101
|
Benn G, Dehesh K. Quantitative Analysis of Cis-Regulatory Element Activity Using Synthetic Promoters in Transgenic Plants. Methods Mol Biol 2016; 1482:15-30. [PMID: 27557758 DOI: 10.1007/978-1-4939-6396-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synthetic promoters, introduced stably or transiently into plants, are an invaluable tool for the identification of functional regulatory elements and the corresponding transcription factor(s) that regulate the amplitude, spatial distribution, and temporal patterns of gene expression. Here, we present a protocol describing the steps required to identify and characterize putative cis-regulatory elements. These steps include application of computational tools to identify putative elements, construction of a synthetic promoter upstream of luciferase, identification of transcription factors that regulate the element, testing the functionality of the element introduced transiently and/or stably into the species of interest followed by high-throughput luciferase screening assays, and subsequent data processing and statistical analysis.
Collapse
Affiliation(s)
- Geoffrey Benn
- Department of Plant Biology, University of California, 1224 Life Sciences Addition, One Shields Avenue, Davis, CA, 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, 1224 Life Sciences Addition, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
102
|
Cao JY, Xu YP, Li W, Li SS, Rahman H, Cai XZ. Genome-Wide Identification of Dicer-Like, Argonaute, and RNA-Dependent RNA Polymerase Gene Families in Brassica Species and Functional Analyses of Their Arabidopsis Homologs in Resistance to Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2016; 7:1614. [PMID: 27833632 PMCID: PMC5081487 DOI: 10.3389/fpls.2016.01614] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/12/2016] [Indexed: 05/20/2023]
Abstract
RNA silencing is an important mechanism to regulate gene expression and antiviral defense in plants. Nevertheless, RNA silencing machinery in the important oil crop Brassica napus and function in resistance to the devastating fungal pathogen Sclerotinia sclerotiorum are not well-understood. In this study, gene families of RNA silencing machinery in B. napus were identified and their role in resistance to S. sclerotiorum was revealed. Genome of the allopolyploid species B. napus possessed 8 Dicer-like (DCL), 27 Argonaute (AGO), and 16 RNA-dependent RNA polymerase (RDR) genes, which included almost all copies from its progenitor species B. rapa and B. oleracea and three extra copies of RDR5 genes, indicating that the RDR5 group in B. napus appears to have undergone further expansion through duplication during evolution. Moreover, compared with Arabidopsis, some AGO and RDR genes such as AGO1, AGO4, AGO9, and RDR5 had significantly expanded in these Brassica species. Twenty-one out of 51 DCL, AGO, and RDR genes were predicted to contain calmodulin-binding transcription activators (CAMTA)-binding site (CGCG box). S. sclerotiorum inoculation strongly induced the expression of BnCAMTA3 genes while significantly suppressed that of some CGCG-containing RNA silencing component genes, suggesting that RNA silencing machinery might be targeted by CAMTA3. Furthermore, Arabidopsis mutant analyses demonstrated that dcl4-2, ago9-1, rdr1-1, rdr6-11, and rdr6-15 mutants were more susceptible to S. sclerotiorum, while dcl1-9 was more resistant. Our results reveal the importance of RNA silencing in plant resistance to S. sclerotiorum and imply a new mechanism of CAMTA function as well as RNA silencing regulation.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - You-Ping Xu
- Center of Analysis and Measurement, Zhejiang UniversityHangzhou, China
| | - Wen Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Shuang-Sheng Li
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Hafizur Rahman
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Xin-Zhong Cai
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
- *Correspondence: Xin-Zhong Cai
| |
Collapse
|
103
|
Casu RE, Rae AL, Nielsen JM, Perroux JM, Bonnett GD, Manners JM. Tissue-specific transcriptome analysis within the maturing sugarcane stalk reveals spatial regulation in the expression of cellulose synthase and sucrose transporter gene families. PLANT MOLECULAR BIOLOGY 2015; 89:607-28. [PMID: 26456093 DOI: 10.1007/s11103-015-0388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/29/2015] [Indexed: 05/23/2023]
Abstract
Sugarcane (Saccharum spp. hybrids) accumulates high concentrations of sucrose in its mature stalk and a considerable portion of carbohydrate metabolism is also devoted to cell wall synthesis and fibre production. We examined tissue-specific expression patterns to explore the spatial deployment of pathways responsible for sucrose accumulation and fibre synthesis within the stalk. We performed expression profiling of storage parenchyma, vascular bundles and rind dissected from a maturing stalk internode of sugarcane, identifying ten cellulose synthase subunit genes and examining significant differences in the expression of their corresponding transcripts and those of several sugar transporters. These were correlated with differential expression patterns for transcripts of genes encoding COBRA-like proteins and other cell wall metabolism-related proteins. The sugar transporters genes ShPST2a, ShPST2b and ShSUT4 were significantly up-regulated in storage parenchyma while ShSUT1 was up-regulated in vascular bundles. Two co-ordinately expressed groups of cell wall related transcripts were also identified. One group, associated with primary cell wall synthesis (ShCesA1, ShCesA7, ShCesA9 and Shbk2l3), was up-regulated in parenchyma. The other group, associated with secondary cell wall synthesis (ShCesA10, ShCesA11, ShCesA12 and Shbk-2), was up-regulated in rind. In transformed sugarcane plants, the ShCesA7 promoter conferred stable expression of green fluorescent protein preferentially in the storage parenchyma of the maturing stalk internode. Our results indicate that there is spatial separation for elevated expression of these important targets in both sucrose accumulation and cell wall synthesis, allowing for increased clarity in our understanding of sucrose transport and fibre synthesis in sugarcane.
Collapse
Affiliation(s)
- Rosanne E Casu
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, 4067, Australia.
| | - Anne L Rae
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| | - Janine M Nielsen
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| | - Jai M Perroux
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| | - Graham D Bonnett
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| | - John M Manners
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| |
Collapse
|
104
|
Yadav AK, Shankar A, Jha SK, Kanwar P, Pandey A, Pandey GK. A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast. Sci Rep 2015; 5:17117. [PMID: 26607171 PMCID: PMC4660821 DOI: 10.1038/srep17117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
In plant cell, cations gradient in cellular compartments is maintained by synergistic action of various exchangers, pumps and channels. The Arabidopsis exchanger family members (AtCCX3 and AtCCX5) were previously studied and belong to CaCA (calcium cation exchangers) superfamily while none of the rice CCXs has been functionally characterized for their cation transport activities till date. Rice genome encode four CCXs and only OsCCX2 transcript showed differential expression under abiotic stresses and Ca(2+) starvation conditions. The OsCCX2 localized to tonoplast and suppresses the Ca(2+) sensitivity of K667 (low affinity Ca(2+) uptake deficient) yeast mutant under excess CaCl2 conditions. In contrast to AtCCXs, OsCCX2 expressing K667 yeast cells show tolerance towards excess Na(+), Li(+), Fe(2+), Zn(2+) and Co(2+) and suggest its ability to transport both mono as well as divalent cations in yeast. Additionally, in contrast to previously characterized AtCCXs, OsCCX2 is unable to complement yeast trk1trk2 double mutant suggesting inability to transport K(+) in yeast system. These finding suggest that OsCCX2 having distinct metal transport properties than previously characterized plant CCXs. OsCCX2 can be used as potential candidate for enhancing the abiotic stress tolerance in plants as well as for phytoremediation of heavy metal polluted soil.
Collapse
Affiliation(s)
- Akhilesh K. Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Saroj K. Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
105
|
Wei Y, Xu H, Diao L, Zhu Y, Xie H, Cai Q, Wu F, Wang Z, Zhang J, Xie H. Protein repair L-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability. PLANT MOLECULAR BIOLOGY 2015; 89:475-92. [PMID: 26438231 DOI: 10.1007/s11103-015-0383-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/19/2015] [Indexed: 05/07/2023]
Abstract
Damaged proteins containing abnormal isoaspartyl (isoAsp) accumulate as seeds age and the abnormality is thought to undermine seed vigor. Protein-L-isoaspartyl methyltransferase (PIMT) is involved in isoAsp-containing protein repair. Two PIMT genes from rice (Oryza sativa L.), designated as OsPIMT1 and OsPIMT2, were isolated and investigated for their roles. The results indicated that OsPIMT2 was mainly present in green tissues, but OsPIMT1 largely accumulated in embryos. Confocal visualization of the transient expression of OsPIMTs showed that OsPIMT2 was localized in the chloroplast and nucleus, whereas OsPIMT1 was predominately found in the cytosol. Artificial aging results highlighted the sensitivity of the seeds of OsPIMT1 mutant line when subjected to accelerated aging. Overexpression of OsPIMT1 in transgenic seeds reduced the accumulation of isoAsp-containing protein in embryos, and increased embryo viability. The germination percentage of transgenic seeds overexpressing OsPIMT1 increased 9-15% compared to the WT seeds after 21-day of artificial aging, whereas seeds from the OsPIMT1 RNAi lines overaccumulated isoAsp in embryos and experienced rapid loss of seed germinability. Taken together, these data strongly indicated that OsPIMT1-related seed longevity improvement is probably due to the repair of detrimental isoAsp-containing proteins that over accumulate in embryos when subjected to accelerated aging.
Collapse
Affiliation(s)
- Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Lirong Diao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China
| | - Zonghua Wang
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China
- Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China.
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China.
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
- Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou, Fujian, China.
