101
|
Sone JY, Li Y, Hobson N, Romanos SG, Srinath A, Lyne SB, Shkoukani A, Carrión-Penagos J, Stadnik A, Piedad K, Lightle R, Moore T, Li Y, Bi D, Shenkar R, Carroll T, Ji Y, Girard R, Awad IA. Perfusion and permeability as diagnostic biomarkers of cavernous angioma with symptomatic hemorrhage. J Cereb Blood Flow Metab 2021; 41:2944-2956. [PMID: 34039038 PMCID: PMC8756480 DOI: 10.1177/0271678x211020587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cavernous angiomas with symptomatic hemorrhage (CASH) have a high risk of rebleeding, and hence an accurate diagnosis is needed. With blood flow and vascular leak as established mechanisms, we analyzed perfusion and permeability derivations of dynamic contrast-enhanced quantitative perfusion (DCEQP) MRI in 745 lesions of 205 consecutive patients. Thirteen respective derivations of lesional perfusion and permeability were compared between lesions that bled within a year prior to imaging (N = 86), versus non-CASH (N = 659) using machine learning and univariate analyses. Based on logistic regression and minimizing the Bayesian information criterion (BIC), the best diagnostic biomarker of CASH within the prior year included brainstem lesion location, sporadic genotype, perfusion skewness, and high-perfusion cluster area (BIC = 414.9, sensitivity = 74%, specificity = 87%). Adding a diagnostic plasma protein biomarker enhanced sensitivity to 100% and specificity to 85%. A slightly modified derivation achieved similar accuracy (BIC = 321.6, sensitivity = 80%, specificity = 82%) in the cohort where CASH occurred 3-12 months prior to imaging after signs of hemorrhage would have disappeared on conventional MRI sequences. Adding the same plasma biomarker enhanced sensitivity to 100% and specificity to 87%. Lesional blood flow on DCEQP may distinguish CASH after hemorrhagic signs on conventional MRI have disappeared and are enhanced in combination with a plasma biomarker.
Collapse
Affiliation(s)
- Je Yeong Sone
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Yan Li
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA.,Center for Research Informatics, University of Chicago, Chicago, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Sharbel G Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Seán B Lyne
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Abdallah Shkoukani
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Julián Carrión-Penagos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Kristina Piedad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Dehua Bi
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA.,Department of Public Health Sciences, University of Chicago, Chicago, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Timothy Carroll
- Department of Diagnostic Radiology, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, USA
| |
Collapse
|
102
|
Cai P, Wang C, Gao H, Chen X. Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007977. [PMID: 34197013 DOI: 10.1002/adma.202007977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Indexed: 06/13/2023]
Abstract
The knowledge of mechanics of materials has been extensively implemented in developing functional materials, giving rise to recent advances in soft actuators, flexible electronics, mechanical metamaterials, tunable mechanochromics, regenerative mechanomedicine, etc. While conventional mechanics of materials offers passive access to mechanical properties of materials in existing forms, a paradigm shift is emerging toward proactive programming of materials' functionality by leveraging the force-geometry-property relationships. Here, such a rising field is coined as "mechanomaterials". To profile the concept, the design principles in this field at four scales is first outlined, namely the atomic scale, the molecular scale, the manipulation of nanoscale materials, and the microscale design of structural materials. A variety of techniques have been recruited to deliver the multiscale programming of functional mechanomaterials, such as strain engineering, capillary assembly, topological interlocking, kirigami, origami, to name a few. Engineering optical and biological functionalities have also been achieved by implementing the fundamentals of mechanochemistry and mechanobiology. Nonetheless, the field of mechanomaterials is still in its infancy, with many open challenges and opportunities that need to be addressed. The authors hope this review can serve as a modest spur to attract more researchers to further advance this field.
Collapse
Affiliation(s)
- Pingqiang Cai
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changxian Wang
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Huajian Gao
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaodong Chen
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
103
|
Dessalles CA, Ramón-Lozano C, Babataheri A, Barakat AI. Luminal flow actuation generates coupled shear and strain in a microvessel-on-chip. Biofabrication 2021; 14. [PMID: 34592728 DOI: 10.1088/1758-5090/ac2baa] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
In the microvasculature, blood flow-derived forces are key regulators of vascular structure and function. Consequently, the development of hydrogel-based microvessel-on-chip systems that strive to mimic thein vivocellular organization and mechanical environment has received great attention in recent years. However, despite intensive efforts, current microvessel-on-chip systems suffer from several limitations, most notably failure to produce physiologically relevant wall strain levels. In this study, a novel microvessel-on-chip based on the templating technique and using luminal flow actuation to generate physiologically relevant levels of wall shear stress and circumferential stretch is presented. Normal forces induced by the luminal pressure compress the surrounding soft collagen hydrogel, dilate the channel, and create large circumferential strain. The fluid pressure gradient in the system drives flow forward and generates realistic pulsatile wall shear stresses. Rigorous characterization of the system reveals the crucial role played by the poroelastic behavior of the hydrogel in determining the magnitudes of the wall shear stress and strain. The experimental measurements are combined with an analytical model of flow in both the lumen and the porous hydrogel to provide an exceptionally versatile user manual for an application-based choice of parameters in microvessels-on-chip. This unique strategy of flow actuation adds a dimension to the capabilities of microvessel-on-chip systems and provides a more general framework for improving hydrogel-basedin vitroengineered platforms.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120 Palaiseau, France
| | - Clara Ramón-Lozano
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120 Palaiseau, France
| | - Avin Babataheri
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120 Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
104
|
Walji N, Kheiri S, Young EWK. Angiogenic Sprouting Dynamics Mediated by Endothelial-Fibroblast Interactions in Microfluidic Systems. Adv Biol (Weinh) 2021; 5:e2101080. [PMID: 34655165 DOI: 10.1002/adbi.202101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/18/2021] [Indexed: 11/09/2022]
Abstract
Angiogenesis, the development of new blood vessels from existing vasculature, is a key process in normal development and pathophysiology. In vitro models are necessary for investigating mechanisms of angiogenesis and developing antiangiogenic therapies. Microfluidic cell culture models of angiogenesis are favored for their ability to recapitulate 3D tissue structures and control spatiotemporal aspects of the microenvironments. To capture the angiogenesis process, microfluidic models often include endothelial cells and a fibroblast component. However, the influence of fibroblast organization on resulting angiogenic behavior remains unclear. Here a comparative study of angiogenic sprouting on a microfluidic chip induced by fibroblasts in 2D monolayer, 3D dispersed, and 3D spheroid culture formats, is conducted. Vessel morphology and sprout distribution for each configuration are measured, and these observations are correlated with measurements of secreted factors and numerical simulations of diffusion gradients. The results demonstrate that angiogenic sprouting varies in response to fibroblast organization with correlating variations in secretory profile and secreted factor gradients across the microfluidic device. This study is anticipated to shed light on how sprouting dynamics are mediated by fibroblast configuration such that the microfluidic cell culture design process includes the selection of a fibroblast component where the effects are known and leveraged.
Collapse
Affiliation(s)
- Noosheen Walji
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.,Institute of Biomedical Engineering, University of Toronto, 160 College St., Toronto, M5S 3E1, Canada
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.,Institute of Biomedical Engineering, University of Toronto, 160 College St., Toronto, M5S 3E1, Canada
| |
Collapse
|
105
|
Es HA, Cox TR, Sarafraz-Yazdi E, Thiery JP, Warkiani ME. Pirfenidone Reduces Epithelial-Mesenchymal Transition and Spheroid Formation in Breast Carcinoma through Targeting Cancer-Associated Fibroblasts (CAFs). Cancers (Basel) 2021; 13:5118. [PMID: 34680267 PMCID: PMC8533995 DOI: 10.3390/cancers13205118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to assess the effects of pirfenidone (PFD) on promoting epithelial-mesenchymal-transition (EMT) and stemness features in breast carcinoma cells through targeting cancer-associated-fibroblasts (CAFs). Using The Cancer Genome Atlas (TCGA) database, we analyzed the association between stromal index, EMT, and stemness-related genes across 1084 breast cancer patients, identifying positive correlation between YAP1, EMT, and stemness genes in samples with a high-stromal index. We monitored carcinoma cell invasion and spheroid formation co-cultured with CAFs in a 3D microfluidic device, followed by exposing carcinoma cells, spheroids, and CAFs with PFD. We depicted a positive association between the high-stromal index and the expression of EMT and stemness genes. High YAP1 expression in samples correlated with more advanced EMT status and stromal index. Additionally, we found that CAFs promoted spheroid formation and induced the expression of YAP1, VIM, and CD44 in spheroids. Treatment with PFD reduced carcinoma cell migration and decreased the expression of these genes at the protein level. The cytokine profiling showed significant depletion of various EMT- and stemness-regulated cytokines, particularly IL8, CCL17, and TNF-beta. These data highlight the potential application of PFD on inhibiting EMT and stemness in carcinoma cells through the targeting of critical cytokines.
