101
|
Birsan C, Litescu SC, Cucu N, Radu GL. Determination of S-Adenosylmethionine and S-Adenosylhomocysteine from Human Blood Samples by HPLC-FL. ANAL LETT 2008. [DOI: 10.1080/00032710802162236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
102
|
Abstract
This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor vitamin B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetarians (vegans) are at risk for vitamin B12 deficiency, evidence now indicates that low intakes of animal-source foods, such as occur in some lacto-ovo vegetarians and many less-industrialized countries, cause vitamin B12 depletion. Malabsorption of the vitamin is most commonly observed as food-bound cobalamin malabsorption due to gastric atrophy in the elderly, and probably as a result of Helicobacter pylori infection. There is growing evidence that gene polymorphisms in transcobalamins affect plasma vitamin B12 concentrations. The primary cause of folate deficiency is low intake of sources rich in the vitamin, such as legumes and green leafy vegetables, and the consumption of these foods may explain why folate status can be adequate in relatively poor populations. Other situations in which the risk of folate deficiency increases include lactation and alcoholism.
Collapse
|
103
|
Jung AY, Poole EM, Bigler J, Whitton J, Potter JD, Ulrich CM. DNA methyltransferase and alcohol dehydrogenase: gene-nutrient interactions in relation to risk of colorectal polyps. Cancer Epidemiol Biomarkers Prev 2008; 17:330-8. [PMID: 18268116 DOI: 10.1158/1055-9965.epi-07-2608] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Disturbances in DNA methylation are a characteristic of colorectal carcinogenesis. Folate-mediated one-carbon metabolism is essential for providing one-carbon groups for DNA methylation via DNA methyltransferases (DNMTs). Alcohol, a folate antagonist, could adversely affect one-carbon metabolism. In a case-control study of colorectal polyps, we evaluated three single nucleotide polymorphisms (-149C>T, -283T>C, -579G>T) in the promoter region of the DNMT3b gene, and a functional polymorphism in the coding region of the alcohol dehydrogenase ADH1C gene, ADH1C *2. Cases had a first diagnosis of colorectal adenomatous (n = 530) or hyperplastic (n = 202) polyps at the time of colonoscopy, whereas controls were polyp-free (n = 649). Multivariate logistic regression analysis was used to estimate odds ratios (OR) and corresponding 95% confidence intervals (CI). There were no significant main associations between the DNMT3b or ADH1C polymorphisms and polyp risk. However, DNMT3b -149TT was associated with an increase in adenoma risk among individuals with low folate and methionine intake (OR, 2.00; 95% CI, 1.06-3.78, P interaction = 0.10). The ADH1C *2/*2 genotype was associated with a possibly elevated risk for adenomatous polyps among individuals who consumed >26 g of alcohol/d (OR, 1.95; 95% CI, 0.60-6.30), whereas individuals who were wild-type for ADH1C were not at increased risk of adenoma (P interaction = 0.01). These gene-diet interactions suggest that polymorphisms relevant to DNA methylation or alcohol metabolism may play a role in colorectal carcinogenesis in conjunction with a high-risk diet.
Collapse
Affiliation(s)
- Audrey Y Jung
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M4-B402, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
104
|
Decreased Expression of Transporters Reduces Folate Uptake across Renal Absorptive Surfaces in Experimental Alcoholism. J Membr Biol 2007; 220:69-77. [PMID: 18008023 DOI: 10.1007/s00232-007-9075-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 09/26/2007] [Indexed: 11/27/2022]
|
105
|
The pathogenesis of ethanol versus methionine and choline deficient diet-induced liver injury. Biochem Pharmacol 2007; 75:981-95. [PMID: 18036573 DOI: 10.1016/j.bcp.2007.09.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/28/2007] [Accepted: 09/28/2007] [Indexed: 12/14/2022]
Abstract
The differences and similarities of the pathogenesis of alcoholic (ASH) and non-alcoholic steatohepatitis (NASH) were examined. Mice (six/group) received one of four Lieber-Decarli liquid diets for 6 weeks: (1) paired-fed control diet; (2) control diet with ethanol (ethanol); (3) paired-fed methionine/choline deficient (MCD) diet; and (4) MCD plus ethanol (combination). Hepatotoxicity, histology, and gene expression changes were examined. Both MCD and ethanol induced macrovesicular steatosis. However, the combination diet produced massive steatosis with minor necrosis and inflammation. MCD and combination diets, but not ethanol, induced serum ALT levels by 1.6- and 10-fold, respectively. MCD diet, but not ethanol, also induced serum alkaline phosphatase levels suggesting bile duct injury. Ethanol increased liver fatty acid binding protein (L-FABP) mRNA and protein levels. In contrast, the combination diet decreased L-FABP mRNA and protein levels and increased hepatic free fatty acid and lipid peroxide levels. Ethanol, but not MCD, reduced hepatic S-adenosylmethionine (SAM) and GSH levels. Hepatic TNFalpha protein levels were increased in all treatment groups, however, IL-6, a hepatoprotective cytokine which promotes liver regeneration was increased in ethanol-fed mice (2-fold), but decreased in the combination diet-treated mice. In addition, the combination diet reduced phosphorylated STAT3 and Bcl-2 levels. While MCD diet might cause bile duct injury and cholestasis, ethanol preferentially interferes with the SAM-GSH oxidative stress pathway. The exacerbated liver injury induced by the combination diet might be explained by reduced L-FABP, increased free fatty acids, oxidative stress, and decreased IL-6 protein levels. The combination diet is an efficient model of steatohepatitis.
Collapse
|
106
|
Abstract
Alcoholic liver disease is a major health care problem worldwide. Findings from many laboratories, including ours, have demonstrated that ethanol feeding impairs several of the many steps involved in methionine metabolism. Ethanol consumption predominantly results in a decrease in the hepatocyte level of S-adenosylmethionine and the increases in two toxic metabolites, homocysteine and S-adenosylhomocysteine. These changes, in turn, result in serious functional consequences which include decreases in essential methylation reactions via inhibition of various methyltransferases. Of particular interest to our laboratory is the inhibition of three important enzymes, phosphatidylethanolamine methyltransferase, isoprenylcysteine carboxyl methyltransferase and protein L-isoaspartate methyltransferase. Decreased activity of these enzymes results in increased fat deposition, increased apoptosis and increased accumulation of damaged proteins-all of which are hallmark features of alcoholic liver injury. Of all the therapeutic modalities available, betaine has been shown to be the safest, least expensive and most effective in attenuating ethanol-induced liver injury. Betaine, by virtue of aiding in the remethylation of homocysteine, removes both toxic metabolites (homocysteine and S-adenosylhomocysteine), restores S-adenosylmethionine level, and reverses steatosis, apoptosis and damaged proteins accumulation. In conclusion, betaine appears to be a promising therapeutic agent in relieving the methylation and other defects associated with alcoholic abuse.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- Department of Veterans Affairs Medical Center, Research Service 151, 4101 Woolworth Avenue, Omaha, Nebraska 68105, USA.
| |
Collapse
|
107
|
Song Z, Deaciuc I, Zhou Z, Song M, Chen T, Hill D, McClain CJ. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 2007; 293:G894-902. [PMID: 17702954 PMCID: PMC4215798 DOI: 10.1152/ajpgi.00133.2007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although simple steatosis was originally thought to be a pathologically inert histological change, fat accumulation in the liver may play a critical role not only in disease initiation, but also in the progression to nonalcoholic steatohepatitis and cirrhosis. Therefore, prevention of fat accumulation in the liver may be an effective therapy for multiple stages of nonalcoholic fatty liver disease (NAFLD). Promising beneficial effects of betaine supplementation on human NAFLD have been reported in some pilot clinical studies; however, data related to betaine therapy in NAFLD are limited. In this study, we examined the effects of betaine on fat accumulation in the liver induced by high-sucrose diet and evaluated mechanisms by which betaine could attenuate or prevent hepatic steatosis in this model. Male C57BL/6 mice weighing 20 +/- 0.5 g (means +/- SE) were divided into four groups (8 mice per group) and started on one of four treatments: standard diet (SD), SD+betaine, high-sucrose diet (HS), and HS + betaine. Betaine was supplemented in the drinking water at a concentration of 1% (wt/vol) (anhydrous). Long-term feeding of high-sucrose diet to mice caused significant hepatic steatosis accompanied by markedly increased lipogenic activity. Betaine significantly attenuated hepatic steatosis in this animal model, and this change was associated with increased activation of hepatic AMP-activated protein kinase (AMPK) and attenuated lipogenic capability (enzyme activities and gene expression) in the liver. Our findings are the first to suggest that betaine might serve as a therapeutic tool to attenuate hepatic steatosis by targeting the hepatic AMPK system.
Collapse
Affiliation(s)
- Zhenyuan Song
- Dept. of Medicine, Univ. of Louisville Medical Center, Louisville, KY 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
108
|
Villanueva JA, Esfandiari F, White ME, Devaraj S, French SW, Halsted CH. S-adenosylmethionine attenuates oxidative liver injury in micropigs fed ethanol with a folate-deficient diet. Alcohol Clin Exp Res 2007; 31:1934-43. [PMID: 17850216 DOI: 10.1111/j.1530-0277.2007.00511.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND To demonstrate a causative role for abnormal methionine metabolism in the pathogenesis of alcoholic steatohepatitis (ASH), we measured the preventive effects of supplementing folate deficient and ethanol containing diets in the micropig with S-adenosylmethionine (SAM), a metabolite that regulates methionine metabolism. METHODS Yucatan micropigs were fed folate-deficient diets as control, with ethanol at 40% of kcal, or with ethanol supplemented with SAM at 0.4 g/1000 kcal for 14 weeks. Histopathology, markers of liver injury, and regulatory enzymes were measured in terminal liver samples. RESULTS Among the ethanol group, livers showed hepatocellular necrosis together with increased levels of S-adenosylhomocysteine (SAH) and reduced levels of SAM and its ratio to SAH and glutathione (GSH), together with increased malondialdehyde plus hydroxynonenol (MDA + HNE) and nitrotyrosine (NT), transcripts and protein levels of cytochrome P4502E1 (CYP2E1), activity of NADPH oxidase, and activity and protein levels of inducible nitric oxide (iNOS). These findings were attenuated partially or completely to control levels by SAM supplementation of the ethanol diet. CONCLUSIONS The present results indicate that SAM supplementation attenuates ethanol induced liver injury through its effects on the expressions and activities of oxidative stress pathways, and are consistent with the concept that the pathogenesis of oxidative liver injury is regulated in part through altered hepatic methionine metabolism.
