101
|
Luna V, Casauban L, Sajan MP, Gomez-Daspet J, Powe JL, Miura A, Rivas J, Standaert ML, Farese RV. Metformin improves atypical protein kinase C activation by insulin and phosphatidylinositol-3,4,5-(PO4)3 in muscle of diabetic subjects. Diabetologia 2006; 49:375-82. [PMID: 16395615 DOI: 10.1007/s00125-005-0112-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 08/22/2005] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Metformin is widely used for treating type 2 diabetes mellitus, but its actions are poorly understood. In addition to diminishing hepatic glucose output, metformin, in muscle, activates 5'-AMP-activated protein kinase (AMPK), which alone increases glucose uptake and glycolysis, diminishes lipid synthesis, and increases oxidation of fatty acids. Moreover, such lipid effects may improve insulin sensitivity and insulin-stimulated glucose uptake. Nevertheless, the effects of metformin on insulin-sensitive signalling factors in human muscle have only been partly characterised to date. Interestingly, other substances that activate AMPK, e.g., aminoimidazole-4-carboxamide-1-beta-D: -riboside (AICAR), simultaneously activate atypical protein kinase C (aPKC), which appears to be required for the glucose transport effects of AICAR and insulin. METHODS Since aPKC activation is defective in type 2 diabetes, we evaluated effects of metformin therapy on aPKC activity in muscles of diabetic subjects during hyperinsulinaemic-euglycaemic clamp studies. RESULTS After metformin therapy for 1 month, basal aPKC activity increased in muscle, with little or no change in insulin-stimulated aPKC activity. Metformin therapy for 8 to 12 months improved insulin-stimulated, as well as basal aPKC activity in muscle. In contrast, IRS-1-dependent phosphatidylinositol (PI) 3-kinase activity and Ser473 phosphorylation of protein kinase B were not altered by metformin therapy, whereas the responsiveness of muscle aPKC to PI-3,4,5-(PO(4))(3), the lipid product of PI 3-kinase, was improved. CONCLUSIONS/INTERPRETATION These findings suggest that the activation of AMPK by metformin is accompanied by increases in aPKC activity and responsiveness in skeletal muscle, which may contribute to the therapeutic effects of metformin.
Collapse
Affiliation(s)
- V Luna
- ACOS-151, James A. Haley Veterans Hospital, 13000 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Xie Z, Dong Y, Zhang M, Cui MZ, Cohen RA, Riek U, Neumann D, Schlattner U, Zou MH. Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem 2006; 281:6366-75. [PMID: 16407220 DOI: 10.1074/jbc.m511178200] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported the phosphoinositide 3-kinase-dependent activation of the 5'-AMP-activated kinase (AMPK) by peroxynitrite (ONOO-) and hypoxia-reoxygenation in cultured endothelial cells. Here we show the molecular mechanism of activation of this pathway. Exposure of bovine aortic endothelial cells to ONOO- significantly increased the phosphorylation of both Thr172 of AMPK and Ser1179 of endothelial nitric-oxide synthase, a known downstream enzyme of AMPK. In addition, activation of AMPK by ONOO- was accompanied by increased phosphorylation of protein kinase Czeta (PKCzeta) (Thr410/403) and translocation of cytosolic PKCzeta into the membrane. Further, inhibition of PKCzeta abrogated ONOO- -induced AMPK-Thr172 phosphorylation as that of endothelial nitric-oxide synthase. Furthermore, overexpression of a constitutively active PKCzeta mutant enhanced the phosphorylation of AMPK-Thr172, suggesting that PKCzeta is upstream of AMPK activation. In contrast, ONOO- activated PKCzeta in LKB1-deficient HeLa-S3 but affected neither AMPK-Thr172 nor AMPK activity. These data suggest that LKB1 is required for PKCzeta-enhanced AMPK activation. In vitro, recombinant PKCzeta phosphorylated LKB1 at Ser428, resulting in phosphorylation of AMPK at Thr172. Further, direct mutation of Ser428 of LKB1 into alanine, like the kinase-inactive LKB1 mutant, abolished ONOO- -induced AMPK activation. In several cell types originating from human, rat, and mouse, inhibition of PKCzeta significantly attenuated the phosphorylation of both LKB1-Ser428 and AMPK-Thr172 that were enhanced by ONOO-. Taken together, we conclude that PKCzeta can regulate AMPK activity by increasing the Ser428 phosphorylation of LKB1, resulting in association of LKB1 with AMPK and consequent AMPK Thr172 phosphorylation by LKB1.
Collapse
Affiliation(s)
- Zhonglin Xie
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Wright DC, Geiger PC, Han DH, Holloszy JO. Are tyrosine kinases involved in mediating contraction-stimulated muscle glucose transport? Am J Physiol Endocrinol Metab 2006; 290:E123-E128. [PMID: 16159907 DOI: 10.1152/ajpendo.00280.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle contractions and insulin stimulate glucose transport into muscle by separate pathways. The contraction-mediated increase in glucose transport is mediated by two mechanisms, one involves the activation of 5'-AMP-activated protein kinase (AMPK) and the other involves the activation of calcium/calmodulin-dependent protein kinase II (CAMKII). The steps leading from the activation of AMPK and CAMKII to the translocation of GLUT4 to the cell surface have not been identified. Studies with the use of the tyrosine kinase inhibitor genistein suggest that one or more tyrosine kinases could be involved in contraction-stimulated glucose transport. The purpose of the present study was to determine the involvement of tyrosine kinases in contraction-stimulated glucose transport in rat soleus and epitrochlearis muscles. Contraction-stimulated glucose transport was completely prevented by pretreatment with genistein (100 microM) and the related compound butein (100 microM). However, the structurally distinct tyrosine kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyridine and herbimycin did not reduce contraction-stimulated glucose transport. Furthermore, genistein and butein inhibited glucose transport even when muscles were exposed to these compounds after being stimulated to contract. Muscle contractions did not result in increases in tyrosine phosphorylation of proteins such as proline-rich tyrosine kinase and SRC. These results provide evidence that tyrosine kinases do not mediate contraction-stimulated glucose transport and that the inhibitory effects of genistein on glucose transport result from direct inhibition of the glucose transporters at the cell surface.
Collapse
Affiliation(s)
- David C Wright
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
104
|
|
105
|
Choi I, Lee K, Kim M, Lee M, Park K. Differential activation of stress-responsive signalling proteins associated with altered loading in a rat skeletal muscle. J Cell Biochem 2005; 96:1231-43. [PMID: 16149053 DOI: 10.1002/jcb.20616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Skeletal muscle undergoes a significant reduction in tension upon unloading. To explore intracellular signalling mechanisms underlying this phenomenon, we investigated twitch tension, the ratio of actin/myosin filaments, and activities of key signalling molecules in rat soleus muscle during a 3-week hindlimb suspension and 2-week reloading. Twitch tension and myofilament ratio (actin/myosin) gradually decreased during unloading but progressively recovered to initial levels during reloading. To study the involvement of stress-responsive signalling proteins during these changes, the activities of protein kinase C alpha (PKCalpha) and three mitogen-activated protein kinases (MAPKs)--c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38 MAPK--were examined using immunoblotting and immune complex kinase assays. PKCalpha phosphorylation correlated positively with the tension (Pearson's r = 0.97, P < 0.001) and the myofilament ratio (r = 0.83, P < 0.01) over the entire unloading and reloading period. Treatment of the soleus muscle with a PKC activator resulted in a similar paralleled increment in both PKCalpha phosphorylation and the alpha-sarcomeric actin expression. The three MAPKs differed in the pattern of activation in that JNK activity peaked only for the first hours of reloading, whereas ERK and p38 MAPK activities remained elevated during reloading. These results suggest that PKCalpha may play a pivotal role in converting loading stress to intracellular changes in contractile proteins that determine muscle tension. Differential activation of MAPKs may also help alleviate muscle damage, modulate energy transport and/or regulate the expression of contractile proteins upon altered loading.
Collapse
Affiliation(s)
- Inho Choi
- Department of Life Science, College of Liberal Arts and Science, Yonsei University, Wonju, Republic of Korea.
| | | | | | | | | |
Collapse
|
106
|
Hallows KR. Emerging role of AMP-activated protein kinase in coupling membrane transport to cellular metabolism. Curr Opin Nephrol Hypertens 2005; 14:464-71. [PMID: 16046906 DOI: 10.1097/01.mnh.0000174145.14798.64] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW It has long been recognized that the coupling of membrane transport to underlying cellular metabolic status is critical because transport processes consume a large portion of total cellular energy. Recently, the finely tuned metabolic sensor AMP-activated protein kinase (AMPK) has emerged as a membrane transport regulator, which may permit sensitive transport-metabolism crosstalk. This review will discuss how AMPK may play an important role in the regulation of ion and solute transport across the plasma membrane under both physiological and pathological conditions in epithelia and other tissues. RECENT FINDINGS Recent studies have found that AMPK, which becomes activated during cellular metabolic stress, promotes the cellular uptake of fuel sources such as glucose and fatty acids to promote ATP generation and inhibits ion-transport proteins such as the cystic fibrosis transmembrane conductance regulator Cl channel and the epithelial Na channel, thereby limiting the dissipation of transmembrane ion gradients. An understanding of the underlying cellular and molecular mechanisms for AMPK-dependent regulation of transport proteins is beginning to emerge. SUMMARY As earlier studies have focused on the role of nucleotides such as ATP in regulating transport-protein activities, the regulation of membrane transport by AMPK represents a novel and more-sensitive mechanism for the coupling of membrane transport to cellular metabolic status. Identifying new membrane-transport targets of AMPK and elucidating the mechanisms involved in their AMPK-dependent regulation are fruitful areas for new investigation that should yield valuable insights into the pathophysiology of hypoxic and ischemic tissue injury.
