sarbecoviruses against 20 different human serum panels from infected, vaccinated and hybrid immune individuals which had vaccine-breakthrough infections or infection followed by vaccination. Among all sarbecoviruses tested, we observed 1.1 to 4.7-, 2.3 to 10.3- and 0.7 to 33.3-fold reduction in neutralization activities to SARS-CoV-2 Beta, Omicron and SARS-CoV-1, respectively. Among the SARS-CoV-2 related sarbecoviruses, it is found that the genetically more distant bat RaTG13 and pangolin GX-P5L sarbecoviruses had less neutralization escape than Omicron. Our data suggest that the SARS-CoV-2 variants emerged from the changed immune landscape of human populations are more potent in escaping neutralizing antibodies, from infection or vaccination, than pre-emergent sarbecoviruses naturally evolved in animal populations with no or less immune selection pressure.
Collapse
Affiliation(s)
| | | | | | | | | | - Napaporn Chantasrisawad
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Lye
- National Centre for Infectious Diseases
| |
Collapse
|
118
|
Kalnin KV, Plitnik T, Kishko M, Huang D, Raillard A, Piolat J, Anosova NG, Tibbitts T, DiNapoli J, Karve S, Goldman R, Gopani H, Dias A, Tran K, Zacharia M, Gu X, Boeglin L, Abysalh J, Vargas J, Beaulieu A, Shah M, Jeannotte T, Gillis K, Chivukula S, Swearingen R, Landolfi V, Fu TM, DeRosa F, Casimiro D. Pan-SARS neutralizing responses after third boost vaccination in non-human primate immunogenicity model. Vaccine 2022; 40:1289-1298. [PMID: 35101265 PMCID: PMC8801978 DOI: 10.1016/j.vaccine.2022.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/08/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
The emergence of SARS-CoV-2 variants, especially Beta and Delta, has raised concerns about the reduced protection from previous infection or vaccination based on the original Wuhan-Hu-1 (D614) virus. To identify promising regimens for inducing neutralizing titers towards new variants, we evaluated monovalent and bivalent mRNA vaccines either as primary vaccination or as a booster in nonhuman primates (NHPs). Two mRNA vaccines, D614-based MRT5500 and Beta-based MRT5500β, tested in sequential regimens or as a bivalent combination in naïve NHPs produced modest neutralizing titers to heterologous variants. However, when mRNA vaccines were administered as a booster to pre-immune NHPs, we observed a robust increase in neutralizing titers with expanded breadth towards all tested variants, and notably SARS-CoV-1. The breadth of the neutralizing response was independent of vaccine sequence or modality, as we further showed either MRT5500 or recombinant subunit Spike protein (with adjuvant) can serve as boosters to induce broadly neutralizing antibodies in the NHPs primed with MRT5500. The data support the notion that a third vaccination is key to boosting existing titers and improving the breadth of antibodies to address variants of concern, including those with an E484K mutation in the Receptor Binding Domain (RBD) (Beta, Gamma).
Collapse
Affiliation(s)
- Kirill V Kalnin
- Emergent BioSolutions, 3985-A Sorrento Valley Blvd, San Diego, CA 92121, United States
| | - Timothy Plitnik
- Yoh Services LLC, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Michael Kishko
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Dean Huang
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Alice Raillard
- Sanofi Pasteur, 1541 AV Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Julie Piolat
- Sanofi Pasteur, 1541 AV Marcel Mérieux, 69280 Marcy l'Etoile, France
| | - Natalie G Anosova
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States.
| | - Timothy Tibbitts
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Joshua DiNapoli
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Shrirang Karve
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Rebecca Goldman
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Hardip Gopani
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Anusha Dias
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Khang Tran
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Minnie Zacharia
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Xiaobo Gu
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Lianne Boeglin
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Jonathan Abysalh
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Jorel Vargas
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Angela Beaulieu
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Monic Shah
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Travis Jeannotte
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Kimberly Gillis
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Sudha Chivukula
- Sanofi Pasteur, 38 Sidney Street, Cambridge, MA 02139, United States
| | - Ron Swearingen
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | | | - Tong-Ming Fu
- UT Health Science Center at Houston, 7000 Fannin St #1200, Houston, TX 77030, United States
| | - Frank DeRosa
- Translate Bio, 29 Hartwell Ave, Lexington, MA 02421, United States
| | - Danilo Casimiro
- Sanofi Pasteur, 1541 AV Marcel Mérieux, 69280 Marcy l'Etoile, France
| |
Collapse
|
119
|
Cheedarla N, Verkerke HP, Potlapalli S, McLendon KB, Patel A, Frank F, Damhorst GL, Wu H, O’Sick WH, Graciaa D, Hudaib F, Alter DN, Bryksin J, Ortlund EA, Guarner J, Auld S, Shah S, Lam W, Mattoon D, Johnson JM, Wilson DH, Dhodapkar MV, Stowell SR, Neish AS, Roback JD. Rapid, high throughput, automated detection of SARS-CoV-2 neutralizing antibodies against native-like vaccine and delta variant spike trimers. RESEARCH SQUARE 2022:rs.3.rs-1322411. [PMID: 35194599 PMCID: PMC8863158 DOI: 10.21203/rs.3.rs-1322411/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of hACE-2 binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using vaccine and delta variant viral strains showed strong correlation with cell-based pseudovirus and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta variant resistance to neutralization in samples with paired vaccine and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.