- Incubator of National Key Laboratory of Crop Germplasm Innovation and Molecular Breeding Between Fujian and Ministry of Sciences and Technology/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture/South-China Base of National Key Laboratory of Hybrid Rice of China, Fuzhou/National Engineering Laboratory of Rice, Fuzhou, Fujian, China.
| |
Collapse
|
106
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
107
|
Calmodulin-binding transcription activators and perspectives for applications in biotechnology. Appl Microbiol Biotechnol 2015; 99:10379-85. [PMID: 26450508 DOI: 10.1007/s00253-015-6966-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 01/31/2023]
Abstract
In recent years, a novel family of calmodulin-binding transcription activators (CAMTAs) has been reported in various species. The CAMTAs share a conserved domain organization, with a CG-1 DNA-binding domain, a transcription factor immunoglobulin domain, several ankyrin repeats, a calmodulin-binding domain, and a varying number of IQ motifs. CAMTAs participate in transcriptional regulation by recognizing and binding to a specific cis-element: (G/A/C)CGCG(C/G/T). Plants suffer from the environmental challenges, including abiotic and biotic stresses. Investigations in various plant species indicate a broad range of CAMTA functions involved in developmental regulation, environmental stress response, and hormone cross talk. In this review, we focus on the expression patterns and biological functions of CAMTAs to explore their probable applications in biotechnology. Furthermore, the identification and phylogenetic analysis of CAMTAs in crops could open new perspectives for enhancing stress tolerance, which could lead to improved crop production.
Collapse
|
108
|
Wen YQ, Zhong GY, Gao Y, Lan YB, Duan CQ, Pan QH. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC PLANT BIOLOGY 2015; 15:240. [PMID: 26444528 DOI: 10.1186/s12870-015-0631-631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/29/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Terpenes are of great interest to winemakers because of their extremely low perception thresholds and pleasant floral odors. Even for the same variety, terpene profile can be substantially different for grapevine growing environments. Recently a series of genes required for terpene biosynthesis were biochemically characterized in grape berries. However, the genes that dominate the differential terpene accumulation of grape berries between regions have yet to be identified. METHODS Free and glycosidically-bound terpenes were identified and quantified using gas chromatography-mass spectrometry (GC-MS) technique. The transcription expression profiling of the genes was obtained by RNA sequencing and part of the results were verified by quantitative real time PCR (QPCR). The gene co-expression networks were constructed with the Cytoscape software v 2.8.2 ( www.cytoscape.org). RESULTS 'Muscat Blanc a Petits Grains' berries were collected from two wine-producing regions with strikingly different climates, Gaotai (GT) in Gansu Province and Changli (CL) in Hebei Province in China, at four developmental stages for two consecutive years. GC-MS analysis demonstrated that both free and glycosidically bound terpenes accumulated primarily after veraison and that mature grape berries from CL contained significantly higher concentrations of free and glycosidically bound terpenes than berries from GT. Transcriptome analysis revealed that some key genes involved in terpene biosynthesis were markedly up-regulated in the CL region. Particularly in the MEP pathway, the expression of VviHDR (1-hydroxy-2-methyl-2-butenyl 4-diphosphate reductase) paralleled with the accumulation of terpenes, which can promote the flow of isopentenyl diphosphate (IPP) into the terpene synthetic pathway. The glycosidically bound monoterpenes accumulated differentially along with maturation in both regions, which is synchronous with the expression of a monoterpene glucosyltransferase gene (VviUGT85A2L4 (VviGT14)). Other genes were also found to be related to the differential accumulation of terpenes and monoterpene glycosides in the grapes between regions. Transcription factors that could regulate terpene synthesis were predicted through gene co-expression network analysis. Additionally, the genes involved in abscisic acid (ABA) and ethylene signal responses were expressed at high levels earlier in GT grapes than in CL grapes. CONCLUSIONS Differential production of free and glycosidically-bound terpenes in grape berries across GT and CL regions should be related at least to the expression of both VviHDR and VviUGT85A2L4 (VviGT14). Considering the expression patterns of both transcription factors and mature-related genes, we infer that less rainfall and stronger sunshine in the GT region could initiate the earlier expression of ripening-related genes and accelerate the berry maturation, eventually limiting the production of terpene volatiles.
Collapse
Affiliation(s)
- Ya-Qin Wen
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Bee Product Quality Supervision and Testing Center, Bee Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Gan-Yuan Zhong
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14456, USA.
| | - Yuan Gao
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yi-Bin Lan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Qiu-Hong Pan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
109
|
Wen YQ, Zhong GY, Gao Y, Lan YB, Duan CQ, Pan QH. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC PLANT BIOLOGY 2015; 15:240. [PMID: 26444528 PMCID: PMC4595271 DOI: 10.1186/s12870-015-0631-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/29/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Terpenes are of great interest to winemakers because of their extremely low perception thresholds and pleasant floral odors. Even for the same variety, terpene profile can be substantially different for grapevine growing environments. Recently a series of genes required for terpene biosynthesis were biochemically characterized in grape berries. However, the genes that dominate the differential terpene accumulation of grape berries between regions have yet to be identified. METHODS Free and glycosidically-bound terpenes were identified and quantified using gas chromatography-mass spectrometry (GC-MS) technique. The transcription expression profiling of the genes was obtained by RNA sequencing and part of the results were verified by quantitative real time PCR (QPCR). The gene co-expression networks were constructed with the Cytoscape software v 2.8.2 ( www.cytoscape.org). RESULTS 'Muscat Blanc a Petits Grains' berries were collected from two wine-producing regions with strikingly different climates, Gaotai (GT) in Gansu Province and Changli (CL) in Hebei Province in China, at four developmental stages for two consecutive years. GC-MS analysis demonstrated that both free and glycosidically bound terpenes accumulated primarily after veraison and that mature grape berries from CL contained significantly higher concentrations of free and glycosidically bound terpenes than berries from GT. Transcriptome analysis revealed that some key genes involved in terpene biosynthesis were markedly up-regulated in the CL region. Particularly in the MEP pathway, the expression of VviHDR (1-hydroxy-2-methyl-2-butenyl 4-diphosphate reductase) paralleled with the accumulation of terpenes, which can promote the flow of isopentenyl diphosphate (IPP) into the terpene synthetic pathway. The glycosidically bound monoterpenes accumulated differentially along with maturation in both regions, which is synchronous with the expression of a monoterpene glucosyltransferase gene (VviUGT85A2L4 (VviGT14)). Other genes were also found to be related to the differential accumulation of terpenes and monoterpene glycosides in the grapes between regions. Transcription factors that could regulate terpene synthesis were predicted through gene co-expression network analysis. Additionally, the genes involved in abscisic acid (ABA) and ethylene signal responses were expressed at high levels earlier in GT grapes than in CL grapes. CONCLUSIONS Differential production of free and glycosidically-bound terpenes in grape berries across GT and CL regions should be related at least to the expression of both VviHDR and VviUGT85A2L4 (VviGT14). Considering the expression patterns of both transcription factors and mature-related genes, we infer that less rainfall and stronger sunshine in the GT region could initiate the earlier expression of ripening-related genes and accelerate the berry maturation, eventually limiting the production of terpene volatiles.
Collapse
Affiliation(s)
- Ya-Qin Wen
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Bee Product Quality Supervision and Testing Center, Bee Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Gan-Yuan Zhong
- United States Department of Agriculture-Agricultural Research Service, Grape Genetics Research Unit, Geneva, NY, 14456, USA.
| | - Yuan Gao
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yi-Bin Lan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Qiu-Hong Pan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
110
|
Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:783-95. [PMID: 25557253 DOI: 10.1111/jipb.12327] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/25/2014] [Indexed: 05/08/2023]
Abstract
Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.
Collapse
Affiliation(s)
- Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | | | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Mingfeng Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| |
Collapse
|
111
|
Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:600. [PMID: 26322054 PMCID: PMC4532166 DOI: 10.3389/fpls.2015.00600] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Transient changes in intracellular Ca(2+) concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca(2+) sensors, playing critical roles in interpreting encrypted Ca(2+) signals. Ca(2+)-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca(2+) signal and overview of Ca(2+) signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca(2+)/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca(2+)/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca(2+)/CaM-mediated signaling warrant further investigation. Ca(2+)/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca(2+) signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca(2+)/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Luqin Xu
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Amarjeet Singh
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - B. W. Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| |
Collapse
|
112
|
Martínez F, Arif A, Nebauer SG, Bueso E, Ali R, Montesinos C, Brunaud V, Muñoz-Bertomeu J, Serrano R. A fungal transcription factor gene is expressed in plants from its own promoter and improves drought tolerance. PLANTA 2015; 242:39-52. [PMID: 25809153 DOI: 10.1007/s00425-015-2285-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
MAIN CONCLUSION A fungal gene encoding a transcription factor is expressed from its own promoter in Arabidopsis phloem and improves drought tolerance by reducing transpiration and increasing osmotic potential. Horizontal gene transfer from unrelated organisms has occurred in the course of plant evolution, suggesting that some foreign genes may be useful to plants. The CtHSR1 gene, previously isolated from the halophytic yeast Candida tropicalis, encodes a heat-shock transcription factor-related protein. CtHSR1, with expression driven by its own promoter or by the Arabidopsis UBQ10 promoter, was introduced into the model plant Arabidopsis thaliana by Agrobacterium tumefaciens-mediated transformation and the resulting transgenic plants were more tolerant to drought than controls. Fusions of the CtHSR1 promoter with β-glucuronidase reporter gene indicated that this fungal promoter drives expression to phloem tissues. A chimera of CtHSR1 and green fluorescence protein is localized at the cell nucleus. The physiological mechanism of drought tolerance in transgenic plants is based on reduced transpiration (which correlates with decreased opening of stomata and increased levels of jasmonic acid) and increased osmotic potential (which correlates with increased proline accumulation). Transcriptomic analysis indicates that the CtHSR1 transgenic plants overexpressed a hundred of genes, including many relevant to stress defense such as LOX4 (involved in jasmonic acid synthesis) and P5CS1 (involved in proline biosynthesis). The promoters of the induced genes were enriched in upstream activating sequences for water stress induction. These results demonstrate that genes from unrelated organisms can have functional expression in plants from its own promoter and expand the possibilities of useful transgenes for plant biotechnology.