Collapse
Affiliation(s)
- Kenneth R Hallows
- Renal-Electrolyte Division, Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S976 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
107
|
Longnus SL, Ségalen C, Giudicelli J, Sajan MP, Farese RV, Van Obberghen E. Insulin signalling downstream of protein kinase B is potentiated by 5'AMP-activated protein kinase in rat hearts in vivo. Diabetologia 2005; 48:2591-601. [PMID: 16283248 DOI: 10.1007/s00125-005-0016-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/11/2005] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS 5'AMP-activated protein kinase (AMPK) and insulin stimulate glucose transport in heart and muscle. AMPK acts in an additive manner with insulin to increase glucose uptake, thereby suggesting that AMPK activation may be a useful strategy for ameliorating glucose uptake, especially in cases of insulin resistance. In order to characterise interactions between the insulin- and AMPK-signalling pathways, we investigated the effects of AMPK activation on insulin signalling in the rat heart in vivo. METHODS Male rats (350-400 g) were injected with 1 g/kg 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) or 250 mg/kg metformin in order to activate AMPK. Rats were administered insulin 30 min later and after another 30 min their hearts were removed. The activities and phosphorylation levels of components of the insulin-signalling pathway were subsequently analysed in individual rat hearts. RESULTS AICAR and metformin administration activated AMPK and enhanced insulin signalling downstream of protein kinase B in rat hearts in vivo. Insulin-induced phosphorylation of glycogen synthase kinase 3 (GSK3) beta, p70 S6 kinase (p70S6K)(Thr389) and IRS1(Ser636/639) were significantly increased following AMPK activation. To the best of our knowledge, this is the first report of heightened insulin responses of GSK3beta and p70S6K following AMPK activation. In addition, we found that AMPK inhibits insulin stimulation of IRS1-associated phosphatidylinositol 3-kinase activity, and that AMPK activates atypical protein kinase C and extracellular signal-regulated kinase in the heart. CONCLUSIONS/INTERPRETATIONS Our data are indicative of differential effects of AMPK on the activation of components in the cardiac insulin-signalling pathway. These intriguing observations are critical for characterisation of the crosstalk between AMPK and insulin signalling.
Collapse
Affiliation(s)
- S L Longnus
- INSERM U145, IFR 50, Faculty of Medicine, Avenue de Valombrose, 06107,, Nice Cedex 2, France.
| | | | | | | | | | | |
Collapse
|
108
|
LaRosa C, Downs SM. Stress stimulates AMP-activated protein kinase and meiotic resumption in mouse oocytes. Biol Reprod 2005; 74:585-92. [PMID: 16280415 DOI: 10.1095/biolreprod.105.046524] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study examined the effects of three different cellular stresses on oocyte maturation in meiotically arrested mouse oocytes. Cumulus-cell enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured for 17-18 h in dbcAMP-containing medium plus increasing concentrations of the metabolic poison, sodium arsenite, or the free radical-generating agent, menadione. Alternatively, oocytes were exposed to osmotic stress by pulsing with sorbitol and returned to control inhibitory conditions for the duration of culture. Arsenite and menadione each dose-dependently induced germinal vesicle breakdown (GVB) in both DO and CEO. DO, but not CEO, pulsed for 60 min with 500 mM sorbitol were stimulated to resume maturation. The lack of effect in CEO suggests that the cumulus cells may be playing a protective role in osmotic stress-induced GVB. The AMP-activated protein kinase (PRKA; formerly known as AMPK) inhibitors, compound C and araA, completely blocked the meiosis-stimulating effects of all the tested stresses. Western blots showed that acetyl-CoA carboxylase, an important substrate of PRKA, was phosphorylated before GVB, supporting a role for PRKA in stress-induced maturation. Together, these data show that a variety of stresses stimulate GVB in meiotically arrested mouse oocytes in vitro and suggest that this effect is mediated through activation of PRKA.
Collapse
Affiliation(s)
- Cean LaRosa
- Biology Department, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | |
Collapse
|
109
|
Du JH, Xu N, Song Y, Xu M, Lu ZZ, Han C, Zhang YY. AICAR stimulates IL-6 production via p38 MAPK in cardiac fibroblasts in adult mice: a possible role for AMPK. Biochem Biophys Res Commun 2005; 337:1139-44. [PMID: 16229818 DOI: 10.1016/j.bbrc.2005.09.174] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/26/2005] [Indexed: 12/25/2022]
Abstract
Though known as a sensor of energy balance, AMP-activated protein kinase (AMPK) was recently shown to limit damage and apoptotic activity and contribute to the late preconditioning in heart. Interleukin-6 was also reported to involve in anti-apoptosis and cardio-protection in myocardium. Interestingly, both AMPK activity and IL-6 level were increased in response to ischemia, hypertrophy and oxidative stress. To determine whether AMPK activation will promote IL-6 production, cardiac fibroblasts (CFs) from mice were incubated with AMPK activator, 5-aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR). The results demonstrated that AICAR time and dose-dependently stimulated IL-6 production by ELISA and immunofluorescence. Pretreatment with p38 mitogen-activated protein kinase (MAPK) inhibitor blocked AICAR-induced IL-6 production; furthermore, AICAR-activated p38 MAPK phosphorylation by Western blot. To confirm that the increase in IL-6 production is ascribed to AMPK activation, we used another known AMPK activator, metformin. It also dose-dependently potentiated IL-6 production in CFs, and this potentiation could be reversed by p38 MAPK inhibitor. In conclusion, AMPK activation promoted IL-6 production in CFs via p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Jian-Hai Du
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
110
|
Tosca L, Froment P, Solnais P, Ferré P, Foufelle F, Dupont J. Adenosine 5'-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology 2005; 146:4500-13. [PMID: 16020477 DOI: 10.1210/en.2005-0301] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The AMP-activated protein kinase (AMPK) is a major regulator of energy metabolism involved in fatty acid and cholesterol synthesis. In the ovary, cholesterol plays a key role in steroid production. We report the presence of AMPK in rat ovaries, and we have investigated its role in granulosa cells. We show using RT-PCR and Western blot that the mRNAs for the alpha1/2 and beta1/2 subunits and the proteins are found in the ovaries. Immunohistochemistry localized the alpha1 AMPK subunit in granulosa cells, corpus luteum, and oocyte and less abundantly in theca cells. Treatment with 1 mm 5-amino-imidazole-4-carboxyamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, increased dose-dependent and time-dependent phosphorylation of AMPKalpha1 on Thr172 in primary granulosa cells. Simultaneously, phosphorylation of acetyl-coenzyme A carboxylase at Ser79 was also increased. AICAR treatment for 48 h halved progesterone secretion, 3beta-HSD protein and mRNA levels, and phosphorylation of both basal MAPK ERK1/2 and p38 and in response to IGF-I and/or FSH in granulosa cells. AICAR treatment (1 mM) had no detectable effect on basal and FSH- and/or IGF-I-induced estradiol production and on granulosa cell proliferation or viability. Adenovirus-mediated expression of dominant negative AMPK totally abolished the effects of AICAR on progesterone secretion, 3beta-HSD protein production, and MAPK ERK1/2 and p38 phosphorylation. Moreover, we showed using specific in- hibitors of ERK1/2 and p38 MAPK that the MAPK ERK1/2 and not p38 is involved in progesterone secretion and 3beta-HSD expression, strongly suggesting that the activation of AMPK in response to AICAR reduces progesterone production through the MAPK ERK1/2 signaling pathway in rat granulosa cells.
Collapse
Affiliation(s)
- Lucie Tosca
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, 37380, France
| | | | | | | | | | | |
Collapse
|
111
|
Yamaguchi S, Katahira H, Ozawa S, Nakamichi Y, Tanaka T, Shimoyama T, Takahashi K, Yoshimoto K, Imaizumi MO, Nagamatsu S, Ishida H. Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2005; 289:E643-9. [PMID: 15928020 DOI: 10.1152/ajpendo.00456.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine whether the increase in glucose uptake following AMP-activated protein kinase (AMPK) activation in adipocytes is mediated by accelerated GLUT4 translocation into plasma membrane, we constructed a chimera between GLUT4 and enhanced green fluorescent protein (GLUT4-eGFP) and transferred its cDNA into the nucleus of 3T3-L1 adipocytes. Then, the dynamics of GLUT4-eGFP translocation were visualized in living cells by means of laser scanning confocal microscopy. It was revealed that the stimulation with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and 2,4-dinitrophenol (DNP), known activators of AMPK, promptly accelerates its translocation within 4 min, as was found in the case of insulin stimulation. The insulin-induced GLUT4 translocation was markedly inhibited after addition of wortmannin (P < 0.01). However, the GLUT4 translocation through AMPK activators AICAR and DNP was not affected by wortmannin. Insulin- and AMPK-activated translocation of GLUT4 was not inhibited by SB-203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). Glucose uptake was significantly increased after addition of AMPK activators AICAR and DNP (P < 0.05). AMPK- and insulin-stimulated glucose uptake were similarly suppressed by wortmannin (P < 0.05-0.01). In addition, SB-203580 also significantly prevented the enhancement of glucose uptake induced by AMPK and insulin (P < 0.05). These results suggest that AMPK-activated GLUT4 translocation in 3T3-L1 adipocytes is mediated through the insulin-signaling pathway distal to the site of activated phosphatidylinositol 3-kinase or through a signaling system distinct from that activated by insulin. On the other hand, the increase of glucose uptake dependent on AMPK activators AICAR and DNP would be additionally due to enhancement of the intrinsic activity in translocated GLUT4 protein, possibly through a p38 MAPK-dependent mechanism.
Collapse
Affiliation(s)
- Shinya Yamaguchi
- Third Department of Internal Medicine, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Fujii N, Hirshman MF, Kane EM, Ho RC, Peter LE, Seifert MM, Goodyear LJ. AMP-activated protein kinase alpha2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 2005; 280:39033-41. [PMID: 16186119 DOI: 10.1074/jbc.m504208200] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To examine the role of AMP-activated protein kinase (AMPK) in muscle glucose transport, we generated muscle-specific transgenic mice (TG) carrying cDNAs of inactive alpha2 (alpha2i TG) and alpha1 (alpha1i TG) catalytic subunits. Extensor digitorum longus (EDL) muscles from wild type and TG mice were isolated and subjected to a series of in vitro incubation experiments. In alpha2i TG mice basal alpha2 activity was barely detectable, whereas basal alpha1 activity was only partially reduced. Known AMPK stimuli including 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), rotenone (a Complex I inhibitor), dinitrophenol (a mitochondrial uncoupler), muscle contraction, and sorbitol (producing hyperosmolar shock) did not increase AMPK alpha2 activity in alpha2i TG mice, whereas alpha1 activation was attenuated by only 30-50%. Glucose transport was measured in vitro using isolated EDL muscles from alpha2i TG mice. AICAR- and rotenone-stimulated glucose transport was fully inhibited in alpha2i TG mice; however, the lack of AMPK alpha2 activity had no effect on contraction- or sorbitol-induced glucose transport. Similar to these observations in vitro, contraction-stimulated glucose transport, assessed in vivo by 2-deoxy-d-[(3)H]glucose incorporation into EDL, tibialis anterior, and gastrocnemius muscles, was normal in alpha2i TG mice. Thus, AMPK alpha2 activation is essential for some, but not all, insulin-independent glucose transport. Muscle contraction- and hyperosmolarity-induced glucose transport may be regulated by a redundant mechanism in which AMPK alpha2 is one of multiple signaling pathways.