Collapse
Affiliation(s)
- Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- These authors contributed equally as a first authors
| | - Hans P. Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- These authors contributed equally as a first authors
| | - Sindhu Potlapalli
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kaleb Benjamin McLendon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gregory L. Damhorst
- Department of Medicine, Division of infectious diseases, Emory University, Atlanta, GA 30322, USA
| | - Huixia Wu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William Henry O’Sick
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel Graciaa
- Department of Medicine, Division of infectious diseases, Emory University, Atlanta, GA 30322, USA
| | - Fuad Hudaib
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David N Alter
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeannette Bryksin
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanette Guarner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sara Auld
- Department of Medicine, Division of infectious diseases, Emory University, Atlanta, GA 30322, USA
| | - Sarita Shah
- Department of Medicine, Division of infectious diseases, Emory University, Atlanta, GA 30322, USA
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Wilbur Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Dawn Mattoon
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821
| | - Joseph M Johnson
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821
| | - David H Wilson
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821
| | | | - Sean R. Stowell
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Andrew S. Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
120
|
Haralambieva IH, Monroe JM, Ovsyannikova IG, Grill DE, Poland GA, Kennedy RB. Distinct Homologous and Variant-Specific Memory B-Cell and Antibody Response Over Time after SARS-CoV-2 mRNA Vaccination. J Infect Dis 2022; 226:23-31. [PMID: 35137144 PMCID: PMC8903425 DOI: 10.1093/infdis/jiac042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The durability of protective humoral immunity after SARS-CoV-2 vaccination and infection is largely dependent on the generation and persistence of antigen-specific isotype-switched memory B cells (MBCs) and long-lived plasma cells that reside in the bone marrow and secrete high-affinity neutralizing antibodies. The reactivity of vaccine-induced MBCs to emerging clinically significant SARS-CoV-2 variants of concern (VoCs) is largely unknown. In a longitudinal cohort study (up to 6 months following COVID-19 mRNA vaccination) we measured MBCs in concert with other functional antibody measures. We found statistically significant differences between the frequencies of MBCs responding to homologous and VoC receptor-binding domain/RBDs (Beta, Gamma, and Delta) after vaccination that persisted over time. In concert with a waning antibody response, the reduced MBC response to VoCs could translate to a weaker subsequent recall immune response and increased susceptibility to the emerging SARS-CoV-2 variant strains after vaccination.
Collapse
Affiliation(s)
- Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Jonathon M Monroe
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Diane E Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
121
|
He WT, Musharrafieh R, Song G, Dueker K, Tse LV, Martinez DR, Schäfer A, Callaghan S, Yong P, Beutler N, Torres JL, Volk RM, Zhou P, Yuan M, Liu H, Anzanello F, Capozzola T, Parren M, Garcia E, Rawlings SA, Smith DM, Wilson IA, Safonova Y, Ward AB, Rogers TF, Baric RS, Gralinski LE, Burton DR, Andrabi R. Targeted isolation of panels of diverse human protective broadly neutralizing antibodies against SARS-like viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.09.08.459480. [PMID: 35169804 PMCID: PMC8845431 DOI: 10.1101/2021.09.08.459480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The emergence of current SARS-CoV-2 variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy 1-7 . Development of broadly effective coronavirus vaccines that can mitigate these threats is needed 8, 9 . Notably, several recent studies have revealed that vaccination of recovered COVID-19 donors results in enhanced nAb responses compared to SARS-CoV-2 infection or vaccination alone 10-13 . Here, we utilized a targeted donor selection strategy to isolate a large panel of broadly neutralizing antibodies (bnAbs) to sarbecoviruses from two such donors. Many of the bnAbs are remarkably effective in neutralization against sarbecoviruses that use ACE2 for viral entry and a substantial fraction also show notable binding to non-ACE2-using sarbecoviruses. The bnAbs are equally effective against most SARS-CoV-2 VOCs and many neutralize the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor binding domain (RBD) as opposed to strain-specific nAbs to the receptor binding site that are commonly elicited in SARS-CoV-2 infection and vaccination 14-18 . Consistent with targeting of conserved sites, select RBD bnAbs exhibited in vivo protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model. The generation of a large panel of potent bnAbs provides new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and, importantly, provides a molecular basis for effective design of pan-sarbecovirus vaccines.
Collapse
Affiliation(s)
- Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R. Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reid M. Volk
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M. Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 9203
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew B. Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
122
|
Di Germanio C, Simmons G, Thorbrogger C, Martinelli R, Stone M, Gniadek T, Busch MP. Vaccination of COVID-19 Convalescent Plasma Donors Increases Binding and Neutralizing Antibodies Against SARS-CoV-2 Variants. Transfusion 2022; 62:563-569. [PMID: 35129839 PMCID: PMC9115457 DOI: 10.1111/trf.16823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
Background COVID‐19 convalescent plasma (CCP) was widely used as passive immunotherapy during the first waves of SARS‐CoV‐2 infection in the US. However, based on observational studies and randomized controlled trials, the beneficial effects of CCP were limited, and its use was virtually discontinued early in 2021, in concurrence with increased vaccination rates and availability of monoclonal antibody (mAb) therapeutics. Yet, as new variants of the SARS‐CoV‐2 spread, interest in CCP derived from vaccine‐boosted CCP donors is resurging. The effect of vaccination of previously infected CCP donors on antibodies against rapidly spreading variants is still under investigation. Study design/methods In this study, paired‐samples from 11 CCP donors collected before and after vaccination was tested to measure binding antibody levels and neutralization activity against the ancestral Wuhan‐Hu‐1 and SARS‐CoV‐2 variants (Wuhan‐Hu‐1 with D614G, alpha, beta, gamma, delta, epsilon) on the Ortho Vitros Spike Total Ig and IgG assays, the MSD V‐PLEX SARS‐CoV‐2 arrays for IgG binding and ACE2 inhibition, and variant‐specific Spike Reporter Viral Particle Neutralization (RVPN) assays. Results/findings Binding and neutralizing antibodies were significantly boosted by vaccination, with several logs higher neutralization for all the variants tested post‐vaccination compared to the pre‐vaccination samples, with no difference found among the individual variants. Discussion Vaccination of previously infected individuals boosts antibodies including neutralizing activity against all SARS‐CoV‐2 variants.
