101
|
Trugilho MRO, Azevedo-Quintanilha IG, Gesto JSM, Moraes ECS, Mandacaru SC, Campos MM, Oliveira DM, Dias SSG, Bastos VA, Santos MDM, Carvalho PC, Valente RH, Hottz ED, Bozza FA, Souza TML, Perales J, Bozza PT. Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19. Cell Death Discov 2022; 8:324. [PMID: 35842415 PMCID: PMC9287722 DOI: 10.1038/s41420-022-01122-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.
Collapse
Affiliation(s)
- Monique R O Trugilho
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | - João S M Gesto
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Emilly Caroline S Moraes
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Samuel C Mandacaru
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana M Campos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Douglas M Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Suelen S G Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Viviane A Bastos
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, and D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Thiago Moreno L Souza
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Rio de Janeiro, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
102
|
Musabyimana JP, Distler U, Sassmannshausen J, Berks C, Manti J, Bennink S, Blaschke L, Burda PC, Flammersfeld A, Tenzer S, Ngwa CJ, Pradel G. Plasmodium falciparum S-Adenosylmethionine Synthetase Is Essential for Parasite Survival through a Complex Interaction Network with Cytoplasmic and Nuclear Proteins. Microorganisms 2022; 10:1419. [PMID: 35889137 PMCID: PMC9320499 DOI: 10.3390/microorganisms10071419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
S-adenosylmethionine synthetase (SAMS) is a key enzyme for the synthesis of the lone methyl donor S-adenosyl methionine (SAM), which is involved in transmethylation reactions and hence required for cellular processes such as DNA, RNA, and histone methylation, but also polyamine biosynthesis and proteostasis. In the human malaria parasite Plasmodium falciparum, PfSAMS is encoded by a single gene and has been suggested to be crucial for malaria pathogenesis and transmission; however, to date, PfSAMS has not been fully characterized. To gain deeper insight into the function of PfSAMS, we generated a conditional gene knockdown (KD) using the glmS ribozyme system. We show that PfSAMS localizes to the cytoplasm and the nucleus of blood-stage parasites. PfSAMS-KD results in reduced histone methylation and leads to impaired intraerythrocytic growth and gametocyte development. To further determine the interaction network of PfSAMS, we performed a proximity-dependent biotin identification analysis. We identified a complex network of 1114 proteins involved in biological processes such as cell cycle control and DNA replication, or transcription, but also in phosphatidylcholine and polyamine biosynthesis and proteasome regulation. Our findings highlight the diverse roles of PfSAMS during intraerythrocytic growth and sexual stage development and emphasize that PfSAMS is a potential drug target.
Collapse
Affiliation(s)
- Jean Pierre Musabyimana
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Ute Distler
- Proteomics Core Facility, Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (U.D.); (S.T.)
| | - Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Christina Berks
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Janice Manti
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Lea Blaschke
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Paul-Christian Burda
- Centre for Structural Systems Biology (CSSB) c/o DESY, Bernhard Nocht Institute, University of Hamburg, Notkestraße 85, Building 15, 22607 Hamburg, Germany;
| | - Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Stefan Tenzer
- Proteomics Core Facility, Institute of Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (U.D.); (S.T.)
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; (J.P.M.); (J.S.); (C.B.); (J.M.); (S.B.); (L.B.); (A.F.); (C.J.N.)
| |
Collapse
|
103
|
Kubitz L, Bitsch S, Zhao X, Schmitt K, Deweid L, Roehrig A, Barazzone EC, Valerius O, Kolmar H, Béthune J. Engineering of ultraID, a compact and hyperactive enzyme for proximity-dependent biotinylation in living cells. Commun Biol 2022; 5:657. [PMID: 35788163 PMCID: PMC9253107 DOI: 10.1038/s42003-022-03604-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Proximity-dependent biotinylation (PDB) combined with mass spectrometry analysis has established itself as a key technology to study protein-protein interactions in living cells. A widespread approach, BioID, uses an abortive variant of the E. coli BirA biotin protein ligase, a quite bulky enzyme with slow labeling kinetics. To improve PDB versatility and speed, various enzymes have been developed by different approaches. Here we present a small-size engineered enzyme: ultraID. We show its practical use to probe the interactome of Argonaute-2 after a 10 min labeling pulse and expression at physiological levels. Moreover, using ultraID, we provide a membrane-associated interactome of coatomer, the coat protein complex of COPI vesicles. To date, ultraID is the smallest and most efficient biotin ligase available for PDB and offers the possibility of investigating interactomes at a high temporal resolution. A small-size engineered enzyme, ultraID, is presented for proximity-dependent biotinylation, that shows efficient labeling in mammalian cell culture, E. coli and S. cerevisiae.
Collapse
Affiliation(s)
- Lea Kubitz
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Xiyan Zhao
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Kerstin Schmitt
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Georg-August-University Göttingen, Göttingen, Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Ferring Pharmaceuticals, Copenhagen, Denmark
| | - Amélie Roehrig
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Inserm UMRS1138 - FunGeST team, Paris, France
| | - Elisa Cappio Barazzone
- Heidelberg University Biochemistry Center, Heidelberg, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Oliver Valerius
- Institute of Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Georg-August-University Göttingen, Göttingen, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julien Béthune
- Department of Biotechnology, Hamburg University of Applied Sciences, Hamburg, Germany.
| |
Collapse
|
104
|
Komatsu S, Murata K, Yakeishi S, Shimada K, Yamaguchi H, Hitachi K, Tsuchida K, Obi R, Akita S, Fukuda R. Morphological and Proteomic Analyses of Soybean Seedling Interaction Mechanism Affected by Fiber Crosslinked with Zinc-Oxide Nanoparticles. Int J Mol Sci 2022; 23:7415. [PMID: 35806419 PMCID: PMC9266555 DOI: 10.3390/ijms23137415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Nanoparticles (NPs) enhance soybean growth; however, their precise mechanism is not clearly understood. To develop a more effective method using NPs for the enhancement of soybean growth, fiber crosslinked with zinc oxide (ZnO) NPs was prepared. The solution of ZnO NPs with 200 nm promoted soybean growth at the concentration of 10 ppm, while fibers crosslinked with ZnO NPs promoted growth at a 1 ppm concentration. Soybeans grown on fiber cross-linked with ZnO NPs had higher Zn content in their roots than those grown in ZnO NPs solution. To study the positive mechanism of fiber crosslinked with ZnO NPs on soybean growth, a proteomic technique was used. Proteins categorized in photosynthesis and secondary metabolism accumulated more in soybeans grown on fiber crosslinked with ZnO NPs than in those grown in ZnO NPs solution. Furthermore, significantly accumulated proteins, which were NADPH oxidoreductase and tubulins, were confirmed using immunoblot analysis. The abundance of NADPH oxidoreductase increased in soybean by ZnO NPs application. These results suggest that fiber crosslinked with ZnO NPs enhances soybean growth through the increase of photosynthesis and secondary metabolism. Additionally, the accumulation of NADPH oxidoreductase might relate to the effect of auxin with fiber crosslinked with ZnO NPs on soybean growth.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Kazuki Murata
- R&D Laboratory for Applied Product, Asahi Kasei Corporation, Moriyama 524-0002, Japan; (K.M.); (S.Y.); (K.S.); (R.O.); (S.A.)
| | - Sayuri Yakeishi
- R&D Laboratory for Applied Product, Asahi Kasei Corporation, Moriyama 524-0002, Japan; (K.M.); (S.Y.); (K.S.); (R.O.); (S.A.)
| | - Kazuyuki Shimada
- R&D Laboratory for Applied Product, Asahi Kasei Corporation, Moriyama 524-0002, Japan; (K.M.); (S.Y.); (K.S.); (R.O.); (S.A.)