Collapse
Affiliation(s)
- Hamidreza Aboulkheyr Es
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Thomas R Cox
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
| | | | - Jean Paul Thiery
- Comprehensive Cancer Center, Institute Gustave Roussy, 94805 Villejuif, France;
- Guangzhou Laboratory, Guangzhou 510000, China
- Center of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Center of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
106
|
Padmanaban P, Chizari A, Knop T, Zhang J, Trikalitis VD, Koopman B, Steenbergen W, Rouwkema J. Assessment of flow within developing chicken vasculature and biofabricated vascularized tissues using multimodal imaging techniques. Sci Rep 2021; 11:18251. [PMID: 34521868 PMCID: PMC8440514 DOI: 10.1038/s41598-021-97008-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
Fluid flow shear stresses are strong regulators for directing the organization of vascular networks. Knowledge of structural and flow dynamics information within complex vasculature is essential for tuning the vascular organization within engineered tissues, by manipulating flows. However, reported investigations of vascular organization and their associated flow dynamics within complex vasculature over time are limited, due to limitations in the available physiological pre-clinical models, and the optical inaccessibility and aseptic nature of these models. Here, we developed laser speckle contrast imaging (LSCI) and side-stream dark field microscopy (SDF) systems to map the vascular organization, spatio-temporal blood flow fluctuations as well as erythrocytes movements within individual blood vessels of developing chick embryo, cultured within an artificial eggshell system. By combining imaging data and computational simulations, we estimated fluid flow shear stresses within multiscale vasculature of varying complexity. Furthermore, we demonstrated the LSCI compatibility with bioengineered perfusable muscle tissue constructs, fabricated via molding techniques. The presented application of LSCI and SDF on perfusable tissues enables us to study the flow perfusion effects in a non-invasive fashion. The gained knowledge can help to use fluid perfusion in order to tune and control multiscale vascular organization within engineered tissues.
Collapse
Affiliation(s)
- Prasanna Padmanaban
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Ata Chizari
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Tom Knop
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Jiena Zhang
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Vasileios D Trikalitis
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Bart Koopman
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Jeroen Rouwkema
- Vascularization Lab, Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7500 AE, Enschede, The Netherlands.
| |
Collapse
|
107
|
Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines 2021; 9:biomedicines9091137. [PMID: 34572322 PMCID: PMC8468019 DOI: 10.3390/biomedicines9091137] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
Bioprinting is a modern tool suitable for creating cell scaffolds and tissue or organ carriers from polymers that mimic tissue properties and create a natural environment for cell development. A wide range of polymers, both natural and synthetic, are used, including extracellular matrix and collagen-based polymers. Bioprinting technologies, based on syringe deposition or laser technologies, are optimal tools for creating precise constructs precisely from the combination of collagen hydrogel and cells. This review describes the different stages of bioprinting, from the extraction of collagen hydrogels and bioink preparation, over the parameters of the printing itself, to the final testing of the constructs. This study mainly focuses on the use of physically crosslinked high-concentrated collagen hydrogels, which represents the optimal way to create a biocompatible 3D construct with sufficient stiffness. The cell viability in these gels is mainly influenced by the composition of the bioink and the parameters of the bioprinting process itself (temperature, pressure, cell density, etc.). In addition, a detailed table is included that lists the bioprinting parameters and composition of custom bioinks from current studies focusing on printing collagen gels without the addition of other polymers. Last but not least, our work also tries to refute the often-mentioned fact that highly concentrated collagen hydrogel is not suitable for 3D bioprinting and cell growth and development.
Collapse
|
108
|
Akbari E, Spychalski GB, Menyhert MM, Rangharajan KK, Tinapple JW, Prakash S, Song JW. Endothelial barrier function is co-regulated at vessel bifurcations by fluid forces and sphingosine-1-phosphate. BIOMATERIALS AND BIOSYSTEMS 2021; 3:100020. [PMID: 35317095 PMCID: PMC8936769 DOI: 10.1016/j.bbiosy.2021.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid mediator of endothelial barrier function. Prior studies have implicated mechanical stimulation due to intravascular laminar shear stress in co-regulating S1P signaling in endothelial cells (ECs). Yet, vascular networks in vivo consist of vessel bifurcations, and this geometry generates hemodynamic forces at the bifurcation point distinct from laminar shear stress. However, the role of these forces at vessel bifurcations in regulating S1P-dependent endothelial barrier function is not known. In this study, we implemented a microfluidic platform that recapitulates the flow dynamics of vessel bifurcations with in situ quantification of the permeability of microvessel analogues. Co-application of S1P with impinging bifurcated fluid flow, which is characterized by approximately zero shear stress and 38 dyn•cm-2 stagnation pressure at the vessel bifurcation point, promotes vessel stabilization. Similarly, co-treatment of S1P with 3 dyn•cm-2 laminar shear stress is also protective of endothelial barrier function. Moreover, it is shown that vessel stabilization due to bifurcated fluid flow and laminar shear stress is dependent on S1P receptor 1 or 2 signaling. Collectively, these findings demonstrate the endothelium-protective function of fluid forces at vessel bifurcations and their involvement in coordinating S1P-dependent regulation of vessel permeability.
Collapse
Affiliation(s)
- Ehsan Akbari
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Griffin B. Spychalski
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Miles M. Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Kaushik K. Rangharajan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Joseph W. Tinapple
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States, 43210
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States, 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States, 43210
| | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States, 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States, 43210
| |
Collapse
|
109
|
From remodeling to quiescence: The transformation of the vascular network. Cells Dev 2021; 168:203735. [PMID: 34425253 DOI: 10.1016/j.cdev.2021.203735] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.
Collapse
|
110
|
Narasimhan B, Narasimhan H, Lorente-Ros M, Romeo FJ, Bhatia K, Aronow WS. Therapeutic angiogenesis in coronary artery disease: a review of mechanisms and current approaches. Expert Opin Investig Drugs 2021; 30:947-963. [PMID: 34346802 DOI: 10.1080/13543784.2021.1964471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite tremendous advances, the shortcomings of current therapies for coronary disease are evidenced by the fact that it remains the leading cause of death in many parts of the world. There is hence a drive to develop novel therapies to tackle this disease. Therapeutic approaches to coronary angiogenesis have long been an area of interest in lieu of its incredible, albeit unrealized potential. AREAS COVERED This paper offers an overview of mechanisms of native angiogenesis and a description of angiogenic growth factors. It progresses to outline the advances in gene and stem cell therapy and provides a brief description of other investigational approaches to promote angiogenesis. Finally, the hurdles and limitations unique to this particular area of study are discussed. EXPERT OPINION An effective, sustained, and safe therapeutic option for angiogenesis truly could be the paradigm shift for cardiovascular medicine. Unfortunately, clinically meaningful therapeutic options remain elusive because promising animal studies have not been replicated in human trials. The sheer complexity of this process means that numerous major hurdles remain before therapeutic angiogenesis truly makes its way from the bench to the bedside.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | | | - Marta Lorente-Ros
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Francisco Jose Romeo
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Kirtipal Bhatia
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
111
|
Wu Z, Cai H, Ao Z, Xu J, Heaps S, Guo F. Microfluidic Printing of Tunable Hollow Microfibers for Vascular Tissue Engineering. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2000683. [PMID: 34458563 PMCID: PMC8386518 DOI: 10.1002/admt.202000683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 05/28/2023]
Abstract
Bioprinting of vascular tissues holds great potential in tissue engineering and regenerative medicine. However, challenges remain in fabricating biocompatible and versatile scaffolds for the rapid engineering of vascular tissues and vascularized organs. Here, we report novel bioink-enabled microfluidic printing of tunable hollow microfibers for the rapid formation of blood vessels. By compositing biomaterials including sodium alginate, gelatin methacrylate (GelMA), and glycidyl-methacrylate silk fibroin (SilkMA), we prepared a novel composite bioink with excellent printability and biocompatibility. This composite bioink can be printed into hollow microfibers with tunable dimensions using a microfluidic co-axial printing. After seeding human umbilical vein endothelial cells (HUVEC) into the hollow chambers via a microfluidic prefusion device, these cells can adhere to, grow, proliferate, and then cover the internal surface of the printed hollow scaffolds to form vessel-like tissue structures within three days. By combining the unique composite bioink, microfluidic printing of vascular scaffolds, and microfluidic cell seeding and culturing, our strategy can fabricate vascular-like tissue structures with high viability and tunable dimension within three days. The presented method may engineer in vitro vasculatures for the broad applications in basic research and translational medicine including in vitro disease models, tissue microcirculation, and tissue transplantation.
Collapse
|
112
|
Muller MA, Ozawa K, Hodovan J, Hagen MW, Giraud DSH, Qi Y, Xie A, Hobbs TR, Sheeran PS, Lindner JR. Treatment of Limb Ischemia with Conducted Effects of Catheter-Based Endovascular Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2277-2285. [PMID: 33934942 PMCID: PMC8243793 DOI: 10.1016/j.ultrasmedbio.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 06/03/2023]
Abstract
Ultrasound (US) is known to stimulate endogenous shear-dependent pathways, and can lower microvascular resistance through mediators that are conducted downstream from US exposure. We hypothesized that endovascular US, already in use for thrombolysis in humans, can improve tissue perfusion in the setting of acute limb ischemia through downstream-conducted effects. Models of severe peripheral arterial disease were developed in mice and in rhesus macaques. An endovascular US catheter (2.3 MHz, 0.5-1.1 MPa) was used to expose the limb adductor in mice for 10 min or the femoral artery distal to stenosis in macaques for 15 min. Quantitative contrast-enhanced ultrasound perfusion imaging was performed to assess flow augmentation in the adductor muscle of mice and the calf muscle of macaques. Microvascular blood flow in the ischemic limb relative to the contralateral control limb was reduced to 22 ± 8% in mice and 36 ± 20% in macaques. US produced immediate 2.3- and 3-fold increases (p < 0.05) in the murine and macaque ischemic limbs, respectively. In macaques, perfusion in the ischemic limb was increased to a normal level. We conclude that non-cavitating US produced by endovascular catheters that are used to enhance thrombolysis in humans can reduce vascular resistance and increase limb perfusion in the setting of acute ischemia.