Collapse
Affiliation(s)
- Clara Di Germanio
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Thomas Gniadek
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
123
|
Head RJ, Lumbers ER, Jarrott B, Tretter F, Smith G, Pringle KG, Islam S, Martin JH. Systems analysis shows that thermodynamic physiological and pharmacological fundamentals drive COVID-19 and response to treatment. Pharmacol Res Perspect 2022; 10:e00922. [PMID: 35106955 PMCID: PMC8929328 DOI: 10.1002/prp2.922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Why a systems analysis view of this pandemic? The current pandemic has inflicted almost unimaginable grief, sorrow, loss, and terror at a global scale. One of the great ironies with the COVID‐19 pandemic, particularly early on, is counter intuitive. The speed at which specialized basic and clinical sciences described the details of the damage to humans in COVID‐19 disease has been impressive. Equally, the development of vaccines in an amazingly short time interval has been extraordinary. However, what has been less well understood has been the fundamental elements that underpin the progression of COVID‐19 in an individual and in populations. We have used systems analysis approaches with human physiology and pharmacology to explore the fundamental underpinnings of COVID‐19 disease. Pharmacology powerfully captures the thermodynamic characteristics of molecular binding with an exogenous entity such as a virus and its consequences on the living processes well described by human physiology. Thus, we have documented the passage of SARS‐CoV‐2 from infection of a single cell to species jump, to tropism, variant emergence and widespread population infection. During the course of this review, the recurrent observation was the efficiency and simplicity of one critical function of this virus. The lethality of SARS‐CoV‐2 is due primarily to its ability to possess and use a variable surface for binding to a specific human target with high affinity. This binding liberates Gibbs free energy (GFE) such that it satisfies the criteria for thermodynamic spontaneity. Its binding is the prelude to human host cellular entry and replication by the appropriation of host cell constituent molecules that have been produced with a prior energy investment by the host cell. It is also a binding that permits viral tropism to lead to high levels of distribution across populations with newly formed virions. This thermodynamic spontaneity is repeated endlessly as infection of a single host cell spreads to bystander cells, to tissues, to humans in close proximity and then to global populations. The principal antagonism of this process comes from SARS‐CoV‐2 itself, with its relentless changing of its viral surface configuration, associated with the inevitable emergence of variants better configured to resist immune sequestration and importantly with a greater affinity for the host target and higher infectivity. The great value of this physiological and pharmacological perspective is that it reveals the fundamental thermodynamic underpinnings of SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
- Richard J Head
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Bevyn Jarrott
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Felix Tretter
- Bertalanffy Center for the Study of Systems Science, Vienna, Austria
| | - Gary Smith
- VP System Practice - International Society for System Sciences, Pontypool, UK
| | - Kirsty G Pringle
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Saiful Islam
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jennifer H Martin
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Centre for Drug Repurposing and Medicines Research, Clinical Pharmacology, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
124
|
Cheedarla N, Verkerke HP, Potlapalli S, McLendon KB, Patel A, Frank F, Damhorst GL, Wu H, Oâ Sick WH, Graciaa D, Hudaib F, Alter DN, Bryksin J, Ortlund EA, Guarner J, Auld S, Shah S, Lam W, Mattoon D, Johnson JM, Wilson DH, Dhodapkar MV, Stowell SR, Neish AS, Roback JD. Rapid, high throughput, automated detection of SARS-CoV-2 neutralizing antibodies against native-like vaccine and delta variant spike trimers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.02.01.22270279. [PMID: 35132426 PMCID: PMC8820678 DOI: 10.1101/2022.02.01.22270279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of hACE-2 binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using vaccine and delta variant viral strains showed strong correlation with cell-based pseudovirus and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta variant resistance to neutralization in samples with paired vaccine and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels.
Collapse
|
125
|
Asrani P, Tiwari K, Eapen MS, Hassan MI, Sohal SS. Containment strategies for COVID-19 in India: lessons from the second wave. Expert Rev Anti Infect Ther 2022; 20:829-835. [DOI: 10.1080/14787210.2022.2036605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Purva Asrani
- Department of Microbiology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Keshav Tiwari
- ICAR-National Institute for Plant Biotechnology, New Delhi, India-110012
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7248, Australia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, 7248, Australia
| |
Collapse
|
126
|
Characterization of a Broadly Neutralizing Monoclonal Antibody against SARS-CoV-2 Variants. Viruses 2022; 14:v14020230. [PMID: 35215823 PMCID: PMC8878391 DOI: 10.3390/v14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
The constant mutation of SARS-CoV-2 has led to the emergence of new variants, which call for urgent effective therapeutic interventions. The trimeric spike (S) protein of SARS-CoV-2 is highly immunogenic with the receptor-binding domain (RBD) that binds first to the cellular receptor angiotensin-converting enzyme 2 (ACE2) and is therefore the target of many neutralizing antibodies. In this study, we characterized a broadly neutralizing monoclonal antibody (mAb) 9G8, which shows potent neutralization against the authentic SARS-CoV-2 wild-type (WT), Alpha (B.1.1.7), and Delta (1.617.2) viruses. Furthermore, mAb 9G8 also displayed a prominent neutralizing efficacy in the SARS-CoV-2 surrogate virus neutralization test (sVNT) against the Epsilon (B.1.429/7), Kappa (B.1.617.1), Gamma (P.1), Beta (B.1.351), and Delta Plus (1.617.2.1) RBD variants in addition to the variants mentioned above. Based on our in vitro escape mutant studies, we proved that the mutations V483F and Y489H within the RBD were involved in ACE2 binding and caused the neutralizing evasion of the virus from mAb 9G8. The development of such a cross-reactive neutralizing antibody against majority of the SARS-CoV-2 variants provides an important insight into pursuing future therapeutic agents for the prevention and treatment of COVID-19.
Collapse
|
127
|
Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses 2022; 14:78. [PMID: 35062282 PMCID: PMC8778387 DOI: 10.3390/v14010078] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) constitute a large and diverse subfamily of positive-sense single-stranded RNA viruses. They are found in many mammals and birds and have great importance for the health of humans and farm animals. The current SARS-CoV-2 pandemic, as well as many previous epidemics in humans that were of zoonotic origin, highlights the importance of studying the evolution of the entire CoV subfamily in order to understand how novel strains emerge and which molecular processes affect their adaptation, transmissibility, host/tissue tropism, and patho non-homologous genicity. In this review, we focus on studies over the last two years that reveal the impact of point mutations, insertions/deletions, and intratypic/intertypic homologous and non-homologous recombination events on the evolution of CoVs. We discuss whether the next generations of CoV vaccines should be directed against other CoV proteins in addition to or instead of spike. Based on the observed patterns of molecular evolution for the entire subfamily, we discuss five scenarios for the future evolutionary path of SARS-CoV-2 and the COVID-19 pandemic. Finally, within this evolutionary context, we discuss the recently emerged Omicron (B.1.1.529) VoC.