Collapse
Affiliation(s)
- Félix Martínez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Camino de Vera, 46022, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Yang K, Monfared SR, Wang H, Lundgren A, Brodelius PE. The activity of the artemisinic aldehyde Δ11(13) reductase promoter is important for artemisinin yield in different chemotypes of Artemisia annua L. PLANT MOLECULAR BIOLOGY 2015; 88:325-40. [PMID: 25616735 DOI: 10.1007/s11103-015-0284-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/12/2015] [Indexed: 05/03/2023]
Abstract
The artemisinic aldehyde double bond reductase (DBR2) plays an important role in the biosynthesis of the antimalarial artemisinin in Artemisia annua. Artemisinic aldehyde is reduced into dihydroartemisinic aldehyde by DBR2. Artemisinic aldehyde can also be oxidized by amorpha-4,11-diene 12-hydroxylase and/or aldehyde dehydrogenase 1 to artemisinic acid, a precursor of arteannuin B. In order to better understand the effects of DBR2 expression on the flow of artemisinic aldehyde into either artemisinin or arteannuin B, we determined the content of dihydroartemisinic aldehyde, artemisinin, artemisinic acid and arteannuin B content of A. annua varieties sorted into two chemotypes. The high artemisinin producers (HAPs), which includes the '2/39', 'Chongqing' and 'Anamed' varieties, produce more artemisinin than arteannuin B; the low artemisinin producers (LAPs), which include the 'Meise', 'Iran#8', 'Iran#14', 'Iran#24' and 'Iran#47' varieties, produce more arteannuin B than artemisinin. Quantitative PCR showed that the relative expression of DBR2 was significantly higher in the HAP varieties. We cloned and sequenced the promoter of the DBR2 gene from varieties of both the LAP and the HAP groups. There were deletions/insertions in the region just upstream of the ATG start codon in the LAP varities, which might be the reason for the different promoter activities of the HAP and LAP varieties. The relevance of promoter variation, DBR2 expression levels and artemisinin biosynthesis capabilities are discussed and a selection method for HAP varieties with a DNA marker is suggested. Furthermore, putative cis-acting regulatory elements differ between the HAP and LAP varieties.
Collapse
Affiliation(s)
- Ke Yang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | | | | | | |
Collapse
|
114
|
Leng X, Han J, Wang X, Zhao M, Sun X, Wang C, Fang J. Characterization of a Calmodulin-binding Transcription Factor from Strawberry (Fragaria × ananassa). THE PLANT GENOME 2015; 8:eplantgenome2014.08.0039. [PMID: 33228307 DOI: 10.3835/plantgenome2014.08.0039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 06/11/2023]
Abstract
Calmodulin-binding transcription activator (CAMTA) is a calmodulin-binding transcription factor that has a broad range of functions from sensory mechanisms to regulating many growth and developmental processes. In this study, we isolated four strawberry CAMTA (FaCAMTA) genes using HMMER and BLAST analysis. The chromosome scaffold locations of these CAMTA genes in the strawberry genome were determined and the protein domain and motif organization [CG-1, transcription factor immunoglobulin, ankyrin (ANK) repeats, calmodulin-binding IQ motif) of FaCAMTAs were also assessed. All FaCAMTAs were predicted to be Ca- and calmodulin-binding proteins. The expression profiles of FaCAMTA genes were measured in different tissues and revealed distinct FaCAMTA gene expression patterns under heat, cold, and salt stress. These data not only contribute to a better understanding of the complex regulation of the FaCAMTA gene family but also provide evidence supporting the role of CAMTAs in multiple signaling pathways involved in stress responses. This investigation can provide useful information for further study.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Jian Han
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Xiaomin Wang
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, P.O. Box1435, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, 210014, P.R. China
| | - Mizhen Zhao
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Zhongling St. 50, Nanjing, 210014, P.R. China
| | - Xin Sun
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural Univ., Tongwei Rd. 6, Nanjing, 210095, P.R. China
| |
Collapse
|
115
|
Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:462. [PMID: 26175738 PMCID: PMC4485163 DOI: 10.3389/fpls.2015.00462] [Citation(s) in RCA: 398] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/11/2015] [Indexed: 05/17/2023]
Abstract
Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses;
Collapse
Affiliation(s)
| | - Mehar Fatma
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Tasir S. Per
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Naser A. Anjum
- Centre for Environmental and Marine Studies, Department of Chemistry, University of AveiroAveiro, Portugal
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
116
|
Jaiswal V, Gahlaut V, Mathur S, Agarwal P, Khandelwal MK, Khurana JP, Tyagi AK, Balyan HS, Gupta PK. Identification of Novel SNP in Promoter Sequence of TaGW2-6A Associated with Grain Weight and Other Agronomic Traits in Wheat (Triticum aestivum L.). PLoS One 2015; 10:e0129400. [PMID: 26076351 PMCID: PMC4468092 DOI: 10.1371/journal.pone.0129400] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
TaGW2 is an orthologue of rice gene OsGW2, which encodes E3 RING ubiquitin ligase and controls the grain size in rice. In wheat, three copies of TaGW2 have been identified and mapped on wheat homoeologous group 6 viz. TaGW2-6A, TaGW2-6B and TaGW2-6D. In the present study, using as many as 207 Indian wheat genotypes, we identified four SNPs including two novel SNPs (SNP-988 and SNP-494) in the promoter sequence of TaGW2-6A. All the four SNPs were G/A or A/G substitutions (transitions). Out of the four SNPs, SNP-494 was causal, since it was found associated with grain weight. The mean TGW (41.1 g) of genotypes with the allele SNP-494_A was significantly higher than mean TGW (38.6 g) of genotypes with the allele SNP-494_G. SNP-494 also regulates the expression of TaGW2-6A so that the wheat genotypes with SNP-494_G have higher expression and lower TGW and the genotypes with SNP-494_A have lower expression but higher TGW. Besides, SNP-494 was also found associated with grain length-width ratio, awn length, spike length, grain protein content, peduncle length and plant height. This suggested that gene TaGW2-6A not only controls grain size, but also controls other agronomic traits. In the promoter region, SNP-494 was present in 'CGCG' motif that plays an important role in Ca2+/calmodulin mediated regulation of genes. A user-friendly CAPS marker was also developed to identify the desirable allele of causal SNP (SNP-494) for use in marker-assisted selection for improvement of grain weight in wheat. Using four SNPs, five haplotypes were identified; of these, Hap_5 (G_A_G_A) was found to be a desirable haplotype having significantly higher grain weight (41.13g) relative to other four haplotypes (36.33-39.16 g).
Collapse
Affiliation(s)
- Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Saloni Mathur
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, India
| | - Priyanka Agarwal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | | | - Jitendra Paul Khurana
- Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- * E-mail:
| |
Collapse
|
117
|
Sawyer AL, Hankamer BD, Ross IL. Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter. PLANTA 2015; 241:1287-1302. [PMID: 25672503 DOI: 10.1007/s00425-015-2249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
A 44-base-pair region in the Chlamydomonas reinhardtii LHCBM9 promoter is essential for sulphur responsiveness. The photosynthetic light-harvesting complex (LHC) proteins play essential roles both in light capture, the first step of photosynthesis, and in photoprotective mechanisms. In contrast to the other LHC proteins and the majority of photosynthesis proteins, the Chlamydomonas reinhardtii photosystem II-associated LHC protein, LHCBM9, was recently reported to be up-regulated under sulphur deprivation conditions, which also induce hydrogen production. Here, we examined the sulphur responsiveness of the LHCBM9 gene at the transcriptional level, through promoter deletion analysis. The LHCBM9 promoter was found to be responsive to sulphur deprivation, with a 44-base-pair region between nucleotide positions -136 and -180 relative to the translation start site identified as essential for this response. Anaerobiosis was found to enhance promoter activity under sulphur deprivation conditions, however, alone was unable to induce promoter activity. The study of LHCBM9 is of biological and biotechnological importance, as its expression is linked to photobiological hydrogen production, theoretically the most efficient process for biofuel production, while the simplicity of using an S-deprivation trigger enables the development of a novel C. reinhardtii-inducible promoter system based on LHCBM9.
Collapse
Affiliation(s)
- Anne L Sawyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
118
|
Khan ZA, Abdin MZ, Khan JA. Functional characterization of a strong bi-directional constitutive plant promoter isolated from cotton leaf curl Burewala virus. PLoS One 2015; 10:e0121656. [PMID: 25799504 PMCID: PMC4370823 DOI: 10.1371/journal.pone.0121656] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/02/2015] [Indexed: 11/19/2022] Open
Abstract
Cotton leaf curl Burewala virus (CLCuBuV), belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP) genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were fused with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum) plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.
Collapse
Affiliation(s)
- Zainul A. Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, India
| | - Malik Z. Abdin
- Department of Biotechnology, Hamdard University, New Delhi, India
| | - Jawaid A. Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi, India
| |
Collapse
|
119
|
Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses. PLoS One 2015; 10:e0118751. [PMID: 25742625 PMCID: PMC4351008 DOI: 10.1371/journal.pone.0118751] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses.