Collapse
Affiliation(s)
- Jesus A Villanueva
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
109
|
Crott JW, Liu Z, Keyes MK, Choi SW, Jang H, Moyer MP, Mason JB. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling and folate uptake in human colonic epithelial cell lines. J Nutr Biochem 2007; 19:328-35. [PMID: 17681772 PMCID: PMC2759072 DOI: 10.1016/j.jnutbio.2007.05.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/12/2007] [Accepted: 05/03/2007] [Indexed: 12/20/2022]
Abstract
Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell lines derived from the normal human colon, HCEC, NCM356 and NCM460, were grown for 32-34 days in media containing 25, 50, 75 or 150 nM folic acid, and the expression of genes involved in cell-cycle checkpoints, intracellular signaling, folate uptake and cell adhesion and migration was determined. Expression of Folate Receptor 1 was increased with decreasing media folate in all cell lines, as was p53, p21, p16 and beta-catenin. With decreasing folate, the expression of both E-cadherin and SMAD-4 was decreased in NCM356. APC was elevated in NCM356 but unchanged in the other lines. No changes in global methylation were detected. A significant increase in p53 exon 7-8 strand breaks was observed with decreasing folate in NCM460 cells. The changes observed are consistent with DNA damage-induced activation of cell-cycle checkpoints and cellular adaptation to folate depletion. Folate-depletion-induced changes in the Wnt/APC pathway as well as in genes involved in cell adhesion, migration and invasion may underlie observed relationships between folate status and cancer risk.
Collapse
Affiliation(s)
- Jimmy W Crott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
110
|
Esfandiari F, You M, Villanueva JA, Wong DH, French SW, Halsted CH. S-adenosylmethionine attenuates hepatic lipid synthesis in micropigs fed ethanol with a folate-deficient diet. Alcohol Clin Exp Res 2007; 31:1231-9. [PMID: 17577393 DOI: 10.1111/j.1530-0277.2007.00407.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To demonstrate a causative role of abnormal methionine metabolism in the pathogenesis of alcoholic steatosis, we measured the effects on hepatic lipid synthesis of supplementing ethanol and folate-deficient diets with S-adenosylmethionine (SAM), a metabolite that regulates methionine metabolism. METHODS Yucatan micropigs were fed folate-deficient diets as control, with ethanol at 40% of kcal, and with ethanol supplemented with SAM at 0.4 g/1,000 kcal for 14 weeks. Histopathology, triglyceride levels and transcripts, and protein levels of the regulatory signals of hepatic lipid synthesis were measured in terminal omental adipose and liver samples. RESULTS Feeding ethanol at 40% of kcal with folate-deficient diets for 14 weeks increased and supplemental SAM maintained control levels of liver and plasma triglyceride. Serum adiponectin, liver transcripts of adiponectin receptor-1 (AdipoR1), and phosphorylated adenosine monophosphate kinase-beta (p-AMPKbeta) were each reduced by ethanol feeding and were sustained at normal levels by SAM supplementation of the ethanol diets. Ethanol feeding activated and SAM supplementation maintained control levels of ER stress-induced transcription factor sterol regulatory element-binding protein-1c (SREBP-1c) and its targeted transcripts of lipid synthesizing enzymes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (GPAT). CONCLUSIONS Ethanol feeding with a folate-deficient diet stimulates hepatic lipid synthesis by down-regulating adiponectin-mediated pathways of p-AMPK to increase the expression of nSREBP-1c and its targeted lipogenic enzymes. Preventing abnormal hepatic methionine metabolism by supplementing ethanol diets with SAM reduces liver triglyceride levels by up-regulation of adiponectin-mediated pathways to decrease fatty acid and triglyceride synthesis. This study demonstrates that ethanol-induced hepatic lipid synthesis is mediated in part by abnormal methionine metabolism, and strengthens the concept that altered methionine metabolism plays an integral role in the pathogenesis of steatosis.
Collapse
Affiliation(s)
- Farah Esfandiari
- Department of Internal Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
111
|
Purohit V, Abdelmalek MF, Barve S, Benevenga NJ, Halsted CH, Kaplowitz N, Kharbanda KK, Liu QY, Lu SC, McClain CJ, Swanson C, Zakhari S. Role of S-adenosylmethionine, folate, and betaine in the treatment of alcoholic liver disease: summary of a symposium. Am J Clin Nutr 2007; 86:14-24. [PMID: 17616758 DOI: 10.1093/ajcn/86.1.14] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This report is a summary of a symposium on the role of S-adenosylmethionine (SAM), betaine, and folate in the treatment of alcoholic liver disease (ALD), which was organized by the National Institute on Alcohol Abuse and Alcoholism in collaboration with the Office of Dietary Supplements and the National Center for Complementary and Alternative Medicine of the National Institutes of Health (Bethesda, MD) and held on 3 October 2005. SAM supplementation may attenuate ALD by decreasing oxidative stress through the up-regulation of glutathione synthesis, reducing inflammation via the down-regulation of tumor necrosis factor-alpha and the up-regulation of interleukin-10 synthesis, increasing the ratio of SAM to S-adenosylhomocysteine (SAH), and inhibiting the apoptosis of normal hepatocytes and stimulating the apoptosis of liver cancer cells. Folate deficiency may accelerate or promote ALD by increasing hepatic homocysteine and SAH concentrations; decreasing hepatic SAM and glutathione concentrations and the SAM-SAH ratio; increasing cytochrome P4502E1 activation and lipid peroxidation; up-regulating endoplasmic reticulum stress markers, including sterol regulatory element-binding protein-1, and proapoptotic gene caspase-12; and decreasing global DNA methylation. Betaine may attenuate ALD by increasing the synthesis of SAM and, eventually, glutathione, decreasing the hepatic concentrations of homocysteine and SAH, and increasing the SAM-SAH ratio, which can trigger a cascade of events that lead to the activation of phosphatidylethanolamine methyltransferase, increased phosphatidylcholine synthesis, and formation of VLDL for the export of triacylglycerol from the liver to the circulation. Additionally, decreased concentrations of homocysteine can down-regulate endoplasmic reticulum stress, which leads to the attenuation of apoptosis and fatty acid synthesis.
Collapse
Affiliation(s)
- Vishnudutt Purohit
- Division of Metabolism and Health Effects, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Song Z, Zhou Z, Song M, Uriarte S, Chen T, Deaciuc I, McClain CJ. Alcohol-induced S-adenosylhomocysteine accumulation in the liver sensitizes to TNF hepatotoxicity: possible involvement of mitochondrial S-adenosylmethionine transport. Biochem Pharmacol 2007; 74:521-31. [PMID: 17574213 PMCID: PMC1995460 DOI: 10.1016/j.bcp.2007.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/04/2007] [Accepted: 05/07/2007] [Indexed: 02/06/2023]
Abstract
Hepatocytes are resistant to tumor necrosis factor-alpha- (TNF) induced killing/apoptosis under normal circumstances, but primary hepatocytes from rats chronically fed alcohol have increased TNF cytotoxicity. Therefore, there must be mechanism(s) by which alcohol exposure "sensitizes" to TNF hepatotoxicity. Abnormal metabolism of methionine and S-adenosylmethionine (SAM) are well-documented acquired metabolic abnormalities in ALD. S-adenosylhomocysteine (SAH) is the product of SAM in hepatic transmethylation reactions, and SAH hydrolase (SAHH) is the only enzyme to metabolize SAH to homocysteine and adenosine. Our previous studies demonstrated that chronic intracellular accumulation of SAH sensitized hepatocytes to TNF cytotoxicity in vitro. In the current study, we extended our previous observations by further characterizing the effects of chronic alcohol intake on mitochondrial SAM levels in liver and examining its possible involvement in SAH sensitization to TNF hepatotoxicity. Chronic alcohol consumption in mice not only increased cytosolic SAH levels, but also decreased mitochondrial SAM concentration, leading to decreased mitochondrial SAM to SAH ratio. Moreover, accumulation of hepatic SAH induced by administration of 3-deaza-adenosine (DZA-a potent inhibitor of SAHH) enhanced lipopolysaccharide (LPS)/TNF hepatotoxicity in mice in vivo. Inhibition of SAHH by DZA resulted not only in accumulation of cytoplasmic SAH, but also in depletion of the mitochondrial SAM pool. Further studies using mitochondrial SAM transporter inhibitors showed that inhibition of SAM transport into mitochondria sensitized HepG2 cells to TNF cytotoxicity. In conclusion, our results demonstrate that depletion of the mitochondrial SAM pool by SAH, which is elevated during chronic alcohol consumption, plays a critical role in SAH induced sensitization to TNF hepatotoxicity.
Collapse
Affiliation(s)
- Zhenyuan Song
- Department of Medicine, University of Louisville Medical Center, Louisville, KY 40292, United States.
| | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
It is widely accepted that an association exists between the intrauterine environment in which a fetus grows and develops and the subsequent development of type 2 diabetes. Any disturbance in maternal ability to provide nutrients and oxygen to the fetus can lead to fetal intrauterine growth restriction (IUGR). Here we will review IUGR in rodent models, in which maternal metabolism has been experimentally manipulated to investigate the molecular basis of the relationship between IUGR and development of type 2 diabetes in later life, and the identification of the molecular derangements in specific metabolically - sensitive organs/tissues.