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Rumina Obi
- R&D Laboratory for Applied Product, Asahi Kasei Corporation, Moriyama 524-0002, Japan; (K.M.); (S.Y.); (K.S.); (R.O.); (S.A.)
| | - Shoichi Akita
- R&D Laboratory for Applied Product, Asahi Kasei Corporation, Moriyama 524-0002, Japan; (K.M.); (S.Y.); (K.S.); (R.O.); (S.A.)
| | - Ryo Fukuda
- Business Promotion Section Business Strategy Department, Bemberg Division, Asahi Kasei Corporation, Osaka 530-8205, Japan;
| |
Collapse
|
105
|
Giansanti P, Samaras P, Bian Y, Meng C, Coluccio A, Frejno M, Jakubowsky H, Dobiasch S, Hazarika RR, Rechenberger J, Calzada-Wack J, Krumm J, Mueller S, Lee CY, Wimberger N, Lautenbacher L, Hassan Z, Chang YC, Falcomatà C, Bayer FP, Bärthel S, Schmidt T, Rad R, Combs SE, The M, Johannes F, Saur D, de Angelis MH, Wilhelm M, Schneider G, Kuster B. Mass spectrometry-based draft of the mouse proteome. Nat Methods 2022; 19:803-811. [PMID: 35710609 PMCID: PMC7613032 DOI: 10.1038/s41592-022-01526-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/17/2022] [Indexed: 01/06/2023]
Abstract
The laboratory mouse ranks among the most important experimental systems for biomedical research and molecular reference maps of such models are essential informational tools. Here, we present a quantitative draft of the mouse proteome and phosphoproteome constructed from 41 healthy tissues and several lines of analyses exemplify which insights can be gleaned from the data. For instance, tissue- and cell-type resolved profiles provide protein evidence for the expression of 17,000 genes, thousands of isoforms and 50,000 phosphorylation sites in vivo. Proteogenomic comparison of mouse, human and Arabidopsis reveal common and distinct mechanisms of gene expression regulation and, despite many similarities, numerous differentially abundant orthologs that likely serve species-specific functions. We leverage the mouse proteome by integrating phenotypic drug (n > 400) and radiation response data with the proteomes of 66 pancreatic ductal adenocarcinoma (PDAC) cell lines to reveal molecular markers for sensitivity and resistance. This unique atlas complements other molecular resources for the mouse and can be explored online via ProteomicsDB and PACiFIC.
Collapse
Affiliation(s)
- Piero Giansanti
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Patroklos Samaras
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Yangyang Bian
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- College of Life Science, Northwest University, Xi'an, China
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany
| | - Andrea Coluccio
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Frejno
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Hannah Jakubowsky
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rashmi R Hazarika
- Population epigenetics and epigenomics, Technical University of Munich, Freising, Germany
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany
| | - Julia Rechenberger
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sebastian Mueller
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Chien-Yun Lee
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Nicole Wimberger
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Ludwig Lautenbacher
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Zonera Hassan
- Medical Clinic and Policlinic II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yun-Chien Chang
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian P Bayer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Tobias Schmidt
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Roland Rad
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
- German Cancer Consortium (DKTK), Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Frank Johannes
- Population epigenetics and epigenomics, Technical University of Munich, Freising, Germany
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute for Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
- Computational Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Günter Schneider
- Medical Clinic and Policlinic II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Advanced Study (IAS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
106
|
Mol P, Chatterjee O, Gopalakrishnan L, Mangalaparthi KK, Bhat F, Kumar M, Nair B, Shankar SK, Mahadevan A, Prasad TSK. Age-Associated Molecular Changes in Human Hippocampus Subfields as Determined by Quantitative Proteomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:382-391. [PMID: 35759428 DOI: 10.1089/omi.2022.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hippocampus demonstrates age-associated changes in functions, neuronal circuitry, and plasticity during various developmental stages. On the contrary, there is a significant knowledge gap on age-associated proteomic alterations in the hippocampus subfields. Using tandem mass tag-based high-resolution mass spectrometry and quantitative proteomics, we report here age-associated changes in the human hippocampus at the subregional level. We used formalin-fixed paraffin-embedded hippocampal tissue sections from a total of 12 healthy individuals, with 3 individuals from each of the 4 different age groups, specifically, 1-10, 21-30, 31-40, and 81-90 years. We found that lysosome and oxidative phosphorylation were the pathways enriched in the 81- to 90-year age group. On the contrray, nervous system development, synaptic plasticity and transmission, messenger RNA (mRNA) splicing, and electron transport chain (ETC) complex-I activity were the enriched biological processes observed in the younger age groups. In a hippocampus subfield context, our topline findings on age-associated proteome changes include altered expression of proteins associated with adult neurogenesis with age in the dentate gyrus and increased expression of immune response-associated proteins with age in certain cornu ammonis sectors of the hippocampus. Signal peptide analysis predicted hippocampal proteins with secretory potential. While these new findings warrant replication in larger study samples, the current data contribute to (1) our understanding of the molecular basis of proteomic changes across various age groups in hippocampus subfields in healthy individuals, and (2) the design and interpretation of future research on the age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Firdous Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
107
|
Komatsu S, Yamaguchi H, Hitachi K, Tsuchida K, Rehman SU, Ohno T. Morphological, Biochemical, and Proteomic Analyses to Understand the Promotive Effects of Plant-Derived Smoke Solution on Wheat Growth under Flooding Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:1508. [PMID: 35684281 PMCID: PMC9183026 DOI: 10.3390/plants11111508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Wheat is an important staple food crop for one-third of the global population; however, its growth is reduced by flooding. On the other hand, a plant-derived smoke solution enhances plant growth; however, its mechanism is not fully understood. To reveal the effects of the plant-derived smoke solution on wheat under flooding, morphological, biochemical, and proteomic analyses were conducted. The plant-derived smoke solution improved wheat-leaf growth, even under flooding. According to the functional categorization of proteomic results, oppositely changed proteins were correlated with photosynthesis, glycolysis, biotic stress, and amino-acid metabolism with or without the plant-derived smoke solution under flooding. Immunoblot analysis confirmed that RuBisCO activase and RuBisCO large/small subunits, which decreased under flooding, were recovered by the application of the plant-derived smoke solution. Furthermore, the contents of chlorophylls a and b significantly decreased by flooding stress; however, they were recovered by the application of the plant-derived smoke solution. In glycolysis, fructose-bisphosphate aldolase and glyceraldehyde-3-phosphate dehydrogenase decreased with the application of the plant-derived smoke solution under flooding as compared with flooding alone. Additionally, glutamine, glutamic acid, aspartic acid, and serine decreased under flooding; however, they were recovered by the plant-derived smoke solution. These results suggest that the application of the plant-derived smoke solution improves the recovery of wheat growth through the regulation of photosynthesis and glycolysis even under flooding conditions. Furthermore, the plant-derived smoke solution might promote wheat tolerance against flooding stress through the regulation of amino-acid metabolism.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Life and Environmental Sciences, Fukui University of Technology, Fukui 910-8505, Japan;
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Shafiq Ur Rehman
- Department of Biology, University of Haripur, Haripur 22620, Pakistan;
| | - Toshihisa Ohno
- Faculty of Life and Environmental Sciences, Fukui University of Technology, Fukui 910-8505, Japan;
| |
Collapse
|
108
|
GDAP1 loss of function inhibits the mitochondrial pyruvate dehydrogenase complex by altering the actin cytoskeleton. Commun Biol 2022; 5:541. [PMID: 35662277 PMCID: PMC9166793 DOI: 10.1038/s42003-022-03487-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology. GDAP1 mutations effect Charcot-Marie-Tooth disease 4A by inhibiting the pyruvate dehydrogenase complex and restricting mitochondrial localization of dynamin-related protein 1 through alterations of the actin cytoskeleton.