Collapse
Affiliation(s)
- Matthew A Muller
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Koya Ozawa
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew W Hagen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - David S H Giraud
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Theodore R Hobbs
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | | | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
113
|
Follain G, Osmani N, Gensbittel V, Asokan N, Larnicol A, Mercier L, Garcia-Leon MJ, Busnelli I, Pichot A, Paul N, Carapito R, Bahram S, Lefebvre O, Goetz JG. Impairing flow-mediated endothelial remodeling reduces extravasation of tumor cells. Sci Rep 2021; 11:13144. [PMID: 34162963 PMCID: PMC8222393 DOI: 10.1038/s41598-021-92515-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor progression and metastatic dissemination are driven by cell-intrinsic and biomechanical cues that favor the growth of life-threatening secondary tumors. We recently identified pro-metastatic vascular regions with blood flow profiles that are permissive for the arrest of circulating tumor cells. We have further established that such flow profiles also control endothelial remodeling, which favors extravasation of arrested CTCs. Yet, how shear forces control endothelial remodeling is unknown. In the present work, we aimed at dissecting the cellular and molecular mechanisms driving blood flow-dependent endothelial remodeling. Transcriptomic analysis of endothelial cells revealed that blood flow enhanced VEGFR signaling, among others. Using a combination of in vitro microfluidics and intravital imaging in zebrafish embryos, we now demonstrate that the early flow-driven endothelial response can be prevented upon specific inhibition of VEGFR tyrosine kinase and subsequent signaling. Inhibitory targeting of VEGFRs reduced endothelial remodeling and subsequent metastatic extravasation. These results confirm the importance of VEGFR-dependent endothelial remodeling as a driving force of CTC extravasation and metastatic dissemination. Furthermore, the present work suggests that therapies targeting endothelial remodeling might be a relevant clinical strategy in order to impede metastatic progression.
Collapse
Affiliation(s)
- Gautier Follain
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Turku Bioscience Center,, University of Turku, Åbo Akademi University, 20520, Turku, Finland
| | - Naël Osmani
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Nandini Asokan
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Annabel Larnicol
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Luc Mercier
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- UMR 5297, Interdisciplinary Institute for Neurosciences, CNRS Université de Bordeaux, 33076, Bordeaux, France
| | - Maria Jesus Garcia-Leon
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Ignacio Busnelli
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Angelique Pichot
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Nicodème Paul
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Raphaël Carapito
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Seiamak Bahram
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
114
|
Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021; 4:764. [PMID: 34155305 PMCID: PMC8217569 DOI: 10.1038/s42003-021-02285-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells (ECs) lining all blood vessels are subjected to large mechanical stresses that regulate their structure and function in health and disease. Here, we review EC responses to substrate-derived biophysical cues, namely topography, curvature, and stiffness, as well as to flow-derived stresses, notably shear stress, pressure, and tensile stresses. Because these mechanical cues in vivo are coupled and are exerted simultaneously on ECs, we also review the effects of multiple cues and describe burgeoning in vitro approaches for elucidating how ECs integrate and interpret various mechanical stimuli. We conclude by highlighting key open questions and upcoming challenges in the field of EC mechanobiology.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Claire Leclech
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Alessia Castagnino
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
115
|
Phng LK, Belting HG. Endothelial cell mechanics and blood flow forces in vascular morphogenesis. Semin Cell Dev Biol 2021; 120:32-43. [PMID: 34154883 DOI: 10.1016/j.semcdb.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
The vertebrate cardiovascular system is made up by a hierarchically structured network of highly specialised blood vessels. This network emerges during early embryogenesis and evolves in size and complexity concomitant with embryonic growth and organ formation. Underlying this plasticity are actin-driven endothelial cell behaviours, which allow endothelial cells to change their shape and move within the vascular network. In this review, we discuss the cellular and molecular mechanisms involved in vascular network formation and how these intrinsic mechanisms are influenced by haemodynamic forces provided by pressurized blood flow. While most of this review focusses on in vivo evidence from zebrafish embryos, we also mention complementary findings obtained in other experimental systems.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Basel 4056, Switzerland.
| |
Collapse
|
116
|
Matzkeit N, Schulz L, Schleusser S, Jensen JO, Stang FH, Mailaender P, Krämer R, Kisch T. Cold atmospheric plasma improves cutaneous microcirculation in standardized acute wounds: Results of a controlled, prospective cohort study. Microvasc Res 2021; 138:104211. [PMID: 34144075 DOI: 10.1016/j.mvr.2021.104211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Given the high prevalence of wounds and their challenging treatment, the research of therapies to improve wound healing is of great clinical interest. In addition, the general consequences of developing chronic wounds constitute a large health economic aspect, which underscores the interest in the development of efficient treatment strategies. Direct cold atmospheric plasma (di_CAP) has been shown to have beneficial effects on microcirculation of human tissue (Kisch et al., 2016a). It also affects microbial settlements, which may have supportive effects on wound healing processes (Balzer et al., 2015). To treat these adequately, in our view, the positive effects on wound healing should be objectified by application on standardized wounds. However, wound healing is a complex process, depending on nutrient and oxygen supply by cutaneous blood circulation. In spite of microcirculation has been shown to improve in healthy skin by CAP, a quantification of the effect in a standardized wound model has never been evaluated (Kisch et al., 2016a). Based on this, we hypothesize that CAP also influences the microcirculation in standardized acute wounds in a prospective cohort study. METHODS Microcirculatory data of 20 healthy subjects (14 males, 6 females; mean age 40.85 ± 15.84 years; BMI 26.83 ± 7.27 kg/m2) were recorded continuously at a standardized acute wound after skin transplantation (donor site) at the thigh. Under standardized conditions, microcirculatory measurements were performed using a combined laser Doppler and photospectrometry system. After baseline measurement, CAP was applied by a dielectric barrier discharge (DBD) plasma device for 90 s to the acute wound area. Immediately after the application, cutaneous microcirculation was assessed for 30 min (min) at the same site. RESULTS After CAP application, tissue oxygen saturation immediately increased by 5% (92,66 ± 4,76% vs. Baseline 88,21 ± 6,52%, p < 0,01) in the first 60 s and remained significantly elevated for 4 min. Capillary blood flow increased by 19.3% within the first minute of CAP therapy (220.14 ± 65.91 AU vs. Baseline 184.52 ± 56.77 AU, p < 0.001). The statistically highly significant increase in blood flow continued over the entire measurement time. A maximum value was shown in the blood flow in the 15th minute (232.15 ± 58.90 AU, p < 0.001) according to CAP application. With regard to the output measurement, it represents a percentage increase of 25.8%. The measurement of post-capillary venous filling pressure at a tissue depth of 6-8 mm was 59.39 ± AU 12.94 at baseline measurement. After application, there were no significant changes. CONCLUSION CAP increases cutaneous tissue oxygen saturation and capillary blood flow at the standardized acute wound healing model. These results support recently published data on wound healing after CAP treatment. However, further studies are needed to determine if this treatment can improve the reduced microcirculation in chronic wounds. Moreover, repetitive application protocols have to be compared with a single session treatment approach.
Collapse
Affiliation(s)
- Nico Matzkeit
- Department of Plastic Surgery, Hand Surgery, Burn Unit, University Hospital of Schleswig-Holstein, Campus Lübeck, University of Lübeck, Lübeck, Germany.