Collapse
Affiliation(s)
- Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Eleni Tryfonopoulou
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Katerina Chlichlia
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
128
|
Jeewandara C, Aberathna IS, Dayarathna S, Nimasha T, Ranasinghe T, Jayamali J, Kamaladasa A, Karunanada M, Perera L, Ogg GS, Malavige GN. Comparison of the kinetics and magnitude of antibody responses to different SARS-CoV-2 proteins in Sinopharm/BBIBP-CorV vaccinees following the BNT162b2 booster or natural infection. PLoS One 2022; 17:e0274845. [PMID: 36227884 PMCID: PMC9560485 DOI: 10.1371/journal.pone.0274845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022] Open
Abstract
The kinetics and magnitude of antibody responses to different proteins of the SARS-CoV-2 virus in Sinopharm/BBIBP-CorV vaccinees has not been previously studied. Therefore, we investigated antibody responses to different SARS-CoV-2 proteins at 2 weeks, 3 months, and 6 months post-second dose in previously infected (n = 20) and uninfected (n = 20) Sinopharm/BBIBP-CorV vaccinees. The IgG antibodies to the S, S1 and S2 and N were several folds higher in those who had natural infection compared to uninfected individuals at all time points. We then compared the persistence of antibody responses and effect of natural omicron infection or BNT162b2 booster in Sinopharm/BBIBP-CorV vaccinees. We measured the total antibodies to the RBD, ACE2 blocking antibodies and antibody responses to different SARS-CoV-2 proteins in Sinopharm vaccinees at 7 months post second dose, including those who remained uninfected and not boosted (n = 21), or those who had previous infection and who did not obtain the booster (n = 17), those who were not infected, but who received a BNT162b2 booster (n = 30), or those who did not receive the booster but were infected with omicron (n = 29). At 7 months post second dose uninfected (no booster) had the lowest antibody levels to the RBD, while omicron infected vaccinees showed significantly higher anti-RBD antibody levels (p = 0.04) than vaccinees who received the booster. Only 3/21 cohort A (14.3%) had ACE2 blocking antibodies, while higher frequencies were observed in naturally infected individuals (100%), those who received the booster (18/21, 85.7%), and omicron infected individuals (100%). Pre-vaccination, naturally infected had the highest antibody levels to the N protein. These data suggest that those previously infected Sinopharm/BBIBP-CorV vaccinees have a robust antibody response, 7 months post vaccination, while vaccinees who were naturally infected with omicron had a similar immune response to those who received the booster. It will be important to investigate implications for subsequent clinical protection.
Collapse
Affiliation(s)
- Chandima Jeewandara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Inoka Sepali Aberathna
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Shashika Dayarathna
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Thashmi Nimasha
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Thushali Ranasinghe
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Jeewantha Jayamali
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Achala Kamaladasa
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Maneshka Karunanada
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Lahiru Perera
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S. Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
129
|
Jeong BS, Cha JS, Hwang I, Kim U, Adolf-Bryfogle J, Coventry B, Cho HS, Kim KD, Oh BH. Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants. MAbs 2022; 14:2021601. [PMID: 35030983 PMCID: PMC8765073 DOI: 10.1080/19420862.2021.2021601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Coronavirus disease 2019, caused by SARS-CoV-2, remains an on-going pandemic, partly due to the emergence of variant viruses that can "break-through" the protection of the current vaccines and neutralizing antibodies (nAbs), highlighting the needs for broadly nAbs and next-generation vaccines. We report an antibody that exhibits breadth and potency in binding the receptor-binding domain (RBD) of the virus spike glycoprotein across SARS coronaviruses. Initially, a lead antibody was computationally discovered and crystallographically validated that binds to a highly conserved surface of the RBD of wild-type SARS-CoV-2. Subsequently, through experimental affinity enhancement and computational affinity maturation, it was further developed to bind the RBD of all concerning SARS-CoV-2 variants, SARS-CoV-1 and pangolin coronavirus with pico-molar binding affinities, consistently exhibited strong neutralization activity against wild-type SARS-CoV-2 and the Alpha and Delta variants. These results identify a vulnerable target site on coronaviruses for development of pan-sarbecovirus nAbs and vaccines.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Affinity
- Antibody Specificity
- Antigen-Antibody Reactions
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Broadly Neutralizing Antibodies/genetics
- Broadly Neutralizing Antibodies/immunology
- Broadly Neutralizing Antibodies/metabolism
- COVID-19/immunology
- Crystallography, X-Ray
- Epitopes/chemistry
- Epitopes/immunology
- Humans
- Immunoglobulin Fragments/immunology
- Molecular Docking Simulation
- Monte Carlo Method
- Neutralization Tests
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Domains
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Bo-Seong Jeong
- Department of Biological Sciences, Kaist Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jeong Seok Cha
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Insu Hwang
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Uijin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jared Adolf-Bryfogle
- Institute for Protein Innovation, Boston, MA, USA
- Division of Hematology-Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Coventry
- Molecular Engineering & Sciences Institute & Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyun-Do Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, Kaist Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
130
|
Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW. Vaccine-Associated Enhanced Disease and Pathogenic Human Coronaviruses. Front Immunol 2022; 13:882972. [PMID: 35444667 PMCID: PMC9014240 DOI: 10.3389/fimmu.2022.882972] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
Vaccine-associated enhanced disease (VAED) is a difficult phenomenon to define and can be confused with vaccine failure. Using studies on respiratory syncytial virus (RSV) vaccination and dengue virus infection, we highlight known and theoretical mechanisms of VAED, including antibody-dependent enhancement (ADE), antibody-enhanced disease (AED) and Th2-mediated pathology. We also critically review the literature surrounding this phenomenon in pathogenic human coronaviruses, including MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Poor quality histopathological data and a lack of consistency in defining severe pathology and VAED in preclinical studies of MERS-CoV and SARS-CoV-1 vaccines in particular make it difficult to interrogate potential cases of VAED. Fortuitously, there have been only few reports of mild VAED in SARS-CoV-2 vaccination in preclinical models and no observations in their clinical use. We describe the problem areas and discuss methods to improve the characterisation of VAED in the future.