Collapse
|
109
|
Repton C, Cullen CF, Costa MFA, Spanos C, Rappsilber J, Ohkura H. The phospho-docking protein 14-3-3 regulates microtubule-associated proteins in oocytes including the chromosomal passenger Borealin. PLoS Genet 2022; 18:e1009995. [PMID: 35666772 PMCID: PMC9203013 DOI: 10.1371/journal.pgen.1009995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Global regulation of spindle-associated proteins is crucial in oocytes due to the absence of centrosomes and their very large cytoplasmic volume, but little is known about how this is achieved beyond involvement of the Ran-importin pathway. We previously uncovered a novel regulatory mechanism in Drosophila oocytes, in which the phospho-docking protein 14-3-3 suppresses microtubule binding of Kinesin-14/Ncd away from chromosomes. Here we report systematic identification of microtubule-associated proteins regulated by 14-3-3 from Drosophila oocytes. Proteins from ovary extract were co-sedimented with microtubules in the presence or absence of a 14-3-3 inhibitor. Through quantitative mass-spectrometry, we identified proteins or complexes whose ability to bind microtubules is suppressed by 14-3-3, including the chromosomal passenger complex (CPC), the centralspindlin complex and Kinesin-14/Ncd. We showed that 14-3-3 binds to the disordered region of Borealin, and this binding is regulated differentially by two phosphorylations on Borealin. Mutations at these two phospho-sites compromised normal Borealin localisation and centromere bi-orientation in oocytes, showing that phospho-regulation of 14-3-3 binding is important for Borealin localisation and function.
Collapse
Affiliation(s)
- Charlotte Repton
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - C. Fiona Cullen
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mariana F. A. Costa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
110
|
Kay EJ, Paterson K, Riera-Domingo C, Sumpton D, Däbritz JHM, Tardito S, Boldrini C, Hernandez-Fernaud JR, Athineos D, Dhayade S, Stepanova E, Gjerga E, Neilson LJ, Lilla S, Hedley A, Koulouras G, McGregor G, Jamieson C, Johnson RM, Park M, Kirschner K, Miller C, Kamphorst JJ, Loayza-Puch F, Saez-Rodriguez J, Mazzone M, Blyth K, Zagnoni M, Zanivan S. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nat Metab 2022; 4:693-710. [PMID: 35760868 PMCID: PMC9236907 DOI: 10.1038/s42255-022-00582-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.
Collapse
Affiliation(s)
- Emily J Kay
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karla Paterson
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK
| | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | | | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | - Ekaterina Stepanova
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enio Gjerga
- Heidelberg University, Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | | | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Grace McGregor
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, Glasgow, UK
| | - Radia Marie Johnson
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Kristina Kirschner
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Crispin Miller
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, Institute for Computational Biomedicine, Bioquant, Heidelberg, Germany
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Michele Zagnoni
- Centre for Microsystems and Photonics, EEE Department, University of Strathclyde, Glasgow, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
111
|
Nyonda MA, Boyer JB, Belmudes L, Krishnan A, Pino P, Couté Y, Brochet M, Meinnel T, Soldati-Favre D, Giglione C. N-Acetylation of secreted proteins is widespread in Apicomplexa and independent of acetyl-CoA ER-transporter AT1. J Cell Sci 2022; 135:275539. [PMID: 35621049 DOI: 10.1242/jcs.259811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Acetyl-CoA participates in post-translational modification of proteins, central carbon and lipid metabolism in several cell compartments. In mammals, the acetyl-CoA transporter 1 (AT1) facilitates the flux of cytosolic acetyl-CoA into the endoplasmic reticulum (ER), enabling the acetylation of proteins of the secretory pathway, in concert with dedicated acetyltransferases including NAT8. However, the implication of the ER acetyl-CoA pool in acetylation of ER-transiting proteins in Apicomplexa is unknown. We identify homologues of AT1 and NAT8 in Toxoplasma gondii and Plasmodium berghei. Proteome-wide analyses revealed widespread N-terminal acetylation marks of secreted proteins in both parasites. Such acetylation profile of N-terminally processed proteins was never observed so far in any other organisms. AT1 deletion resulted in a considerable reduction of parasite fitness. In P. berghei, AT1 is important for growth of asexual blood stages and production of female gametocytes and male gametocytogenesis impaling its requirement for transmission. In the absence of AT1, the lysine and N-terminal acetylation sites remained globally unaltered, suggesting an uncoupling between the role of AT1 in development and active acetylation occurring along the secretory pathway.
Collapse
Affiliation(s)
- Mary Akinyi Nyonda
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Paco Pino
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,ExcellGene SA, CH1870 Monthey, Switzerland
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
112
|
Xin M, Xu Y, You S, Li C, Zhu B, Shen J, Chen Z, Shi W, Xue X, Shi J, Sun S. Precision Structural Interpretation of Site-Specific N-Glycans in Seminal Plasma. J Proteome Res 2022; 21:1664-1674. [PMID: 35616904 DOI: 10.1021/acs.jproteome.2c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
N-Linked glycoproteins are rich in seminal plasma, playing various essential roles in supporting sperm function and the fertilization process. However, the detailed information on these glycoproteins, particularly site-specific glycan structures, is still limited. In this study, a precision site-specific N-glycoproteome map of human seminal plasma was established by employing the site-specific glycoproteomic approach and a recently developed glycan structure interpretation software, StrucGP. A total of 9567 unique glycopeptides identified in human seminal plasma were composed of 773 N-linked glycan structures and 1019 N-glycosites from 620 glycoproteins. These glycans were comprised of four types of core structures and 13 branch structures. The majority of identified glycoproteins functioned in response to stimulus and immunity. As we reported in human spermatozoa, heavy fucosylation (fucose residues ≥6 per glycan) was also detected on seminal plasma glycoproteins such as clusterin and galectin-3-binding protein, which were involved in the immune response of biological processes and reactome pathways. Comparison of site-specific glycans between seminal plasma and spermatozoa revealed more complicated glycan structures in seminal plasma than in spermatozoa, even on their shared glycoproteins. These present data will be greatly beneficial for the in-depth structural and functional study of glycosylation in the male reproduction system.