| | - Lysann Schulz
- Division of Interdisciplinary internal ICU, Medical Department I, University Hospital Leipzig, Germany
| | - Sophie Schleusser
- Department of Plastic Surgery, Hand Surgery, Burn Unit, University Hospital of Schleswig-Holstein, Campus Lübeck, University of Lübeck, Lübeck, Germany
| | - Jan-Oluf Jensen
- Department of Plastic Surgery, Hand Surgery, Burn Unit, University Hospital of Schleswig-Holstein, Campus Lübeck, University of Lübeck, Lübeck, Germany
| | - Felix Hagen Stang
- Department of Plastic Surgery, Hand Surgery, Burn Unit, University Hospital of Schleswig-Holstein, Campus Lübeck, University of Lübeck, Lübeck, Germany
| | - Peter Mailaender
- Department of Plastic Surgery, Hand Surgery, Burn Unit, University Hospital of Schleswig-Holstein, Campus Lübeck, University of Lübeck, Lübeck, Germany
| | - Robert Krämer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Klinikum Westfalen, Dortmund, Germany
| | - Tobias Kisch
- Department of Plastic Surgery, Hand Surgery, Burn Unit, University Hospital of Schleswig-Holstein, Campus Lübeck, University of Lübeck, Lübeck, Germany
| |
Collapse
|
117
|
Su G, Feng T, Pei T, Yang F, Sun D, Yu H, Wang X, Gao W, He J, Shen Y, Liu X. Autophagy modulates FSS-induced epithelial-mesenchymal transition in hepatocellular carcinoma cells. Mol Carcinog 2021; 60:607-619. [PMID: 34107107 DOI: 10.1002/mc.23327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma is a highly fatal disease and threatens human health seriously. Fluid shear stress (FSS), which is caused by the leakage of plasma from abnormally permeable tumor blood vessels and insufficient lymphatic drainage, has been identified as contributing pathologically to cancer metastasis. Autophagy and epithelial-mesenchymal transition (EMT) are both reported to be involved in cancer cell migration and invasion, but little has been revealed about the interaction between autophagy and EMT under a tumor mechanical microenvironment. Here, we identified that exposure to 1.4 dyne/cm2 FSS could promote the formation of autophagosomes and significantly increase the expressions of autophagy-related markers of beclin1 and ATG7, and the ratio of LC3Ⅱ/Ⅰ in both of HepG2 and QGY-7703 cells. The FSS loading also elevated the levels of mesenchymal markers N-cadherin, Vimentin, Twist, Snail, and β-catenin, while the epithelial markers E-cadherin showed a decrease. Once the autophagy was blocked by 3-methyladenine (3-MA) or knocking ATG5 down, the occurrence of FSS-induced EMT was inhibited dramatically according to the expression and translocation of E-cadherin, N-cadherin, and β-catenin. Given the effect of EMT on cell migration, we observed that inhibition of autophagy could impede FSS-induced cell migration. Collectively, this study demonstrated that autophagy played a crucial role in FSS-induced EMT and cell migration in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Guanyue Su
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tang Feng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tong Pei
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Fan Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Denglian Sun
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongchi Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenbo Gao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jia He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
118
|
Kinstlinger IS, Calderon GA, Royse MK, Means AK, Grigoryan B, Miller JS. Perfusion and endothelialization of engineered tissues with patterned vascular networks. Nat Protoc 2021; 16:3089-3113. [PMID: 34031610 DOI: 10.1038/s41596-021-00533-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
As engineered tissues progress toward therapeutically relevant length scales and cell densities, it is critical to deliver oxygen and nutrients throughout the tissue volume via perfusion through vascular networks. Furthermore, seeding of endothelial cells within these networks can recapitulate the barrier function and vascular physiology of native blood vessels. In this protocol, we describe how to fabricate and assemble customizable open-source tissue perfusion chambers and catheterize tissue constructs inside them. Human endothelial cells are seeded along the lumenal surfaces of the tissue constructs, which are subsequently connected to fluid pumping equipment. The protocol is agnostic with respect to biofabrication methodology as well as cell and material composition, and thus can enable a wide variety of experimental designs. It takes ~14 h over the course of 3 d to prepare perfusion chambers and begin a perfusion experiment. We envision that this protocol will facilitate the adoption and standardization of perfusion tissue culture methods across the fields of biomaterials and tissue engineering.
Collapse
Affiliation(s)
| | | | - Madison K Royse
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - A Kristen Means
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Jordan S Miller
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
119
|
Wasson EM, Dubbin K, Moya ML. Go with the flow: modeling unique biological flows in engineered in vitro platforms. LAB ON A CHIP 2021; 21:2095-2120. [PMID: 34008661 DOI: 10.1039/d1lc00014d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Interest in recapitulating in vivo phenomena in vitro using organ-on-a-chip technology has grown rapidly and with it, attention to the types of fluid flow experienced in the body has followed suit. These platforms offer distinct advantages over in vivo models with regards to human relevance, cost, and control of inputs (e.g., controlled manipulation of biomechanical cues from fluid perfusion). Given the critical role biophysical forces play in several tissues and organs, it is therefore imperative that engineered in vitro platforms capture the complex, unique flow profiles experienced in the body that are intimately tied with organ function. In this review, we outline the complex and unique flow regimes experienced by three different organ systems: blood vasculature, lymphatic vasculature, and the intestinal system. We highlight current state-of-the-art platforms that strive to replicate physiological flows within engineered tissues while introducing potential limitations in current approaches.
Collapse
Affiliation(s)
- Elisa M Wasson
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| | - Karen Dubbin
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| | - Monica L Moya
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| |
Collapse
|
120
|
Tran KA, Kraus E, Clark AT, Bennett A, Pogoda K, Cheng X, Ce Bers A, Janmey PA, Galie PA. Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20947-20959. [PMID: 33909398 PMCID: PMC8317442 DOI: 10.1021/acsami.0c21868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Current methods to dynamically tune three-dimensional hydrogel mechanics require specific chemistries and substrates that make modest, slow, and often irreversible changes in their mechanical properties, exclude the use of protein-based scaffolds, or alter the hydrogel microstructure and pore size. Here, we rapidly and reversibly alter the mechanical properties of hydrogels consisting of extracellular matrix proteins and proteoglycans by adding carbonyl iron microparticles (MPs) and applying external magnetic fields. This approach drastically alters hydrogel mechanics: rheology reveals that application of a 4000 Oe magnetic field to a 5 mg/mL collagen hydrogel containing 10 wt % MPs increases the storage modulus from approximately 1.5 to 30 kPa. Cell morphology experiments show that cells embedded within these hydrogels rapidly sense the magnetically induced changes in ECM stiffness. Ca2+ transients are altered within seconds of stiffening or subsequent softening, and slower but still dynamic changes occur in YAP nuclear translocation in response to time-dependent application of a magnetic field. The near instantaneous change in hydrogel mechanics provides new insight into the effect of changing extracellular stiffness on both acute and chronic changes in diverse cell types embedded in protein-based scaffolds. Due to its flexibility, this method is broadly applicable to future studies interrogating cell mechanotransduction in three-dimensional substrates.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Emile Kraus
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andy T Clark
- Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Alex Bennett
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katarzyna Pogoda
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Krakow, Poland
| | - Xuemei Cheng
- Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Andrejs Ce Bers
- Department of Physics, University of Latvia, Riga LV-1004, Latvia
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
121
|
Conrad L, Runser SVM, Fernando Gómez H, Lang CM, Dumond MS, Sapala A, Schaumann L, Michos O, Vetter R, Iber D. The biomechanical basis of biased epithelial tube elongation in lung and kidney development. Development 2021; 148:261770. [PMID: 33946098 PMCID: PMC8126414 DOI: 10.1242/dev.194209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the surrounding mesenchyme, of preferential turnover of the extracellular matrix at the bud tips and of FGF signalling. There is also no evidence for actin-rich filopodia at the bud tips. Rather, we find epithelial tubes to be collapsed during early lung and kidney development, and we observe fluid flow in the narrow tubes. By simulating the measured fluid flow inside segmented narrow epithelial tubes, we show that the shear stress levels on the apical surface are sufficient to explain the reported bias in cell shape and outgrowth. We use a cell-based vertex model to confirm that apical shear forces, unlike constricting forces, can give rise to both the observed bias in cell shapes and tube elongation. We conclude that shear stress may be a more general driver of biased tube elongation beyond its established role in angiogenesis. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lisa Conrad
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Steve Vincent Maurice Runser
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Harold Fernando Gómez
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Christine Michaela Lang
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Mathilde Sabine Dumond
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Aleksandra Sapala
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Laura Schaumann
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Odyssé Michos
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| |
Collapse
|
122
|
Wiewiora M, Mertas A, Gluck M, Nowowiejska-Wiewiora A, Czuba Z, Piecuch J. Effect of Weight Loss Surgery on Biomarkers of Angiogenesis in Obese Patients. Obes Surg 2021; 30:3417-3425. [PMID: 32307670 PMCID: PMC7378109 DOI: 10.1007/s11695-020-04580-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The present study aims to clarify the effects of weight loss on biomarkers associated with angiogenesis in patients who underwent laparoscopic sleeve gastrectomy (SG) or adjustable gastric banding (LAGB) in the 12-month follow-up study. MATERIALS AND METHODS We studied 24 obese patients who underwent laparoscopic weight loss surgery, 13 of whom underwent SG and 11 of whom underwent LAGB. We evaluated the circulating level of angiogenesis biomarkers preoperatively and 12 months after surgery. RESULTS Before surgery, the following angiogenic circulating factors were significantly higher than those of healthy subjects: angiopoietin 2 (ANG-2) (p < .05), granulocyte colony-stimulating factor (G-CSF) (p < .05), hepatocyte growth factor (HGF) (p < .01), platelet endothelial cell adhesion molecule (PECAM-1) (p < .01), and vascular endothelial growth factor (VEGF) (p < .05). The following angiogenesis biomarkers decreased significantly after weight loss compared with their baseline values: ANG-2 (p < .05), follistatin (p < .05), HGF (p < .01), PECAM-1 (p < .01), and VEGF (p < .05). There were no significant differences in the circulating levels of angiogenesis biomarkers between individuals who underwent SG and those who underwent LAGB; however, HGF, PECAM-1, and VEGF tended to be lower after SG. %BMI correlated negatively with HGF, PECAM-1, and VEGF. A similar significant negative correlation was found for %WL and %EWL. WHR correlated with PDGF-B and VEGF. CONCLUSIONS We concluded that weight loss surgery induces the changes of circulating levels of angiogenesis biomarkers in obese patients. The changes in angiogenesis status in obese patients who lost weight after bariatric surgery depended on the amount of weight loss.