Collapse
|
120
|
Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression. PLANT PHYSIOLOGY 2015; 167:991-1003. [PMID: 25627216 PMCID: PMC4348791 DOI: 10.1104/pp.114.256552] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/22/2015] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression.
Collapse
Affiliation(s)
- Mutsutomo Tokizawa
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| | - Yuriko Kobayashi
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| | - Tatsunori Saito
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| | - Masatomo Kobayashi
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| | - Satoshi Iuchi
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| | - Mika Nomoto
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| | - Yasuomi Tada
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| | - Yoshiharu Y Yamamoto
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (M.T., Y.K., T.S., Y.Y.Y., H.K.);RIKEN BioResource Center, Ibaraki 305-0074, Japan (M.K., S.I.); andDivision of Biological Science, Graduate School of Science (M.N.), and The Center for Gene Research, Division of Biological Science (Y.T.), Nagoya University, Aichi 464-8602, Japan
| |
Collapse
|
121
|
Song W, Zhao H, Zhang X, Lei L, Lai J. Genome-Wide Identification of VQ Motif-Containing Proteins and their Expression Profiles Under Abiotic Stresses in Maize. FRONTIERS IN PLANT SCIENCE 2015; 6:1177. [PMID: 26779214 PMCID: PMC4700186 DOI: 10.3389/fpls.2015.01177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 05/05/2023]
Abstract
VQ motif-containing proteins play crucial roles in abiotic stress responses in plants. Recent studies have shown that some VQ proteins physically interact with WRKY transcription factors to activate downstream genes. In the present study, we identified and characterized genes encoding VQ motif-containing proteins using the most recent version of the maize genome sequence. In total, 61VQ genes were identified. In a cluster analysis, these genes clustered into nine groups together with their homologous genes in rice and Arabidopsis. Most of the VQ genes (57 out of 61 numbers) identified in maize were found to be single-copy genes. Analyses of RNA-seq data obtained using seedlings under long-term drought treatment showed that the expression levels of most ZmVQ genes (41 out of 61 members) changed during the drought stress response. Quantitative real-time PCR analyses showed that most of the ZmVQ genes were responsive to NaCl treatment. Also, approximately half of the ZmVQ genes were co-expressed with ZmWRKY genes. The identification of these VQ genes in the maize genome and knowledge of their expression profiles under drought and osmotic stresses will provide a solid foundation for exploring their specific functions in the abiotic stress responses of maize.
Collapse
|
122
|
Yang Y, Sun T, Xu L, Pi E, Wang S, Wang H, Shen C. Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments. FRONTIERS IN PLANT SCIENCE 2015; 6:459. [PMID: 26150823 PMCID: PMC4472986 DOI: 10.3389/fpls.2015.00459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/08/2015] [Indexed: 05/06/2023]
Abstract
Calmodulin-binding transcription activators (CAMTAs) are well-characterized calmodulin-binding transcription factors in the plant kingdom. Previous work shows that CAMTAs play important roles in various biological processes including disease resistance, herbivore attack response, and abiotic stress tolerance. However, studies that address the function of CAMTAs during the establishment of symbiosis between legumes and rhizobia are still lacking. This study undertook comprehensive identification and analysis of CAMTA genes using the latest updated M. truncatula genome. All the MtCAMTA genes were expressed in a tissues-specific manner and were responsive to environmental stress-related hormones. The expression profiling of MtCAMTA genes during the early phase of Sinorhizobium meliloti infection was also analyzed. Our data showed that the expression of most MtCAMTA genes was suppressed in roots by S. meliloti infection. The responsiveness of MtCAMTAs to S. meliloti infection indicated that they may function as calcium-regulated transcription factors in the early nodulation signaling pathway. In addition, bioinformatics analysis showed that CAMTA binding sites existed in the promoter regions of various early rhizobial infection response genes, suggesting possible MtCAMTAs-regulated downstream candidate genes during the early phase of S. meliloti infection. Taken together, these results provide basic information about MtCAMTAs in the model legume M. truncatula, and the involvement of MtCAMTAs in nodule organogenesis. This information furthers our understanding of MtCAMTA protein functions in M. truncatula and opens new avenues for continued research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chenjia Shen
- *Correspondence: Chenjia Shen, College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 310036, China
| |
Collapse
|
123
|
Yue R, Lu C, Sun T, Peng T, Han X, Qi J, Yan S, Tie S. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:576. [PMID: 26284092 PMCID: PMC4516887 DOI: 10.3389/fpls.2015.00576] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
The calmodulin-binding transcription activators (CAMTA) play critical roles in plant growth and responses to environmental stimuli. However, how CAMTAs function in responses to abiotic and biotic stresses in maize (Zea mays L.) is largely unknown. In this study, we first identified all the CAMTA homologous genes in the whole genome of maize. The results showed that nine ZmCAMTA genes showed highly diversified gene structures and tissue-specific expression patterns. Many ZmCAMTA genes displayed high expression levels in the roots. We then surveyed the distribution of stress-related cis-regulatory elements in the -1.5 kb promoter regions of ZmCAMTA genes. Notably, a large number of stress-related elements present in the promoter regions of some ZmCAMTA genes, indicating a genetic basis of stress expression regulation of these genes. Quantitative real-time PCR was used to test the expression of ZmCAMTA genes under several abiotic stresses (drought, salt, and cold), various stress-related hormones [abscisic acid, auxin, salicylic acid (SA), and jasmonic acid] and biotic stress [rice black-streaked dwarf virus (RBSDV) infection]. Furthermore, the expression pattern of ZmCAMTA genes under RBSDV infection was analyzed to investigate their potential roles in responses of different maize cultivated varieties to RBSDV. The expression of most ZmCAMTA genes responded to both abiotic and biotic stresses. The data will help us to understand the roles of CAMTA-mediated Ca(2+) signaling in maize tolerance to environmental stresses.
Collapse
Affiliation(s)
- Runqing Yue
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Caixia Lu
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Tao Sun
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Tingting Peng
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Xiaohua Han
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Jianshuang Qi
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Shufeng Yan
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
| | - Shuanggui Tie
- Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Lab. of Maize BiologyZhengzhou, China
- *Correspondence: Shuanggui Tie, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| |
Collapse
|
124
|
Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. FRONTIERS IN PLANT SCIENCE 2015; 6:24. [PMID: 25688254 PMCID: PMC4311611 DOI: 10.3389/fpls.2015.00024] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting in an activation of finely controlled signaling pathways that lead to cellular suicide. Although some aspects of PCD control appear evolutionary conserved between plants, animals and fungi, the extent of conservation remains controversial. Over the last decades, identification and characterization of several lesion mimic mutants (LMM) has been a powerful tool in the quest to unravel PCD pathways in plants. Thanks to progress in molecular genetics, mutations causing the phenotype of a large number of LMM and their related suppressors were mapped, and the identification of the mutated genes shed light on major pathways in the onset of plant PCD such as (i) the involvements of chloroplasts and light energy, (ii) the roles of sphingolipids and fatty acids, (iii) a signal perception at the plasma membrane that requires efficient membrane trafficking, (iv) secondary messengers such as ion fluxes and ROS and (v) the control of gene expression as the last integrator of the signaling pathways.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- *Correspondence: Marianne Delarue, Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant Sciences, Bâtiment 630, Route de Noetzlin, 91405 Orsay Cedex, France e-mail:
| |
Collapse
|
125
|
Vermeirssen V, De Clercq I, Van Parys T, Van Breusegem F, Van de Peer Y. Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress. THE PLANT CELL 2014; 26:4656-79. [PMID: 25549671 PMCID: PMC4311199 DOI: 10.1105/tpc.114.131417] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 05/19/2023]
Abstract
The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation.