Collapse
Affiliation(s)
- Miaomiao Xin
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China.,Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodnany 38925, Czech Republic
| | - Yintai Xu
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Shanshan You
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Cheng Li
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Bojing Zhu
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Jiechen Shen
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Zexuan Chen
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| | - Wenhao Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an 710003, PR China
| | - Xia Xue
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an 710003, PR China
| | - Juanzi Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an 710003, PR China
| | - Shisheng Sun
- College of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, PR China
| |
Collapse
|
113
|
Lamtha T, Krobthong S, Yingchutrakul Y, Samutrtai P, Gerner C, Tabtimmai L, Choowongkomon K. A novel nanobody as therapeutics target for EGFR-positive colorectal cancer therapy: exploring the effects of the nanobody on SW480 cells using proteomics approach. Proteome Sci 2022; 20:9. [PMID: 35578244 PMCID: PMC9109347 DOI: 10.1186/s12953-022-00190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background The epidermal growth factor receptor (EGFR) overexpression is found in metastatic colorectal cancer (mCRC). Targeted molecular therapies such as monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKI) are becoming more precise, targeting specifically for cancer therapeutics. However, there are adverse effects of currently available anti-EGFR drugs, including drug-resistant and side effects. Nanobodies can overcome these limitations. Our previous study has found that cell-penetrable nanobodies targeted at EGFR-tyrosine kinase were significantly reduced EGFR-positive lung cancer cells viability and proliferation. The aim of the present study was to determine the effect of cell-penetrable nanobody (R9VH36) on cell viability and proteomic profile in EGFR-positive human colorectal cancer cell lines. Methods The human colorectal carcinoma cell line (SW480) was treated with R9VH36, compared with gefitinib. Cell viability was monitored using the MTT cell viability assay. The proteomic profiling was analyzed by LC–MS/MS . Results The half-maximal inhibitory concentration (IC50) values determined for R9VH36 and gefitinib against SW480 were 527 ± 0.03 nM and 13.31 ± 0.02 μM, respectively. Moreover, both the gefitinib-treated group and nanobody-treated group had completely different proteome profiles. A total 6626 differentially expressed proteins were identified. PCA analysis revealed different proteome profiling in R9VH36 experiment. There were 8 proteins in R9VH36 that significantly exhibited opposite expression directions when compared to gefitinib. These proteins are involved in DNA-damage checkpoint processes. Conclusion The proteomics explored those 6,626 proteins had different expressions between R9VH36 and gefitinib. There were 8 proteins in R9VH36 exhibited opposite expression direction when comparing to gefitinib. Our findings suggest that R9VH36 has the potential to be an alternative remedy for treating EGFR-positive colon cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-022-00190-6.
Collapse
|
114
|
Macedo-da-Silva J, Coutinho JVP, Rosa-Fernandes L, Marie SKN, Palmisano G. Exploring COVID-19 pathogenesis on command-line: A bioinformatics pipeline for handling and integrating omics data. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:311-339. [PMID: 35871895 PMCID: PMC9095070 DOI: 10.1016/bs.apcsb.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in late 2019 in Wuhan, China, and has proven to be highly pathogenic, making it a global public health threat. The immediate need to understand the mechanisms and impact of the virus made omics techniques stand out, as they can offer a holistic and comprehensive view of thousands of molecules in a single experiment. Mastering bioinformatics tools to process, analyze, integrate, and interpret omics data is a powerful knowledge to enrich results. We present a robust and open access computational pipeline for extracting information from quantitative proteomics and transcriptomics public data. We present the entire pipeline from raw data to differentially expressed genes. We explore processes and pathways related to mapped transcripts and proteins. A pipeline is presented to integrate and compare proteomics and transcriptomics data using also packages available in the Bioconductor and providing the codes used. Cholesterol metabolism, immune system activity, ECM, and proteasomal degradation pathways increased in infected patients. Leukocyte activation profile was overrepresented in both proteomics and transcriptomics data. Finally, we found a panel of proteins and transcripts regulated in the same direction in the lung transcriptome and plasma proteome that distinguish healthy and infected individuals. This panel of markers was confirmed in another cohort of patients, thus validating the robustness and functionality of the tools presented.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil
| | | | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Cellular and Molecular Biology Laboratory (LIM 15), Neurology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, São Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
115
|
Komatsu S, Yamaguchi H, Hitachi K, Tsuchida K. Proteomic, Biochemical, and Morphological Analyses of the Effect of Silver Nanoparticles Mixed with Organic and Inorganic Chemicals on Wheat Growth. Cells 2022; 11:1579. [PMID: 35563885 PMCID: PMC9104970 DOI: 10.3390/cells11091579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Wheat is vulnerable to numerous diseases; on the other hand, silver nanoparticles (AgNPs) exhibit a sterilizing action. To understand the combined effects of AgNPs with nicotinate and potassium nitrate (KNO3) for plant growth and sterilization, a gel- and label-free proteomics was performed. Root weight was promoted by the treatment of AgNPs mixed with nicotinate and KNO3. From a total of 5557 detected proteins, 90 proteins were changed by the mixture of AgNPs, nicotinate, and KNO3; among them, 25 and 65 proteins increased and decreased, respectively. The changed proteins were mainly associated with redox and biotic stress in the functional categorization. By immunoblot analysis, the abundance of glutathione reductase/peroxiredoxin and pathogen-related protein three significantly decreased with the mixture. Furthermore, from the changed proteins, the abundance of starch synthase and lipoxygenase significantly increased and decreased, respectively. Through biochemical analysis, the starch contents increased with the mixture. The application of esculetin, which is a lipoxygenase inhibitor, increased the weight and length of the root. These results suggest that the AgNPs mixed with nicotinate and KNO3 cause positive effects on wheat seedlings by regulating pathogen-related protein and reactive-oxygen species scavenging. Furthermore, increasing starch and decreasing lipoxygenase might improve wheat growth.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Hisateru Yamaguchi
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi 512-8045, Japan;
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (K.H.); (K.T.)
| |
Collapse
|
116
|
Doh C, Dominic KL, Swanberg CE, Bharambe N, Willard BB, Li L, Ramachandran R, Stelzer JE. Identification of Phosphorylation and Other Post-Translational Modifications in the Central C4C5 Domains of Murine Cardiac Myosin Binding Protein C. ACS OMEGA 2022; 7:14189-14202. [PMID: 35573219 PMCID: PMC9089392 DOI: 10.1021/acsomega.2c00799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
Cardiac myosin binding protein C (cMyBPC) is a critical multidomain protein that modulates myosin cross bridge behavior and cardiac contractility. cMyBPC is principally regulated by phosphorylation of the residues within the M-domain of its N-terminus. However, not much is known about the phosphorylation or other post-translational modification (PTM) landscape of the central C4C5 domains. In this study, the presence of phosphorylation outside the M-domain was confirmed in vivo using mouse models expressing cMyBPC with nonphosphorylatable serine (S) to alanine substitutions. Purified recombinant mouse C4C5 domain constructs were incubated with 13 different kinases, and samples from the 6 strongest kinases were chosen for mass spectrometry analysis. A total of 26 unique phosphorylated peptides were found, representing 13 different phosphorylation sites including 10 novel sites. Parallel reaction monitoring and subsequent mutagenesis experiments revealed that the S690 site (UniProtKB O70468) was the predominant target of PKA and PKG1. We also report 6 acetylation and 7 ubiquitination sites not previously described in the literature. These PTMs demonstrate the possibility of additional layers of regulation and potential importance of the central domains of cMyBPC in cardiac health and disease. Data are available via ProteomeXchange with identifier PXD031262.