Collapse
Affiliation(s)
- M S Martin-Gronert
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
114
|
Charatcharoenwitthaya P, Levy C, Angulo P, Keach J, Jorgensen R, Lindor KD. Open-label pilot study of folic acid in patients with nonalcoholic steatohepatitis. Liver Int 2007; 27:220-6. [PMID: 17311617 DOI: 10.1111/j.1478-3231.2006.01404.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Folate deficiency disturbs hepatic methionine metabolism and promotes the development of steatohepatitis in animal models. Our aims were (1) to determine the safety and efficacy of folic acid treatment in patients with nonalcoholic steatohepatitis (NASH) on changes in liver biochemistries, and (2) to investigate the presence of subclinical folate deficiency in this population. METHODS Patients with biopsy-proven NASH were treated with folic acid 1 mg/day for 6 months. Liver enzymes and adverse events were monitored every 3 months until completion. RESULTS Ten patients (one male and nine females) with a median age of 54 years were enrolled in this study. At baseline, the median steatosis grade was 2 (range 1-3), the median necroinflammatory grade was 1 (1-3), and the median fibrosis stage was 2 (0-4). The median level of red cell folate was 526 ng/ml (range 99-708); the normal level was 268-616 ng/ml. One compensated cirrhotic patient had folate deficiency. No serious adverse events occurred. After 6 months of therapy, no significant reductions in serum aspartate and alanine aminotransferase levels (60+/-25 vs. 54+/-29, P=0.5 and 86+/-29 vs. 83+/-42, P=0.6, respectively), were observed. Serum levels of bilirubin, alkaline phosphatase, albumin, and prothrombin time remained in the normal range during treatment in all patients. CONCLUSION Six months of therapy with folic acid at a dose of 1 mg/day, although safe and well tolerated, does not lead to a significant biochemical improvement in patients with NASH. In a small number of patients, folate deficiency was present in only a cirrhotic patient.
Collapse
|
115
|
Wallock-Montelius LM, Villanueva JA, Chapin RE, Conley AJ, Nguyen HP, Ames BN, Halsted CH. Chronic ethanol perturbs testicular folate metabolism and dietary folate deficiency reduces sex hormone levels in the Yucatan micropig. Biol Reprod 2006; 76:455-65. [PMID: 17151354 DOI: 10.1095/biolreprod.106.053959] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although alcoholism causes changes in hepatic folate metabolism that are aggravated by folate deficiency, male reproductive effects have never been studied. We evaluated changes in folate metabolism in the male reproductive system following chronic ethanol consumption and folate deficiency. Twenty-four juvenile micropigs received folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE or FDE) for 14 wk, and the differences between the groups were determined by ANOVA. Chronic ethanol consumption (FSE and FDE compared with FS and FD groups) reduced testis and epididymis weights, testis sperm concentrations, and total sperm counts and circulating FSH levels. Folate deficiency (FD and FDE compared with FS and FSE groups) reduced circulating testosterone, estradiol and LH levels, and also testicular 17,20-lyase and aromatase activities. There was histological evidence of testicular lesions and incomplete progression of spermatogenesis in all treated groups relative to the FS control, with the FDE group being the most affected. Chronic ethanol consumption increased testis folate concentrations and decreased testis methionine synthase activity, whereas folate deficiency reduced total testis folate levels and increased methionine synthase activity. In all pigs combined, testicular methionine synthase activity was negatively associated with circulating estradiol, LH and FSH, and 17,20-lyase activity after controlling for ethanol, folate deficiency, and their interaction. Thus, while chronic ethanol consumption primarily impairs spermatogenesis, folate deficiency reduces sex hormones, and the two treatments have opposite effects on testicular folate metabolism. Furthermore, methionine synthase may influence the hormonal regulation of spermatogenesis.
Collapse
Affiliation(s)
- Lynn M Wallock-Montelius
- Children's Hospital Oakland Research Institute, Oakland, California 94609, and Department of Internal Medicine, University of California, Davis 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
116
|
Crott JW, Liu Z, Choi SW, Mason JB. Folate depletion in human lymphocytes up-regulates p53 expression despite marked induction of strand breaks in exons 5-8 of the gene. Mutat Res 2006; 626:171-9. [PMID: 17098465 DOI: 10.1016/j.mrgentox.2006.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/28/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
Low dietary folate intake is associated with an elevated risk for carcinogenesis. One putative mechanism by which folate depletion promotes carcinogenesis is by inducing gene-specific strand breakage and impaired expression of affected genes. Primary human lymphocytes were cultured in media containing 15, 30 or 120 nM folic acid. p53 strand breaks, gene and protein expression, and p21 transcript were determined. Cells grown in 15 nM folate developed significant levels of p53 strand breaks, reflected by reductions in amplifiable DNA from p53 exons 5-8 (approximately 40% loss, P<0.0001) and exons 7-8 (approximately 26% loss, P<0.0001) compared to 30 and 120 nM. Nevertheless, steady-state p53 transcript was elevated two-fold in 15 and 30 compared to 120 nM (P<0.001). p53 protein abundance increased with decreasing media folate, as did p21 transcript. The cytokinesis-block micronucleus assay demonstrated a three-fold increase in chromosomal damage at the two lower folate concentrations (P<0.01). In primary human lymphocytes, folate depletion induces a marked increase in p53 exons 5-8 breaks, but does not reduce steady-state levels of p53 mRNA, protein, or impair downstream signaling. The induction of p53 strand breaks by folate depletion does not impair p53 expression or action within all human cell lines.
Collapse
Affiliation(s)
- Jimmy W Crott
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, United States.
| | | | | | | |
Collapse
|
117
|
Bailey SM, Robinson G, Pinner A, Chamlee L, Ulasova E, Pompilius M, Page GP, Chhieng D, Jhala N, Landar A, Kharbanda KK, Ballinger S, Darley-Usmar V. S-adenosylmethionine prevents chronic alcohol-induced mitochondrial dysfunction in the rat liver. Am J Physiol Gastrointest Liver Physiol 2006; 291:G857-67. [PMID: 16825707 DOI: 10.1152/ajpgi.00044.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An early event that occurs in response to alcohol consumption is mitochondrial dysfunction, which is evident in changes to the mitochondrial proteome, respiration defects, and mitochondrial DNA (mtDNA) damage. S-adenosylmethionine (SAM) has emerged as a potential therapeutic for treating alcoholic liver disease through mechanisms that appear to involve decreases in oxidative stress and proinflammatory cytokine production as well as the alleviation of steatosis. Because mitochondria are a source of reactive oxygen/nitrogen species and a target for oxidative damage, we tested the hypothesis that SAM treatment during alcohol exposure preserves organelle function. Mitochondria were isolated from livers of rats fed control and ethanol diets with and without SAM for 5 wk. Alcohol feeding caused a significant decrease in state 3 respiration and the respiratory control ratio, whereas SAM administration prevented these alcohol-mediated defects and preserved hepatic SAM levels. SAM treatment prevented alcohol-associated increases in mitochondrial superoxide production, mtDNA damage, and inducible nitric oxide synthase induction, without a significant lessening of steatosis. Accompanying these indexes of oxidant damage, SAM prevented alcohol-mediated losses in cytochrome c oxidase subunits as shown using blue native PAGE proteomics and immunoblot analysis, which resulted in partial preservation of complex IV activity. SAM treatment attenuated the upregulation of the mitochondrial stress chaperone prohibitin. Although SAM supplementation did not alleviate steatosis by itself, SAM prevented several key alcohol-mediated defects to the mitochondria genome and proteome that contribute to the bioenergetic defect in the liver after alcohol consumption. These findings reveal new molecular targets through which SAM may work to alleviate one critical component of alcohol-induced liver injury: mitochondria dysfunction.
Collapse
Affiliation(s)
- Shannon M Bailey
- Department of Environmental Health Sciences, School of Public Health, University of Alabama, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Villanueva JA, Esfandiari F, Wong DH, Ahmad I, Melnyk S, James SJ, Halsted CH. Abnormal transsulfuration and glutathione metabolism in the micropig model of alcoholic liver disease. Alcohol Clin Exp Res 2006; 30:1262-70. [PMID: 16792574 DOI: 10.1111/j.1530-0277.2006.00147.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alcoholic liver disease is associated with abnormalities of methionine metabolic enzymes that may contribute to glutathione depletion. Previously, we found that feeding micropigs a combination of ethanol with a folate-deficient diet resulted in the greatest decreases in S-adenosylmethionine and glutathione and increases in liver S-adenosylhomocysteine and oxidized disulfide glutathione. METHODS To study the mechanisms of glutathione depletion, we analyzed the transcripts and activities of enzymes involved in its synthesis and metabolism in liver and plasma specimens that were available from the same micropigs that receive folate-sufficient or folate-depleted diets with or without 40% of energy as ethanol for 14 weeks. RESULTS Ethanol feeding, folate deficiency, or their combination decreased liver and plasma glutathione and the activities of hepatic copper-zinc superoxide dismutase and glutathione peroxidase and increased the activity of manganese superoxide dismutase and glutathione reductase. Hepatic levels of cysteine and taurine were unchanged while plasma cysteine was increased in the combined diet group. Cystathionine beta-synthase transcripts and activity were unaffected by ethanol feeding, while the activities of other transsulfuration enzymes involved in glutathione synthesis were increased. Glutathione transferase transcripts were increased 4-fold and its mean activity was increased by 34% in the combined ethanol and folate-deficient diet group, similar in magnitude to the observed 36% reduction in hepatic glutathione. CONCLUSIONS Chronic ethanol feeding and folate deficiency acted individually or synergistically to affect methionine metabolism in the micropig by depleting glutathione pools and altering transcript expressions and activities of enzymes involved in its synthesis, utilization, and regeneration. The data suggest that the observed decrease in hepatic glutathione during ethanol feeding reflects its increased utilization to meet increased antioxidant demands, rather than reduction in its synthesis.