Collapse
Affiliation(s)
- Cillian Gartlan
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Francisco J Salguero
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew Gorringe
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Miles W Carroll
- Wellcome Centre for Human Genetics and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
131
|
Su S, Li W, Jiang S. Developing pan-β-coronavirus vaccines against emerging SARS-CoV-2 variants of concern. Trends Immunol 2022; 43:170-172. [PMID: 35125310 PMCID: PMC8758279 DOI: 10.1016/j.it.2022.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
The concurrent prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) raises the concern for the emergence of potential new β-CoV clades via genetic recombination, bearing high SARS-CoV-2-like transmissibility and high MERS-CoV-like mortality rates. Therefore, we argue that there is an urgent need to develop pan-β-CoV vaccines that can target not only current SARS-CoV-2 variants of concern, but also future putative SARS-CoV-3- or MERS-CoV-2-like coronavirus.
Collapse
Affiliation(s)
- Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/MOH/CAM), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/MOH/CAM), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China.
| |
Collapse
|
132
|
Vashishtha VM, Kumar P. Looking to the future: is a universal coronavirus vaccine feasible? Expert Rev Vaccines 2021; 21:277-280. [PMID: 34968153 DOI: 10.1080/14760584.2022.2020107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vipin M Vashishtha
- Department of Pediatrics, Mangla Hospital & Research Center, Bijnor, India
| | | |
Collapse
|
133
|
Zhou D, Zhou R, Chen Z. Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 2:ltab027. [PMID: 35915816 PMCID: PMC8755319 DOI: 10.1093/immadv/ltab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been spreading worldwide since December 2019, resulting in the ongoing COVID-19 pandemic with 237 million infections and 4.8 million deaths by 11 October 2021. While there are great efforts of global vaccination, ending this pandemic has been challenged by issues of exceptionally high viral transmissibility, re-infection, vaccine-breakthrough infection, and immune escape variants of concern. Besides the record-breaking speed of vaccine research and development, antiviral drugs including SARS-CoV-2-specific human neutralizing antibodies (HuNAbs) have been actively explored for passive immunization. In support of HuNAb-based immunotherapy, passive immunization using convalescent patients' plasma has generated promising evidence on clinical benefits for both mild and severe COVID-19 patients. Since the source of convalescent plasma is limited, the discovery of broadly reactive HuNAbs may have significant impacts on the fight against the COVID-19 pandemic. In this review, therefore, we discuss the current technologies of gene cloning, modes of action, in vitro and in vivo potency and breadth, and clinical development for potent SARS-CoV-2-specific HuNAbs.
Collapse
Affiliation(s)
- Dongyan Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
134
|
Mattoo SUS, Myoung J. A Promising Vaccination Strategy against COVID-19 on the Horizon: Heterologous Immunization. J Microbiol Biotechnol 2021; 31:1601-1614. [PMID: 34949742 PMCID: PMC9705928 DOI: 10.4014/jmb.2111.11026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
To overcome the ongoing COVID-19 pandemic, vaccination campaigns are the highest priority of majority of countries. Limited supply and worldwide disproportionate availability issues for the approved vaccines, together with concerns about rare side-effects have recently initiated the switch to heterologous vaccination, commonly known as mixing of vaccines. The COVID-19 vaccines are highly effective in the general population. However, none of the vaccines is 100% efficacious or effective, with variants posing more challenges, resulting in breakthrough cases. This review summarizes the current knowledge of immune responses to variants of concern (VOC) and breakthrough infections. Furthermore, we discuss the scope of heterologous vaccination and future strategies to tackle the COVID-19 pandemic, including fractionation of vaccine doses and alternative route of vaccination.
Collapse
Affiliation(s)
- Sameer-ul-Salam Mattoo
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea,Corresponding author Phone: +82-63-9004055 Fax: +82-63-9004012 E-mail:
| |
Collapse
|
135
|
Nguyen THO, Cohen CA, Rowntree LC, Bull MB, Hachim A, Kedzierska K, Valkenburg SA. T Cells Targeting SARS-CoV-2: By Infection, Vaccination, and Against Future Variants. Front Med (Lausanne) 2021; 8:793102. [PMID: 35004764 PMCID: PMC8739267 DOI: 10.3389/fmed.2021.793102] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
T cell responses are a key cornerstone to viral immunity to drive high-quality antibody responses, establishing memory for recall and for viral clearance. Inefficient recruitment of T cell responses plays a role in the development of severe COVID-19 and is also represented by reduced cellular responses in men, children, and diversity compared with other epitope-specific subsets and available T cell receptor diversity. SARS-CoV-2-specific T cell responses are elicited by multiple vaccine formats and augmented by prior infection for hybrid immunity. Epitope conservation is relatively well-maintained leading to T cell crossreactivity for variants of concern that have diminished serological responses.
Collapse
Affiliation(s)
- Thi H. O. Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Carolyn A. Cohen
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Maireid B. Bull
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
136
|
Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2021; 602:657-663. [PMID: 35016194 PMCID: PMC8866119 DOI: 10.1038/s41586-021-04385-3] [Citation(s) in RCA: 1185] [Impact Index Per Article: 395.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A–F)—a grouping that is highly concordant with knowledge-based structural classifications3–5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A–D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants. A high-throughput yeast display platform is used to analyse the profiles of mutations in the SARS-CoV-2 receptor-binding domain (RBD) that enable escape from antibodies, and suggests that most anti-RBD antibodies can be escaped by the Omicron variant.