Collapse
Affiliation(s)
- Nobuharu Fujii
- Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: how is it regulated? Physiology (Bethesda) 2005; 20:260-70. [PMID: 16024514 DOI: 10.1152/physiol.00012.2005] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4 to surface membranes and the subsequent increase in transport by muscle contractions is largely unresolved, but it is likely to occur through intracellular signaling involving Ca(2+)-calmodulin-dependent protein kinase, 5'-AMP-activated protein kinase, and possibly protein kinase C.
Collapse
Affiliation(s)
- Adam J Rose
- Department of Human Physiology, Institute of Exercise and Sport Sciences, Copenhagen Muscle Research Centre, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
114
|
Ayasolla KR, Giri S, Singh AK, Singh I. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) attenuates the expression of LPS- and Abeta peptide-induced inflammatory mediators in astroglia. J Neuroinflammation 2005; 2:21. [PMID: 16174294 PMCID: PMC1262754 DOI: 10.1186/1742-2094-2-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 09/20/2005] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) pathology shows characteristic 'plaques' rich in amyloid beta (Abeta) peptide deposits. Inflammatory process-related proteins such as pro-inflammatory cytokines have been detected in AD brain suggesting that an inflammatory immune reaction also plays a role in the pathogenesis of AD. Glial cells in culture respond to LPS and Abeta stimuli by upregulating the expression of cytokines TNF-alpha, IL-1beta, and IL-6, and also the expression of proinflammatory genes iNOS and COX-2. We have earlier reported that LPS/Abeta stimulation-induced ceramide and ROS generation leads to iNOS expression and nitric oxide production in glial cells. The present study was undertaken to investigate the neuroprotective function of AICAR (a potent activator of AMP-activated protein kinase) in blocking the pro-oxidant/proinflammatory responses induced in primary glial cultures treated with LPS and Abeta peptide. METHODS To test the anti-inflammatory/anti-oxidant functions of AICAR, we tested its inhibitory potential in blocking the expression of pro-inflammatory cytokines and iNOS, expression of COX-2, generation of ROS, and associated signaling following treatment of glial cells with LPS and Abeta peptide. We also investigated the neuroprotective effects of AICAR against the effects of cytokines and inflammatory mediators (released by the glia), in blocking neurite outgrowth inhibition, and in nerve growth factor-(NGF) induced neurite extension by PC-12 cells. RESULTS AICAR blocked LPS/Abeta-induced inflammatory processes by blocking the expression of proinflammatory cytokine, iNOS, COX-2 and MnSOD genes, and by inhibition of ROS generation and depletion of glutathione in astroglial cells. AICAR also inhibited down-stream signaling leading to the regulation of transcriptional factors such as NFkappaB and C/EBP which are critical for the expression of iNOS, COX-2, MnSOD and cytokines (TNF-alpha/IL-1beta and IL-6). AICAR promoted NGF-induced neurite growth and reduced neurite outgrowth inhibition in PC-12 cells treated with astroglial conditioned medium. CONCLUSION The observed anti-inflammatory/anti-oxidant and neuroprotective functions of AICAR suggest it as a viable candidate for use in treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kamesh R Ayasolla
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
- Department of Obstetrics & Gynaecology, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Shailendra Giri
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Avtar K Singh
- Department of Pathology, Ralph H. Johnson VA Medical Center, Charleston, South Carolina 29425, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| |
Collapse
|
115
|
Abstract
Contracting skeletal muscles acutely increases glucose transport in both healthy individuals and in people with Type 2 diabetes, and regular physical exercise is a cornerstone in the treatment of the disease. Glucose transport in skeletal muscle is dependent on the translocation of GLUT4 glucose transporters to the cell surface. It has long been believed that there are two major signaling mechanisms leading to GLUT4 translocation. One mechanism is insulin-activated signaling through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The other is an insulin-independent signaling mechanism that is activated by contractions, but the mediators of this signal are still unknown. Accumulating evidence suggests that the energy-sensing enzyme AMP-activated protein kinase plays an important role in contraction-stimulated glucose transport. However, more recent studies in transgenic and knockout animals show that AMP-activated protein kinase is not the sole mediator of the signal to GLUT4 translocation and suggest that there may be redundant signaling pathways leading to contraction-stimulated glucose transport. The search for other possible signal intermediates is ongoing, and calcium, nitric oxide, bradykinin, and the Akt substrate AS160 have been suggested as possible candidates. Further research is needed because full elucidation of an insulin-independent signal leading to glucose transport would be a promising pharmacological target for the treatment of Type 2 diabetes.
Collapse
Affiliation(s)
- Niels Jessen
- Research Div., Joslin Diabetes Center, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
116
|
Jing M, Ismail-Beigi F. Role of 5'-AMP-activated protein kinase in stimulation of glucose transport in response to inhibition of oxidative phosphorylation. Am J Physiol Cell Physiol 2005; 290:C484-91. [PMID: 16162657 DOI: 10.1152/ajpcell.00321.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose transport is stimulated in a variety of cells and tissues in response to inhibition of oxidative phosphorylation. However, the underlying mechanisms and mediating steps remain largely unknown. In the present study we first tested whether a decrease in the redox state of the cell per se and the resultant increase in generation of reactive oxygen species (ROS) lead to stimulation of glucose transport. Clone 9 cells (expressing the Glut1 isoform of facilitative glucose transporters) were exposed to azide, lactate, and ethanol for 1 h. Although all three agents stimulated glucose transport and increased cell NADH-to-NAD(+) ratio and phospho-ERK1/2, signifying increased ROS generation, the response to the stimuli was not blocked by N-acetyl-l-cysteine (an agent that counteracts ROS); moreover, the response to azide was not blocked by diamide (an intracellular sulfhydryl oxidizing agent). We then found that cell AMP-to-ATP and ADP-to-ATP ratios were increased and 5'-AMP-activated protein kinase (AMPK) was stimulated by all three agents, as evidenced by increased phosphorylation of AMPK and acetyl-CoA carboxylase. We conclude that although azide, lactate, and ethanol increase NADH-to-NAD(+) ratios and ROS production, their stimulatory effect on glucose transport is not mediated by increased ROS generation. However, all three agents increased cell AMP-to-ATP ratio and stimulated AMPK, making it likely that the latter pathway plays an important role in the glucose transport response.
Collapse
Affiliation(s)
- Ming Jing
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4951, USA
| | | |
Collapse
|
117
|
Hilder TL, Baer LA, Fuller PM, Fuller CA, Grindeland RE, Wade CE, Graves LM. Insulin-independent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle. J Appl Physiol (1985) 2005; 99:2181-8. [PMID: 16099889 DOI: 10.1152/japplphysiol.00743.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance accompanies atrophy in slow-twitch skeletal muscles such as the soleus. Using a rat hindlimb suspension model of atrophy, we have previously shown that an upregulation of JNK occurs in atrophic muscles and correlates with the degradation of insulin receptor substrate-1 (IRS-1) (Hilder TL, Tou JC, Grindeland RF, Wade CE, and Graves LM. FEBS Lett 553: 63-67, 2003), suggesting that insulin-dependent glucose uptake may be impaired. However, during atrophy, these muscles preferentially use carbohydrates as a fuel source. To investigate this apparent dichotomy, we examined insulin-independent pathways involved in glucose uptake following a 2- to 13-wk hindlimb suspension regimen. JNK activity was elevated throughout the time course, and IRS-1 was degraded as early as 2 wk. AMP-activated protein kinase (AMPK) activity was significantly higher in atrophic soleus muscle, as were the activities of the ERK1/2 and p38 MAPKs. As a comparison, we examined the kinase activity in solei of rats exposed to hypergravity conditions (2 G). IRS-1 phosphorylation, protein, and AMPK activity were not affected by 2 G, demonstrating that these changes were only observed in soleus muscle from hindlimb-suspended animals. To further examine the effect of AMPK activation on glucose uptake, C2C12 myotubes were treated with the AMPK activator metformin and then challenged with the JNK activator anisomycin. While anisomycin reduced insulin-stimulated glucose uptake to control levels, metformin significantly increased glucose uptake in the presence of anisomycin and was independent of insulin. Taken together, these results suggest that AMPK may be an important mediator of insulin-independent glucose uptake in soleus during skeletal muscle atrophy.
Collapse
Affiliation(s)
- Thomas L Hilder
- Dept. of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Turcotte LP, Raney MA, Todd MK. ERK1/2 inhibition prevents contraction-induced increase in plasma membrane FAT/CD36 content and FA uptake in rodent muscle. ACTA ACUST UNITED AC 2005; 184:131-9. [PMID: 15916673 DOI: 10.1111/j.1365-201x.2005.01445.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The purpose of this experiment was to investigate the role of extracellular signal-regulated kinase 1/2 (ERK1/2) signalling in the contraction-induced increase in muscle FA uptake. METHODS Male Wistar rats (n = 41) were randomly assigned to either a resting or stimulated group. Within each group, animals were randomly assigned to receive PD-98059, an inhibitor of MAP/ERK kinase 1/2 (MEK1/2), a kinase upstream of ERK1/2 and perfused with 550 microM palmitate, [(14)C]palmitate, 7 mM glucose, and no insulin. In the stimulated group, electrical stimulation (ES) of supramaximal trains of 100 ms was delivered every 2 s for 20 min. RESULTS ERK1/2 phosphorylation was increased by 50% (P < 0.05) during ES but the contraction-induced increase was prevented by the addition of PD-98059. Glucose uptake increased by 3.6-fold (P < 0.05) from rest to ES in muscle perfused without PD-98059 and was not affected by the addition of PD-98059 either at rest (P > 0.05) or during ES (P > 0.05). For a matched palmitate delivery, ES increased palmitate uptake by 35% (P < 0.05). PD-98059 had no effect on palmitate uptake at rest but completely abolished the increase in palmitate uptake during ES. Plasma membrane FAT/CD36 protein content was increased by 38% during ES (P < 0.05) but the contraction-induced increase was prevented by the addition of PD-98059. AMPK activity was increased by ES (P < 0.05) but was unaffected by PD-98059. CONCLUSION These results show for the first time that the increase in FA uptake and in plasma membrane FAT/CD36 protein content is mediated, at least in part, by the ERK1/2 signalling pathway during muscle contraction.