Collapse
Affiliation(s)
- Chang
Yoon Doh
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Katherine L. Dominic
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Caitlin E. Swanberg
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nikhil Bharambe
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Belinda B. Willard
- Proteomics
and Metabolomics Laboratory, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, United States
| | - Ling Li
- Proteomics
and Metabolomics Laboratory, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, United States
| | - Rajesh Ramachandran
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Julian E. Stelzer
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
117
|
Skibiel AL, Koh J, Zhu N, Zhu F, Yoo MJ, Laporta J. Carry-over effects of dry period heat stress on the mammary gland proteome and phosphoproteome in the subsequent lactation of dairy cows. Sci Rep 2022; 12:6637. [PMID: 35459770 PMCID: PMC9033811 DOI: 10.1038/s41598-022-10461-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Exposure to heat stress during a cow's dry period disrupts mammary gland remodeling, impairing mammary function and milk production during the subsequent lactation. Yet, proteomic changes in the mammary gland underlying these effects are not yet known. We investigated alterations in the mammary proteome and phosphoproteome during lactation as a result of dry period heat stress using an isobaric tag for relative and absolute quantitation (iTRAQ)-based approach. Cows were cooled (CL; n = 12) with fans and water soakers in a free stall setting or were heat stressed through lack of access to cooling devices (HT; n = 12) during the entire dry period (approximately 46 days). All cows were cooled postpartum. Mammary biopsies were harvested from a subset of cows (n = 4 per treatment) at 14, 42, and 84 days in milk. Overall, 251 proteins and 224 phosphorylated proteins were differentially abundant in the lactating mammary gland of HT compared to CL cows. Top functions of differentially abundant proteins and phosphoproteins affected were related to immune function and inflammation, amino acid metabolism, reactive oxygen species production and metabolism, tissue remodeling, and cell stress response. Patterns of protein expression and phosphorylation are indicative of increased oxidative stress, mammary gland restructuring, and immune dysregulation due to prior exposure to dry period heat stress. This study provides insights into the molecular underpinnings of disrupted mammary function and health during lactation arising from prior exposure to dry period heat stress, which might have led to lower milk yields.
Collapse
Affiliation(s)
- Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Ning Zhu
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Fanchao Zhu
- Interdisciplinary Center for Biotechnology Research, Proteomics and Mass Spectrometry Core, University of Florida, Gainesville, FL, 32611, USA
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
118
|
Krobthong S, Yingchutrakul Y, Samutrtai P, Hitakarun A, Siripattanapipong S, Leelayoova S, Mungthin M, Choowongkomon K. Utilizing Quantitative Proteomics to Identify Species-Specific Protein Therapeutic Targets for the Treatment of Leishmaniasis. ACS OMEGA 2022; 7:12580-12588. [PMID: 35474788 PMCID: PMC9026083 DOI: 10.1021/acsomega.1c05792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Leishmaniasis is a tropical disease caused by Leishmania parasites, which are transmitted through the bites of infected sandflies. We focused on the emergence of leishmaniasis in Thailand caused by a species (Leishmania orientalis). Treatment by chemotherapy is not effective against L. orientalis. Hence, we intended to solve this issue using a proteomics approach to investigate protein profiles and in silico analysis for the identification of antigenic proteins from L. orientalis, Leishmania martiniquensis, and Leishmania donovani. Using principal component analysis (PCA), protein profile comparisons indicated that different species of Leishmania are different at the protein level. Proteomics analysis identified 6099 proteins. Among these proteins, 1065 proteins were used for further analysis. There were 16 proteins that were promising candidates for therapeutic aspects as they were abundantly expressed and common to all species. In silico analysis of protein's antigenicity revealed that eight proteins had the potential for the development of antigenic molecules. Protein profile information and these antigenic proteins may play key roles in the pathogeny of leishmaniasis and can be used as novel therapeutic targets against leishmaniasis in the future.
Collapse
Affiliation(s)
- Sucheewin Krobthong
- Genetic
Engineering and Bioinformatics Program, Kasetsart University, Bangkok 10900, Thailand
- Center
for Neuroscience, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Yodying Yingchutrakul
- Center
for Neuroscience, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- National
Omics Center, NSTDA, Pathum Thani 12120, Thailand
| | - Pawitrabhorn Samutrtai
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Atitaya Hitakarun
- Suphanburi
Campus Establishment Project, Kasetsart
University, Suphan Buri 72150, Thailand
| | | | - Saovanee Leelayoova
- Department
of Parasitology, Phramongkutklao College
of Medicine, Bangkok 10400, Thailand
| | - Mathirut Mungthin
- Department
of Parasitology, Phramongkutklao College
of Medicine, Bangkok 10400, Thailand
| | - Kiattawee Choowongkomon
- Genetic
Engineering and Bioinformatics Program, Kasetsart University, Bangkok 10900, Thailand
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, 50 Ngam Wong
Wan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
119
|
Stieglitz F, Gerhard R, Hönig R, Giehl K, Pich A. TcdB of Clostridioides difficile Mediates RAS-Dependent Necrosis in Epithelial Cells. Int J Mol Sci 2022; 23:ijms23084258. [PMID: 35457076 PMCID: PMC9024770 DOI: 10.3390/ijms23084258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
A Clostridioides difficile infection (CDI) is the most common nosocomial infection worldwide. The main virulence factors of pathogenic C. difficile are TcdA and TcdB, which inhibit small Rho-GTPases. The inhibition of small Rho-GTPases leads to the so-called cytopathic effect, a reorganization of the actin cytoskeleton, an impairment of the colon epithelium barrier function and inflammation. Additionally, TcdB induces a necrotic cell death termed pyknosis in vitro independently from its glucosyltransferases, which are characterized by chromatin condensation and ROS production. To understand the underlying mechanism of this pyknotic effect, we conducted a large-scale phosphoproteomic study. We included the analysis of alterations in the phosphoproteome after treatment with TcdA, which was investigated for the first time. TcdA exhibited no glucosyltransferase-independent necrotic effect and was, thus, a good control to elucidate the underlying mechanism of the glucosyltransferase-independent effect of TcdB. We found RAS to be a central upstream regulator of the glucosyltransferase-independent effect of TcdB. The inhibition of RAS led to a 68% reduction in necrosis. Further analysis revealed apolipoprotein C-III (APOC3) as a possible crucial factor of CDI-induced inflammation in vivo.