Collapse
|
137
|
Abstract
The increasing frequency of pathogenic coronaviruses in the human population has raised public health concerns about possible future pandemics. It is critical to understand whether immune responses to the current circulating coronaviruses provide protection against related viruses or those that may emerge in the future. In this issue of the JCI, Dangi, Palacio, and co-authors detail the extent of coronavirus cross-protection following both vaccination and natural infection and ultimately used murine models to highlight the mechanism behind this heterotypic immunity. This study provides insight into the possibility of a pan-coronavirus vaccine that could protect humans against future coronavirus outbreaks.
Collapse
Affiliation(s)
| | - Manish Sagar
- Department of Microbiology, and,Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
138
|
Walls AC, Sprouse KR, Joshi A, Bowen JE, Franko N, Navarro MJ, Stewart C, McCallum M, Goecker EA, Degli-Angeli EJ, Logue J, Greninger A, Chu H, Veesler D. Delta breakthrough infections elicit potent, broad and durable neutralizing antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.08.471707. [PMID: 34931192 PMCID: PMC8687475 DOI: 10.1101/2021.12.08.471707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SARS-CoV-2 Delta variant is currently responsible for most infections worldwide, including among fully vaccinated individuals. Although these latter infections are associated with milder COVID-19 disease relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by Delta breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants of concern than those observed in subjects who were infected only or received only two doses of COVID-19 vaccine. However, wee show that Delta breakthrough cases, subjects who were vaccinated after SARS-CoV-2 infection and individuals vaccinated three times (without infection) have serum neutralizing activity of comparable magnitude and breadth indicate that multiple types of exposure or increased number of exposures to SARS-CoV-2 antigen(s) enhance spike-specific antibody responses. Neutralization of the genetically divergent SARS-CoV, however, was moderate with all four cohorts examined, except after four exposures to the SARS-CoV-2 spike, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Erin A Goecker
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Emily J Degli-Angeli
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Alex Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
139
|
Waterlow NR, van Leeuwen E, Davies NG, Flasche S, Eggo RM. How immunity from and interaction with seasonal coronaviruses can shape SARS-CoV-2 epidemiology. Proc Natl Acad Sci U S A 2021; 118:e2108395118. [PMID: 34873059 PMCID: PMC8670441 DOI: 10.1073/pnas.2108395118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, including generating reduced susceptibility in children. To determine what the prepandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 y of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.8 y (95% CI 6.3 to 8.1) and show that, while cross-protection between HCoV and SARS-CoV-2 may contribute to the age distribution, it is insufficient to explain the age pattern of SARS-CoV-2 infections in the first wave of the pandemic in England and Wales. Projections from our model illustrate how different strengths of cross-protection between circulating coronaviruses could determine the frequency and magnitude of SARS-CoV-2 epidemics over the coming decade, as well as the potential impact of cross-protection on future seasonal coronavirus transmission.
Collapse
Affiliation(s)
- Naomi R Waterlow
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom;
| | - Edwin van Leeuwen
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
- Statistics, Modelling and Economics Department, UK Health Security Agency, London NW9 5EQ, United Kingdom
| | - Nicholas G Davies
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| | - Stefan Flasche
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| | - Rosalind M Eggo
- Centre for Mathematical Modeling of Infectious Disease, London School of Hygiene and Tropical Medicine, London WC14 7HT, United Kingdom
| |
Collapse
|
140
|
Le Bert N, Chia WN, Wan WY, Teo AKJ, Chong SZR, Tan N, Tan DSC, Chia A, Tan IB, Kunasegaran K, Chua QX, Abdad MY, Ng ASH, Vasoo S, Ang JXL, Lee MS, Sun L, Fang J, Zhu F, Cook AR, Aw TC, Huang J, Tam C, Lee FS, Clapham H, Goh EJK, Peou MSS, Tan SP, Ong SK, Wang LF, Bertoletti A, Hsu LY, Ong BC. Widely heterogeneous humoral and cellular immunity after mild SARS-CoV-2 infection in a homogeneous population of healthy young men. Emerg Microbes Infect 2021; 10:2141-2150. [PMID: 34709140 PMCID: PMC8604544 DOI: 10.1080/22221751.2021.1999777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND We studied humoral and cellular responses against SARS-CoV-2 longitudinally in a homogeneous population of healthy young/middle-aged men of South Asian ethnicity with mild COVID-19. METHODS In total, we recruited 994 men (median age: 34 years) post-COVID-19 diagnosis. Repeated cross-sectional surveys were conducted between May 2020 and January 2021 at six time points - day 28 (n = 327), day 80 (n = 202), day 105 (n = 294), day 140 (n = 172), day 180 (n = 758), and day 280 (n = 311). Three commercial assays were used to detect anti-nucleoprotein (NP) and neutralizing antibodies. T cell response specific for Spike, Membrane and NP SARS-CoV-2 proteins was tested in 85 patients at day 105, 180, and 280. RESULTS All serological tests displayed different kinetics of progressive antibody reduction while the frequency of T cells specific for different structural SARS-CoV-2 proteins was stable over time. Both showed a marked heterogeneity of magnitude among the studied cohort. Comparatively, cellular responses lasted longer than humoral responses and were still detectable nine months after infection in the individuals who lost antibody detection. Correlation between T cell frequencies and all antibodies was lost over time. CONCLUSION Humoral and cellular immunity against SARS-CoV-2 is induced with differing kinetics of persistence in those with mild disease. The magnitude of T cells and antibodies is highly heterogeneous in a homogeneous study population. These observations have implications for COVID-19 surveillance, vaccination strategies, and post-pandemic planning.