Collapse
Affiliation(s)
- L P Turcotte
- Department of Kinesiology, College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
119
|
Nishitani S, Takehana K, Fujitani S, Sonaka I. Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1292-300. [PMID: 15591158 DOI: 10.1152/ajpgi.00510.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is well established that impaired glucose metabolism is a frequent complication in patients with hepatic cirrhosis. We previously showed that leucine, one of the branched-chain amino acids (BCAA), promotes glucose uptake under insulin-free conditions in isolated skeletal muscle from normal rats. The aim of the present study was to evaluate the effects of BCAA on glucose metabolism in a rat model of CCl(4)-induced cirrhosis (CCl(4) rats). Oral glucose tolerance tests were performed on BCAA-treated CCl(4) rats. In the CCl(4) rats, treatment with leucine or isoleucine, but not valine, improved glucose tolerance significantly, with the effect of isoleucine being greater than the effect of leucine. Glucose uptake experiments using isolated soleus muscle from the CCl(4) rats revealed that leucine and isoleucine, but not valine, promoted glucose uptake under insulin-free conditions. To clarify the mechanism of the blood glucose-lowering effects of BCAA, we collected soleus muscles from BCAA-treated CCl(4) rats with or without a glucose load. These samples were used to determine the subcellular location of glucose transporter proteins and glycogen synthase (GS) activity. Oral administration of leucine or isoleucine without a glucose load induced GLUT4 and GLUT1 translocation to the plasma membrane. GS activity was augmented only in leucine-treated rats and was completely inhibited by rapamycin, an inhibitor of mammalian target of rapamycin. In summary, we found that leucine and isoleucine improved glucose metabolism in CCl(4) rats by promoting glucose uptake in skeletal muscle. This effect occurred as a result of upregulation of GLUT4 and GLUT1 and also by mammalian target of rapamycin-dependent activation of GS in skeletal muscle. From these results, we consider that BCAA treatment may have beneficial effects on glucose metabolism in cirrhotic patients.
Collapse
Affiliation(s)
- Shinobu Nishitani
- Pharmaceutical Research Laboratories, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki-shi, Japan.
| | | | | | | |
Collapse
|
120
|
Kim JH, Kim JH, Ohba M, Suh PG, Ryu SH. Novel functions of the phospholipase D2-Phox homology domain in protein kinase Czeta activation. Mol Cell Biol 2005; 25:3194-208. [PMID: 15798205 PMCID: PMC1069590 DOI: 10.1128/mcb.25.8.3194-3208.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
It has been established that protein kinase Czeta (PKCzeta) participates in diverse signaling pathways and cellular functions in a wide variety of cells, exhibiting properties relevant to cellular survival and proliferation. Currently, however, the regulation mechanism of PKCzeta remains elusive. Here, for the first time, we determine that phospholipase D2 (PLD2) enhances PKCzeta activity through direct interaction in a lipase activity-independent manner. This interaction of the PLD2-Phox homology (PX) domain with the PKCzeta-kinase domain also induces the activation loop phosphorylation of PKCzeta and downstream signal stimulation, as measured by p70 S6 kinase phosphorylation. Furthermore, only the PLD2-PX domain directly stimulates PKCzeta activity in vitro, and it is necessary for the formation of the ternary complex with phosphoinositide-dependent kinase 1 and PKCzeta. The mutant that substitutes the triple lysine residues (Lys101, Lys102, and Lys103) within the PLD2-PX domain with alanine abolishes interaction with the PKCzeta-kinase domain and activation of PKCzeta. Moreover, breast cancer cell viability is significantly affected by PLD2 silencing. Taken together, these results suggest that the PLD2-mediated PKCzeta activation is induced by its PX domain performing both direct activation of PKCzeta and assistance of activation loop phosphorylation. Furthermore, we find it is an important factor in the survival of breast cancer cells.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
121
|
Zorzano A, Palacín M, Gumà A. Mechanisms regulating GLUT4 glucose transporter expression and glucose transport in skeletal muscle. ACTA ACUST UNITED AC 2005; 183:43-58. [PMID: 15654919 DOI: 10.1111/j.1365-201x.2004.01380.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscle is a major glucose-utilizing tissue in the absorptive state and the major glucose transporter expressed in muscle in adulthood is GLUT4. GLUT4 expression is exquisitely regulated in muscle and this seems important in the regulation of insulin-stimulated glucose uptake by this tissues. Thus, muscle GLUT4 overexpression in transgenic animals ameliorates insulin resistance associated with obesity or diabetes. Recent information indicates that glut4 gene transcription is regulated by a number of factors in skeletal muscle that include MEF2, MyoD myogenic proteins, thyroid hormone receptors, Kruppel-like factor KLF15, NF1, Olf-1/Early B cell factor and GEF/HDBP1. In addition, studies in vivo indicate that under normal conditions the activity of the muscle-specific GLUT4 enhancer is low in adult skeletal muscle compared with the maximal potential activity that it can attain at high levels of the MRF transcription factors, MEF2, and TRalpha1. This finding indicates that glut4 transcription may be greatly up-regulated via activation of this enhancer through an increase in the levels of expression or activity of these transcription factors. Understanding the molecular basis of the expression of glut4 will be useful for the appropriate therapeutic design of treatments for insulin-resistant states. The nature of the intracellular signals that mediate the stimulation of glucose transport in response to insulin or exercise is also reviewed.
Collapse
Affiliation(s)
- A Zorzano
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, and IRBB- Parc Científic de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
122
|
Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR, Hallows KR. Epithelial Sodium Channel Inhibition by AMP-activated Protein Kinase in Oocytes and Polarized Renal Epithelial Cells. J Biol Chem 2005; 280:17608-16. [PMID: 15753079 DOI: 10.1074/jbc.m501770200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) regulates epithelial salt and water reabsorption, processes that require significant expenditure of cellular energy. To test whether the ubiquitous metabolic sensor AMP-activated kinase (AMPK) regulates ENaC, we examined the effects of AMPK activation on amiloride-sensitive currents in Xenopus oocytes and polarized mouse collecting duct mpkCCD(c14) cells. Microinjection of oocytes expressing mouse ENaC (mENaC) with either active AMPK protein or an AMPK activator inhibited mENaC currents relative to controls as measured by two-electrode voltage-clamp studies. Similarly, pharmacological AMPK activation or overexpression of an activating AMPK mutant in mpkCCD(c14) cells inhibited amiloride-sensitive short circuit currents. Expression of a degenerin mutant beta-mENaC subunit (S518K) along with wild type alpha and gamma increased the channel open probability (P(o)) to approximately 1. However, AMPK activation inhibited currents similarly with expression of either degenerin mutant or wild type mENaC. Single channel recordings under these conditions demonstrated that neither P(o) nor channel conductance was affected by AMPK activation. Moreover, expression of a Liddle's syndrome-type beta-mENaC mutant (Y618A) greatly enhanced ENaC whole cell currents relative to wild type ENaC controls and prevented AMPK-dependent inhibition. These findings indicate that AMPK-dependent ENaC inhibition is mediated through a decrease in the number of active channels at the plasma membrane (N), presumably through enhanced Nedd4-2-dependent ENaC endocytosis. The AMPK-ENaC interaction appears to be indirect; AMPK did not bind ENaC in cells, as assessed by in vivo pull-down assays, nor did it phosphorylate ENaC in vitro. In summary, these results suggest a novel mechanism for coupling ENaC activity and renal Na(+) handling to cellular metabolic status through AMPK, which may help prevent cellular Na(+) loading under hypoxic or ischemic conditions.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Fujii N, Aschenbach WG, Musi N, Hirshman MF, Goodyear LJ. Regulation of glucose transport by the AMP-activated protein kinase. Proc Nutr Soc 2005; 63:205-10. [PMID: 15294031 DOI: 10.1079/pns2004340] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated during exercise and muscle contraction as a result of acute decreases in ATP:AMP and phosphocreatine:creatine. Physical exercise increases muscle glucose uptake, enhances insulin sensitivity and leads to fatty acid oxidation in muscle. An important issue in muscle biology is to understand whether AMPK plays a role in mediating these metabolic processes. AMPK has also been implicated in regulating gene transcription and, therefore, may function in some of the cellular adaptations to training exercise. Recent studies have shown that the magnitude of AMPK activation and associated metabolic responses are affected by factors such as glycogen content, exercise training and fibre type. There have also been conflicting reports as to whether AMPK activity is necessary for contraction-stimulated glucose transport. Thus, during the next several years considerably more research will be necessary in order to fully understand the role of AMPK in regulating glucose transport in skeletal muscle.
Collapse
Affiliation(s)
- Nobuharu Fujii
- Research Division, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
124
|
Hutchinson DS, Bengtsson T. alpha1A-adrenoceptors activate glucose uptake in L6 muscle cells through a phospholipase C-, phosphatidylinositol-3 kinase-, and atypical protein kinase C-dependent pathway. Endocrinology 2005; 146:901-12. [PMID: 15550506 DOI: 10.1210/en.2004-1083] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of alpha1-adrenoceptor activation on glucose uptake in L6 cells was investigated. The alpha1-adrenoceptor agonist phenylephrine [pEC50 (-log10 EC50), 5.27 +/- 0.30] or cirazoline (pEC50, 5.00 +/- 0.23) increased glucose uptake in a concentration-dependent manner, as did insulin (pEC50, 7.16 +/- 0.21). The alpha2-adrenoceptor agonist clonidine was without any stimulatory effect on glucose uptake. The stimulatory effect of cirazoline was inhibited by the alpha1-adrenoceptor antagonist prazosin, but not by the beta-adrenoceptor antagonist propranolol. RT-PCR showed that the alpha1A-adrenoceptor was the sole alpha1-adrenoceptor subtype expressed in L6 cells. Cirazoline- or insulin-mediated glucose uptake was inhibited by the phosphatidylinositol-3 kinase inhibitor LY294002, suggesting a possible interaction between the alpha1-adrenoceptor and insulin pathways. Cirazoline or insulin stimulated phosphatidylinositol-3 kinase activity, but alpha1-adrenoceptor activation did not phosphorylate Akt. Both cirazoline- and insulin-mediated glucose uptake were inhibited by protein kinase C (PKC), phospholipase C, and p38 kinase inhibitors, but not by Erk1/2 inhibitors (despite both treatments being able to phosphorylate Erk1/2). Insulin and cirazoline were able to activate and phosphorylate p38 kinase. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate and the calcium ionophore A23187 produced significant increases in glucose uptake, indicating roles for PKC and calcium in glucose uptake. Down-regulation of conventional PKC isoforms inhibited glucose uptake mediated by 12-O-tetradecanoylphorbol-13-acetate, but not by insulin or cirazoline. This study demonstrates that alpha1-adrenoceptors mediate increases in glucose uptake in L6 muscle cells. This effect appears to be related to activation of phospholipase C, phosphatidylinositol-3 kinase, p38 kinase, and PKC.