Collapse
Affiliation(s)
- Jesus A Villanueva
- Department of Internal Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
119
|
Dever JT, Elfarra AA. In vivo metabolism of L-methionine in mice: evidence for stereoselective formation of methionine-d-sulfoxide and quantitation of other major metabolites. Drug Metab Dispos 2006; 34:2036-43. [PMID: 16963488 DOI: 10.1124/dmd.106.012104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Flavin-containing monooxygenases (FMOs) 1-4 oxidize methionine (Met) to methionine sulfoxide (MetO). FMO3, the primary isoform expressed in adult human liver, has the lowest Km and favors methionine-d-sulfoxide (Met-d-O) formation over methionine-l-sulfoxide. Because female mice, but not males, also express FMO3 in liver, levels of Met and its major metabolites were determined in male or female mice dosed with 400 mg/kg Met i.p. The results show that Met levels in male and female mouse liver or plasma increased significantly at both 15 and 30 min after the Met treatment; Met plasma and liver levels at 30 min were similar to or lower than the corresponding levels at 15 min. Liver and plasma MetO levels increased significantly in both sexes at 30 min, and Met-d-O was the major MetO diastereomer detected. Interestingly, less than 0.1% of the Met dose was excreted in the urine (0-24 h) as Met and Met-d-O. S-Adenosylmethionine (SAM) was the major metabolite detected in liver at 15 min. Liver SAM levels at 30 min were lower than the levels at 15 min, and the plasma SAM levels at both 15 and 30 min were much lower than the corresponding levels in the liver. Increases in liver and/or plasma S-adenosyl-l-homocysteine, 5'-deoxy-5'-(methylthio)adenosine, and N-acetyl-l-methionine were also detected. Taken together, these results suggest that mice extensively and rapidly used the Met dose. Although mice exhibited increases in tissue MetO levels, a major role for FMO3 in Met-d-O formation is not certain since the MetO increases were mostly similar in both males and females.
Collapse
Affiliation(s)
- Joseph T Dever
- Department of Comparative Biosciences, and Molecular and Environmental Toxicology Center, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706-1102, USA
| | | |
Collapse
|
120
|
Shukla SD, Aroor AR. Epigenetic effects of ethanol on liver and gastrointestinal injury. World J Gastroenterol 2006; 12:5265-71. [PMID: 16981253 PMCID: PMC4088190 DOI: 10.3748/wjg.v12.i33.5265] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 05/28/2006] [Accepted: 07/07/2006] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption causes cellular injury. Recent developments indicate that ethanol induces epigenetic alterations, particularly acetylation, methylation of histones, and hypo- and hypermethylation of DNA. This has opened up a new area of interest in ethanol research and is providing novel insight into actions of ethanol at the nucleosomal level in relation to gene expression and patho-physiological consequences. The epigenetic effects are mainly attributable to ethanol metabolic stress (Emess), generated by the oxidative and non-oxidative metabolism of ethanol, and dysregulation of methionine metabolism. Epigenetic changes are important in ethanol-induced hepatic steatosis, fibrosis, carcinoma and gastrointestinal injury. This editorial highlights these new advances and its future potential.
Collapse
|
121
|
Abstract
Hepatocytes contain abundant endoplasmic reticulum (ER) which is essential for protein metabolism and stress signaling. Hepatic viral infections, metabolic disorders, mutations of genes encoding ER-resident proteins, and abuse of alcohol or drugs can induce ER stress. Liver cells cope with ER stress by an adaptive protective response termed unfolded protein response (UPR), which includes enhancing protein folding and degradation in the ER and down-regulating overall protein synthesis. When the UPR adaptation to ER stress is insufficient, the ER stress response unleashes pathological consequences including hepatic fat accumulation, inflammation and cell death which can lead to liver disease or worsen underlying causes of liver injury, such as viral or diabetes-obesity-related liver disease.
Collapse
Affiliation(s)
- Cheng Ji
- Gastroenterology/Liver Division, Keck School of Medicine and the Research Center for Liver Disease, University of Southern California and the USC-UCLA Research Center for Alcoholic Liver and Pancreatic Disease, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
122
|
Cloutier S, Skaer TL, Newberry RC. Consumption of alcohol by sows in a choice test. Physiol Behav 2006; 88:101-7. [PMID: 16631215 DOI: 10.1016/j.physbeh.2006.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 02/21/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
The domestic pig (Sus scrofa domesticus) has been proposed as an animal model for human alcoholism because pigs have been observed to consume alcohol voluntarily to a state of intoxication and to exhibit tolerance and physical dependence. However, it has not been established whether pigs can develop psychological dependence on alcohol. We hypothesised that feed-restricted, stall-housed pregnant sows fed alcohol non-voluntarily for 5 weeks would develop a preference for alcohol and retain this preference after removal of alcohol from the diet. We fed crossbred commercial sows (n=10) 280 ml of 95% ethanol mixed with 0.91 kg of feed and 720 ml of water twice daily for 5 weeks during the first trimester of pregnancy. Control sows (n=7) received dextrose in their feed as a caloric control, and water was added to give the feed a consistency similar to that of the alcohol-treated feed. Immediately before and after 5 weeks of alcohol or dextrose treatment and 3 weeks later, after termination of alcohol or dextrose treatment, we evaluated sow diet preference by comparing the amount of alcohol-supplemented, dextrose-supplemented and plain feed consumed during a 5-min choice test. Contrary to our hypothesis, there was no treatment effect on sow diet preference. Both alcohol-treated and control sows ate less of the alcohol diet than the other two diets in all choice tests. They did not discriminate between the plain and dextrose diets. We conclude that 5 weeks of non-voluntary consumption of alcohol in feed did not produce a preference for alcohol in pregnant sows, either during treatment or after withdrawal, thus providing no evidence for the development of psychological dependence on alcohol under these conditions.
Collapse
Affiliation(s)
- Sylvie Cloutier
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Center for the Study of Animal Well-being, Washington State University, PO Box 646520, Pullman, WA 99164-6520, USA.
| | | | | |
Collapse
|
123
|
Sparks JD, Collins HL, Chirieac DV, Cianci J, Jokinen J, Sowden MP, Galloway CA, Sparks CE. Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methyltransferase. Biochem J 2006; 395:363-71. [PMID: 16396637 PMCID: PMC1422758 DOI: 10.1042/bj20051966] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have previously reported a positive correlation between the expression of BHMT (betaine-homocysteine S-methyltransferase) and ApoB (apolipoprotein B) in rat hepatoma McA (McArdle RH-7777) cells [Sowden, Collins, Smith, Garrow, Sparks and Sparks (1999) Biochem. J. 341, 639-645]. To examine whether a similar relationship occurs in vivo, hepatic BHMT expression was induced by feeding rats a Met (L-methionine)-restricted betaine-containing diet, and parameters of ApoB metabolism were evaluated. There were no generalized metabolic abnormalities associated with Met restriction for 7 days, as evidenced by control levels of serum glucose, ketones, alanine aminotransferase and L-homocysteine levels. Betaine plus the Met restriction resulted in lower serum insulin and non-esterified fatty acid levels. Betaine plus Met restriction induced hepatic BHMT 4-fold and ApoB mRNA 3-fold compared with Met restriction alone. No changes in percentage of edited ApoB mRNA were observed on the test diets. An increase in liver ApoB mRNA correlated with an 82% and 46% increase in ApoB and triacylglycerol production respectively using in vivo Triton WR 1339. Increased secretion of VLDL (very-low-density lipoprotein) with Met restriction plus betaine was associated with a 45% reduction in liver triacylglycerol compared with control. Nuclear run-off assays established that transcription of both bhmt and apob genes was also increased in Met-restricted plus betaine diets. No change in ApoB mRNA stability was detected in BHMT-transfected McA cells. Hepatic ApoB and BHMT mRNA levels were also increased by 1.8- and 3-fold respectively by betaine supplementation of Met-replete diets. Since dietary betaine increased ApoB mRNA, VLDL ApoB and triacylglycerol production and decreased hepatic triacylglycerol, results suggest that induction of apob transcription may provide a potential mechanism for mobilizing hepatic triacylglycerol by increasing ApoB available for VLDL assembly and secretion.
Collapse
Affiliation(s)
- Janet D Sparks
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Kim BJ, Hood BL, Aragon RA, Hardwick JP, Conrads TP, Veenstra TD, Song BJ. Increased oxidation and degradation of cytosolic proteins in alcohol-exposed mouse liver and hepatoma cells. Proteomics 2006; 6:1250-60. [PMID: 16408314 PMCID: PMC1368983 DOI: 10.1002/pmic.200500447] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We recently developed a sensitive method using biotin-N-maleimide (biotin-NM) as a probe to positively identify oxidized mitochondrial proteins. In this study, biotin-NM was used to identify oxidized cytosolic proteins in alcohol-fed mouse livers. Alcohol treatment for 6 wk elevated the levels of CYP2E1 and nitrotyrosine, a marker of oxidative stress. Markedly increased levels of oxidized proteins were detected in alcohol-fed mouse livers compared to pair-fed controls. The biotin-NM-labeled oxidized proteins from alcohol-exposed mouse livers were subsequently purified with streptavidin-agarose and resolved on 2-DE. More than 90 silver-stained protein spots that displayed differential intensities on 2-D gels were identified by MS. Peptide sequence analysis revealed that many enzymes or proteins involved in stress response, chaperone activity, intermediary metabolism, and antioxidant defense systems such as peroxiredoxin were oxidized after alcohol treatment. Smaller fragments of many proteins were repeatedly detected only in alcohol-fed mice, indicating that many oxidized proteins after alcohol exposure were degraded. Immunoblot results showed that the level of oxidized peroxiredoxin (inactivated) was markedly increased in the alcohol-exposed mouse livers and ethanol-sensitive hepatoma cells compared to the corresponding controls. Our results may explain the underlying mechanism for cellular dysfunction and increased susceptibility to other toxic agents following alcohol-mediated oxidative stress.