Collapse
Affiliation(s)
- Vanessa Vermeirssen
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Inge De Clercq
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Thomas Van Parys
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
126
|
Li X, Huang L, Zhang Y, Ouyang Z, Hong Y, Zhang H, Li D, Song F. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. BMC PLANT BIOLOGY 2014; 14:286. [PMID: 25348703 PMCID: PMC4219024 DOI: 10.1186/s12870-014-0286-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/15/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND The SR/CAMTA proteins represent a small family of transcription activators that play important roles in plant responses to biotic and abiotic stresses. Seven SlSR/CAMTA genes were identified in tomato as tomato counterparts of SR/CAMTA; however, the involvement of SlSRs/CAMTAs in biotic and abiotic stress responses is not clear. In this study, we performed functional analysis of the SlSR/CAMTA family for their possible functions in defense response against pathogens and tolerance to drought stress. RESULTS Expression of SlSRs was induced with distinct patterns by Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Virus-induced gene silencing (VIGS)-based knockdown of either SlSR1 or SlSR3L in tomato resulted in enhanced resistance to B. cinerea and Pst DC3000 and led to constitutive accumulation of H2O2, elevated expression of defense genes, marker genes for pathogen-associated molecular pattern-triggered immunity, and regulatory genes involved in the salicylic acid- and ethylene-mediated signaling pathways. Furthermore, the expression of SlSR1L and SlSR2L in detached leaves and whole plants was significantly induced by drought stress. Silencing of SlSR1L led to decreased drought stress tolerance, accelerated water loss in leaves, reduced root biomass and attenuated expression of drought stress responsive genes in tomato. The SlSR1 and SlSR3L proteins were localized in the nucleus of plant cells when transiently expressed in Nicotiana benthamiana and had transcriptional activation activity in yeast. CONCLUSIONS VIGS-based functional analyses demonstrate that both SlSR1 and SlSR3L in the tomato SlSR/CAMTA family are negative regulators of defense response against B. cinerea and Pst DC3000 while SlSR1L is a positive regulator of drought stress tolerance in tomato.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
127
|
Sahoo DK, Sarkar S, Raha S, Maiti IB, Dey N. Comparative analysis of synthetic DNA promoters for high-level gene expression in plants. PLANTA 2014; 240:855-75. [PMID: 25092118 DOI: 10.1007/s00425-014-2135-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/21/2014] [Indexed: 05/25/2023]
Abstract
MAIN CONCLUSION We have designed two near- constitutive and stress-inducible promoters (CmYLCV9.11 and CmYLCV4); those are highly efficient in both dicot and monocot plants and have prospective to substitute the CaMV 35S promoter. We performed structural and functional studies of the full-length transcript promoter from Cestrum yellow leaf curling virus (CmYLCV) employing promoter/leader deletion and activating cis-sequence analysis. We designed a 465-bp long CmYLCV9.11 promoter fragment (-329 to +137 from transcription start site) that showed enhanced promoter activity and was highly responsive to both biotic and abiotic stresses. The CmYLCV9.11 promoter was about 28-fold stronger than the CaMV35S promoter in transient and stable transgenic assays using β-glucuronidase (GUS) reporter gene. The CmYLCV9.11 promoter also demonstrated stronger activity than the previously reported CmYLCV promoter fragments, CmpC (-341 to +5) and CmpS (-349 to +59) in transient systems like maize protoplasts and onion epidermal cells as well as transgenic systems. A good correlation between CmYLCV9.11 promoter-driven GUS-accumulation/enzymatic activities with corresponding uidA-mRNA level in transgenic tobacco plants was shown. Histochemical (X-Gluc) staining of transgenic seedlings, root and floral parts expressing the GUS under the control of CmYLCV9.11, CaMV35S, CmpC and CmpS promoters also support the above findings. The CmYLCV9.11 promoter is a constitutive promoter and the expression level in tissues of transgenic tobacco plants was in the following order: root > leaf > stem. The tobacco transcription factor TGA1a was found to bind strongly to the CmYLCV9.11 promoter region, as shown by Gel-shift assay and South-Western blot analysis. In addition, the CmYLCV9.11 promoter was regulated by a number of abiotic and biotic stresses as studied in transgenic Arabidopsis and tobacco plants. The newly derived CmYLCV9.11 promoter is an efficient tool for biotechnological applications.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- KTRDC, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA,
| | | | | | | | | |
Collapse
|
128
|
Benn G, Wang CQ, Hicks DR, Stein J, Guthrie C, Dehesh K. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:82-92. [PMID: 25039701 PMCID: PMC4172554 DOI: 10.1111/tpj.12620] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 05/21/2023]
Abstract
Plants cope with environmental challenges by rapidly triggering and synchronizing mechanisms governing stress-specific and general stress response (GSR) networks. The GSR acts rapidly and transiently in response to various stresses, but the underpinning mechanisms have remained elusive. To define GSR regulatory components we have exploited the Rapid Stress Response Element (RSRE), a previously established functional GSR motif, using Arabidopsis plants expressing a 4xRSRE::Luciferase (RSRE::LUC) reporter. Initially, we searched public microarray datasets and found an enrichment of RSRE in promoter sequences of stress genes. Next, we treated RSRE::LUC plants with wounding and a range of rapidly stress-inducible hormones and detected a robust LUC activity solely in response to wounding. Application of two Ca(2+) burst inducers, flagellin22 (flg22) and oligogalacturonic acid, activated RSRE strongly and systemically, while the Ca(2+) chelator ethylene glycol tetraacetic acid (EGTA) significantly reduced wound induction of RSRE::LUC. In line with the signaling function of Ca(2+) in transduction events leading to activation of RSRE, we examined the role of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATORs (CAMTAs) in RSRE induction. Transient expression assays displayed CAMTA3 induction of RSRE and not that of the mutated element mRSRE. Treatment of selected camta mutant lines integrated into RSRE::LUC parent plant, with wounding, flg22, and freezing, established a differential function of these CAMTAs in potentiating the activity of RSRE. Wound response studies using camta double mutants revealed a cooperative function of CAMTAs2 and 4 with CAMTA 3 in the RSRE regulation. These studies provide insights into governing components of transduction events and reveal transcriptional modules that tune the expression of a key GSR motif.
Collapse
Affiliation(s)
- Geoffrey Benn
- Department of Plant Biology, University of California, Davis, California USA
| | - Chang-Quan Wang
- Department of Plant Biology, University of California, Davis, California USA
| | - Derrick R. Hicks
- Department of Plant Biology, University of California, Davis, California USA
| | - Jeffrey Stein
- Department of Plant Biology, University of California, Davis, California USA
| | - Cade Guthrie
- Department of Plant Biology, University of California, Davis, California USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, California USA
- To whom correspondence should be addressed: Katayoon Dehesh, Telephone: (530) 752-8187, Fax: (530) 752-5410,
| |
Collapse
|
129
|
Bjornson M, Benn G, Song X, Comai L, Franz AK, Dandekar AM, Drakakaki G, Dehesh K. Distinct roles for mitogen-activated protein kinase signaling and CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 in regulating the peak time and amplitude of the plant general stress response. PLANT PHYSIOLOGY 2014; 166:988-96. [PMID: 25157030 PMCID: PMC4213123 DOI: 10.1104/pp.114.245944] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/19/2014] [Indexed: 05/20/2023]
Abstract
To survive environmental challenges, plants have evolved tightly regulated response networks, including a rapid and transient general stress response (GSR), followed by well-studied stress-specific responses. The mechanisms underpinning the GSR have remained elusive, but a functional cis-element, the rapid stress response element (RSRE), is known to confer transcription of GSR genes rapidly (5 min) and transiently (peaking 90-120 min after stress) in vivo. To investigate signal transduction events in the GSR, we used a 4xRSRE:LUCIFERASE reporter in Arabidopsis (Arabidopsis thaliana), employing complementary approaches of forward and chemical genetic screens, and identified components regulating peak time versus amplitude of RSRE activity. Specifically, we identified a mutant in CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) with reduced RSRE activation, verifying this transcription factor's role in activation of the RSRE-mediated GSR. Furthermore, we isolated a mutant in MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) KINASE KINASE1 (mekk1-5), which displays increased basal and an approximately 60-min earlier peak of wound-induced RSRE activation. The double mekk1/camta3 mutant positioned CAMTA3 downstream of MEKK1 and verified their distinct roles in GSR regulation. mekk1-5 displays programmed cell death and overaccumulates reactive oxygen species and salicylic acid, hallmarks of the hypersensitive response, suggesting that the hypersensitive response may play a role in the RSRE phenotype in this mutant. In addition, chemical inhibition studies suggest that the MAPK network is required for the rapid peak of the RSRE response, distinguishing the impact of chronic (mekk1-5) from transient (chemical inhibition) loss of MAPK signaling. Collectively, these results reveal underlying regulatory components of the plant GSR and further define their distinct roles in the regulation of this key biological process.
Collapse
Affiliation(s)
- Marta Bjornson
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Geoffrey Benn
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Xingshun Song
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Luca Comai
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Annaliese K Franz
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Abhaya M Dandekar
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Georgia Drakakaki
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| | - Katayoon Dehesh
- Department of Plant Biology (M.B., G.B., L.C., K.D.), Department of Plant Sciences (M.B., A.M.D., G.D.), and Department of Chemistry (A.K.F.), University of California, Davis, California 95616; andCollege of Life Science, Northeast Forestry University, Harbin 150040, People's Republic of China (X.S.)
| |
Collapse
|
130
|
Sadhukhan A, Kobayashi Y, Kobayashi Y, Tokizawa M, Yamamoto YY, Iuchi S, Koyama H, Panda SK, Sahoo L. VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea, mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. PLANTA 2014; 240:645-664. [PMID: 25030652 DOI: 10.1007/s00425-014-2111-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
VuDREB2A exists in cowpea as a canonical DREB2-type transcription factor, having the ability to bind dehydration-responsive elements in vitro and confer enhanced drought resistance in transgenic Arabidopsis. Cowpea (Vigna unguiculata L. Walp) is an important cultivated legume that can survive better in arid conditions than other crops. But the molecular mechanisms involved in the drought tolerance of this species remain elusive with very few reported candidate genes. The Dehydration-Responsive Element-Binding Protein2 (DREB2) group of transcription factors plays key roles in plant responses to drought. However, no DREB2 ortholog has been reported from cowpea so far. In this study, we isolated and characterized a gene from cowpea, namely VuDREB2A, encoding a protein of 377 amino acids exhibiting features of reported DREB2-type proteins. In cowpea, VuDREB2A transcript accumulation was highly induced by desiccation, heat and salt, but slightly by exogenous abscisic acid (ABA) treatment. We also isolated the VuDREB2A promoter and predicted stress-responsive cis-elements in it using Arabidopsis microarray data. The E. coli-expressed VuDREB2A protein showed binding to synthetic oligonucleotides with Dehydration-Responsive Elements (DREs) from Arabidopsis, in electrophoretic mobility shift assays. Heterologous expression of VuDREB2A in Arabidopsis significantly improved plant survival under drought. In addition, overexpression of a truncated version of VuDREB2A, after removal of a putative negative regulatory domain (between amino acids 132-182) led to a dwarf phenotype in the transgenic plants. Microarray and quantitative PCR analyses of VuDREB2A overexpressing Arabidopsis revealed up-regulation of stress-responsive genes having DRE overrepresented in their promoters. In summary, our results indicate that VuDREB2A conserves the basic functionality and mode of regulation of DREB2A in Arabidopsis and could be a potent candidate gene for the genetic improvement of drought resistance in cowpea.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Ismail A, Takeda S, Nick P. Life and death under salt stress: same players, different timing? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2963-79. [PMID: 24755280 DOI: 10.1093/jxb/eru159] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salinity does not only stress plants but also challenges human life and the economy by posing severe constraints upon agriculture. To understand salt adaptation strategies of plants, it is central to extend agricultural production to salt-affected soils. Despite high impact and intensive research, it has been difficult to dissect the plant responses to salt stress and to define the decisive key factors for the outcome of salinity signalling. To connect the rapidly accumulating data from different systems, treatments, and organization levels (whole-plant, cellular, and molecular), and to identify the appropriate correlations among them, a clear conceptual framework is required. Similar to other stress responses, the molecular nature of the signals evoked after the onset of salt stress seems to be general, as with that observed in response to many other stimuli, and should not be considered to confer specificity per se. The focus of the current review is therefore on the temporal patterns of signals conveyed by molecules such as Ca(2+), H(+), reactive oxygen species, abscisic acid, and jasmonate. We propose that the outcome of the salinity response (adaptation versus cell death) depends on the timing with which these signals appear and disappear. In this context, the often-neglected non-selective cation channels are relevant. We also propose that constraining a given signal is as important as its induction, as it is the temporal competence of signalling (signal on demand) that confers specificity.