Collapse
Affiliation(s)
- Dana S Hutchinson
- Department of Physiology, The Wenner-Gren Institute, Arrhenius Laboratory F3, Stockholm University, SE 10691 Stockholm, Sweden
| | | |
Collapse
|
125
|
Richter EA, Vistisen B, Maarbjerg SJ, Sajan M, Farese RV, Kiens B. Differential effect of bicycling exercise intensity on activity and phosphorylation of atypical protein kinase C and extracellular signal-regulated protein kinase in skeletal muscle. J Physiol 2004; 560:909-18. [PMID: 15297577 PMCID: PMC1665296 DOI: 10.1113/jphysiol.2004.071373] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 08/04/2004] [Indexed: 12/19/2022] Open
Abstract
Atypical protein kinase C (aPKC) and extracellular signal-regulated kinase (ERK) are emerging as important signalling molecules in the regulation of metabolism and gene expression in skeletal muscle. Exercise is known to increase activity of aPKC and ERK in skeletal muscle but the effect of exercise intensity hereon has not been studied. Furthermore, the relationship between activity and phosphorylation of the two enzymes during exercise is unknown. Nine healthy young men exercised for 30 min on a bicycle ergometer on two occasions. One occasion consisted of three consecutive 10 min bouts of 35, 60 and 85% of peak pulmonary oxygen uptake V(O(2 peak)) and the second of one 30 min bout at 35% of V(O(2 peak)). Both trials also included 30 min recovery. Muscle biopsies were obtained from the vastus lateralis muscle before and after each exercise bout. Exercise increased muscle aPKC activity at 35% V(O(2 peak)), whereupon no further increase was observed at higher exercise intensities. Activation of aPKC was not accompanied by increased phosphorylation of aPKC Thr(410/403). ERK1/2 activity increased in a similar pattern to aPKC, reaching maximal activity at 35% V(O(2 peak)), whereas ERK1 Thr(202)/Tyr(204) and ERK2 Thr(183)/Tyr(185) phosphorylation increased with increasing exercise intensity. Thus, aPKC and ERK1/2 activity in muscle during exercise did not correspond to phosphorylation of sites on aPKC or ERK1/2, respectively, which are considered important for their activation. It is concluded that assessment of aPKC and ERK1/2 activity in muscle using phosphospecific antibodies did not reflect direct activity measurements on immunoprecipitated enzyme in vitro. Thus, estimation of enzyme activity during exercise by use of phosphospecific antibodies should not be performed uncritically. In addition, increase in muscle activity of aPKC or ERK1/2 during exercise is not closely related to energy demands of the muscle but may serve other regulatory or permissive functions in muscle.
Collapse
Affiliation(s)
- Erik A Richter
- Copenhagen Muscle Research Centre, Department of Human Physiology, Institute of Exercise and Sports Sciences, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
126
|
Rose AJ, Michell BJ, Kemp BE, Hargreaves M. Effect of exercise on protein kinase C activity and localization in human skeletal muscle. J Physiol 2004; 561:861-70. [PMID: 15604232 PMCID: PMC1665391 DOI: 10.1113/jphysiol.2004.075549] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To investigate the effect of exercise on protein kinase C (PKC) activity and localization in human skeletal muscle, eight healthy men performed cycle ergometer exercise for 40 min at 76 +/- 1% the peak pulmonary O(2) uptake , with muscle samples obtained at rest and after 5 and 40 min of exercise. PKC expression, phosphorylation and activities were examined by immunoblotting and in vitro kinase assays of fractionated and whole tissue preparations. In response to exercise, total PKC activity was slightly higher at 40 min in an enriched membrane fraction, and using a pSer-PKC-substrate motif antibody it was revealed that exercise increased the serine phosphorylation of an approximately 50 kDa protein. There were no changes in conventional PKC (cPKC) or PKC activities; however, atypical PKC (aPKC) activity was approximately 70% higher at 5 and 40 min, and aPKC expression and Thr(410/403) phosphorylation were unaltered by exercise. There were no effects of exercise on the abundance of PKCalpha, PKCdelta, PKC and aPKC within cytosolic or enriched membrane fractions of skeletal muscle. These data indicate that aPKC, but not cPKC or PKC, are activated by exercise in contracting muscle suggesting a potential role for aPKC in the regulation of skeletal muscle function and metabolism during exercise in humans.
Collapse
Affiliation(s)
- Adam J Rose
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | | | | | | |
Collapse
|
127
|
Al-Khalili L, Krook A, Zierath JR, Cartee GD. Prior serum- and AICAR-induced AMPK activation in primary human myocytes does not lead to subsequent increase in insulin-stimulated glucose uptake. Am J Physiol Endocrinol Metab 2004; 287:E553-7. [PMID: 15149951 DOI: 10.1152/ajpendo.00161.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposing isolated rat skeletal muscle to 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside [AICAR, a pharmacological activator of AMP-activated protein kinase (AMPK)] plus serum leads to a subsequent increase in insulin-stimulated glucose transport (Fisher JS, Gao J, Han DH, Holloszy JO, and Nolte LA. Am J Physiol Endocrinol Metab 282: E18-E23, 2002). Our goal was to determine whether preincubation of primary human skeletal muscle cells with human serum and AICAR (Serum+AICAR) would also induce a subsequent elevation in insulin-stimulated glucose uptake. Cells were preincubated for 1 h under 4 conditions: 1) without AICAR or serum (Control), 2) with serum, 3) with AICAR, or 4) with Serum+AICAR. Some cells were then collected for immunoblot analysis to assess phosphorylation of AMPK (pAMPK) and its substrate acetyl-CoA carboxylase (ACC). Other cells were incubated for an additional 4 h without AICAR or serum and then used to measure basal or insulin-stimulated 2-deoxyglucose (2-DG) uptake. Level of pAMPK was increased (P < 0.01) for myotubes exposed to Serum+AICAR vs. all other groups. Phosphorylated ACC (pACC) levels were higher for both Serum+AICAR (P < 0.05) and AICAR (P < 0.05) vs. Control and Serum groups. Basal (P < 0.05) and 1.2 nM insulin-stimulated (P < 0.005) 2-DG uptake was higher for Serum vs. all other preincubation conditions at equal insulin concentration. Regardless of insulin concentration (0, 1.2, or 18 nM), 2-DG was unaltered in cells preincubated with Serum+AICAR vs. Control cells. In contrast to results with isolated rat skeletal muscle, increasing the pAMPK and pACC in human myocytes via preincubation with Serum+AICAR was insufficient to lead to a subsequent enhancement in insulin-stimulated glucose uptake.
Collapse
Affiliation(s)
- Lubna Al-Khalili
- Department of Surgical Science, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
128
|
Roepstorff C, Vistisen B, Donsmark M, Nielsen JN, Galbo H, Green KA, Hardie DG, Wojtaszewski JFP, Richter EA, Kiens B. Regulation of hormone-sensitive lipase activity and Ser563 and Ser565 phosphorylation in human skeletal muscle during exercise. J Physiol 2004; 560:551-62. [PMID: 15308678 PMCID: PMC1665266 DOI: 10.1113/jphysiol.2004.066480] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hormone-sensitive lipase (HSL) catalyses the hydrolysis of myocellular triacylglycerol (MCTG), which is a potential energy source during exercise. Therefore, it is important to elucidate the regulation of HSL activity in human skeletal muscle during exercise. The main purpose of the present study was to investigate the role of 5'AMP-activated protein kinase (AMPK) in the regulation of muscle HSL activity and Ser565 phosphorylation (the presumed AMPK target site) in healthy, moderately trained men during 60 min bicycling (65%). Alpha2AMPK activity during exercise was manipulated by studying subjects with either low (LG) or high (HG) muscle glycogen content. HSL activity was distinguished from the activity of other neutral lipases by immunoinhibition of HSL using an anti-HSL antibody. During exercise a 62% higher (P < 0.01) alpha2AMPK activity in LG than in HG was paralleled by a similar difference (61%, P < 0.01) in HSL Ser565 phosphorylation but without any difference between trials in HSL activity or MCTG hydrolysis. HSL activity was increased (117%, P < 0.05) at 30 min of exercise but not at 60 min of exercise. In both trials, HSL phosphorylation on Ser563 (a presumed PKA target site) was not increased by exercise despite a fourfold increase (P < 0.001) in plasma adrenaline. ERK1/2 phosphorylation was increased by exercise in both trials (P < 0.001) and was higher in LG than in HG both at rest and during exercise (P = 0.06). In conclusion, the present study suggests that AMPK phosphorylates HSL on Ser565 in human skeletal muscle during exercise with reduced muscle glycogen. Apparently, HSL Ser565 phosphorylation by AMPK during exercise had no effect on HSL activity. Alternatively, other factors including ERK may have counterbalanced any effect of AMPK on HSL activity.