Collapse
Affiliation(s)
- Bong-Jo Kim
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Brian L. Hood
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Richard A. Aragon
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - James P. Hardwick
- Department of Biochemistry, Northeastern Ohio University College of Medicine, Rootstown, OH, USA
| | - Thomas P. Conrads
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick, MD, USA and
| | - Byoung J. Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
- To whom correspondence should be addressed: Dr. B. J. Song, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892-9410, USA. (e-mail); (Fax) 1-301-594-3113
| |
Collapse
|
125
|
Abstract
Recent studies have focused on establishing a link between the pathogenesis of ethanol and the disruption of metabolic pathways in the liver. Ethanol alters hepatic methionine metabolism, leading to perturbation of S-adenosylmethionine-dependent transmethylation. Therefore, the supply of metabolically related nutrients such as folate may play a role in the hepatotoxic effects of ethanol.
Collapse
Affiliation(s)
- Kevin L Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, 220 MacKay Hall, Ames, IA 50011, USA.
| | | |
Collapse
|
126
|
Min H, Im ES, Seo JS, Mun JA, Burri BJ. Effects of chronic ethanol ingestion and folate deficiency on the activity of 10-formyltetrahydrofolate dehydrogenase in rat liver. Alcohol Clin Exp Res 2006; 29:2188-93. [PMID: 16385189 DOI: 10.1097/01.alc.0000191756.02856.a8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We recently observed that ethanol feeding impairs 10-formyltetrahydrofolate (10-FTHF) dehydrogenase (EC 1.5.1.6.) and 10-FTHF hydrolase activity in rats. In the present study, we explored the effects of folate deficiency or sufficiency combined with alcoholic intake on 10-FTHF and possible mechanisms by which chronic ethanol ingestion produces folate deficiency. METHODS Sprague-Dawley rats were fed either folate-sufficient (FS) or folate-deficient (FD) diets; with or without ethanol (E) for four weeks. Hepatic 10-FTHF dehydrogenase and hydrolase activity, plasma folate and homocysteine were measured at baseline and after feeding experimental diets. RESULTS Liver weight increased slightly with either folate deficiency or ethanol consumption. In rats fed the folate-sufficient diet with ethanol (FSE), plasma folate was decreased slightly (p<0.05) and plasma homocysteine elevated compared to rats fed the FS diet without ethanol. Ethanol did not affect plasma folate and plasma homocysteine in FD rats. Red-blood cell (RBC) folate was increased similarly in rats by ethanol feeding (FSE and FDE>FS and FD). Feeding folate deficient or ethanol (FSE, FD and FDE) diets depressed hepatic activities of 10-FTHF dehydrogenase, which catalyzes the oxidative deformylation of 10-FTHF to tetrahydrofolate (THF) and carbon dioxide. Rats consuming the FDE diet had the lowest enzyme activities of the experimental groups, implying that folate deficiency and ethanol consumption each affect enzyme activity. CONCLUSIONS We confirm that ethanol decreases hepatic 10-FTHF dehydrogenase activity and show that this decrease occurs irrespective of folate status. This shows that modulation of 10-FTHF is one possible mechanism by which ethanol intake decreases folate status and affects one-carbon metabolism.
Collapse
Affiliation(s)
- Hyesun Min
- Department of Food and Nutrition, Hannam University, Daejeon, Korea
| | | | | | | | | |
Collapse
|
127
|
Zhan SS, Jiang JX, Wu J, Halsted C, Friedman SL, Zern MA, Torok NJ. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology 2006; 43:435-43. [PMID: 16496318 DOI: 10.1002/hep.21093] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatic stellate cell activation is a main feature of liver fibrogenesis. We have previously shown that phagocytosis of apoptotic bodies by stellate cells induces procollagen alpha1 (I) and transforming growth factor beta (TGF-beta) expression in vitro. Here we have further investigated the downstream effects of phagocytosis by studying NADPH oxidase activation and its link to procollagen alpha1 (I) and TGF-beta1 expression in an immortalized human stellate cell line and in several models of liver fibrosis. Phagocytosis of apoptotic bodies in LX-1 cells significantly increased superoxide production both in the extracellular and intracellular milieus. By confocal microscopy of LX-1 cells, increased intracellular reactive oxygen species (ROS) were detected in the cells with intracellular apoptotic bodies, and immunohistochemistry documented translocation of the NADPH oxidase p47phox subunit to the membrane. NADPH oxidase activation resulted in upregulation of procollagen alpha1 (I); in contrast, TGF-beta1 expression was independent of NADPH oxidase activation. This was also confirmed by using siRNA to inhibit TGF-beta1 production. In addition, with EM studies we showed that phagocytosis of apoptotic bodies by stellate cells occurs in vivo. In conclusion, these data provide a mechanistic link between phagocytosis of apoptotic bodies, production of oxidative radicals, and the activation of hepatic stellate cells.
Collapse
Affiliation(s)
- Shan-Shan Zhan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Clinical Nutrition and Vascular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Bunout D, Hirsch S. Are we losing homocysteine as a cardiovascular risk factor? Nutrition 2006; 21:1068-9. [PMID: 16157246 DOI: 10.1016/j.nut.2005.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 04/09/2005] [Indexed: 10/25/2022]
|
129
|
Kharbanda KK, Rogers DD, Mailliard ME, Siford GL, Barak AJ, Beckenhauer HC, Sorrell MF, Tuma DJ. Role of elevated S-adenosylhomocysteine in rat hepatocyte apoptosis: protection by betaine. Biochem Pharmacol 2005; 70:1883-90. [PMID: 16253211 DOI: 10.1016/j.bcp.2005.09.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 12/20/2022]
Abstract
Previous studies from our laboratory have shown that ethanol consumption results in an increase in hepatocellular S-adenosylhomocysteine levels. Because S-adenosylhomocysteine is a potent inhibitor of methylation reactions, we propose that increased intracellular S-adenosylhomocysteine levels could be a major contributor to ethanol-induced pathologies. To test this hypothesis, hepatocytes isolated from rat livers were grown on collagen-coated plates in Williams' medium E containing 5% FCS and exposed to varying concentrations of adenosine in order to increase intracellular S-adenosylhomocysteine levels. We observed increases in caspase-3 activity following exposure to adenosine. This increase in caspase activity correlated with increases in intracellular S-adenosylhomocysteine levels and DNA hypoploidy. The adenosine-induced changes could be significantly attenuated by betaine administration. The mechanism of betaine action appeared to be via the methylation reaction catalyzed by betaine-homocysteine-methyltransferase. To conclude, our results indicate that the elevation of S-adenosylhomocysteine levels in the liver by ethanol is a major factor in altering methylation reactions and in increasing apoptosis in the liver. We conclude that ethanol-induced alteration in methionine metabolic pathways may play a crucial role in the pathologies associated with alcoholic liver injury and that betaine administration may have beneficial therapeutic effects.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- VA Alcohol Research Center, Department of Veterans Affairs Medical Center, Research Service (151), 4101 Woolworth Avenue, Omaha, NE 68105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Esfandiari F, Villanueva JA, Wong DH, French SW, Halsted CH. Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs. Am J Physiol Gastrointest Liver Physiol 2005; 289:G54-63. [PMID: 15705656 DOI: 10.1152/ajpgi.00542.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we showed that feeding micropigs ethanol with a folate-deficient diet promoted the development of hepatic injury while increasing hepatic levels of homocysteine and S-adenosylhomocysteine (SAH) and reducing the level of S-adenosylmethionine (SAM) and the SAM-to-SAH ratio. Our present goals were to evaluate mechanisms for hepatic injury using liver specimens from the same micropigs. The effects of ethanol feeding or folate-deficient diets, singly or in combination, on cytochrome P-450 2E1 (CYP2E1) and signal pathways for apoptosis and steatosis were analyzed using microarray, real-time PCR, and immunoblotting techniques. Apoptosis was increased maximally by the combination of ethanol feeding and folate deficiency and was correlated positively to liver homocysteine and SAH. Liver CYP2E1 and the endoplasmic reticulum stress signals glucose-regulated protein 78 (GRP78), caspase 12, and sterol regulatory element binding protein-1c (SREBP-1c) were each activated in pigs fed folate-deficient or ethanol diets singly or in combination. Liver mRNA levels of CYP2E1, GRP78, and SREBP-1c, and protein levels of CYP2E1, GRP78, nuclear SREBP, and activated caspase 12 each correlated positively to liver levels of SAH and/or homocysteine and negatively to the SAM-to-SAH ratio. The transcripts of the lipogenic enzymes fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase were elevated in the ethanol-fed groups, and each was positively correlated to liver homocysteine levels. The induction of abnormal hepatic methionine metabolism through the combination of ethanol feeding with folate deficiency is associated with the activation of CYP2E1 and enhances endoplasmic reticulum stress signals that promote steatosis and apoptosis.
Collapse
Affiliation(s)
- Farah Esfandiari
- Department of Internal Medicine, University of California-Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
131
|
Dumitrescu RG, Shields PG. The etiology of alcohol-induced breast cancer. Alcohol 2005; 35:213-25. [PMID: 16054983 DOI: 10.1016/j.alcohol.2005.04.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 04/23/2005] [Indexed: 01/27/2023]
Abstract
Breast cancer is the most common cancer in women in the United States, and it is second among cancer deaths in women. Results of most epidemiologic studies, as well as of most experimental studies in animals, have shown that alcohol intake is associated with increased breast cancer risk. Alcohol consumption may cause breast cancer through different mechanisms, including through mutagenesis by acetaldehyde, through perturbation of estrogen metabolism and response, and by inducing oxidative damage and/or by affecting folate and one-carbon metabolism pathways. Alcohol-metabolizing enzymes are present in human breast tissue. Acetaldehyde is a known, although weak, mutagen. However, results of some studies with human subjects implicate this agent in the context of genetic susceptibilities to increased ethanol metabolism. Reactive oxygen species, resulting from ethanol metabolism, may be involved in breast carcinogenesis by causing damage, as well as by generating DNA and protein adducts. Alcohol interferes with estrogen pathways in multiple ways, influencing hormone levels and effects on the estrogen receptors. With regard to one-carbon metabolism, alcohol can negatively affect folate levels, and the folate perturbation affects DNA methylation and DNA synthesis, which is important in carcinogenesis. Some study results indicate that genetic variants of one-carbon metabolism genes might increase alcohol-related breast cancer risk. For all these pathways, genetic polymorphisms might play a role in increasing further a woman's risk for breast cancer. Additional studies are needed to determine the relative importance of these pathways, as well as the modifying influence by genetic variation.