Collapse
Affiliation(s)
- Maciej Wiewiora
- Department of General and Bariatric Surgery and Emergency Medicine, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland.
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Zabrze, Poland.
| | - Anna Mertas
- Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Marek Gluck
- Department of General and Bariatric Surgery and Emergency Medicine, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Alicja Nowowiejska-Wiewiora
- Third Department of Cardiology, Silesian Centre for Heart Disease, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
123
|
Lim J, Ching H, Yoon JK, Jeon NL, Kim Y. Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance. NANO CONVERGENCE 2021; 8:12. [PMID: 33846849 PMCID: PMC8042002 DOI: 10.1186/s40580-021-00261-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Recent developments of organoids engineering and organ-on-a-chip microfluidic technologies have enabled the recapitulation of the major functions and architectures of microscale human tissue, including tumor pathophysiology. Nevertheless, there remain challenges in recapitulating the complexity and heterogeneity of tumor microenvironment. The integration of these engineering technologies suggests a potential strategy to overcome the limitations in reconstituting the perfusable microvascular system of large-scale tumors conserving their key functional features. Here, we review the recent progress of in vitro tumor-on-a-chip microfluidic technologies, focusing on the reconstruction of microvascularized organoid models to suggest a better platform for personalized cancer medicine.
Collapse
Affiliation(s)
- Jungeun Lim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- George W, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
| | - Hanna Ching
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Kee Yoon
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Noo Li Jeon
- George W, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - YongTae Kim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
124
|
Browne S, Gill EL, Schultheiss P, Goswami I, Healy KE. Stem cell-based vascularization of microphysiological systems. Stem Cell Reports 2021; 16:2058-2075. [PMID: 33836144 PMCID: PMC8452487 DOI: 10.1016/j.stemcr.2021.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
Microphysiological systems (MPSs) (i.e., tissue or organ chips) exploit microfluidics and 3D cell culture to mimic tissue and organ-level physiology. The advent of human induced pluripotent stem cell (hiPSC) technology has accelerated the use of MPSs to study human disease in a range of organ systems. However, in the reduction of system complexity, the intricacies of vasculature are an often-overlooked aspect of MPS design. The growing library of pluripotent stem cell-derived endothelial cell and perivascular cell protocols have great potential to improve the physiological relevance of vasculature within MPS, specifically for in vitro disease modeling. Three strategic categories of vascular MPS are outlined: self-assembled, interface focused, and 3D biofabricated. This review discusses key features and development of the native vasculature, linking that to how hiPSC-derived vascular cells have been generated, the state of the art in vascular MPSs, and opportunities arising from interdisciplinary thinking.
Collapse
Affiliation(s)
- Shane Browne
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Elisabeth L Gill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Paula Schultheiss
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Kevin E Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
125
|
Abstract
Recreating human organ-level function in vitro is a rapidly evolving field that integrates tissue engineering, stem cell biology, and microfluidic technology to produce 3D organoids. A critical component of all organs is the vasculature. Herein, we discuss general strategies to create vascularized organoids, including common source materials, and survey previous work using vascularized organoids to recreate specific organ functions and simulate tumor progression. Vascularization is not only an essential component of individual organ function but also responsible for coupling the fate of all organs and their functions. While some success in coupling two or more organs together on a single platform has been demonstrated, we argue that the future of vascularized organoid technology lies in creating organoid systems complete with tissue-specific microvasculature and in coupling multiple organs through a dynamic vascular network to create systems that can respond to changing physiological conditions.
Collapse
Affiliation(s)
- Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA;
| |
Collapse
|
126
|
Kopec AK, Yokokawa R, Khan N, Horii I, Finley JE, Bono CP, Donovan C, Roy J, Harney J, Burdick AD, Jessen B, Lu S, Collinge M, Sadeghian RB, Derzi M, Tomlinson L, Burkhardt JE. Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. J Toxicol Sci 2021; 46:99-114. [PMID: 33642521 DOI: 10.2131/jts.46.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microphysiological systems (MPS) are making advances to provide more standardized and predictive physiologically relevant responses to test articles in living tissues and organ systems. The excitement surrounding the potential of MPS to better predict human responses to medicines and improving clinical translation is overshadowed by their relatively slow adoption by the pharmaceutical industry and regulators. Collaboration between multiorganizational consortia and regulators is necessary to build an understanding of the strengths and limitations of MPS models and closing the current gaps. Here, we review some of the advances in MPS research, focusing on liver, intestine, vascular system, kidney and lung and present examples highlighting the context of use for these systems. For MPS to gain a foothold in drug development, they must have added value over existing approaches. Ideally, the application of MPS will augment in vivo studies and reduce the use of animals via tiered screening with less reliance on exploratory toxicology studies to screen compounds. Because MPS support multiple cell types (e.g. primary or stem-cell derived cells) and organ systems, identifying when MPS are more appropriate than simple 2D in vitro models for understanding physiological responses to test articles is necessary. Once identified, MPS models require qualification for that specific context of use and must be reproducible to allow future validation. Ultimately, the challenges of balancing complexity with reproducibility will inform the promise of advancing the MPS field and are critical for realization of the goal to reduce, refine and replace (3Rs) the use of animals in nonclinical research.
Collapse
Affiliation(s)
- Anna K Kopec
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Japan
| | - Nasir Khan
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Ikuo Horii
- Drug Safety Research & Development, Pfizer, Inc., Japan
| | - James E Finley
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Carol Donovan
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Jessica Roy
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | - Julie Harney
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Bart Jessen
- Drug Safety Research & Development, Pfizer, Inc., CA, USA
| | - Shuyan Lu
- Drug Safety Research & Development, Pfizer, Inc., CA, USA
| | - Mark Collinge
- Drug Safety Research & Development, Pfizer, Inc., CT, USA
| | | | - Mazin Derzi
- Drug Safety Research & Development, Pfizer, Inc., MA, USA
| | | | | |
Collapse
|
127
|
Hancock PC, Koduru SV, Sun M, Ravnic DJ. Induction of scaffold angiogenesis by recipient vasculature precision micropuncture. Microvasc Res 2021; 134:104121. [PMID: 33309646 DOI: 10.1016/j.mvr.2020.104121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 12/01/2022]
Abstract
The success of engineered tissues continues to be limited by time to vascularization and perfusion. Here, we studied the effects of precision injury to a recipient macrovasculature in promoting neovessel formation in an adjacently placed scaffold. Segmental 60 μm diameter micropunctures (MP) were created in the recipient rat femoral artery and vein followed by coverage with a simple collagen scaffold. Scaffolds were harvested at 24, 48, 72, and 96 h post-implantation for detailed analysis. Those placed on top of an MP segment showed an earlier and more robust cellular infiltration, including both endothelial cells (CD31) and macrophages (F4/80), compared to internal non-micropunctured control limbs (p < 0.05). At the 96-hour timepoint, MP scaffolds demonstrated an increase in physiologic perfusion (p < 0.003) and a 2.5-fold increase in capillary network formation (p < 0.001). These were attributed to an overall upsurge in small vessel quantity. Furthermore, MP positioned scaffolds demonstrated significant increases in many modulators of angiogenesis, including VEGFR2 and Tie-2 despite a decrease in HIF-1α at all timepoints. This study highlights a novel microsurgical approach that can be used to rapidly vascularize or inosculate contiguously placed scaffolds and grafts. Thereby, offering an easily translatable route towards the creation of thicker and more clinically relevant engineered tissues.