Collapse
Affiliation(s)
- Carsten Roepstorff
- The Copenhagen Muscle Research Centre, Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Koshinaka K, Oshida Y, Han YQ, Kubota M, Viana AYI, Nagasaki M, Sato Y. Insulin-nonspecific reduction in skeletal muscle glucose transport in high-fat-fed rats. Metabolism 2004; 53:912-7. [PMID: 15254886 DOI: 10.1016/j.metabol.2003.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-fat feeding diminishes insulin-stimulated glucose transport in skeletal muscle. However, conflicting results are reported regarding whether phosphatidylinositol (PI)-3 kinase-independent glucose transport is also impaired in insulin-resistant high-fat-fed rodents. The aim of the present study was to study whether non-insulin-dependent mechanisms for stimulation of glucose transport are defective in skeletal muscle from high-fat-fed rats. Rats were fed normal chow diet or high-fat diet for 4 weeks and isolated epitrochlearis muscles were used for measuring glucose transport. Insulin-stimulated glucose transport was significantly lower in rats fed the high-fat diet compared with chow-fed rats (P < .05). Hypoxia-stimulated glucose transport was also reduced in high-fat-fed rats (P < .05). Nevertheless, hypoxia-stimulated adenosine monophosphate-activated protein kinase (AMPK) phosphorylation (Thr172) level was not affected by high-fat feeding. Glucose transport by sodium nitroprusside stimulation was reduced in high-fat-fed rats (P < .05). Protein content of glucose transporter (GLUT)-4 and AMPK-alpha, and glycogen content were comparable between both groups. Our findings provide evidence that high-fat feeding can affect not only insulin but also non-insulin-stimulated glucose transport. A putative defect in common steps in glucose transport may play a role to account for impaired insulin-stimulated glucose transport in rats fed a high-fat diet.
Collapse
Affiliation(s)
- K Koshinaka
- Department of Sports Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
130
|
Al-Khalili L, Kotova O, Tsuchida H, Ehrén I, Féraille E, Krook A, Chibalin AV. ERK1/2 Mediates Insulin Stimulation of Na,K-ATPase by Phosphorylation of the α-Subunit in Human Skeletal Muscle Cells. J Biol Chem 2004; 279:25211-8. [PMID: 15069082 DOI: 10.1074/jbc.m402152200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Lubna Al-Khalili
- Section of Integrative Physiology, Department of Surgical Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
131
|
Chen HC, Rao M, Sajan MP, Standaert M, Kanoh Y, Miura A, Farese RV, Farese RV. Role of adipocyte-derived factors in enhancing insulin signaling in skeletal muscle and white adipose tissue of mice lacking Acyl CoA:diacylglycerol acyltransferase 1. Diabetes 2004; 53:1445-51. [PMID: 15161747 DOI: 10.2337/diabetes.53.6.1445] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mice that lack acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in mammalian triglyceride synthesis, have decreased adiposity and increased insulin sensitivity. Here we show that insulin-stimulated glucose transport is increased in the skeletal muscle and white adipose tissue (WAT) of chow-fed DGAT1-deficient mice. This increase in glucose transport correlated with enhanced insulin-stimulated activities of phosphatidylinositol 3-kinase, protein kinase B (or Akt), and protein kinase Clambda (PKC-lambda), three key molecules in the insulin-signaling pathway, and was associated with decreased levels of serine-phosphorylated insulin receptor substrate 1 (IRS-1), a molecule implicated in insulin resistance. Similar findings in insulin signaling were also observed in DGAT1-deficient mice fed a high-fat diet. Interestingly, the increased PKC-lambda activity and decreased serine phosphorylation of IRS-1 were observed in chow-fed wild-type mice transplanted with DGAT1-deficient WAT, consistent with our previous finding that transplantation of DGAT1-deficient WAT enhances glucose disposal in wild-type recipient mice. Our findings demonstrate that DGAT1 deficiency enhances insulin signaling in the skeletal muscle and WAT, in part through altered expression of adipocyte-derived factors that modulate insulin signaling in peripheral tissues.
Collapse
Affiliation(s)
- Hubert C Chen
- James A. Haley Veterans Hospital, ACOS-151, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Leng Y, Steiler TL, Zierath JR. Effects of insulin, contraction, and phorbol esters on mitogen-activated protein kinase signaling in skeletal muscle from lean and ob/ob mice. Diabetes 2004; 53:1436-44. [PMID: 15161746 DOI: 10.2337/diabetes.53.6.1436] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effects of diverse stimuli, including insulin, muscle contraction, and phorbol 12-myristate-13-acetate (PMA), were determined on phosphorylation of mitogen-activated protein kinase (MAPK) signaling modules (c-Jun NH(2)-terminal kinase [JNK], p38 MAPK, and extracellular signal-related kinase [ERK1/2]) in skeletal muscle from lean and ob/ob mice. Insulin increased phosphorylation of JNK, p38 MAPK, and ERK1/2 in isolated extensor digitorum longus (EDL) and soleus muscle from lean mice in a time- and dose-dependent manner. Muscle contraction and PMA also elicited robust effects on these parallel MAPK modules. Insulin action on JNK, p38 MAPK, and ERK1/2 phosphorylation was significantly impaired in EDL and soleus muscle from ob/ob mice. In contrast, muscle contraction-mediated JNK, p38 MAPK, and ERK1/2 phosphorylation was preserved. PMA effects on phosphorylation of JNK and ERK1/2 were normal in ob/ob mice, whereas effects on p38 MAPK were abolished. In conclusion, insulin, contraction, and PMA activate MAPK signaling in skeletal muscle. Insulin-mediated responses on MAPK signaling are impaired in skeletal muscle from ob/ob mice, whereas the effect of contraction is generally well preserved. In addition, PMA-induced phosphorylation of JNK and ERK1/2 are preserved, whereas p38 MAPK pathways are impaired in skeletal muscle from ob/ob mice. Thus, appropriate MAPK responses can be elicited in insulin-resistant skeletal muscle via an insulin-independent mechanism.
Collapse
Affiliation(s)
- Ying Leng
- Professor of Physiology, Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, II, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
133
|
Al-Khalili L, Chibalin AV, Yu M, Sjödin B, Nylén C, Zierath JR, Krook A. MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways. Am J Physiol Cell Physiol 2004; 286:C1410-6. [PMID: 14960415 DOI: 10.1152/ajpcell.00444.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The myocyte enhancer factor (MEF)2 transcription factor is important for development of differentiated skeletal muscle. We investigated the regulation of MEF2 DNA binding in differentiated primary human skeletal muscle cells and isolated rat skeletal muscle after exposure to various stimuli. MEF2 DNA binding activity in nonstimulated (basal) muscle cultures was almost undetectable. Exposure of cells for 20 min to 120 nM insulin, 0.1 and 1.0 mM hydrogen peroxide, osmotic stress (400 mM mannitol), or 1.0 mM 5-aminoimidazole-4-carboxamide-1-β- d-ribofuranoside (AICAR) led to a profound increase in MEF2 DNA binding. To study signaling pathways mediating MEF2 activity, we preincubated human skeletal muscle cell cultures or isolated rat epitrochlearis muscles with inhibitors of p38 mitogen-activated protein kinase (MAPK) (10 μM SB-203580), MEK1 (50 μM PD-98059), PKC (1 and 10 μM GF109203X), phosphatidylinositol (PI) 3-kinase (10 μM LY-294002), or AMP-activated protein kinase (AMPK; 20 μM compound C). All stimuli resulted primarily in activation of MEF2D DNA binding. Exposure of cells to osmotic or oxidative stress increased MEF2 DNA binding via pathways that were completely blocked by MAPK inhibitors and partially blocked by inhibitors of PKC, PI 3-kinase, and AMPK. In epitrochlearis muscle, MAPK inhibitors blocked contraction but not AICAR-mediated MEF2 DNA binding. Thus activation of MEF2 in skeletal muscle is regulated via parallel intracellular signaling pathways in response to insulin, cellular stress, or activation of AMPK.
Collapse
Affiliation(s)
- Lubna Al-Khalili
- Department of Surgical Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
134
|
Cantó C, Suárez E, Lizcano JM, Griñó E, Shepherd PR, Fryer LGD, Carling D, Bertran J, Palacín M, Zorzano A, Gumà A. Neuregulin Signaling on Glucose Transport in Muscle Cells. J Biol Chem 2004; 279:12260-8. [PMID: 14711829 DOI: 10.1074/jbc.m308554200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuregulin-1, a growth factor that potentiates myogenesis induces glucose transport through translocation of glucose transporters, in an additive manner to insulin, in muscle cells. In this study, we examined the signaling pathway required for a recombinant active neuregulin-1 isoform (rhHeregulin-beta(1), 177-244, HRG) to stimulate glucose uptake in L6E9 myotubes. The stimulatory effect of HRG required binding to ErbB3 in L6E9 myotubes. PI3K activity is required for HRG action in both muscle cells and tissue. In L6E9 myotubes, HRG stimulated PKBalpha, PKBgamma, and PKCzeta activities. TPCK, an inhibitor of PDK1, abolished both HRG- and insulin-induced glucose transport. To assess whether PKB was necessary for the effects of HRG on glucose uptake, cells were infected with adenoviruses encoding dominant negative mutants of PKBalpha. Dominant negative PKB reduced PKB activity and insulin-stimulated glucose transport but not HRG-induced glucose transport. In contrast, transduction of L6E9 myotubes with adenoviruses encoding a dominant negative kinase-inactive PKCzeta abolished both HRG- and insulin-stimulated glucose uptake. In soleus muscle, HRG induced PKCzeta, but not PKB phosphorylation. HRG also stimulated the activity of p70S6K, p38MAPK, and p42/p44MAPK and inhibition of p42/p44MAPK partially repressed HRG action on glucose uptake. HRG did not affect AMPKalpha(1) or AMPKalpha(2) activities. In all, HRG stimulated glucose transport in muscle cells by activation of a pathway that requires PI3K, PDK1, and PKCzeta, but not PKB, and that shows cross-talk with the MAPK pathway. The PI3K, PDK1, and PKCzeta pathway can be considered as an alternative mechanism, independent of insulin, to induce glucose uptake.
Collapse
Affiliation(s)
- Carles Cantó
- Departament de Bioquímica i Biologia Molecular and Parc Científic de Barcelona, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Affiliation(s)
- Stuart A Ross
- Department of Cardiovascular and Metabolic Diseases, Mail Zone T2E, Pharmacia Corporation, 800 North Lindbergh Boulevard, St Louis, Missouri 63167, USA
| | | | | |
Collapse
|
136
|
Nishitani S, Ijichi C, Takehana K, Fujitani S, Sonaka I. Pharmacological activities of branched-chain amino acids: specificity of tissue and signal transduction. Biochem Biophys Res Commun 2004; 313:387-9. [PMID: 14684173 DOI: 10.1016/j.bbrc.2003.11.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Branched-chain amino acid (BCAA: Leu, Ile, and Val) mixture has been used for treatment of hypoalbuminemia in patients with decompensated liver cirrhosis in Japan. It has been known that BCAA, especially leucine, activates mTOR signals and inhibition of protein degradation results in promoting protein synthesis in vitro. Furthermore, leucine activates glycogen synthase via mTOR signals in L6 cell, but not hepatocyte, and it has been shown that leucine improved glucose metabolism in normal and cirrhosis model rats. In this review, it will be proposed about the pharmacological activity of branched-chain amino acids, mainly leucine, on tissue specificity of cirrhotic disease.