Collapse
Affiliation(s)
- Ramona G Dumitrescu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3800 Reservoir Road, Lombardi Building, SS Level, 150, Washington, DC 20057, USA
| | | |
Collapse
|
132
|
Mason JB, Choi SW. Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 2005; 35:235-41. [PMID: 16054985 DOI: 10.1016/j.alcohol.2005.03.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/21/2005] [Accepted: 03/25/2005] [Indexed: 12/31/2022]
Abstract
Epidemiologic observations implicate excess ethanol ingestion as well as low dietary folate intake as risk factors for several cancers. Moreover, the epidemiologic observations support the concept of a synergistic effect between these two factors. Such a relation is biologically plausible because ethanol impedes the bioavailability of dietary folate and is known to inhibit select folate-dependent biochemical reactions. For example, alcohol ingestion in animals is known to inhibit folate-mediated methionine synthesis and thereby may interrupt critical methylation processes that are mediated by the activated form of methionine that provides substrate for biologic methylation, S-adenosylmethionine. Consistent with this observed inhibition of methionine synthesis is the observation that chronic alcohol ingestion in laboratory animals is known to produce hypomethylation of DNA in the colonic mucosa, a constant feature of early colorectal neoplasia. Inhibition of methionine synthase also creates a "methylfolate trap," analogous to what occurs in vitamin B12 deficiency. In addition, some evidence indicates that alcohol may redirect the utilization of folate toward serine synthesis and thereby may interfere with a critical function of methylenetetrahydrofolate, thymidine synthesis. Although a mechanistic link between alcohol and impaired folate metabolism in the genesis of cancer is still not definitively established, such a link should be pursued in future studies because of the intimate metabolic relation between alcohol and folate metabolism.
Collapse
Affiliation(s)
- Joel B Mason
- Vitamins and Carcinogenesis Laboratory, U.S.D.A. Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|
133
|
Kharbanda KK, Rogers DD, Mailliard ME, Siford GL, Barak AJ, Beckenhauer HC, Sorrell MF, Tuma DJ. A comparison of the effects of betaine and S-adenosylmethionine on ethanol-induced changes in methionine metabolism and steatosis in rat hepatocytes. J Nutr 2005; 135:519-24. [PMID: 15735087 DOI: 10.1093/jn/135.3.519] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Previous studies showed that chronic ethanol administration alters methionine metabolism in the liver, resulting in increased intracellular S-adenosylhomocysteine (SAH) levels and increased homocysteine release into the plasma. We showed further that these changes appear to be reversed by betaine administration. This study compared the effects of betaine and S-adenosylmethionine (SAM), another methylating agent, on ethanol-induced changes of methionine metabolism and hepatic steatosis. Wistar rats were fed ethanol or control Lieber-Decarli liquid diet for 4 wk and metabolites of the methionine cycle were measured in isolated hepatocytes. Hepatocytes from ethanol-fed rats had a 50% lower intracellular SAM:SAH ratio and almost 2-fold greater homocysteine release into the media compared with controls. Supplementation of betaine or SAM in the incubation media increased this ratio in hepatocytes from both control and ethanol-fed rats and attenuated the ethanol-induced increased hepatocellular triglyceride levels by approximately 20%. On the other hand, only betaine prevented the increase in generation of homocysteine in the incubation media under basal and methionine-loaded conditions. SAM can correct only the ratio and the methylation defects and may in fact be detrimental after prolonged use because of its propensity to increase homocysteine release. Both SAM and betaine are effective in increasing the SAM:SAH ratio in hepatocytes and in attenuating hepatic steatosis; however, only betaine can effectively methylate homocysteine and prevent increased homocysteine release by the liver.
Collapse
Affiliation(s)
- Kusum K Kharbanda
- VA Alcohol Research Center, Department of Veterans Affairs Medical Center, Omaha, NE 68105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Hirsch S, Poniachick J, Avendaño M, Csendes A, Burdiles P, Smok G, Diaz JC, de la Maza MP. Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver. Nutrition 2005; 21:137-41. [PMID: 15723740 DOI: 10.1016/j.nut.2004.03.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2003] [Revised: 11/30/2003] [Accepted: 03/31/2004] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Folate depletion and hyperhomocysteinemia increase the risk for hepatic alcoholic damage and promote oxidative stress in animals. In addition, some investigators have reported an inverse association between serum folate and body mass index and a positive correlation between total homocysteine and fat mass. We investigated whether there is an association between serum folate and total homocysteine concentrations with the presence of non-alcoholic fatty liver disease (NAFLD) in obese subjects. METHODS Forty-three obese (body mass index > or =35 kg/m2) patients who underwent bariatric surgery and hepatic biopsy were included. Serum total homocyteine, folate and vitamin B12 concentrations and hepatic enzymes were measured. Liver biopsies were graded for the presence of fat, inflammation, and fibrosis on a scale from 0 to 3. A total histologic score was calculated based on the sum of partial scores. Severe NAFLD was defined as a total score of at least 4 or severe steatosis (partial score for fat = 3). RESULTS Severe NAFLD was present in 17 patients. Serum folate concentration was significantly lower in obese patients with NAFLD than in those with normal liver or minimal alterations (9.3 +/- 3.5 versus 12.2 +/- 3.1 ng/mL, P = 0.005). Serum total homocysteine and vitamin B12 concentrations were similar in both groups. An inverse correlation between serum folate concentration and body mass index was observed (r = -0.31, P = 0.046). CONCLUSIONS In this study, severe NAFLD in obese subjects was associated with lower serum folate concentrations and serum homocysteine and vitamin B12 concentrations were not associated with liver damage in obese subjects.
Collapse
Affiliation(s)
- Sandra Hirsch
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Matsui H, Kawada N. Effect of S-adenosyl-L-methionine on the activation, proliferation and contraction of hepatic stellate cells. Eur J Pharmacol 2005; 509:31-6. [PMID: 15713426 DOI: 10.1016/j.ejphar.2004.12.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 12/17/2004] [Accepted: 12/24/2004] [Indexed: 12/14/2022]
Abstract
Inhibition of hepatic stellate cell activation is an important clinical aspect for the control of liver inflammation, fibrosis and cirrhosis. S-adenosyl-L-methionine (SAM), an intermediate product of L-methionine metabolism, is a precursor of glutathione and an endogenous methyl donor. Although the hepato-protective action of SAM has been reported in several animal models, the effect of SAM on the function of hepatic stellate cells has not been elucidated. Using a primary-culture model of hepatic stellate cells, we found that SAM blunts the activation process as indicated by the suppression of expression of collagen alpha1(I) and smooth muscle alpha-actin. SAM also hampers the DNA synthesis of hepatic stellate cells stimulated with a dimer of platelet-derived growth factor-B via the inhibition of phosphorylation of PDGF receptor-beta and down-stream signaling pathways. SAM additionally inhibits the contraction of hepatic stellate cells by disturbing the formation of F-actin stress fibers and phosphorylated myosin light chains. Thus, SAM regulates the activation of hepatic stellate cells and may clinically contribute to therapy targeted at human liver fibrosis.
Collapse
Affiliation(s)
- Hiroko Matsui
- Department of Anatomy, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | |
Collapse
|
136
|
Lee CW, Jeong WI, Noh DH, Jeong DH, DO SH, Kim YK, Kwon OD, Kim TH, Jeong KS. Protective Effect of Bio-Active Ceramic Water on Alcohol-Induced Hepatic Injury in Pigs. J Vet Med Sci 2005; 67:403-9. [PMID: 15876791 DOI: 10.1292/jvms.67.403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among many detrimental injuries, alcohol is implicated in hepatitis, fatty liver, hepatic fibrosis, and cirrhosis. The purpose of this study was to evaluate the protective effect of bio-active ceramic water on alcohol-induced hepatic injury in pigs. Twelve male Landrace pigs were divided into 3 groups. Groups 1, 2, and 3 were fed with bio-active ceramic water + normal liquid diet, bio-active ceramic water + liquid diet containing 15% ethanol, and tap water + liquid diet containing 15% ethanol for 12 weeks, respectively. For serological, histopathological, and immunohistochemical analysis, all pigs were sacrificed at week 12. In group 3, serum ALT and AST levels increased, and mild fatty change and moderate necrosis were detected in the liver. Collagen fibers, myofibroblasts, and CYP2E1 were also increased or activated in group 3. In group 2, there were mild hepatic injuries compared to group 3. However, injuries and activations were not observed in the liver in group 1. We suggest that the bio-active ceramic water used in the present study had protective capability against ethanol-induced hepatic injury and that having no toxic effect on the pig liver. The bio-active ceramic water might be useful as a therapeutic drinking water in patients suffering from alcoholic liver diseases.
Collapse
Affiliation(s)
- Chang-Woo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Pawlosky RJ, Salem N. Development of Alcoholic Fatty Liver and Fibrosis in Rhesus Monkeys Fed a Low n-3 Fatty Acid Diet. Alcohol Clin Exp Res 2004; 28:1569-76. [PMID: 15597091 DOI: 10.1097/01.alc.0000141810.22855.4e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The amount and type of dietary fat seem to be important factors that modulate the development of alcohol-induced liver steatosis and fibrosis. Various alcohol-feeding studies in animals have been used to model some of the symptoms that occur in liver disease in humans. METHODS Rhesus monkeys (Macaca mulatta) were maintained on a diet that had a very low concentration of alpha-linolenic acid and were given free access to an artificially sweetened 7% ethanol solution. Control and ethanol-consuming animals were maintained on a diet in which the linoleate content was adequate (1.4% of energy); however, alpha-linoleate represented only 0.08% of energy. Liver specimens were obtained, and the fatty acid composition of the liver phospholipids, cholesterol esters, and triglycerides of the two groups were compared at 5 years and histopathology of tissue samples were compared at 3 and 5 years. RESULTS The mean consumption of ethanol for this group over a 5-year period was 2.4 g.kg.day. As a consequence of the ethanol-dietary treatment, there were significantly lower concentrations of several polyunsaturated fatty acids in the liver phospholipids of the alcohol-treated group, including arachidonic acid and most of the n-3 fatty acids and particularly docosahexaenoic acid, when compared with dietary controls. Liver specimens from animals in the ethanol group at 5 years showed a marked degree of steatosis, both focal and diffuse cellular necrosis, and an increase in the development of fibrosis compared with specimens obtained at 3 years and with those from dietary controls, in which there was no evidence of fibrotic lesions. CONCLUSION These findings suggest that the advancement of ethanol-induced liver disease in rhesus monkeys may be modulated by the amount and type of dietary essential fatty acids and that a marginal intake of n-3 fatty acids may be a permissive factor in the development of liver disease in primates.