Collapse
Affiliation(s)
- Florian Stieglitz
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.S.); (R.G.)
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.S.); (R.G.)
| | - Rabea Hönig
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany; (R.H.); (K.G.)
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine V, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany; (R.H.); (K.G.)
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (F.S.); (R.G.)
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-2808; Fax: +49-511-532-2879
| |
Collapse
|
120
|
Abstract
Microbes that can recycle one-carbon (C1) greenhouse gases into fuels and chemicals are vital for the biosustainability of future industries. Acetogens are the most efficient known microbes for fixing carbon oxides CO2 and CO. Understanding proteome allocation is important for metabolic engineering as it dictates metabolic fitness. Here, we use absolute proteomics to quantify intracellular concentrations for >1,000 proteins in the model acetogen Clostridium autoethanogenum grown autotrophically on three gas mixtures (CO, CO+H2, or CO+CO2+H2). We detect the prioritization of proteome allocation for C1 fixation and the significant expression of proteins involved in the production of acetate and ethanol as well as proteins with unclear functions. The data also revealed which isoenzymes are likely relevant in vivo for CO oxidation, H2 metabolism, and ethanol production. The integration of proteomic and metabolic flux data demonstrated that enzymes catalyze high fluxes with high concentrations and high in vivo catalytic rates. We show that flux adjustments were dominantly accompanied by changing enzyme catalytic rates rather than concentrations. IMPORTANCE Acetogen bacteria are important for maintaining biosustainability as they can recycle gaseous C1 waste feedstocks (e.g., industrial waste gases and syngas from gasified biomass or municipal solid waste) into fuels and chemicals. Notably, the acetogen Clostridium autoethanogenum is being used as a cell factory in industrial-scale gas fermentation. Here, we perform reliable absolute proteome quantification for the first time in an acetogen. This is important as our work advances both rational metabolic engineering of acetogen cell factories and accurate in silico reconstruction of their phenotypes. Furthermore, this absolute proteomics data set serves as a reference toward a better systems-level understanding of the ancient metabolism of acetogens.
Collapse
|
121
|
Proteomic profiling of postmortem prefrontal cortex tissue of suicide completers. Transl Psychiatry 2022; 12:142. [PMID: 35383147 PMCID: PMC8983647 DOI: 10.1038/s41398-022-01896-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Suicide is a leading cause of death worldwide, presenting a serious public health problem. We aimed to investigate the biological basis of suicide completion using proteomics on postmortem brain tissue. Thirty-six postmortem brain samples (23 suicide completers and 13 controls) were collected. We evaluated the proteomic profile in the prefrontal cortex (Broadmann area 9, 10) using tandem mass tag-based quantification with liquid chromatography-tandem mass spectrometry. Bioinformatics tools were used to elucidate the biological mechanisms related to suicide. Subgroup analysis was conducted to identify common differentially expressed proteins among clinically different groups. Of 9801 proteins identified, 295 were differentially expressed between groups. Suicide completion samples were mostly enriched in the endocannabinoid and apoptotic pathways (CAPNS1, CSNK2B, PTP4A2). Among the differentially expressed proteins, GSTT1 was identified as a potential biomarker among suicide completers with psychiatric disorders. Our findings suggest that the previously under-recognized endocannabinoid system and apoptotic processes are highly involved in suicide.
Collapse
|
122
|
Oeckl J, Janovska P, Adamcova K, Bardova K, Brunner S, Dieckmann S, Ecker J, Fromme T, Funda J, Gantert T, Giansanti P, Hidrobo MS, Kuda O, Kuster B, Li Y, Pohl R, Schmitt S, Schweizer S, Zischka H, Zouhar P, Kopecky J, Klingenspor M. Loss of UCP1 function augments recruitment of futile lipid cycling for thermogenesis in murine brown fat. Mol Metab 2022; 61:101499. [PMID: 35470094 PMCID: PMC9097615 DOI: 10.1016/j.molmet.2022.101499] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Josef Oeckl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Sarah Brunner
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Thomas Gantert
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Piero Giansanti
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Maria Soledad Hidrobo
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Radek Pohl
- NMR spectroscopy, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Czech Republic
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sabine Schweizer
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, Munich, Germany
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic.
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
123
|
Qin S, Qin S, Tian Z. Comprehensive site- and structure-specific characterization of N-glycosylation in model plant Arabidopsis using mass-spectrometry-based N-glycoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198:123234. [DOI: 10.1016/j.jchromb.2022.123234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/12/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023]
|
124
|
Ambaru B, Gangadharan GM, Subramanya HS, Gupta CM. Profilin is involved in G1 to S phase progression and mitotic spindle orientation during Leishmania donovani cell division cycle. PLoS One 2022; 17:e0265692. [PMID: 35316283 PMCID: PMC8939790 DOI: 10.1371/journal.pone.0265692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 11/27/2022] Open
Abstract
Profilin is a multi-ligand binding protein, which is a key regulator of actin dynamics and involved in regulating several cellular functions. It is present in all eukaryotes, including trypanosomatids such as Leishmania. However, not much is known about its functions in these organisms. Our earlier studies have shown that Leishmania parasites express a single homologue of profilin (LdPfn) that binds actin, phosphoinositides and poly- L- proline motives, and depletion of its intracellular pool to 50%of normal levels affects the cell growth and intracellular trafficking. Here, we show, employing affinity pull-down and mass spectroscopy, that LdPfn interacted with a large number of proteins, including those involved in mRNA processing and protein translation initiation, such as eIF4A1. Further, we reveal, using mRNA Seq analysis, that depletion of LdPfn in Leishmania cells (LdPfn+/-) resulted in significantly reduced expression of genes which encode proteins involved in cell cycle regulation, mRNA translation initiation, nucleosides and amino acids transport. In addition, we show that in LdPfn+/- cells, cellular levels of eIF4A1 protein were significantly decreased, and during their cell division cycle, G1-to-S phase progression was delayed and orientation of mitotic spindle altered. These changes were, however, reversed to normal by episomal expression of GFP-LdPfn in LdPfn+/- cells. Taken together, our results indicate that profilin is involved in regulation of G1-to-S phase progression and mitotic spindle orientation in Leishmania cell cycle, perhaps through its interaction with elF4A1 protein.
Collapse
Affiliation(s)
- Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | | | - Chhitar M. Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
125
|
Abstract
Cellular processes require tight and coordinated control of protein abundance, localization, and activity. One of the core mechanisms to achieve specific regulation of proteins is protein phosphorylation. Here we present a workflow to monitor protein abundance and phosphorylation in primary cultured neurons using liquid chromatography-coupled mass spectrometry. Our protocol provides a detailed guide on all steps for detection and label-free-quantification of phosphorylated and unmodified proteins of primary cortical neurons, including primary cell culture, phosphoproteomic sample preparation and data-processing, and evaluation. For complete details on the use and execution of this protocol, please refer to Desch et al. (2021).