Collapse
Affiliation(s)
- Ahmed Ismail
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Shin Takeda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
132
|
Fang Y, Xie K, Xiong L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2119-35. [PMID: 24604734 PMCID: PMC3991743 DOI: 10.1093/jxb/eru072] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
MicroRNAs constitute a large group of endogenous small RNAs of ~22 nt that emerge as vital regulators, mainly by targeting mRNAs for post-transcriptional repression. Previous studies have revealed that the miR164 family in Arabidopsis is comprised of three members which guide the cleavage of the mRNAs of five NAC genes to modulate developmental processes. However, the functions of the miR164-targeted NAC genes in crops are poorly deciphered. In this study, the conserved features of six miR164-targeted NAC genes (OMTN1-OMTN6) in rice are described, and evidence is provided that four of them confer a negative regulatory role in drought resistance. OMTN proteins have the characteristics of typical NAC transcriptional factors. The miR164 recognition sites of the OMTN genes are highly conserved in rice germplasms. Deletion of the recognition sites impaired the transactivation activity, indicating that the conserved recognition sites play a crucial role in maintaining the function of the OMTN proteins. The OMTN genes were responsive to abiotic stresses, and showed diverse spatio-temporal expression patterns in rice. Overexpression of OMTN2, OMTN3, OMTN4, and OMTN6 in rice led to negative effects on drought resistance at the reproductive stage. The expression of numerous genes related to stress response, development, and metabolism was altered in OMTN2-, OMTN3-, OMTN4-, and OMTN6-overexpressing plants. Most of the up-regulated genes in the OMTN-overexpressing plants were down-regulated by drought stress. The results suggest that the conserved miR164-targeted NAC genes may be negative regulators of drought tolerance in rice, in addition to their reported roles in development.
Collapse
Affiliation(s)
| | - Kabin Xie
- * Present address: Department of Plant Pathology, Pennsylvania State University, State College, PA 16802, USA
| | - Lizhong Xiong
- † To whom correspondence should be addressed. E-mail:
| |
Collapse
|
133
|
Zhang L, Du L, Shen C, Yang Y, Poovaiah BW. Regulation of plant immunity through ubiquitin-mediated modulation of Ca(2+) -calmodulin-AtSR1/CAMTA3 signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:269-81. [PMID: 24528504 DOI: 10.1111/tpj.12473] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 05/22/2023]
Abstract
Transient changes in intracellular Ca(2+) concentration are essential signals for activation of plant immunity. It has also been reported that Ca(2+) signals suppress salicylic acid-mediated plant defense through AtSR1/CAMTA3, a member of the Ca(2+) /calmodulin-regulated transcription factor family that is conserved in multicellular eukaryotes. How plants overcome this negative regulation to mount an effective defense response during a stage of intracellular Ca(2+) surge is unclear. Here we report the identification and functional characterization of an important component of ubiquitin ligase, and the associated AtSR1 turnover. The AtSR1 interaction protein 1 (SR1IP1) was identified by CytoTrap two-hybrid screening. The loss-of-function mutant of SR1IP1 is more susceptible to bacterial pathogens, and over-expression of SR1IP1 confers enhanced resistance, indicating that SR1IP1 acts as a positive regulator of plant defense. SR1IP1 and AtSR1 act in the same signaling pathway to regulate plant immunity. SR1IP1 contains the structural features of a substrate adaptor in cullin 3-based E3 ubiquitin ligase, and was shown to serve as a substrate adaptor that recruits AtSR1 for ubiquitination and degradation when plants are challenged with pathogens. Hence, SR1IP1 positively regulates plant immunity by removing the defense suppressor AtSR1. These findings provide a mechanistic insight into how Ca(2+) -mediated actions are coordinated to achieve effective plant immunity.
Collapse
Affiliation(s)
- Lei Zhang
- Graduate Program in Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-1030, USA; Department of Horticulture, Washington State University, Pullman, WA, 99164-6414, USA
| | | | | | | | | |
Collapse
|
134
|
Shangguan L, Wang X, Leng X, Liu D, Ren G, Tao R, Zhang C, Fang J. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Mol Biol Rep 2014; 41:2937-49. [PMID: 24458826 DOI: 10.1007/s11033-014-3150-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
Abstract
In this study, 10 grapevine (Vitis vinifera) SR/CAMTA (Signal Responsive/Calmodulin-binding Transcription Activators) gene models were identified from three grapevine genome protein datasets. They belong to four gene groups: VvCAMTA1, VvCAMTA3, VvCAMTA4 and VvCAMTA5, which were located on chromosome 5, 7_random, 1 and 5, respectively. Alternative splicing could explain the multiple gene models in one gene group. Subcellular localization using the WoLF tool showed that most of the VvCAMTAs were located in the nucleus, except for VvCAMTA3.1, VvCAMTA3.2 and VvCAMTA5.2, which were located in the chloroplast, chloroplast and cytosol, respectively. Subcellular localization using TargetP showed that most of the VvCAMTAs were not located in the chloroplast, mitochondrion and secretory pathway in cells. VvCAMTA1.1 and VvCAMTA1.2 were located in the mitochondria. The digital gene expression profile showed that VvCAMTAs play important roles in Ca2+ signal transduction. The gene expression patterns of VvCAMTAs were different; for example, VvCAMTA1 was expressed mainly in the bud, while VvCAMTA3 was expressed mainly in fruit and inflorescence, with low expression in the bud. The results of this study make a substantial contribution to our knowledge concerning genes, genome annotation, and cell signal transduction in grapevine.
Collapse
Affiliation(s)
- Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Zhang L, Du L, Poovaiah B. Calcium signaling and biotic defense responses in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e973818. [PMID: 25482778 PMCID: PMC4623097 DOI: 10.4161/15592324.2014.973818] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
Calcium (Ca(2+)) acts as an important second messenger in plant cells. Cytosolic free Ca(2+) concentration in plant cells changes rapidly and dynamically in response to various endogenous or environmental cues. Elevation in calcium concentration in plant cells is an essential early event during plant defense responses. Alterations in the Ca(2+) concentration are sensed by Ca(2+)-binding proteins, including calmodulin, calcium-dependent protein kinases and calcineurin B-like proteins, which relay or decode the encoded Ca(2+) signals into specific cellular and physiological responses in order to survive challenges by pathogens. Genetic and functional studies have revealed that Ca(2+) signaling plays both positive and negative roles in regulating the establishment of defense responses. Furthermore, recent studies revealed that actions of Ca(2+)-mediated signaling could be regulated by other cell signaling systems such as the ubiquitin-proteasome system to mount precise and prompt plant defense responses.
Collapse
Affiliation(s)
- Lei Zhang
- Graduate Program in Molecular Plant Sciences; Washington State University; Pullman, WA USA
- Department of Horticulture; Washington State University; Pullman, WA USA
- Current Address: Department of Plant Pathology; Washington State University; Pullman, WA USA
| | - Liqun Du
- Department of Horticulture; Washington State University; Pullman, WA USA
- College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou, Zhejiang, P.R. China
| | - B.W. Poovaiah
- Graduate Program in Molecular Plant Sciences; Washington State University; Pullman, WA USA
- Department of Horticulture; Washington State University; Pullman, WA USA
- Correspondence to: B.W. Poovaiah;
| |
Collapse
|
136
|
Wang H, Han J, Kanagarajan S, Lundgren A, Brodelius PE. Studies on the expression of sesquiterpene synthases using promoter-β-glucuronidase fusions in transgenic Artemisia annua L. PLoS One 2013; 8:e80643. [PMID: 24278301 PMCID: PMC3838408 DOI: 10.1371/journal.pone.0080643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/12/2013] [Indexed: 11/30/2022] Open
Abstract
In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production.