Collapse
Affiliation(s)
- Robert J Pawlosky
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Rockville, Maryland 20852, USA.
| | | |
Collapse
|
138
|
Song Z, Zhou Z, Uriarte S, Wang L, Kang YJ, Chen T, Barve S, McClain CJ. S-adenosylhomocysteine sensitizes to TNF-alpha hepatotoxicity in mice and liver cells: a possible etiological factor in alcoholic liver disease. Hepatology 2004; 40:989-97. [PMID: 15382170 DOI: 10.1002/hep.20412] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In alcoholic liver disease, tumor necrosis factor-alpha (TNFalpha) is a critical effector molecule, and abnormal methionine metabolism is a fundamental acquired metabolic abnormality. Although hepatocytes are resistant to TNFalpha-induced killing under normal circumstances, previous studies have shown that primary hepatocytes from rats chronically fed alcohol have increased TNFalpha cytotoxicity. Therefore, there must be mechanisms by which chronic alcohol exposure "sensitizes" to TNFalpha hepatotoxicity. S-adenosylhomocysteine (SAH) is product of methionine in transsulfuration pathway and a potent competitive inhibitor of most methyltransferases. In this study, we investigated the effects of increased SAH levels on TNFalpha hepatotoxicity. Our results demonstrated that chronic alcohol consumption in mice not only decreased hepatic S-adenosylmethionine levels but also increased hepatic SAH levels, which resulted in a significantly decreased S-adenosylmethionine-to-SAH ratio. This was associated with significant increases in hepatic TNFalpha levels, caspase-8 activity, and cell death. In vitro studies demonstrated that SAH-enhancing agents sensitized hepatocytes to TNFalpha killing, and the death was associated with increased caspase-8 activity, which was blocked by a caspase-8 inhibitor. In addition, increased intracellular SAH levels had no effect on nuclear factor kappaB activity induced by TNFalpha. In conclusion, these results provide a new link between abnormal methionine metabolism and abnormal TNFalpha metabolism in alcoholic liver disease. Increased SAH is a potent and clinically relevant sensitizer to TNFalpha hepatotoxicity. These data further support improving the S-adenosylmethionine-to-SAH ratio and removal of intracellular SAH as potential therapeutic options in alcoholic liver disease.
Collapse
Affiliation(s)
- Zhenyuan Song
- Department of Medicine, University of Louisville College of Medicine, Louisville, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology 2004; 40:442-51. [PMID: 15368449 DOI: 10.1002/hep.20309] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously reported a link between ethanol-induced elevation of homocysteine, endoplasmic reticulum (ER) stress, and alcoholic liver injury in the murine model of intragastric ethanol feeding. We studied the role of TNFalpha in this setting by using TNFR1 knockout mice (C57 BL/6). There was a 7.4-fold increase of homocysteine in wild-type and a 6-fold increase in TNFR1 knockout mice with intragastric alcohol exposure for 4 weeks. Plasma TNFalpha increased in the wild-type (18.4 +/- 3.3 pg/mL vs. 8.4 +/- 1.3 pg/mL (control)) and in the knockouts (12.9 +/- 1.4 pg/mL vs. 7.2 +/- 1.6 pg/mL (control)). Similar extent of fatty liver was observed in both types. Increased ALT was observed in both groups. Necroinflammatory foci were increased significantly in ethanol-fed knockouts but not to the same extent as in the ethanol-fed wild type. Increase of hepatic apoptosis and reduction of S-adenosyl-L-methionine was detected in both types of animals fed ethanol. ER stress demonstrated by RT-PCR of mRNA of selective ER stress markers GRP78, CHOP, and SREBP1 was increased equivalently in both types of mice. Betaine administration decreased ER stress in conjunction with attenuation of the elevated plasma homocysteine in both types of animals. Betaine increased hepatic S-adenosyl-L-methionine by 28 fold in the knockouts and by 24-fold in wild type. In conclusion, TNFalpha makes a moderate contribution to the ALT elevation, necroinflammation, apoptosis, a small contribution to the fatty liver and no contribution to hyperhomocysteinemia and ER stress in intragastric alcohol fed mice.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum Chaperone BiP
- Enteral Nutrition
- Ethanol/administration & dosage
- Homocysteine/metabolism
- Hyperhomocysteinemia/chemically induced
- Hyperhomocysteinemia/metabolism
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Stress, Physiological/chemically induced
- Stress, Physiological/physiopathology
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Cheng Ji
- Research Center for Liver Disease, USC/UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Los Angeles, CA, USA.
| | | | | |
Collapse
|
140
|
MacLennan NK, James SJ, Melnyk S, Piroozi A, Jernigan S, Hsu JL, Janke SM, Pham TD, Lane RH. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics 2004; 18:43-50. [PMID: 15084713 DOI: 10.1152/physiolgenomics.00042.2004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uteroplacental insufficiency leads to intrauterine growth retardation (IUGR) and increases the risk of insulin resistance and hypertriglyceridemia in both humans and rats. Postnatal changes in hepatic gene expression characterize the postnatal IUGR rat, despite the transient nature of the initial in utero insult. Phenomena such as DNA methylation and histone acetylation can induce a relatively static reprogramming of gene transcription by altering chromatin infrastructure. We therefore hypothesized that uteroplacental insufficiency persistently affects DNA methylation and histone acetylation in the IUGR rat liver. IUGR rat pups were created by inducing uteroplacental insufficiency through bilateral uterine artery ligation of the pregnant dam on day 19 of gestation. The SssI methyltransferase assay and two-dimensional thin-layer chromatography demonstrated genome-wide DNA hypomethylation in postnatal IUGR liver. To investigate a possible mechanism for this hypomethylation, levels of hepatic metabolites and enzyme mRNAs involved in one-carbon metabolism were measured using HPLC with coulometric electrochemical detection and real-time RT-PCR, respectively. Uteroplacental insufficiency increased IUGR levels of S-adenosylhomocysteine, homocysteine, and methionine in association with decreased mRNA levels of methionine adenosyltransferase and cystathionine-beta-synthase. Western blotting further demonstrated that increased quantities of acetylated histone H3 also characterized the IUGR liver. Increased hepatic levels of S-adenosylhomocysteine can promote DNA hypomethylation, which is often associated with histone hyperacetylation. We speculate that the altered intrauterine milieu associated with uteroplacental insufficiency affects hepatic one-carbon metabolism and subsequent DNA methylation, which thereby alters chromatin dynamics and leads to persistent changes in hepatic gene expression.
Collapse
Affiliation(s)
- Nicole K MacLennan
- David Geffen School of Medicine, UCLA, Department of Pediatrics, Division of Neonatology and Developmental Biology, Mattel Children's Hospital, UCLA, Los Angeles, California, 90095-1752, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Ji C, Kaplowitz N. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury. World J Gastroenterol 2004; 10:1699-708. [PMID: 15188490 PMCID: PMC4572253 DOI: 10.3748/wjg.v10.i12.1699] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 04/29/2004] [Accepted: 05/06/2004] [Indexed: 12/15/2022] Open
Abstract
Deficiencies in vitamins or other factors (B6, B12, folic acid, betaine) and genetic disorders for the metabolism of the non-protein amino acid-homocysteine (Hcy) lead to hyperhomocysteinemia (HHcy). HHcy is an integral component of several disorders including cardiovascular disease, neurodegeneration, diabetes and alcoholic liver disease. HHcy unleashes mediators of inflammation such as NFkappaB, IL-1beta, IL-6, and IL-8, increases production of intracellular superoxide anion causing oxidative stress and reducing intracellular level of nitric oxide (NO), and induces endoplasmic reticulum (ER) stress which can explain many processes of Hcy-promoted cell injury such as apoptosis, fat accumulation, and inflammation. Animal models have played an important role in determining the biological effects of HHcy. ER stress may also be involved in other liver diseases such as alpha (1)-antitrypsin (alpha(1)-AT) deficiency and hepatitis C and/or B virus infection. Future research should evaluate the possible potentiative effects of alcohol and hepatic virus infection on ER stress-induced liver injury, study potentially beneficial effects of lowering Hcy and preventing ER stress in alcoholic humans, and examine polymorphism of Hcy metabolizing enzymes as potential risk-factors for the development of HHcy and liver disease.