Collapse
Affiliation(s)
- Patrick C Hancock
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA
| | - Srinivas V Koduru
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA; Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Mingjie Sun
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA; Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dino J Ravnic
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, USA; Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
128
|
Abstract
Since their initial description in 2005, biomaterials that are patterned to contain microfluidic networks ("microfluidic biomaterials") have emerged as promising scaffolds for a variety of tissue engineering and related applications. This class of materials is characterized by the ability to be readily perfused. Transport and exchange of solutes within microfluidic biomaterials is governed by convection within channels and diffusion between channels and the biomaterial bulk. Numerous strategies have been developed for creating microfluidic biomaterials, including micromolding, photopatterning, and 3D printing. In turn, these materials have been used in many applications that benefit from the ability to perfuse a scaffold, including the engineering of blood and lymphatic microvessels, epithelial tubes, and cell-laden tissues. This article reviews the current state of the field and suggests new areas of exploration for this unique class of materials.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts, USA
| | - Yoseph W. Dance
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
129
|
Kim B, Arany Z. Could shear stress mimetics delay complications in COVID-19? Trends Cardiovasc Med 2021; 32:71-72. [PMID: 33515686 PMCID: PMC7838584 DOI: 10.1016/j.tcm.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Boa Kim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
130
|
Zhao P, Liu X, Zhang X, Wang L, Su H, Wang L, He N, Zhang D, Li Z, Kang H, Sun A, Chen Z, Zhou L, Wang M, Zhang Y, Deng X, Fan Y. Flow shear stress controls the initiation of neovascularization via heparan sulfate proteoglycans within a biomimetic microfluidic model. LAB ON A CHIP 2021; 21:421-434. [PMID: 33351007 DOI: 10.1039/d0lc00493f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endothelial cells (ECs) in vivo are subjected to three forms of shear stress induced by luminal blood flow, transendothelial flow and interstitial flow simultaneously. It is controversial that shear stress, especially the component induced by luminal flow, was thought to inhibit the initialization of angiogenesis and trigger arteriogenesis. Here, we combined microfabrication techniques and delicate numerical simulations to reconstruct the initial physiological microenvironment of neovascularization in vitro, where ECs experience high luminal shear stress, physiological transendothelial flow and various vascular endothelial growth factor (VEGF) distributions simultaneously. With the biomimetic microfluidic model, cell alignment and endothelial sprouting assays were carried out. We found that luminal shear stress inhibits endothelial sprouting and tubule formation in a dose-dependent manner. Although a high concentration of VEGF increases EC sprouting, neither a positive nor a negative VEGF gradient additionally affects the degree of sprouting, and luminal shear stress significantly attenuates neovascularization even in the presence of VEGF. Heparinase was used to selectively degrade the heparan sulfate proteoglycan (HSPG) coating on ECs and messenger RNA profiles in ECs were analyzed. It turned out that HSPGs could act as a mechanosensor to sense the change of fluid shear stress, modulate multiple EC gene expressions, and hence affect neovascularization. In summary, distraction from the stabilized state, such as decreased luminal shear stress, increased VEGF and the destructed mechanotransduction of HSPGs would induce the initiation of neovascularization. Our study highlights the key role of the magnitude and forms of shear stress in neovascularization.
Collapse
Affiliation(s)
- Ping Zhao
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Yang S, Chen Z, Cheng Y, Liu T, Pu Y, Liang G. Environmental toxicology wars: Organ-on-a-chip for assessing the toxicity of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115861. [PMID: 33120150 DOI: 10.1016/j.envpol.2020.115861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/07/2023]
Abstract
Environmental pollution is a widespread problem, which has seriously threatened human health and led to an increase of human diseases. Therefore, it is critical to evaluate environmental pollutants quickly and efficiently. Because of obvious inter-species differences between animals and humans, and lack of physiologically-relevant microenvironment, animal models and in vitro two-dimensional (2D) models can not accurately describe toxicological effects and predicting actual in vivo responses. To make up the limitations of conventional environmental toxicology screening, organ-on-a-chip (OOC) systems are increasingly developing. OOC systems can provide a well-organized architecture with comparable to the complex microenvironment in vivo and generate realistic responses to environmental pollutants. The feasibility, adjustability and reliability of OCC systems make it possible to offer new opportunities for environmental pollutants screening, which can study their metabolism, collective response, and fate in vivo. Further progress can address the challenges to make OCC systems better investigate and evaluate environmental pollutants with high predictive power.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, PR China, 210096.
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| |
Collapse
|
132
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
133
|
Boys AJ, Barron SL, Tilev D, Owens RM. Building Scaffolds for Tubular Tissue Engineering. Front Bioeng Biotechnol 2020; 8:589960. [PMID: 33363127 PMCID: PMC7758256 DOI: 10.3389/fbioe.2020.589960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing. Production of tubular scaffolds for different tissue engineering applications possesses many commonalities, such as the necessity for producing an intact tubular opening and for formation of semi-permeable epithelia or endothelia. As such, the field has converged on a series of manufacturing techniques for producing these structures. In this review, we discuss some of the most common tissue engineered applications within the context of tubular tissues and the methods by which these structures can be produced. We provide an overview of the general structure and anatomy for these tissue systems along with a series of general design criteria for tubular tissue engineering. We categorize methods for manufacturing tubular scaffolds as follows: casting, electrospinning, rolling, 3D printing, and decellularization. We discuss state-of-the-art models within the context of vascular, intestinal, and tracheal tissue engineering. Finally, we conclude with a discussion of the future for these fields.
Collapse
Affiliation(s)
| | | | | | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
134
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
135
|
Babendreyer A, Rojas-González DM, Giese AA, Fellendorf S, Düsterhöft S, Mela P, Ludwig A. Differential Induction of the ADAM17 Regulators iRhom1 and 2 in Endothelial Cells. Front Cardiovasc Med 2020; 7:610344. [PMID: 33335915 PMCID: PMC7736406 DOI: 10.3389/fcvm.2020.610344] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Endothelial function significantly depends on the proteolytic release of surface expressed signal molecules, their receptors and adhesion molecules via the metalloproteinase ADAM17. The pseudoproteases iRhom1 and 2 independently function as adapter proteins for ADAM17 and are essential for the maturation, trafficking, and activity regulation of ADAM17. Bioinformatic data confirmed that immune cells predominantly express iRhom2 while endothelial cells preferentially express iRhom1. Objective: Here, we investigate possible reasons for higher iRhom1 expression and potential inflammatory regulation of iRhom2 in endothelial cells and analyze the consequences for ADAM17 maturation and function. Methods: Primary endothelial cells were cultured in absence and presence of flow with and without inflammatory cytokines (TNFα and INFγ). Regulation of iRhoms was studied by qPCR, involved signaling pathways were studied with transcriptional inhibitors and consequences were analyzed by assessment of ADAM17 maturation, surface expression and cleavage of the ADAM17 substrate junctional adhesion molecule JAM-A. Results: Endothelial iRhom1 is profoundly upregulated by physiological shear stress. This is accompanied by a homeostatic phenotype driven by the transcription factor KLF2 which is, however, only partially responsible for regulation of iRhom1. By contrast, iRhom2 is most prominently upregulated by inflammatory cytokines. This correlates with an inflammatory phenotype driven by the transcription factors NFκB and AP-1 of which AP-1 is most relevant for iRhom2 regulation. Finally, shear stress exposure and inflammatory stimulation have independent and no synergistic effects on ADAM17 maturation, surface expression and JAM-A shedding. Conclusion: Conditions of shear stress and inflammation differentially upregulate iRhom1 and 2 in primary endothelial cells which then results in independent regulation of ADAM17.
Collapse
Affiliation(s)
- Aaron Babendreyer
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Diana M Rojas-González
- Department of Mechanical Engineering, Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Anja Adelina Giese
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Sandra Fellendorf
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Petra Mela
- Department of Mechanical Engineering, Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
136
|
Song HHG, Lammers A, Sundaram S, Rubio L, Chen AX, Li L, Eyckmans J, Bhatia SN, Chen CS. Transient Support from Fibroblasts is Sufficient to Drive Functional Vascularization in Engineered Tissues. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2003777. [PMID: 33613149 PMCID: PMC7891457 DOI: 10.1002/adfm.202003777] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 05/05/2023]
Abstract
Formation of capillary blood vasculature is a critical requirement for native as well as engineered organs and can be induced in vitro by co-culturing endothelial cells with fibroblasts. However, whether these fibroblasts are required only in the initial morphogenesis of endothelial cells or needed throughout is unknown, and the ability to remove these stromal cells after assembly could be useful for clinical translation. In this study, we introduce a technique termed CAMEO (Controlled Apoptosis in Multicellular Tissues for Engineered Organogenesis), whereby fibroblasts are selectively ablated on demand, and utilize it to probe the dispensability of fibroblasts in vascular morphogenesis. The presence of fibroblasts is shown to be necessary only during the first few days of endothelial cell morphogenesis, after which they can be ablated without significantly affecting the structural and functional features of the developed vasculature. Furthermore, we demonstrate the use of CAMEO to vascularize a construct containing primary human hepatocytes that improved tissue function. In conclusion, this study suggests that transient, initial support from fibroblasts is sufficient to drive vascular morphogenesis in engineered tissues, and this strategy of engineering-via-elimination may provide a new general approach for achieving desired functions and cell compositions in engineered organs.