Collapse
Affiliation(s)
- Shinobu Nishitani
- Pharmaceutical Research Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | | | | | | | | |
Collapse
|
137
|
Ahmad S, Ahmad A, Ghosh M, Leslie CC, White CW. Extracellular ATP-mediated signaling for survival in hyperoxia-induced oxidative stress. J Biol Chem 2004; 279:16317-25. [PMID: 14761947 DOI: 10.1074/jbc.m313890200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory failure is a serious consequence of lung cell injury caused by treatment with high inhaled oxygen concentrations. Human lung microvascular endothelial cells (HLMVEC) are a principal target of hyperoxic injury (hyperoxia). Cell stress can cause release of ATP, and this extracellular nucleotide can activate purinoreceptors and mediate responses essential for survival. In this investigation, exposure of endothelial cells to an oxidative stress, hyperoxia, caused rapid but transient ATP release (20.03 +/- 2.00 nm/10(6) cells in 95% O(2) versus 0.08 +/- 0.01 nm/10(6) cells in 21% O2 at 30 min) into the extracellular milieu without a concomitant change in intracellular ATP. Endogenously produced extracellular ATP-enhanced mTOR-dependent uptake of glucose (3467 +/- 102 cpm/mg protein in 95% oxygen versus 2100 +/- 112 cpm/mg protein in control). Extracellular addition of ATP-activated important cell survival proteins like PI 3-kinase and extracellular-regulated kinase (ERK-1/2). These events were mediated primarily by P2Y receptors, specifically the P2Y2 and/or P2Y6 subclass of receptors. Extracellular ATP was required for the survival of HLMVEC in hyperoxia (55 +/- 10% surviving cells with extracellular ATP scavengers [apyrase + adenosine deaminase] versus 95 +/- 12% surviving cells without ATP scavengers at 4 d of hyperoxia). Incubation with ATP scavengers abolished ATP-dependent ERK phosphorylation stimulated by hyperoxia. Further, ERK activation also was found to be important for cell survival in hyperoxia, as treatment with PD98059 enhanced hyperoxia-mediated cell death. These findings demonstrate that ATP release and subsequent ATP-mediated signaling events are vital for survival of HLMVEC in hyperoxia.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
138
|
Bandyopadhyay G, Standaert ML, Sajan MP, Kanoh Y, Miura A, Braun U, Kruse F, Leitges M, Farese RV. Protein Kinase C-λ Knockout in Embryonic Stem Cells and Adipocytes Impairs Insulin-Stimulated Glucose Transport. Mol Endocrinol 2004; 18:373-83. [PMID: 14615604 DOI: 10.1210/me.2003-0087] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Atypical protein kinase C (aPKC) isoforms have been suggested to mediate insulin effects on glucose transport in adipocytes and other cells. To more rigorously test this hypothesis, we generated mouse embryonic stem (ES) cells and ES-derived adipocytes in which both aPKC-lambda alleles were knocked out by recombinant methods. Insulin activated PKC-lambda and stimulated glucose transport in wild-type (WT) PKC-lambda(+/+), but not in knockout PKC-lambda(-/-), ES cells. However, insulin-stimulated glucose transport was rescued by expression of WT PKC-lambda in PKC-lambda(-/-) ES cells. Surprisingly, insulin-induced increases in both PKC-lambda activity and glucose transport were dependent on activation of proline-rich tyrosine protein kinase 2, the ERK pathway, and phospholipase D (PLD) but were independent of phosphatidylinositol 3-kinase (PI3K) in PKC-lambda(+/+) ES cells. Interestingly, this dependency was completely reversed after differentiation of ES cells to adipocytes, i.e. insulin effects on PKC-lambda and glucose transport were dependent on PI3K, rather than proline-rich tyrosine protein kinase 2/ERK/PLD. As in ES cells, insulin effects on glucose transport were absent in PKC-lambda(-/-) adipocytes but were rescued by expression of WT PKC-lambda in these adipocytes. Our findings suggest that insulin activates aPKCs and glucose transport in ES cells by a newly recognized PI3K-independent ERK/PLD-dependent pathway and provide a compelling line of evidence suggesting that aPKCs are required for insulin-stimulated glucose transport, regardless of whether aPKCs are activated by PI3K-dependent or PI3K-independent mechanisms.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- James A Haley Veterans Hospital and University of South Florida College of Medicine, Tampa, 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Perrini S, Henriksson J, Zierath JR, Widegren U. Exercise-induced protein kinase C isoform-specific activation in human skeletal muscle. Diabetes 2004; 53:21-4. [PMID: 14693693 DOI: 10.2337/diabetes.53.1.21] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We determined whether protein kinase C (PKC) isoforms are redistributed and phosphorylated in response to acute exercise in skeletal muscle. Muscle biopsies were obtained from six healthy subjects (four women, two men; age 25 +/- 1 years) before, during, and after 60 min of one-leg cycle ergometry at approximately 70% VO(2peak). Exercise for 30 and 60 min was associated with a three- and fourfold increase in PKC-zeta/lambda abundance and a four- and threefold increase in phosphorylation, respectively, in total membranes (P < 0.05) and a decrease in PKC-zeta/lambda phosphorylation in cytosolic fractions. During exercise recovery, PKC-zeta/lambda abundance and phosphorylation remained elevated. PKC-zeta/lambda abundance and phosphorylation were increased in nonexercised muscle upon cessation of exercise, indicating a systemic response may contribute to changes in PKC abundance and phosphorylation. Exercise did not change PKC-delta or -epsilon abundance or phosphorylation in either the cytosolic or total membrane fraction. In conclusion, exercise is associated with an isoform-specific effect on PKC. PKC-zeta/lambda are candidate PKC isoforms that may play a role in the regulation of exercise-related changes in metabolic and gene-regulatory responses.
Collapse
Affiliation(s)
- Sebastio Perrini
- Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
140
|
Gual P, Le Marchand-Brustel Y, Tanti J. Positive and negative regulation of glucose uptake by hyperosmotic stress. DIABETES & METABOLISM 2003; 29:566-75. [PMID: 14707885 DOI: 10.1016/s1262-3636(07)70071-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review will provide insight on the current understanding of the intracellular signaling mechanisms by which hyperosmolarity mimics insulin responses such as Glut 4 translocation and glucose transport but also antagonizes insulin effects. Glucose uptake induced by insulin is largely dependent on the PI 3-kinase/PKB pathway. In both adipocyte and muscle cells, hyperosmolarity promotes glucose uptake by multiple mechanisms which do not require PI 3-kinase/PKB pathway but are dependent on the cell type. In muscle, osmotic stress induces glucose uptake by stimulation of AMP-Kinase and/or inhibition of Glut 4 endocytosis. In adipocytes, activation of Gab1-dependent signaling pathway plays an important role in osmotic stress-mediated glucose uptake. Apart of its insulin-like effects, hyperosmolarity can lead to cellular insulin resistance mediated by both prevention of PKB activation and inhibition of the Insulin Receptor Substrate-1 (IRS1) function. Serine phosphorylation and degradation of IRS1 negatively regulate its functions. Understanding how osmotic stress induces glucose transport or mediates insulin resistance may provide novel targets for strategies to enhance glucose transport or to prevent insulin resistance.
Collapse
Affiliation(s)
- P Gual
- INSERM U 568 and IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice Cedex 02, France.
| | | | | |
Collapse
|
141
|
Nielsen JN, Frøsig C, Sajan MP, Miura A, Standaert ML, Graham DA, Wojtaszewski JFP, Farese RV, Richter EA. Increased atypical PKC activity in endurance-trained human skeletal muscle. Biochem Biophys Res Commun 2003; 312:1147-53. [PMID: 14651992 DOI: 10.1016/j.bbrc.2003.11.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Exercise training may modulate protein content and enzyme activities in skeletal muscle. However, it is not known whether atypical protein kinase C (aPKC) is affected by training. Thus, we investigated aPKC, extracellular-regulated protein kinase 1/2 (ERK 1/2), and P38 mitogen-activated protein kinase (P38 MAPK) activities and expression in skeletal muscle from untrained and endurance-trained subjects at rest and after 20min of cycle exercise (80% of VO(2peak)). Activities of aPKC (P<0.05) and ERK 1/2 (P=0.06), but not phosphorylation of P38 MAPK, were higher in trained than in sedentary subjects at rest. Exercise increased the activities of ERK 1/2 (P<0.01) and aPKC (P<0.05) and the phosphorylation (Thr180/Tyr182) of P38 MAPK (P<0.01) similarly in muscle from trained and sedentary subjects. Protein expression of the kinases was similar in trained and sedentary muscle. The increased aPKC activity in exercise-trained subjects could be important in explaining the enhanced insulin action in these individuals.
Collapse
Affiliation(s)
- Jakob N Nielsen
- Copenhagen Muscle Research Centre, Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Hilder TL, Tou JCL, Grindeland RE, Wade CE, Graves LM. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle. FEBS Lett 2003; 553:63-7. [PMID: 14550547 DOI: 10.1016/s0014-5793(03)00972-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.
Collapse
Affiliation(s)
- Thomas L Hilder
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599-7365, USA.
| | | | | | | | | |
Collapse
|
143
|
Rutter GA, Da Silva Xavier G, Leclerc I. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem J 2003; 375:1-16. [PMID: 12839490 PMCID: PMC1223661 DOI: 10.1042/bj20030048] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 06/18/2003] [Accepted: 07/03/2003] [Indexed: 12/25/2022]
Abstract
AMPK (5'-AMP-activated protein kinase) is emerging as a metabolic master switch, by which cells in both mammals and lower organisms sense and decode changes in energy status. Changes in AMPK activity have been shown to regulate glucose transport in muscle and glucose production by the liver. Moreover, AMPK appears to be a key regulator of at least one transcription factor linked to a monogenic form of diabetes mellitus. As a result, considerable efforts are now under way to explore the usefulness of AMPK as a therapeutic target for other forms of this disease. Here we review this topic, and discuss new findings which suggest that AMPK may play roles in regulating insulin release and the survival of pancreatic islet beta-cells, and nutrient sensing by the brain.