Collapse
Affiliation(s)
- Kristina Desch
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M. Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Julian D. Langer
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
- Max Planck Institute of Biophysics, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| |
Collapse
|
126
|
Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano-bio interactions. Proc Natl Acad Sci U S A 2022; 119:e2106053119. [PMID: 35275789 PMCID: PMC8931255 DOI: 10.1073/pnas.2106053119] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceDeep profiling of the plasma proteome at scale has been a challenge for traditional approaches. We achieve superior performance across the dimensions of precision, depth, and throughput using a panel of surface-functionalized superparamagnetic nanoparticles in comparison to conventional workflows for deep proteomics interrogation. Our automated workflow leverages competitive nanoparticle-protein binding equilibria that quantitatively compress the large dynamic range of proteomes to an accessible scale. Using machine learning, we dissect the contribution of individual physicochemical properties of nanoparticles to the composition of protein coronas. Our results suggest that nanoparticle functionalization can be tailored to protein sets. This work demonstrates the feasibility of deep, precise, unbiased plasma proteomics at a scale compatible with large-scale genomics enabling multiomic studies.
Collapse
|
127
|
Thakur AK, Luthra-Guptasarma M. Differences in Cellular Clearing Mechanisms of Aggregates of Two Subtypes of HLA-B27. Front Immunol 2022; 12:795053. [PMID: 35082784 PMCID: PMC8785436 DOI: 10.3389/fimmu.2021.795053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
Ankylosing spondylitis (AS) belongs to a group of diseases, called spondyloarthropathies (SpA), that are strongly associated with the genetic marker HLA-B27. AS is characterized by inflammation of joints and primarily affects the spine. Over 160 subtypes of HLA-B27 are known, owing to high polymorphism. Some are strongly associated with disease (e.g., B*2704), whereas others are not (e.g., B*2709). Misfolding of HLA-B27 molecules [as dimers, or as high-molecular-weight (HMW) oligomers] is one of several hypotheses proposed to explain the link between HLA-B27 and AS. Our group has previously established the existence of HMW species of HLA-B27 in AS patients. Still, very little is known about the mechanisms underlying differences in pathogenic outcomes of different HLA-B27 subtypes. We conducted a proteomics-based evaluation of the differential disease association of HLA B*2704 and B*2709, using stable transfectants of genes encoding the two proteins. A clear difference was observed in protein clearance mechanisms: whereas unfolded protein response (UPR), autophagy, and aggresomes were involved in the degradation of B*2704, the endosome–lysosome machinery was primarily involved in B*2709 degradation. These differences offer insights into the differential disease association of B*2704 and B*2709.
Collapse
Affiliation(s)
- Amit Kumar Thakur
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
128
|
Selective multi-kinase inhibition sensitizes mesenchymal pancreatic cancer to immune checkpoint blockade by remodeling the tumor microenvironment. NATURE CANCER 2022; 3:318-336. [PMID: 35122074 PMCID: PMC7612546 DOI: 10.1038/s43018-021-00326-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted and immunotherapies. Among the different PDAC subtypes, basal-like mesenchymal PDAC, which is driven by allelic imbalance, increased gene dosage and subsequent high expression levels of oncogenic KRAS, shows the most aggressive phenotype and strongest therapy resistance. In the present study, we performed a systematic high-throughput combination drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi-kinase inhibitor nintedanib, which targets KRAS-directed oncogenic signaling in mesenchymal PDAC. This combination treatment induces cell-cycle arrest and cell death, and initiates a context-dependent remodeling of the immunosuppressive cancer cell secretome. Using a combination of single-cell RNA-sequencing, CRISPR screens and immunophenotyping, we show that this combination therapy promotes intratumor infiltration of cytotoxic and effector T cells, which sensitizes mesenchymal PDAC to PD-L1 immune checkpoint inhibition. Overall, our results open new avenues to target this aggressive and therapy-refractory mesenchymal PDAC subtype.
Collapse
|
129
|
Hsu CW, Sowers ML, Baljinnyam T, Herring JL, Hackfeld LC, Tang H, Zhang K, Sowers LC. Measurement of deaminated cytosine adducts in DNA using a novel hybrid thymine DNA glycosylase. J Biol Chem 2022; 298:101638. [PMID: 35085553 PMCID: PMC8861164 DOI: 10.1016/j.jbc.2022.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/16/2023] Open
Abstract
The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oligonucleotides and DNA followed by GC-MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the formation, persistence, and repair of a biologically important class of deaminated cytosine adducts.
Collapse
Affiliation(s)
- Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA; MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mark L Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA; MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jason L Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Linda C Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hui Tang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
130
|
Zhi Y, Jia L, Shen J, Li J, Chen Z, Zhu B, Hao Z, Xu Y, Sun S. Formylation: an undesirable modification on glycopeptides and glycans during storage in formic acid solution. Anal Bioanal Chem 2022; 414:3311-3317. [PMID: 35229171 DOI: 10.1007/s00216-022-03989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
In glycomic and glycoproteomic studies, solutions containing diluted organic acids such as formic acid (FA) have been widely used for dissolving intact glycopeptide and glycan samples prior to mass spectrometry analysis. Here, we show that an undesirable + 28 Da modification occurred in a time-dependent manner when the glycan and glycopeptide samples were stored in FA solution at - 20 °C. We confirmed that this unexpected modification was caused by formylation between the hydroxyl groups of glycans and FA with a relatively low reaction rate. As this incomplete modification affected the glycan and glycopeptide identification and quantification in glycomic and glycoproteomic studies, the storage at - 20 °C should be avoided once the glycan and glycopeptide samples have been dissolved in FA solution.
Collapse
Affiliation(s)
- Yuan Zhi
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Jun Li
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Zexuan Chen
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Zhifang Hao
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Yintai Xu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| |
Collapse
|
131
|
Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly. Proc Natl Acad Sci U S A 2022; 119:2114092119. [PMID: 35101980 PMCID: PMC8833184 DOI: 10.1073/pnas.2114092119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.
Collapse
|
132
|
Hodson C, Low JKK, van Twest S, Jones SE, Swuec P, Murphy V, Tsukada K, Fawkes M, Bythell-Douglas R, Davies A, Holien JK, O'Rourke JJ, Parker BL, Glaser A, Parker MW, Mackay JP, Blackford AN, Costa A, Deans AJ. Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability. Proc Natl Acad Sci U S A 2022; 119:e2109093119. [PMID: 35115399 PMCID: PMC8832983 DOI: 10.1073/pnas.2109093119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.