Collapse
Affiliation(s)
- H-H Greco Song
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alex Lammers
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Subramanian Sundaram
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Logan Rubio
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Amanda X Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Linqing Li
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jeroen Eyckmans
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sangeeta N Bhatia
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher S Chen
- Biological Design Center, Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
137
|
Yang G, Mahadik B, Mollot T, Pinsky J, Jones A, Robinson A, Najafali D, Rivkin D, Katsnelson J, Piard C, Fisher JP. Engineered Liver Tissue Culture in an In Vitro Tubular Perfusion System. Tissue Eng Part A 2020; 26:1369-1377. [PMID: 33054685 DOI: 10.1089/ten.tea.2020.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Liver disease and the subsequent loss of liver function is an enormous clinical challenge. A severe shortage of donor liver tissue greatly limits patients' options for a timely transplantation. Tissue engineering approaches offer a promising alternative to organ transplantation by engineering artificial implantable tissues. We have established a platform of cell-laden microbeads as basic building blocks to assemble macroscopic tissues via different mechanisms. This modular fabrication strategy possesses great potential for liver tissue engineering in a bottom-up manner. In this study, we encapsulated human hepatocytes into microbeads presenting a favorable microenvironment consisting of collagen and mesenchymal stem cells, and then we perfused the beads in a three-dimensional printed tubular perfusion bioreactor that promoted oxygen and medium diffusion to the impregnated cells. We noted high cell vitality and retention of parenchymal cell functionality for up to 30 days in this culture system. Our engineering-based approach led to the advancement in tissue size and long-term functionality of an artificial liver tissue in vitro.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Trevor Mollot
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Julia Pinsky
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Athenia Jones
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Alexis Robinson
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Daniel Najafali
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Daniel Rivkin
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Jenny Katsnelson
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Charlotte Piard
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
138
|
Zhang X, Wang Z, Zhang YS, Yan S, Hou C, Gong Y, Qiu J, Chen M, Li Q. Studying endothelial cell shedding and orientation using adaptive perfusion-culture in a microfluidic vascular chip. Biotechnol Bioeng 2020; 118:963-978. [PMID: 33200409 DOI: 10.1002/bit.27626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/30/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022]
Abstract
Most tissue-engineered blood vessels are endothelialized by static cultures in vitro. However, it has not been clear whether endothelial cell-shedding and local damage may occur in an endothelial layer formed by static cultures under the effect of blood flow shear postimplantation. In this study, we report a bionic and cost-effective vascular chip platform, and proved that a static culture of endothelialized tissue-engineered blood vessels had the problem of a large number of endothelial cells falling off under the condition imitating the human arterial blood flow, and we addressed this challenge by regulating the flow field in a vascular chip. Electrospun membranes made of highly oriented or randomly distributed poly(ε-caprolactone) fibers were used as the vascular scaffolds, on which endothelial cells proliferated well and eventually formed dense intima layers. We noted that the monolayers gradually adapted to the artery-like microenvironment through the regulation of chip flow field, which also revealed improved cellular orientations. In conclusion, we have proposed a vascular chip with adaptive flow patterns to gradually accommodate the statically cultured vascular endothelia to the shear environment of arterial flow field and enhanced the orientation of the endothelial cells. This strategy may find numerous potential applications such as screening of vascular engineering biomaterials and maturation parameters, studying of vascular biology and pathology, and construction of vessel-on-a-chip models for drug analysis, among others.
Collapse
Affiliation(s)
- Xiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Zhenxing Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shujie Yan
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Chuanyu Hou
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Jingjiang Qiu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Mo Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China.,National Center for International Joint Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, China.,Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
139
|
Douglas SA, Haase K, Kamm RD, Platt MO. Cysteine cathepsins are altered by flow within an engineered in vitro microvascular niche. APL Bioeng 2020; 4:046102. [PMID: 33195960 PMCID: PMC7644274 DOI: 10.1063/5.0023342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Throughout the process of vascular growth and remodeling, the extracellular matrix (ECM) concurrently undergoes significant changes due to proteolytic activity—regulated by both endothelial and surrounding stromal cells. The role of matrix metalloproteinases has been well-studied in the context of vascular remodeling, but other proteases, such as cysteine cathepsins, could also facilitate ECM remodeling. To investigate cathepsin-mediated proteolysis in vascular ECM remodeling, and to understand the role of shear flow in this process, in vitro microvessels were cultured in previously designed microfluidic chips and assessed by immunostaining, zymography, and western blotting. Primary human vessels (HUVECs and fibroblasts) were conditioned by continuous fluid flow and/or small molecule inhibitors to probe cathepsin expression and activity. Luminal flow (in contrast to static culture) decreases the activity of cathepsins in microvessel systems, despite a total protein increase, due to a concurrent increase in the endogenous inhibitor cystatin C. Observations also demonstrate that cathepsins mostly co-localize with fibroblasts, and that fibrin (the hydrogel substrate) may stabilize cathepsin activity in the system. Inhibitor studies suggest that control over cathepsin-mediated ECM remodeling could contribute to improved maintenance of in vitro microvascular networks; however, further investigation is required. Understanding the role of cathepsin activity in in vitro microvessels and other engineered tissues will be important for future regenerative medicine applications.
Collapse
Affiliation(s)
- Simone A Douglas
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| |
Collapse
|
140
|
Nie J, Fu J, He Y. Hydrogels: The Next Generation Body Materials for Microfluidic Chips? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003797. [PMID: 33103353 DOI: 10.1002/smll.202003797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Indexed: 05/27/2023]
Abstract
The integration of microfluidics with biomedical research is confronted with considerable limitations due to its body materials. With high content of water, hydrogels own superior biocompatibility and degradability. Can hydrogels become another material choice for the construction of microfluidic chips, particularly biofluidics? The present review aims to systematically establish the concept of hydrogel-based microfluidic chips (HMCs) and address three main concerns: i) why choosing hydrogels? ii) how to fabricate HMCs?, and iii) in which fields to apply HMCs? It is envisioned that hydrogels may be used increasingly as substitute for traditional materials and gradually act as the body material for microfluidic chips. The modifications of conventional process are highlighted to overcome issues arising from the incompatibility between the construction methods and hydrogel materials. Specifically targeting at the "soft and wet" hydrogels, an efficient flowchart of "i) high resolution template printing; ii) damage-free demolding; iii) twice-crosslinking bonding" is proposed. Accordingly, a broader microfluidic chip concept is proposed in terms of form and function. Potential biomedical applications of HMCs are discussed. This review also highlights the challenges arising from the material replacement, as well as the future directions of the proposed concept. Finally, the authors' viewpoints and perspectives for this emerging field are discussed.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
141
|
Qian T, Gil DA, Guzman EC, Gastfriend BD, Tweed KE, Palecek SP, Skala MC. Adaptable pulsatile flow generated from stem cell-derived cardiomyocytes using quantitative imaging-based signal transduction. LAB ON A CHIP 2020; 20:3744-3756. [PMID: 33048070 PMCID: PMC7699819 DOI: 10.1039/d0lc00546k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Endothelial cells (EC) in vivo are continuously exposed to a mechanical microenvironment from blood flow, and fluidic shear stress plays an important role in EC behavior. New approaches to generate physiologically and pathologically relevant pulsatile flows are needed to understand EC behavior under different shear stress regimes. Here, we demonstrate an adaptable pump (Adapt-Pump) platform for generating pulsatile flows from human pluripotent stem cell-derived cardiac spheroids (CS) via quantitative imaging-based signal transduction. Pulsatile flows generated from the Adapt-Pump system can recapitulate unique CS contraction characteristics, accurately model responses to clinically relevant drugs, and simulate CS contraction changes in response to fluidic mechanical stimulation. We discovered that ECs differentiated under a long QT syndrome derived pathological pulsatile flow exhibit abnormal EC monolayer organization. This Adapt-Pump platform provides a powerful tool for modeling the cardiovascular system and improving our understanding of EC behavior under different mechanical microenvironments.
Collapse
Affiliation(s)
- Tongcheng Qian
- Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Daniel A. Gil
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Benjamin D. Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kelsey E. Tweed
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
142
|
Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910811. [PMID: 33708027 PMCID: PMC7942836 DOI: 10.1002/adfm.201910811] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 05/02/2023]
Abstract
From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.
Collapse
Affiliation(s)
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University
- Department of Medicine, Columbia University
| |
Collapse
|
143
|
Reduction in MicroRNA-4488 Expression Induces NFκB Translocation in Venous Endothelial Cells Under Arterial Flow. Cardiovasc Drugs Ther 2020; 35:61-71. [PMID: 32902737 DOI: 10.1007/s10557-020-06944-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Little is known about the molecular interactions among inflammatory responses that damage venous endothelial cells (vECs) during venous-to-arterial flow transition in vein graft diseases. Because arterial flow triggers excessive autophagy and inflammation in vECs, this study aimed to investigate the mediator of inflammation and methods to prevent vEC damage. METHODS Arterial laminar shear stress (ALSS; 12 dynes/cm2) was applied to vECs via in vitro and ex vivo perfusion systems. Inflammation in vECs was measured using inflammatory protein markers, NFκB translocation, cyclooxygenase-2 (COX-2) and COX-2 and NFκB promoter assays. The involvement of microRNA-4488 (miR-4488) was measured and confirmed by altering the specific miR using a miR-4488 mimic or inhibitor. The potential anti-inflammatory drugs and/or nitric oxide (NO) donor L-arginine (L-Arg) to prevent damage to vECs under ALSS was investigated. RESULTS ALSS triggered reactive oxygen species production, excessive autophagy, COX-2 protein expression, and NFκB translocation during vEC inflammation. Reduction in miR-4488 expression was detected in inflamed vECs treated with LPS, lipopolysaccharide (LPS) TNFα, and ALSS. Transfection of miR-4488 mimic (50 nM) prior to ALSS application inhibited the accumulation of inflammatory proteins as well as the translocation of NFκB. Combined treatment of vECs with COX-2-specific inhibitor (SC-236) and L-Arg alleviated the ALSS-induced inflammatory responses. Protective effects of the combined treatment on vECs against ALSS-induced damage were abolished by the application of miR-4488 inhibitor. CONCLUSION We showed that ALSS triggered the COX-2/NFκB pathway to induce vEC inflammation with a reduction in miR-4488. Combination of SC-236 and L-Arg prevented ALSS-induced vEC damage, thus, shows high potential for preventing vein graft diseases.