Collapse
Affiliation(s)
- Guy A Rutter
- Henry Wellcome Laboratories of Integrated Cell Signalling and Department of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
144
|
Morrow VA, Foufelle F, Connell JMC, Petrie JR, Gould GW, Salt IP. Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem 2003; 278:31629-39. [PMID: 12791703 DOI: 10.1074/jbc.m212831200] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent studies have indicated that endothelial nitric-oxide synthase (eNOS) is regulated by reversible phosphorylation in intact endothelial cells. AMP-activated protein kinase (AMPK) has previously been demonstrated to phosphorylate and activate eNOS at Ser-1177 in vitro, yet the function of AMPK in endothelium is poorly characterized. We therefore determined whether activation of AMPK with 5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) stimulated NO production in human aortic endothelial cells. AICAR caused the time- and dose-dependent stimulation of AMPK activity, with a concomitant increase in eNOS Ser-1177 phosphorylation and NO production. AMPK was associated with immunoprecipitates of eNOS, yet this was unaffected by increasing concentrations of AICAR. AICAR also caused the time- and dose-dependent stimulation of protein kinase B phosphorylation. To confirm that the effects of AICAR were indeed mediated by AMPK, we utilized adenovirus-mediated expression of a dominant negative AMPK mutant. Expression of dominant negative AMPK attenuated AICAR-stimulated AMPK activity, eNOS Ser-1177 phosphorylation and NO production and was without effect on AICAR-stimulated protein kinase B Ser-473 phosphorylation or NO production stimulated by insulin or A23187. These data suggest that AICAR-stimulated NO production is mediated by AMPK as a consequence of increased Ser-1177 phosphorylation of eNOS. We propose that stimuli that result in the acute activation of AMPK activity in endothelial cells stimulate NO production, at least in part due to phosphorylation and activation of eNOS. Regulation of endothelial AMPK therefore provides an additional mechanism by which local vascular tone may be controlled.
Collapse
Affiliation(s)
- Valerie A Morrow
- The Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
145
|
Beeson M, Sajan MP, Dizon M, Grebenev D, Gomez-Daspet J, Miura A, Kanoh Y, Powe J, Bandyopadhyay G, Standaert ML, Farese RV. Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 2003; 52:1926-34. [PMID: 12882907 DOI: 10.2337/diabetes.52.8.1926] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance in type 2 diabetes is partly due to impaired glucose transport in skeletal muscle. Atypical protein kinase C (aPKC) and protein kinase B (PKB), operating downstream of phosphatidylinositol (PI) 3-kinase and its lipid product, PI-3,4,5-(PO(4))(3) (PIP(3)), apparently mediate insulin effects on glucose transport. We examined these signaling factors during hyperinsulinemic-euglycemic clamp studies in nondiabetic subjects, subjects with impaired glucose tolerance (IGT), and type 2 diabetic subjects. In nondiabetic control subjects, insulin provoked twofold increases in muscle aPKC activity. In both IGT and diabetes, aPKC activation was markedly (70-80%) diminished, most likely reflecting impaired activation of insulin receptor substrate (IRS)-1-dependent PI 3-kinase and decreased ability of PIP(3) to directly activate aPKCs; additionally, muscle PKC-zeta levels were diminished by 40%. PKB activation was diminished in patients with IGT but not significantly in diabetic patients. The insulin sensitizer rosiglitazone improved insulin-stimulated IRS-1-dependent PI 3-kinase and aPKC activation, as well as glucose disposal rates. Bicycle exercise, which activates aPKCs and stimulates glucose transport independently of PI 3-kinase, activated aPKCs comparably to insulin in nondiabetic subjects and better than insulin in diabetic patients. Defective aPKC activation contributes to skeletal muscle insulin resistance in IGT and type 2 diabetes, rosiglitazone improves insulin-stimulated aPKC activation, and exercise directly activates aPKCs in diabetic muscle.
Collapse
Affiliation(s)
- Mary Beeson
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of South Florida College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Musi N, Goodyear LJ. AMP-activated protein kinase and muscle glucose uptake. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:337-45. [PMID: 12864738 DOI: 10.1046/j.1365-201x.2003.01168.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The AMP-activated protein kinase (AMPK) is an enzyme that is activated in situations where there are changes in the cellular energy status such as muscle contraction and hypoxia. AMPK can also be pharmacologically activated by the compound 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and the antidiabetic agent metformin. Several studies support the hypothesis that AMPK plays an important role in the stimulation of muscle glucose uptake by these physiological and pharmacological stimuli. In isolated rat muscles, activation of AMPK is associated with increases in glucose uptake through an insulin-independent mechanism. Studies done in rodents have shown that the activation of AMPK by AICAR is accompanied by decreases in blood glucose concentrations, in part due to enhanced muscle glucose uptake. Similar to exercise, AICAR not only directly stimulates glucose uptake into the skeletal muscle, but also enhances insulin sensitivity. The activation of AMPK and associated increases in muscle glucose uptake are affected by factors such as glycogen content, exercise training and fibre type. The effects of AMPK on muscle glucose uptake makes this protein a promising pharmacological target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- N Musi
- Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
147
|
Richter EA, Nielsen JN, Jørgensen SB, Frøsig C, Wojtaszewski JFP. Signalling to glucose transport in skeletal muscle during exercise. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:329-35. [PMID: 12864737 DOI: 10.1046/j.1365-201x.2003.01153.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exercise-induced glucose uptake in skeletal muscle is mediated by an insulin-independent mechanism. Although the signalling events that increase glucose transport in response to muscle contraction are not fully elucidated, the aim of the present review is to briefly present the current understanding of the molecular signalling mechanisms involved. Glucose uptake may be regulated by Ca++-sensitive contraction-related mechanisms possibly involving protein kinase C, and by mechanisms that reflect the metabolic status of the muscle and may involve the AMP-activated protein kinase. Furthermore the p38 mitogen activated protein kinase may be involved. Still, the picture is incomplete and a substantial part of the exercise/contraction-induced signalling mechanism to glucose transport remains unknown.
Collapse
Affiliation(s)
- E A Richter
- Copenhagen Muscle Research Centre, Department of Human Physiology, Institute of Exercise and Sports Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
148
|
Akhtar M, Watson JL, Nazli A, McKay DM. Bacterial DNA evokes epithelial IL‐8 production by a MAPK‐dependent, NFκB‐independent pathway. FASEB J 2003. [DOI: 10.1096/fj.02-0950fje] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahmood Akhtar
- Intestinal Disease Research Programme, Department of Pathology and Molecular MedicineMcMaster University Hamilton Ontario Canada
| | - James L. Watson
- Intestinal Disease Research Programme, Department of Pathology and Molecular MedicineMcMaster University Hamilton Ontario Canada
| | - Aisha Nazli
- Intestinal Disease Research Programme, Department of Pathology and Molecular MedicineMcMaster University Hamilton Ontario Canada
| | - Derek M. McKay
- Intestinal Disease Research Programme, Department of Pathology and Molecular MedicineMcMaster University Hamilton Ontario Canada
| |
Collapse
|
149
|
Sambandam N, Lopaschuk GD. AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 2003; 42:238-56. [PMID: 12689619 DOI: 10.1016/s0163-7827(02)00065-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Myocardial ischemia is the leading cause of all cardiovascular deaths in North America. Myocardial ischemia is accompanied by profound changes in metabolism including alterations in glucose and fatty acid metabolism, increased uncoupling of glucose oxidation from glycolysis and accumulation of protons within the myocardium. These changes can contribute to a poor functional recovery of the heart. One key player in the ischemia-induced alteration in fatty acid and glucose metabolism is 5'AMP-activated protein kinase (AMPK). Accumulating evidence suggest that activation of AMPK during myocardial ischemia both increases glucose uptake and glycolysis while also increasing fatty acid oxidation during reperfusion. Gain-of-function mutations of AMPK in cardiac muscle may also be causally related to the development of hypertrophic cardiomyopathies. Therefore, a better understanding of role of AMPK in cardiac metabolism is necessary to appropriately modulate its activity as a potential therapeutic target in treating ischemia reperfusion injuries. This review attempts to update some of the recent findings that delineate various pathways through which AMPK regulates glucose and fatty acid metabolism in the ischemic myocardium.
Collapse
Affiliation(s)
- Nandakumar Sambandam
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
150
|
Koistinen HA, Galuska D, Chibalin AV, Yang J, Zierath JR, Holman GD, Wallberg-Henriksson H. 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes 2003; 52:1066-72. [PMID: 12716734 DOI: 10.2337/diabetes.52.5.1066] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AMP-activated protein kinase (AMPK) activation by AICAR (5-amino-imidazole carboxamide riboside) is correlated with increased glucose transport in rodent skeletal muscle via an insulin-independent pathway. We determined in vitro effects of insulin and/or AICAR exposure on glucose transport and cell-surface GLUT4 content in skeletal muscle from nondiabetic men and men with type 2 diabetes. AICAR increased glucose transport in a dose-dependent manner in healthy subjects. Insulin and AICAR increased glucose transport and cell-surface GLUT4 content to a similar extent in control subjects. In contrast, insulin- and AICAR-stimulated responses on glucose transport and cell-surface GLUT4 content were impaired in subjects with type 2 diabetes. Importantly, exposure of type 2 diabetic skeletal muscle to a combination of insulin and AICAR increased glucose transport and cell-surface GLUT4 content to levels achieved in control subjects. AICAR increased AMPK and acetyl-CoA carboxylase phosphorylation to a similar extent in skeletal muscle from subjects with type 2 diabetes and nondiabetic subjects. Our studies highlight the potential importance of AMPK-dependent pathways in the regulation of GLUT4 and glucose transport activity in insulin-resistant skeletal muscle. Activation of AMPK is an attractive strategy to enhance glucose transport through increased cell surface GLUT4 content in insulin-resistant skeletal muscle.
Collapse
Affiliation(s)
- Heikki A Koistinen
- Department of Surgical Sciences, Karolinska Hospital, Karolinska Institutet, von Eulers väg 4, II tr, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|