Collapse
Affiliation(s)
- Hongzhen Wang
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Junli Han
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | | | - Anneli Lundgren
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Peter E. Brodelius
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
- * E-mail:
| |
Collapse
|
137
|
Zhang Z, Chen Y, Zhao D, Li R, Wang H, Zhang J, Wei J. X1-homologous genes family as central components in biotic and abiotic stresses response in maize (Zea mays L.). Funct Integr Genomics 2013; 14:101-10. [PMID: 24676795 DOI: 10.1007/s10142-013-0343-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/08/2013] [Accepted: 10/01/2013] [Indexed: 11/30/2022]
Abstract
X1-homologous genes (XHS) encode plant specific proteins containing three basic domains (XH, XS, zf-XS). In spite of their physiological importance, systematic analyses of ZmXHS genes have not yet been explored. In this study, we isolated and characterized ten ZmXHS genes in a whole-of-genome analysis of the maize genome. A total of ten members of this family were identified in maize genome. The ten ZmXHS genes were distributed on seven maize chromosomes. Multiple alignment and motif display results revealed that most ZmXHS proteins share all the three conserved domains. Putative cis-elements involved in abiotic stress responsive, phytohormone, pollen-specific and quantitative, seed development and germination, light and circadian rhythms regulation, Ca(2+)-responsive, root hair cell-specific, and CO(2)-responsive transcriptional activation were observed in the promoters of ZmXHS genes. Yeast hybrid assay revealed that the XH domain of ZmXHS5 was necessary for interaction with itself and ZmXHS2. Microarray data showed that the ZmXHS genes had tissue-specific expression patterns in the maize developmental steps and biotic stresses response. Quantitative real-time PCR analysis results indicated that, except ZmXHS9, the other nine ZmXHS genes were induced in the seedling leaves by at least one of the four abiotic stresses applied.
Collapse
Affiliation(s)
- Zhongbao Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | | | | | | | | | | | | |
Collapse
|
138
|
Poovaiah B, Du L, Wang H, Yang T. Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. PLANT PHYSIOLOGY 2013; 163:531-42. [PMID: 24014576 PMCID: PMC3793035 DOI: 10.1104/pp.113.220780] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/28/2013] [Indexed: 05/18/2023]
Abstract
Calcium/calmodulin-mediated signaling contributes in diverse roles in plant growth, development, and response to environmental stimuli .
Collapse
Affiliation(s)
| | | | - Huizhong Wang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| | - Tianbao Yang
- Department of Horticulture, Washington State University, Pullman, Washington 99164–6414 (B.W.P., L.D.)
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, People’s Republic of China (L.D., H.W.); and
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705 (T.Y.)
| |
Collapse
|
139
|
Castillo-Medina RE, Islas-Flores T, Thomé PE, Iglesias-Prieto R, Lin S, Zhang H, Villanueva MA. The PsbO homolog from Symbiodinium kawagutii (Dinophyceae) characterized using biochemical and molecular methods. PHOTOSYNTHESIS RESEARCH 2013; 115:167-78. [PMID: 23708979 DOI: 10.1007/s11120-013-9856-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/16/2013] [Indexed: 05/10/2023]
Abstract
A photosystem II component, the PsbO protein is essential for maximum rates of oxygen production during photosynthesis, and has been extensively characterized in plants and cyanobacteria but not in symbiotic dinoflagellates. Its close interaction with D1 protein has important environmental implications since D1 has been identified as the primary site of damage in endosymbiotic dinoflagellates after thermal stress. We identified and biochemically characterized the PsbO homolog from Symbiodinium kawagutii as a 28-kDa protein, and immunolocalized it to chloroplast membranes. Chloroplast association was further confirmed by western blot on photosynthetic membrane preparations. TX-114 phase partitioning, chromatography, and SDS-PAGE for single band separation and partial peptide sequencing yielded peptides identical or with high identity to PsbO from dinoflagellates. Analysis of a cDNA library revealed three genes differing by only one aminoacid residue in the in silico-translated ORFs despite greater differences at nucleotide level in the untranslated, putative regulatory sequences. The consensus full amino acid sequence displayed all the characteristic domains and features of PsbO from other sources, but changes in functionally critical, highly conserved motifs were detected. Our biochemical, molecular, and immunolocalization data led to the conclusion that the 28-kDa protein from S. kawagutii is the PsbO homolog, thereby named SkPsbO. We discuss the implications of critical amino acid substitutions for a putative regulatory role of this protein.
Collapse
Affiliation(s)
- Raúl E Castillo-Medina
- Instituto de Ciencias del Mar y Limnología, Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México-UNAM, Prol. Avenida Niños Héroes S/N, 77580 Puerto Morelos, Q ROO, Mexico
| | | | | | | | | | | | | |
Collapse
|
140
|
Wang F, Cui X, Sun Y, Dong CH. Ethylene signaling and regulation in plant growth and stress responses. PLANT CELL REPORTS 2013; 32:1099-109. [PMID: 23525746 DOI: 10.1007/s00299-013-1421-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/28/2013] [Accepted: 03/09/2013] [Indexed: 05/19/2023]
Abstract
Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.
Collapse
Affiliation(s)
- Feifei Wang
- College of Life Sciences, Qingdao Agricultural University, 266109 Qingdao, People's Republic of China
| | | | | | | |
Collapse
|
141
|
Yang T, Peng H, Whitaker BD, Jurick WM. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. PHYSIOLOGIA PLANTARUM 2013; 148:445-55. [PMID: 23368882 DOI: 10.1111/ppl.12027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 05/08/2023]
Abstract
Calcium has been shown to enhance stress tolerance, maintain firmness and reduce decay in fruits. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also responsive to ethylene. To study their expressions in response to stresses encountered during postharvest handling, tomato fruit at the mature-green stage was subjected to chilling and wounding injuries, infected with Botrytis cinerea and treated with salicylic acid or methyl jasmonate. Gene expression studies revealed that the seven SlSRs differentially respond to different stress signals. SlSR2 was the only gene upregulated by all the treatments. SlSR4 acted as a late pathogen-induced gene; it was upregulated by salicylic acid and methyl jasmonate, but downregulated by cold treatment. SlSR3L was cold- and wound-responsive and was also induced by salicylic acid. SlSR1 and SlSR1L were repressed by cold, wounding and pathogen infection, but were upregulated by salicylic acid and methyl jasmonate. Overall, results of these expression studies indicate that individual SlSRs have distinct roles in responses to the specific stress signals, and SlSRs may act as a coordinator(s) connecting calcium-mediated signaling with other stress signal transduction pathways during fruit ripening and storage.
Collapse
Affiliation(s)
- Tianbao Yang
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Services, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
142
|
Abel S, Bürstenbinder K, Müller J. The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. PLANT SIGNALING & BEHAVIOR 2013; 8:e24369. [PMID: 23531692 PMCID: PMC3909082 DOI: 10.4161/psb.24369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Calcium (Ca(2+)) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca(2+) dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca(2+)-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca(2+)-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
- Institute of Biochemistry and Biotechnology; Martin-Luther-University Halle-Wittenberg; Halle, Germany
- Department of Plant Sciences; University of California-Davis; Davis, USA
- Correspondence to: Steffen Abel,
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
| | - Jens Müller
- Department of Molecular Signal Processing; Leibniz Institute of Plant Biochemistry; Halle, Germany
| |
Collapse
|
143
|
Liao SC, Lin CS, Wang AY, Sung HY. Differential expression of genes encoding acid invertases in multiple shoots of bamboo in response to various phytohormones and environmental factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4396-4405. [PMID: 23586540 DOI: 10.1021/jf400776m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The promoter regions of two cell wall invertase genes, Boβfruct1 and Boβfruct2, and a vacuolar invertase gene, Boβfruct3, in Bambusa oldhamii were cloned, and putative regulatory cis-elements were identified. The expression of these three genes in multiple shoots of bamboo that were cultured in vitro under different conditions was analyzed by real-time PCR. The two cell wall invertase genes were upregulated by indole-3-acetic acid and cytokinins but responded differently to other phytohormones and different temperatures. Boβfruct1 was also upregulated by sucrose and glucose. In contrast, the Boβfruct2 expression was induced by the depletion of sucrose, and this induction could be suppressed by glucose and sucrose. The expression of Boβfruct3 was light-dependent; however, abscisic acid (ABA) could induce its expression in the dark. ABA and light exhibited an additive effect on the expression of Boβfruct3. Our results suggest that these three Boβfruct genes have individual roles in the adaption of the plant to environmental changes. Boβfruct2 might also have an essential role in the immediate response of cells to sucrose availability and in the maintenance of sink activity. Moreover, Boβfruct3 might be one of the interacting nodes of the light and ABA signaling pathways.
Collapse
Affiliation(s)
- Shu-Chien Liao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
144
|
Joo J, Lee YH, Kim YK, Nahm BH, Song SI. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. Mol Cells 2013; 35:421-35. [PMID: 23620302 PMCID: PMC3887869 DOI: 10.1007/s10059-013-0036-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 10/26/2022] Open
Abstract
The expression of the six rice ASR genes is differentially regulated in a tissue-dependent manner according to environmental conditions and reproductive stages. OsASR1 and OsASR3 are the most abundant and are found in most tissues; they are enriched in the leaves and roots, respectively. Coexpression analysis of OsASR1 and OsASR3 and a comparison of the cis-acting elements upstream of OsASR1 and OsASR3 suggested that their expression is regulated in common by abiotic stresses but differently regulated by hormone and sugar signals. The results of quantitative real-time PCR analyses of OsASR1 and OsASR3 expression under various conditions further support this model. The expression of both OsASR1 and OsASR3 was induced by drought stress, which is a major regulator of the expression of all ASR genes in rice. In contrast, ABA is not a common regulator of the expression of these genes. OsASR1 transcription was highly induced by ABA, whereas OsASR3 transcription was strongly induced by GA. In addition, OsASR1 and OsASR3 expression was significantly induced by sucrose and sucrose/glucose treatments, respectively. The induction of gene expression in response to these specific hormone and sugar signals was primarily observed in the major target tissues of these genes (i.e., OsASR1 in leaves and OsASR3 in roots). Our data also showed that the overexpression of either OsASR1 or OsASR3 in transgenic rice plants increased their tolerance to drought and cold stress. Taken together, our results revealed that the transcriptional control of different rice ASR genes exhibit different tissue-dependent sugar and hormone-sensitivities.