Collapse
|
144
|
Morita A, Goko T, Matsumura M, Asaso D, Arima S, Mori A, Sakamoto K, Nagamitsu T, Nakahara T. The process of revascularization in the neonatal mouse retina following short-term blockade of vascular endothelial growth factor receptors. Cell Tissue Res 2020; 382:529-549. [PMID: 32897421 DOI: 10.1007/s00441-020-03276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/07/2020] [Indexed: 01/24/2023]
Abstract
Misdirected vascular growth frequently occurs in the neovascular diseases in the retina. However, the mechanisms are still not fully understood. In the present study, we created capillary-free zones in the central and peripheral retinas in neonatal mice by pharmacological blockade of vascular endothelial growth factor (VEGF) signaling. Using this model, we investigated the process and mechanisms of revascularization in the central and peripheral avascular areas. After the completion of a 2-day treatment with the VEGF receptor tyrosine kinase inhibitor KRN633 on postnatal day (P) 4 and P5, revascularization started on P8 in the central avascular area where capillaries had been dropped out. The expression levels of VEGF were higher in the peripheral than in the central avascular area. However, the expansion of the vasculature in the peripheral avascular retina remained suppressed until revascularization had been completed in the central avascular area. Additionally, we found disorganized endothelial cell division, misdirected blood vessels with irregular diameters, and abnormal fibronectin networks at the border of the vascular front and the avascular retina. In the central avascular area, a slight amount of fibronectin as non-vascular component re-formed to provide a scaffold for revascularization. Mechanistic analysis revealed that higher levels of VEGF attenuated the migratory response of endothelial cells without decreasing the proliferative activity. These results suggest that the presence of concentration range of VEGF, which enhances both migration and proliferation of the endothelial cells, and the structurally normal fibronectin network contribute to determine the proper direction of angiogenesis.
Collapse
Affiliation(s)
- Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomomi Goko
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mami Matsumura
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Daiki Asaso
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shiho Arima
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
- Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tohru Nagamitsu
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
145
|
Hiepen C, Mendez PL, Knaus P. It Takes Two to Tango: Endothelial TGFβ/BMP Signaling Crosstalk with Mechanobiology. Cells 2020; 9:E1965. [PMID: 32858894 PMCID: PMC7564048 DOI: 10.3390/cells9091965] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGFβ) superfamily of cytokines. While some ligand members are potent inducers of angiogenesis, others promote vascular homeostasis. However, the precise understanding of the molecular mechanisms underlying these functions is still a growing research field. In bone, the tissue in which BMPs were first discovered, crosstalk of TGFβ/BMP signaling with mechanobiology is well understood. Likewise, the endothelium represents a tissue that is constantly exposed to multiple mechanical triggers, such as wall shear stress, elicited by blood flow or strain, and tension from the surrounding cells and to the extracellular matrix. To integrate mechanical stimuli, the cytoskeleton plays a pivotal role in the transduction of these forces in endothelial cells. Importantly, mechanical forces integrate on several levels of the TGFβ/BMP pathway, such as receptors and SMADs, but also global cell-architecture and nuclear chromatin re-organization. Here, we summarize the current literature on crosstalk mechanisms between biochemical cues elicited by TGFβ/BMP growth factors and mechanical cues, as shear stress or matrix stiffness that collectively orchestrate endothelial function. We focus on the different subcellular compartments in which the forces are sensed and integrated into the TGFβ/BMP growth factor signaling.
Collapse
Affiliation(s)
| | | | - Petra Knaus
- Knaus-Lab/Signal Transduction, Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (C.H.); (P.-L.M.)
| |
Collapse
|
146
|
Zippusch S, Helms F, Lau S, Klingenberg M, Schrimpf C, Haverich A, Wilhelmi M, Böer U. Perfusion promotes endothelialized pore formation in high concentration fibrin gels otherwise unsuitable for tube development. Int J Artif Organs 2020; 44:130-138. [PMID: 32611278 DOI: 10.1177/0391398820936700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vascularization of tissue engineered implants is crucial for their survival and integration in the recipient's body. Pre-vascularized, fibrin-based implants offer a solution since low concentration fibrin hydrogels (1 mg/mL) have been shown to promote tube formation of endothelial cells in co-culture with adipogenic stem cells. However, higher fibrinogen concentrations (> 20 mg/mL) enabling the fabrication of stable implants are necessary.We here characterized fibrin gels of 1-30 mg/mL for their rheological properties and whether they support tube formation of endothelial cell-adipogenic stem cell co-cultures for up to 7 days. Moreover, 20 mg/mL gels containing preformed channels and endothelial cell-adipogenic stem cell co-culture were perfused continuously in a customized flow chamber with 3.9 dyn/cm2 for 12 days and analyzed for capillary formation.Rheology of fibrin gels showed increasing stability proportional to fibrinogen concentration with 20 mg/mL gels having a storage module of 465 Pa. Complex tube networks stable for 7 days were observed at 1-5 mg/mL gels whereas higher concentrations showed initial sprouting only. However, perfusion of 20 mg/mL fibrin gels resulted in endothelialized pore formation in several layers of the gel with endothelial cell-adipogenic stem cell co-culture.Thus, perfusion supports the formation of capillary-like structures in fibrin gels that are too dense for spontaneous tube formation under static conditions. Future studies are necessary to further increase pore density and to investigate proper nutrition of tissue-specific target cells in the scaffold.
Collapse
Affiliation(s)
- Sarah Zippusch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,Division for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Florian Helms
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Skadi Lau
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,Division for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Klingenberg
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,Division for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Schrimpf
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,Division for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,Division for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,Division for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany.,Division for Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
147
|
Gordon E, Schimmel L, Frye M. The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Front Physiol 2020; 11:684. [PMID: 32625119 PMCID: PMC7314997 DOI: 10.3389/fphys.2020.00684] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Blood and lymphatic vessels are lined by endothelial cells which constantly interact with their luminal and abluminal extracellular environments. These interactions confer physical forces on the endothelium, such as shear stress, stretch and stiffness, to mediate biological responses. These physical forces are often altered during disease, driving abnormal endothelial cell behavior and pathology. Therefore, it is critical that we understand the mechanisms by which endothelial cells respond to physical forces. Traditionally, endothelial cells in culture are grown in the absence of flow on stiff substrates such as plastic or glass. These cells are not subjected to the physical forces that endothelial cells endure in vivo, thus the results of these experiments often do not mimic those observed in the body. The field of vascular biology now realize that an intricate analysis of endothelial signaling mechanisms requires complex in vitro systems to mimic in vivo conditions. Here, we will review what is known about the mechanical forces that guide endothelial cell behavior and then discuss the advancements in endothelial cell culture models designed to better mimic the in vivo vascular microenvironment. A wider application of these technologies will provide more biologically relevant information from cultured cells which will be reproducible to conditions found in the body.
Collapse
Affiliation(s)
- Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lilian Schimmel
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maike Frye
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
148
|
Campinho P, Vilfan A, Vermot J. Blood Flow Forces in Shaping the Vascular System: A Focus on Endothelial Cell Behavior. Front Physiol 2020; 11:552. [PMID: 32581842 PMCID: PMC7291788 DOI: 10.3389/fphys.2020.00552] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023] Open
Abstract
The endothelium is the cell monolayer that lines the interior of the blood vessels separating the vessel lumen where blood circulates, from the surrounding tissues. During embryonic development, endothelial cells (ECs) must ensure that a tight barrier function is maintained whilst dynamically adapting to the growing vascular tree that is being formed and remodeled. Blood circulation generates mechanical forces, such as shear stress and circumferential stretch that are directly acting on the endothelium. ECs actively respond to flow-derived mechanical cues by becoming polarized, migrating and changing neighbors, undergoing shape changes, proliferating or even leaving the tissue and changing identity. It is now accepted that coordinated changes at the single cell level drive fundamental processes governing vascular network morphogenesis such as angiogenic sprouting, network pruning, lumen formation, regulation of vessel caliber and stability or cell fate transitions. Here we summarize the cell biology and mechanics of ECs in response to flow-derived forces, discuss the latest advances made at the single cell level with particular emphasis on in vivo studies and highlight potential implications for vascular pathologies.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Condensed Matter Physics, J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
149
|
|
150
|
Griffith CM, Huang SA, Cho C, Khare TM, Rich M, Lee GH, Ligler FS, Diekman BO, Polacheck WJ. Microfluidics for the study of mechanotransduction. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:224004. [PMID: 33840837 PMCID: PMC8034607 DOI: 10.1088/1361-6463/ab78d4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and in vitro cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells. These devices and systems have proven to be powerful for uncovering and defining mechanisms of mechanotransduction. In this review, we first give an overview of the main mechanotransduction pathways that function at sites of cell adhesion, many of which have been investigated with microfluidics. We then discuss how distinct microfluidic fabrication methods can be harnessed to gain biological insight, with description of both monolithic and replica molding approaches. Finally, we present examples of how microfluidics can be used to apply both solid forces (substrate mechanics, strain, and compression) and fluid forces (luminal, interstitial) to cells. Throughout the review, we emphasize the advantages and disadvantages of different fabrication methods and applications of force in order to provide perspective to investigators looking to apply forces to cells in their own research.
Collapse
Affiliation(s)
- Christian M Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Tanmay M Khare
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Matthew Rich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gi-Hun Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Brian O Diekman
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|