Collapse
Affiliation(s)
- Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Wan Ni Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Wei Yee Wan
- Department of Microbiology, Singapore General Hospital, Singapore, Singapore
| | - Alvin Kuo Jing Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Nicole Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | | | - Adeline Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Iain Beehuat Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- National Cancer Centre, Singapore, Singapore
- Genome Institute of Singapore, Singapore, Singapore
| | - Kamini Kunasegaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | | | - Mohammad Yazid Abdad
- National Centre for Infectious Diseases, Singapore, Singapore
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | - Shawn Vasoo
- National Centre for Infectious Diseases, Singapore, Singapore
| | | | | | - Louisa Sun
- Alexandra Hospital, Singapore, Singapore
| | - Jinyan Fang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Feng Zhu
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Alex R. Cook
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | | | - Clarence Tam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | | | | | | | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Antonio Bertoletti
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Biauw Chi Ong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Sengkang General Hospital, Singapore, Singapore
| |
Collapse
|
141
|
Garg AK, Mittal S, Padmanabhan P, Desikan R, Dixit NM. Increased B Cell Selection Stringency In Germinal Centers Can Explain Improved COVID-19 Vaccine Efficacies With Low Dose Prime or Delayed Boost. Front Immunol 2021; 12:776933. [PMID: 34917089 PMCID: PMC8669483 DOI: 10.3389/fimmu.2021.776933] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
The efficacy of COVID-19 vaccines appears to depend in complex ways on the vaccine dosage and the interval between the prime and boost doses. Unexpectedly, lower dose prime and longer prime-boost intervals have yielded higher efficacies in clinical trials. To elucidate the origins of these effects, we developed a stochastic simulation model of the germinal center (GC) reaction and predicted the antibody responses elicited by different vaccination protocols. The simulations predicted that a lower dose prime could increase the selection stringency in GCs due to reduced antigen availability, resulting in the selection of GC B cells with higher affinities for the target antigen. The boost could relax this selection stringency and allow the expansion of the higher affinity GC B cells selected, improving the overall response. With a longer dosing interval, the decay in the antigen with time following the prime could further increase the selection stringency, amplifying this effect. The effect remained in our simulations even when new GCs following the boost had to be seeded by memory B cells formed following the prime. These predictions offer a plausible explanation of the observed paradoxical effects of dosage and dosing interval on vaccine efficacy. Tuning the selection stringency in the GCs using prime-boost dosages and dosing intervals as handles may help improve vaccine efficacies.
Collapse
Affiliation(s)
- Amar K. Garg
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Soumya Mittal
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
142
|
Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R. Gold-Nanostar-Chitosan-Mediated Delivery of SARS-CoV-2 DNA Vaccine for Respiratory Mucosal Immunization: Development and Proof-of-Principle. ACS NANO 2021; 15:17582-17601. [PMID: 34705425 PMCID: PMC8565460 DOI: 10.1021/acsnano.1c05002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 05/16/2023]
Abstract
The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2 (SC2). A variety of anti-SC2 vaccines have been approved for human applications, including those using messenger RNA (mRNA), adenoviruses expressing SC2 spike (S) protein, and inactivated virus. The protective periods of immunization afforded by these intramuscularly administered vaccines are currently unknown. An alternative self-administrable vaccine capable of mounting long-lasting immunity via sterilizing neutralizing antibodies would be hugely advantageous in tackling emerging mutant SC2 variants. This could also diminish the possibility of vaccinated individuals acting as passive carriers of COVID-19. Here, we investigate the potential of an intranasal (IN)-delivered DNA vaccine encoding the S protein of SC2 in BALB/c and C57BL/6J immunocompetent mouse models. The immune response to IN delivery of this SC2-spike DNA vaccine transported on a modified gold-chitosan nanocarrier shows a strong and consistent surge in antibodies (IgG, IgA, and IgM) and effective neutralization of pseudoviruses expressing S proteins of different SC2 variants (Wuhan, beta, and D614G). Immunophenotyping and histological analyses reveal chronological events involved in the recognition of SC2 S antigen by resident dendritic cells and alveolar macrophages, which prime the draining lymph nodes and spleen for peak SC2-specific cellular and humoral immune responses. The attainable high levels of anti-SC2 IgA in lung mucosa and tissue-resident memory T cells can efficiently inhibit SC2 and its variants at the site of entry and also provide long-lasting immunity.
Collapse
Affiliation(s)
- Uday S. Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rayhaneh Afjei
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katherine Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
143
|
Wang J, Guo C, Cai L, Liao C, Yi H, Li Q, Hu H, Deng Q, Lu Y, Guo Z, Chen Z, Lu J. Pre-Existing Cross-Reactive Antibody Responses Do Not Significantly Impact Inactivated COVID-19 Vaccine-Induced Neutralization. Front Immunol 2021; 12:772511. [PMID: 34868035 PMCID: PMC8640209 DOI: 10.3389/fimmu.2021.772511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Recent exposure to seasonal coronaviruses (sCoVs) may stimulate cross-reactive antibody responses against severe acute respiratory syndrome CoV 2 (SARS-CoV-2). However, previous studies have produced divergent results regarding protective or damaging immunity induced by prior sCoV exposure. It remains unknown whether pre-existing humoral immunity plays a role in vaccine-induced neutralization and antibody responses. In this study, we collected 36 paired sera samples from 36 healthy volunteers before and after immunization with inactivated whole-virion SARS-CoV-2 vaccines for COVID-19, and analyzed the distribution and intensity of pre-existing antibody responses at the epitope level pre-vaccination as well as the relationship between pre-existing sCoV immunity and vaccine-induced neutralization. We observed large amounts of pre-existing cross-reactive antibodies in the conserved regions among sCoVs, especially the S2 subunit. Excep t for a few peptides, the IgG and IgM fluorescence intensities against S, M and N peptides did not differ significantly between pre-vaccination and post-vaccination sera of vaccinees who developed a neutralization inhibition rate (%inhibition) <40 and %inhibition ≥40 after two doses of the COVID-19 vaccine. Participants with strong and weak pre-existing cross-reactive antibodies (strong pre-CRA; weak pre-CRA) had similar %inhibition pre-vaccination (10.9% ± 2.9% vs. 12.0% ± 2.2%, P=0.990) and post-vaccination (43.8% ± 25.1% vs. 44.6% ± 21.5%, P=0.997). Overall, the strong pre-CRA group did not show a significantly greater increase in antibody responses to the S protein linear peptides post-vaccination compared with the weak pre-CRA group. Therefore, we found no evidence for a significant impact of pre-existing antibody responses on inactivated vaccine-induced neutralization and antibody responses. Our research provides an important basis for inactivated SARS-CoV-2 vaccine use in the context of high sCoV seroprevalence.