Collapse
Affiliation(s)
- Cheng Ji
- Faculty of Medicine, Gastroenterology/Liver Division, Keck School of Medicine, University of Southern California, HMR-101, 2011 Zonal Avenue, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
142
|
Bleich S, Degner D, Sperling W, Bönsch D, Thürauf N, Kornhuber J. Homocysteine as a neurotoxin in chronic alcoholism. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:453-64. [PMID: 15093951 DOI: 10.1016/j.pnpbp.2003.11.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2003] [Indexed: 11/28/2022]
Abstract
There is evidence from in vitro and in vivo studies that homocysteine induces neuronal damage and cell loss by both excitotoxicity and different apoptotic processes. Clinical evidence suggest a strong relationship between higher plasma homocysteine levels and brain atrophy in healthy elderly subjects as well as in elderly at risk of and with Alzheimer's disease. Chronic alcoholism leads to elevated plasma homocysteine levels, as shown by clinical investigations and animal experiments. In addition, an association between brain atrophy and increased levels of homocysteine in chronic alcoholism was shown. This may have important implications for the pathogenesis of alcoholism-associated brain atrophy. Furthermore, taking into account that high plasma homocysteine levels are helpful in the prediction of alcohol withdrawal seizures, early anticonvulsive therapy could prevent this severe complication. Homocysteine plays a role in a shared biochemical cascade involving overstimulation of N-methyl-D-aspartate (NMDA) receptors, oxidative stress, activation of caspases, DNA damage, endoplasmic reticulum and mitochondrial dysfunction. These mechanisms are believed to be important in the pathogenesis of both excitotoxicity and apoptotic neurotoxicity. Prospective intervention studies may show whether the incidence of complications of alcohol withdrawal or alcoholism-associated disorders can be reduced by therapeutic measures with early lowering of elevated homocysteine levels (e.g. folate administration). The most important pathophysiological and pathobiochemical features of glutamatergic neurotransmission and of ethanol-induced hyperhomocysteinaemia are reviewed in relation to their excitotoxic and apoptotic potential.
Collapse
Affiliation(s)
- Stefan Bleich
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nuremberg, Schwabachanlage 6-10, Erlangen 91054, Germany.
| | | | | | | | | | | |
Collapse
|
143
|
Abstract
Alcoholic liver disease is associated with abnormal hepatic methionine metabolism, including increased levels of homocysteine and S-adenosylhomocysteine (SAH) and reduced levels of S-adenosylmethionine (SAM) and glutathione (GSH). The concept that abnormal methionine metabolism is involved in the pathogenesis of alcoholic liver disease was strengthened by our previous findings in a micropig model where combining dietary folate deficiency with chronic ethanol feeding produced maximal changes in these metabolites together with early onset of microscopic steatohepatitis and an eightfold increase in plasma aspartate aminotransferase. The goal of the present study was to determine potential mechanisms for abnormal levels of these methionine metabolites by analyzing the transcripts and activities of transmethylation enzymes in the livers of the same micropigs. Ethanol feeding or folate deficiency, separately or in combination, decreased transcript levels of methylenetetrahydrofolate reductase (MTHFR), methionine adenosyltransferase (MAT1A), glycine-N-methyltransferase (GNMT) and S-adenosylhomocysteine hydrolase (SAHH). Ethanol feeding alone reduced the activities of methionine synthase (MS) and MATIII and increased the activity of GNMT. Each diet, separately or in combination, decreased the activities of MTHFR and SAHH. In conclusion, the observed abnormal levels of methionine metabolites in this animal model of accelerated alcoholic liver injury can be ascribed to specific effects of ethanol with or without folate deficiency on the expressions and activities of hepatic enzymes that regulate transmethylation reactions. These novel effects on transmethylation reactions may be implicated in the pathogenesis of alcoholic liver disease.
Collapse
Affiliation(s)
- Jesus A Villanueva
- Department of Internal Medicine, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
144
|
Traverso N, Patriarca S, Balbis E, Furfaro AL, Cottalasso D, Pronzato MA, Carlier P, Botta F, Marinari UM, Fontana L. Anti malondialdehyde-adduct immunological response as a possible marker of successful aging. Exp Gerontol 2004; 38:1129-35. [PMID: 14580866 DOI: 10.1016/s0531-5565(03)00188-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Contrasting results have been obtained by various researchers about oxidative markers of aging. In this study, a healthy over-90-year-old population was examined for various plasma oxidative biomarkers and compared with a healthy population of blood donors (age range 23-66). Plasma malondialdehyde (MDA), evaluated by means of the thiobarbituric acid test, was significantly higher in the over-90-year-old population, confirming the presence of increased lipoperoxidation in old age. The antibody titre against MDA-protein adducts, considered a marker of lipoperoxidative protein damage in vivo, was evaluated in an ELISA test, completely home made and calibrated versus a concentrated pool of human plasma; this antibody titre was significantly higher in the over-90-year-old population. Plasma vitamin E, evaluated in RP-HPLC, was not significantly different between the two groups. Plasma protein-bound carbonyls, a marker of oxidative protein damage, were measured with the 2,4-dinitrophenylhydrazine assay; their level in the over-90-year-old population was lower than in the blood donors. The higher antibody titre against MDA-adducts may result in protection against accumulation of oxidatively damaged proteins by enhancing their removal, and, together with the preserved plasma vitamin E level, it may endow over-90-year-olds with an especially efficient antioxidant profile. The low level of protein carbonyl might reflect the more efficient removal of damaged proteins.
Collapse
Affiliation(s)
- Nicola Traverso
- Department of Experimental Medicine, Section of General Pathology, University of Genova, Genova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Although alcohol abuse is known to cause a wide array of adverse effects on blood cell formation, the molecular mechanisms by which alcohol exerts its toxic actions have remained poorly defined. Elevated mean corpuscular volume (MCV), macrocytosis, is the most typical morphological abnormality induced by excessive ethanol consumption. This paper reviews recent data indicating that acetaldehyde, the first metabolite of ethanol, may play a role in the haematological derangements in peripheral blood cells and in bone marrow of alcoholic patients. Studies in experimental animals and in human alcoholics have shown that acetaldehyde can bind to proteins and cellular constituents forming stable adducts. Elevated adduct levels have been found from the erythrocytes of alcohol abusers, which may also be associated with ethanol-induced effects in haematopoiesis and adverse consequences in cellular functions.
Collapse
Affiliation(s)
- Onni Niemelä
- EP Central Hospital, Laboratory and the Department of Clinical Chemistry, and Institute of Medical Technology, University of Tampere, Finland.
| | | |
Collapse
|
146
|
Abstract
PURPOSE OF REVIEW Inadequate folate status has been linked to risk of a wide range of adverse health conditions throughout life, from birth defects and complications of pregnancy to cardiovascular disease, cancer and cognitive dysfunction in the elderly. In many instances these risks are manifested through elevated plasma homocysteine. This review focuses on current research into the contribution of genetic variability to folate status and disease predisposition. RECENT FINDINGS Some dozen potentially important polymorphisms in folate-related genes have been examined for disease associations or for their role in determining the level of plasma homocysteine. In most instances, the effects are either modest, not significant, or undetectable. However, the mechanism by which the 677C-->T variant of methylenetetrahydrofolate reductase determines homocysteine status has become clearer with the elucidation of a critical role for riboflavin in modulating the plasma homocysteine of TT homozygotes. Moreover, several new metaanalyses have confirmed an association of this variant with vascular disease, probably through low folate status and elevated plasma homocysteine. SUMMARY There are enormous difficulties in attempting to assess the contribution of minor genetic variability to nutrient status, against major background differences due to ethnicity, age, gender, lifestyle, dietary habits and disease status. Nevertheless, this is an important goal in the future management of chronic multifactorial disease. The present research into the genetic components of folate and homocysteine variability is paving the way towards an eventual capacity to ensure optimal folate status in every individual and, consequently, to reduce their risk of developing such diseases.
Collapse
Affiliation(s)
- Anne M Molloy
- Department of Clinical Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
147
|
Kocsis MG, Ranocha P, Gage DA, Simon ES, Rhodes D, Peel GJ, Mellema S, Saito K, Awazuhara M, Li C, Meeley RB, Tarczynski MC, Wagner C, Hanson AD. Insertional inactivation of the methionine s-methyltransferase gene eliminates the s-methylmethionine cycle and increases the methylation ratio. PLANT PHYSIOLOGY 2003; 131:1808-15. [PMID: 12692340 PMCID: PMC166937 DOI: 10.1104/pp.102.018846] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2002] [Revised: 12/26/2002] [Accepted: 12/28/2002] [Indexed: 05/17/2023]
Abstract
Methionine (Met) S-methyltransferase (MMT) catalyzes the synthesis of S-methyl-Met (SMM) from Met and S-adenosyl-Met (Ado-Met). SMM can be reconverted to Met by donating a methyl group to homocysteine (homo-Cys), and concurrent operation of this reaction and that mediated by MMT sets up the SMM cycle. SMM has been hypothesized to be essential as a methyl donor or as a transport form of sulfur, and the SMM cycle has been hypothesized to guard against depletion of the free Met pool by excess Ado-Met synthesis or to regulate Ado-Met level and hence the Ado-Met to S-adenosylhomo-Cys ratio (the methylation ratio). To test these hypotheses, we isolated insertional mmt mutants of Arabidopsis and maize (Zea mays). Both mutants lacked the capacity to produce SMM and thus had no SMM cycle. They nevertheless grew and reproduced normally, and the seeds of the Arabidopsis mutant had normal sulfur contents. These findings rule out an indispensable role for SMM as a methyl donor or in sulfur transport. The Arabidopsis mutant had significantly higher Ado-Met and lower S-adenosylhomo-Cys levels than the wild type and consequently had a higher methylation ratio (13.8 versus 9.5). Free Met and thiol pools were unaltered in this mutant, although there were moderate decreases (of 30%-60%) in free serine, threonine, proline, and other amino acids. These data indicate that the SMM cycle contributes to regulation of Ado-Met levels rather than preventing depletion of free Met.
Collapse
Affiliation(s)
- Michael G Kocsis
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Nanji AA, French SW. Animal models of alcoholic liver disease--focus on the intragastric feeding model. ALCOHOL RESEARCH & HEALTH : THE JOURNAL OF THE NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM 2003; 27:325-30. [PMID: 15540804 PMCID: PMC6668873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The use of animal models has contributed to greater understanding of how alcoholic liver disease (ALD) develops, and of how the severity of liver injury is influenced by factors other than alcohol, such as nutrition, oxygen deprivation (as occurs with sleep apnea or smoking), and gene regulation. This article focuses on the use of one animal model in particular, the intragastric feeding model in rats. This model allows scientists to rigorously control an animal's consumption of both alcohol and dietary nutrients and is providing important information on the mechanisms of injury of alcoholic liver disease.
Collapse
Affiliation(s)
- Amin A Nanji
- Department of Pathology, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|