Collapse
Affiliation(s)
- Joungsu Joo
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Youn Hab Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin 449–728,
Korea
| | - Sang Ik Song
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 449–728,
Korea
| |
Collapse
|
145
|
Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 2013; 14:216. [PMID: 23547968 PMCID: PMC3621073 DOI: 10.1186/1471-2164-14-216] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/22/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transcription factors (TF) play a crucial role in regulating gene expression and are fit to regulate diverse cellular processes by interacting with other proteins. A TF named calmodulin binding transcription activator (CAMTA) was identified in Arabidopsis thaliana (AtCAMTA1-6). To explore the role of CAMTA1 in drought response, the phenotypic differences and gene expression was studied between camta1 and Col-0 under drought condition. RESULTS In camta1, root development was abolished showing high-susceptibility to induced osmotic stress resulting in small wrinkled rosette leaves and stunted primary root. In camta1 under drought condition, we identified growth retardation, poor WUE, low photosystem II efficiency, decline in RWC and higher sensitivity to drought with reduced survivability. The microarray analysis of drought treated camta1 revealed that CAMTA1 regulates "drought recovery" as most indicative pathway along with other stress response, osmotic balance, apoptosis, DNA methylation and photosynthesis. Interestingly, majority of positively regulated genes were related to plasma membrane and chloroplast. Further, our analysis indicates that CAMTA1 regulates several stress responsive genes including RD26, ERD7, RAB18, LTPs, COR78, CBF1, HSPs etc. and promoter of these genes were enriched with CAMTA recognition cis-element. CAMTA1 probably regulate drought recovery by regulating expression of AP2-EREBP transcription factors and Abscisic acid response. CONCLUSION CAMTA1 rapidly changes broad spectrum of responsive genes of membrane integrity and photosynthetic machinery by generating ABA response for challenging drought stress. Our results demonstrate the important role of CAMTA1 in regulating drought response in Arabidopsis, thus could be genetically engineered for improving drought tolerance in crop.
Collapse
Affiliation(s)
- Neha Pandey
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | - Alok Ranjan
- Present address: Centre for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Poonam Pant
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | - Rajiv K Tripathi
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | - Farha Ateek
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | | | - Uday V Patre
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| | - Samir V Sawant
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, INDIA
| |
Collapse
|
146
|
Laluk K, Prasad K, Savchenko T, Celesnik H, Dehesh K, Levy M, Mitchell-Olds T, Reddy A. The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:2008-15. [PMID: 23072934 PMCID: PMC3516851 DOI: 10.1093/pcp/pcs143] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Arabidopsis Ca(2+)/calmodulin (CaM)-binding transcription factor SIGNAL RESPONSIVE1 (AtSR1/CAMTA3) was previously identified as a key negative regulator of plant immune responses. Here, we report a new role for AtSR1 as a critical component of plant defense against insect herbivory. Loss of AtSR1 function impairs tolerance to feeding by the generalist herbivore Trichoplusia ni as well as wound-induced jasmonate accumulation. The susceptibility of the atsr1 mutant is associated with decreased total glucosinolate (GS) levels. The two key herbivory deterrents, indol-3-ylmethyl (I3M) and 4-methylsulfinylbutyl (4MSOB), showed the most significant reductions in atsr1 plants. Further, changes in AtSR1 transcript levels led to altered expression of several genes involved in GS metabolism including IQD1, MYB51 and AtST5a. Overall, our results establish AtSR1 as an important component of plant resistance to insect herbivory as well as one of only three described proteins involved in Ca(2+)/CaM-dependent signaling to function in the regulation of GS metabolism, providing a novel avenue for future investigations of plant-insect interactions.
Collapse
Affiliation(s)
- K. Laluk
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- These authors contributed equally to this work
- Present address: Plant Science Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - K.V.S.K. Prasad
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, Durham, NC 27708, USA
- These authors contributed equally to this work
| | - T. Savchenko
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - H. Celesnik
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - K. Dehesh
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, PO Box 12 Rehovot 76100, Israel
| | - M. Levy
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, PO Box 12 Rehovot 76100, Israel
| | - T. Mitchell-Olds
- Institute for Genome Sciences and Policy, Department of Biology, Duke University, Durham, NC 27708, USA
| | - A.S.N. Reddy
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- *Corresponding author: E-mail, ; Fax, +1-970-491-0649
| |
Collapse
|
147
|
Jose-Estanyol M, Puigdomènech P. Cellular localization of the embryo-specific hybrid PRP from Zea mays, and characterization of promoter regulatory elements of its gene. PLANT MOLECULAR BIOLOGY 2012; 80:325-335. [PMID: 22915319 DOI: 10.1007/s11103-012-9951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
The expression, regulation and cellular localization of ZmHyPRP, a gene marker of embryo differentiation whose expression declines after ABA induction, was studied. ZmHyPRP is a proline-rich protein with a C-terminal domain having eight cysteines in a CM8 pattern. Transient expression in onion epidermal cells, transformed with a 2x35S::ZmHyPRP-GFP construction, indicated the protein is present in vesicles lining the membrane of the cell. The ZmHyPRP gene expression is under the control of classic promoter seed-specific regulatory elements such as Sph/RY and G-boxes, suggesting regulation by B3 and b-ZIP transcription factors. Promoter deletion analysis, by particle-bombardment transient transformation of maize immature embryos with serial deletions of the promoter fused to GUS, showed the presence of two negative regulatory elements, NE1 (-2070 to -1280) and NE2 (-232 to -178), in the ZmHyPRP promoter. By selective deletion or mutation of ZmHyPRP regulatory promoter elements we conclude that the promoter expression is attenuated by the NE2 element as well as by the G-box2 and the Sph1-2 box together with the G-box2.
Collapse
Affiliation(s)
- M Jose-Estanyol
- Centre de Recerca en Agrigenòmica (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 081993 Barcelona, Spain,
| | | |
Collapse
|
148
|
Sarwat M, Ahmad P, Nabi G, Hu X. Ca(2+) signals: the versatile decoders of environmental cues. Crit Rev Biotechnol 2012; 33:97-109. [PMID: 22568501 DOI: 10.3109/07388551.2012.672398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants are often subjected to various environmental stresses that lead to deleterious effects on growth, production, sustainability, etc. The information of the incoming stress is read by the plants through the mechanism of signal transduction. The plant Ca(2+) serves as secondary messenger during adaptations to stressful conditions and developmental processes. A plethora of Ca(2+) sensors and decoders functions to bring about these changes. The cellular concentrations of Ca(2+), their subcellular localization, and the specific interaction affinities of Ca(2+) decoder proteins all work together to make this process a complex but synchronized signaling network. In this review, we focus on the versatility of these sensors and decoders in the model plant Arabidopsis as well as plants of economical importance. Here, we have also thrown light on the possible mechanism of action of these important components.
Collapse
Affiliation(s)
- Maryam Sarwat
- Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India.
| | | | | | | |
Collapse
|
149
|
Qiu Y, Xi J, Du L, Suttle JC, Poovaiah BW. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. PLANT MOLECULAR BIOLOGY 2012; 79:89-99. [PMID: 22371088 DOI: 10.1007/s11103-012-9896-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 02/13/2012] [Indexed: 05/08/2023]
Abstract
Calcium/calmodulin (Ca(2+)/CaM) has long been considered a crucial component in wound signaling pathway. However, very few Ca(2+)/CaM-binding proteins have been identified which regulate plant responses to herbivore attack/wounding stress. We have reported earlier that a family of Ca(2+)/CaM-binding transcription factors designated as AtSRs (also known as AtCAMTAs) can respond differentially to wounding stress. Further studies revealed that AtSR1/CAMTA3 is a negative regulator of plant defense, and Ca(2+)/CaM-binding to AtSR1 is indispensable for the suppression of salicylic acid (SA) accumulation and disease resistance. Here we report that Ca(2+)/CaM-binding is also critical for AtSR1-mediated herbivore-induced wound response. Interestingly, atsr1 mutant plants are more susceptible to herbivore attack than wild-type plants. Complementation of atsr1 mutant plants by overexpressing wild-type AtSR1 protein can effectively restore plant resistance to herbivore attack. However, when mutants of AtSR1 with impaired CaM-binding ability were overexpressed in atsr1 mutant plants, plant resistance to herbivore attack was not restored, suggesting a key role for Ca(2+)/CaM-binding in wound signaling. Furthermore, it was observed that elevated SA levels in atsr1 mutant plants have a negative impact on both basal and induced biosynthesis of jasmonates (JA). These results revealed that Ca(2+)/CaM-mediated signaling regulates plant response to herbivore attack/wounding by modulating the SA-JA crosstalk through AtSR1.
Collapse
Affiliation(s)
- Yongjian Qiu
- Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | | | | | | | |
Collapse
|
150
|
Petrov V, Vermeirssen V, De Clercq I, Van Breusegem F, Minkov I, Vandepoele K, Gechev TS. Identification of cis-regulatory elements specific for different types of reactive oxygen species in Arabidopsis thaliana. Gene 2012; 499:52-60. [DOI: 10.1016/j.gene.2012.02.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/09/2012] [Accepted: 02/19/2012] [Indexed: 10/28/2022]
|