Collapse
Affiliation(s)
- Jin Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lin Cai
- Futian District Center for Disease Control and Prevention, Shenzhen, China
| | - Conghui Liao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| | - Huaimin Yi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| | - Qianlin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| | - Huan Hu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| | - Qiang Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| | - Yuying Lu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| | - Zhongmin Guo
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, China
| | - Zeliang Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| | - Jiahai Lu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, China
| |
Collapse
|
144
|
Yek C, Nam VS, Leang R, Parker DM, Heng S, Souv K, Sovannaroth S, Mayxay M, AbuBakar S, Sasmono RT, Tran ND, Le Nguyen HK, Lon C, Boonnak K, Huy R, Sovann L, Manning JE. The Pandemic Experience in Southeast Asia: Interface Between SARS-CoV-2, Malaria, and Dengue. FRONTIERS IN TROPICAL DISEASES 2021; 2:788590. [PMID: 35373190 PMCID: PMC8975143 DOI: 10.3389/fitd.2021.788590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Southeast Asia (SEA) emerged relatively unscathed from the first year of the global SARS-CoV-2 pandemic, but as of July 2021 the region is experiencing a surge in case numbers primarily driven by Alpha (B.1.1.7) and subsequently the more transmissible Delta (B.1.617.2) variants. While initial disease burden was mitigated by swift government responses, favorable cultural and societal factors, the more recent rise in cases suggests an under-appreciation of prior prevalence and over-appreciation of possible cross-protective immunity from exposure to endemic viruses, and highlights the effects of vaccine rollout at varying tempos and of variable efficacy. This burgeoning crisis is further complicated by co-existence of malaria and dengue in the region, with implications of serological cross-reactivity on interpretation of SARS-CoV-2 assays and competing resource demands impacting efforts to contain both endemic and pandemic disease.
Collapse
Affiliation(s)
- Christina Yek
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Daniel M. Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, Irvine, CA, United States
- Department of Epidemiology, University of California, Irvine, Irvine, CA, United States
| | - Seng Heng
- Ministry of Health, Phnom Penh, Cambodia
| | | | | | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Laos
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sazaly AbuBakar
- WHO Collaborating Center for Arbovirus Reference and Research (Dengue) and Tropical Infectious Diseases Research and Education Center, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Nhu Duong Tran
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rekol Huy
- Ministry of Health, Phnom Penh, Cambodia
| | - Ly Sovann
- Ministry of Health, Phnom Penh, Cambodia
| | - Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| |
Collapse
|
145
|
Martinez DR, Schäfer A, Gobeil S, Li D, De la Cruz G, Parks R, Lu X, Barr M, Stalls V, Janowska K, Beaudoin E, Manne K, Mansouri K, Edwards RJ, Cronin K, Yount B, Anasti K, Montgomery SA, Tang J, Golding H, Shen S, Zhou T, Kwong PD, Graham BS, Mascola JR, Montefiori DC, Alam SM, Sempowski GD, Khurana S, Wiehe K, Saunders KO, Acharya P, Haynes BF, Baric RS. A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Sci Transl Med 2021; 14:eabj7125. [PMID: 34726473 DOI: 10.1126/scitranslmed.abj7125] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophie Gobeil
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Esther Beaudoin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kartik Manne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephanie A Montgomery
- Department of Laboratory Medicine and Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Shaunna Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20871
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
146
|
Krsak M, Harry BL, Palmer BE, Franco-Paredes C. Response to Mishra et al. re "Postinfectious Immunity After COVID-19 and Vaccination Against SARS-CoV-2". Viral Immunol 2021; 34:659-660. [PMID: 34672802 DOI: 10.1089/vim.2021.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Martin Krsak
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brian L Harry
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brent E Palmer
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carlos Franco-Paredes
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.,Hospital Infantil de México, Federico Gomez, México City, México
| |
Collapse
|
147
|
Corbett KS, Gagne M, Wagner DA, O' Connell S, Narpala SR, Flebbe DR, Andrew SF, Davis RL, Flynn B, Johnston TS, Stringham CD, Lai L, Valentin D, Van Ry A, Flinchbaugh Z, Werner AP, Moliva JI, Sriparna M, O'Dell S, Schmidt SD, Tucker C, Choi A, Koch M, Bock KW, Minai M, Nagata BM, Alvarado GS, Henry AR, Laboune F, Schramm CA, Zhang Y, Yang ES, Wang L, Choe M, Boyoglu-Barnum S, Wei S, Lamb E, Nurmukhambetova ST, Provost SJ, Donaldson MM, Marquez J, Todd JPM, Cook A, Dodson A, Pekosz A, Boritz E, Ploquin A, Doria-Rose N, Pessaint L, Andersen H, Foulds KE, Misasi J, Wu K, Carfi A, Nason MC, Mascola J, Moore IN, Edwards DK, Lewis MG, Suthar MS, Roederer M, McDermott A, Douek DC, Sullivan NJ, Graham BS, Seder RA. Protection against SARS-CoV-2 beta variant in mRNA-1273 vaccine-boosted nonhuman primates. Science 2021; 374:1343-1353. [PMID: 34672695 DOI: 10.1126/science.abl8912] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah O' Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel L Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy S Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher D Stringham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilin Lai
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | | | | | | - Anne P Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjari Sriparna
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Kevin W Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriela S Alvarado
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shi Wei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saule T Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha J Provost
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitzi M Donaldson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Andrew Pekosz
- Department of Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Eli Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Wu
- Moderna Inc., Cambridge, MA 02139, USA
| | | | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
148
|
Mallapaty S. Decades-old SARS virus infection triggers potent response to COVID vaccines. Nature 2021; 596:471-472. [PMID: 34408311 DOI: 10.1038/d41586-021-02260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|