Collapse
Affiliation(s)
- Charlotte Hodson
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Paolo Swuec
- Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Vincent Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| | | | - Jessica K Holien
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael W Parker
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia;
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
133
|
Cervantes-Gracia K, Chahwan R, Husi H. Integrative OMICS Data-Driven Procedure Using a Derivatized Meta-Analysis Approach. Front Genet 2022; 13:828786. [PMID: 35186042 PMCID: PMC8855827 DOI: 10.3389/fgene.2022.828786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
The wealth of high-throughput data has opened up new opportunities to analyze and describe biological processes at higher resolution, ultimately leading to a significant acceleration of scientific output using high-throughput data from the different omics layers and the generation of databases to store and report raw datasets. The great variability among the techniques and the heterogeneous methodologies used to produce this data have placed meta-analysis methods as one of the approaches of choice to correlate the resultant large-scale datasets from different research groups. Through multi-study meta-analyses, it is possible to generate results with greater statistical power compared to individual analyses. Gene signatures, biomarkers and pathways that provide new insights of a phenotype of interest have been identified by the analysis of large-scale datasets in several fields of science. However, despite all the efforts, a standardized regulation to report large-scale data and to identify the molecular targets and signaling networks is still lacking. Integrative analyses have also been introduced as complementation and augmentation for meta-analysis methodologies to generate novel hypotheses. Currently, there is no universal method established and the different methods available follow different purposes. Herein we describe a new unifying, scalable and straightforward methodology to meta-analyze different omics outputs, but also to integrate the significant outcomes into novel pathways describing biological processes of interest. The significance of using proper molecular identifiers is highlighted as well as the potential to further correlate molecules from different regulatory levels. To show the methodology’s potential, a set of transcriptomic datasets are meta-analyzed as an example.
Collapse
Affiliation(s)
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Richard Chahwan, ; Holger Husi,
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, United Kingdom
- *Correspondence: Richard Chahwan, ; Holger Husi,
| |
Collapse
|
134
|
Xin M, You S, Xu Y, Shi W, Zhu B, Shen J, Wu J, Li C, Chen Z, Su Y, Shi J, Sun S. Precision glycoproteomics reveals distinctive N-glycosylation in human spermatozoa. Mol Cell Proteomics 2022; 21:100214. [PMID: 35183770 PMCID: PMC8958358 DOI: 10.1016/j.mcpro.2022.100214] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/06/2022] [Indexed: 12/21/2022] Open
Abstract
Spermatozoon represents a very special cell type in human body, and glycosylation plays essential roles in its whole life including spermatogenesis, maturation, capacitation, sperm–egg recognition, and fertilization. In this study, by mapping the most comprehensive N-glycoproteome of human spermatozoa using our recently developed site-specific glycoproteomic approaches, we show that spermatozoa contain a number of distinctive glycoproteins, which are mainly involved in spermatogenesis, acrosome reaction and sperm:oocyte membrane binding, and fertilization. Heavy fucosylation is observed on 14 glycoproteins mostly located at extracellular and cell surface regions in spermatozoa but not in other tissues. Sialylation and Lewis epitopes are enriched in the biological process of immune response in spermatozoa, while bisected core structures and LacdiNAc structures are highly expressed in acrosome. These data deepen our knowledge about glycosylation in spermatozoa and lay the foundation for functional study of glycosylation and glycan structures in male infertility. A precision site-specific glycoproteome is documented in human spermatozoa. Distinctive glycoproteins and heavy fucosylation are detected in spermatozoa. Sialylation and Lewis epitopes are related to immune response of spermatozoa. Bisected core structures and LacdiNAc are enriched on acrosome of spermatozoa.
Collapse
|
135
|
Goyal S, Segarra VA, N, Stecher AM, Truman AW, Reitzel AM, Chi RJ. Vps501, a novel vacuolar SNX-BAR protein cooperates with the SEA complex to regulate TORC1 signaling. Traffic 2022; 23. [PMID: 35098628 PMCID: PMC9305297 DOI: 10.1111/tra.12833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
The sorting nexins (SNX), constitute a diverse family of molecules that play varied roles in membrane trafficking, cell signaling, membrane remodeling, organelle motility and autophagy. In particular, the SNX-BAR proteins, a SNX subfamily characterized by a C-terminal dimeric Bin/Amphiphysin/Rvs (BAR) lipid curvature domain and a conserved Phox-homology domain, are of great interest. In budding yeast, many SNX-BARs proteins have well-characterized endo-vacuolar trafficking roles. Phylogenetic analyses allowed us to identify an additional SNX-BAR protein, Vps501, with a novel endo-vacuolar role. We report that Vps501 uniquely localizes to the vacuolar membrane and has physical and genetic interactions with the SEA complex to regulate TORC1 inactivation. We found cells displayed a severe deficiency in starvation-induced/nonselective autophagy only when SEA complex subunits are ablated in combination with Vps501, indicating a cooperative role with the SEA complex during TORC1 signaling during autophagy induction. Additionally, we found the SEACIT complex becomes destabilized in vps501Δsea1Δ cells, which resulted in aberrant endosomal TORC1 activity and subsequent Atg13 hyperphosphorylation. We have also discovered that the vacuolar localization of Vps501 is dependent upon a direct interaction with Sea1 and a unique lipid binding specificity that is also required for its function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shreya Goyal
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | | | - Nitika
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Aaron M. Stecher
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Andrew W. Truman
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Adam M. Reitzel
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Richard J. Chi
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| |
Collapse
|
136
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes. First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
137
|
Amnan MAM, Aizat WM, Khaidizar FD, Tan BC. Drought Stress Induces Morpho-Physiological and Proteome Changes of Pandanus amaryllifolius. PLANTS (BASEL, SWITZERLAND) 2022; 11:221. [PMID: 35050109 PMCID: PMC8778612 DOI: 10.3390/plants11020221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 05/20/2023]
Abstract
Drought is one of the significant threats to the agricultural sector. However, there is limited knowledge on plant response to drought stress and post-drought recovery. Pandanus amaryllifolius, a moderate drought-tolerant plant, is well-known for its ability to survive in low-level soil moisture conditions. Understanding the molecular regulation of drought stress signaling in this plant could help guide the rational design of crop plants to counter this environmental challenge. This study aimed to determine the morpho-physiological, biochemical, and protein changes of P. amaryllifolius in response to drought stress and during recovery. Drought significantly reduced the leaf relative water content and chlorophyll content of P. amaryllifolius. In contrast, relative electrolyte leakage, proline and malondialdehyde contents, and the activities of antioxidant enzymes in the drought-treated and recovered samples were relatively higher than the well-watered sample. The protein changes between drought-stressed, well-watered, and recovered plants were evaluated using tandem mass tags (TMT)-based quantitative proteomics. Of the 1415 differentially abundant proteins, 74 were significantly altered. The majority of proteins differing between them were related to carbon metabolism, photosynthesis, stress response, and antioxidant activity. This is the first study that reports the protein changes in response to drought stress in Pandanus. The data generated provide an insight into the drought-responsive mechanisms in P. amaryllifolius.
Collapse
Affiliation(s)
- Muhammad Asyraf Mohd Amnan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Fiqri Dizar Khaidizar
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.M.A.); (F.D.K.)
| |
Collapse
|
138
|
La Ferlita A, Alaimo S, Ferro A, Pulvirenti A. Pathway Analysis for Cancer Research and Precision Oncology Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:143-161. [DOI: 10.1007/978-3-030-91836-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
139
|
Mookkandi S, Roshni J, Velayudam J, Sivakumar M, Ahmed SF. Bioinformatics Resources, Tools, and Strategies in Designing Therapeutic Proteins. THERAPEUTIC PROTEINS AGAINST HUMAN DISEASES 2022:91-123. [DOI: 10.1007/978-981-16-7897-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
140
|
Asensio T, Dian C, Boyer JB, Rivière F, Meinnel T, Giglione C. A Continuous Assay Set to Screen and Characterize Novel Protein N-Acetyltransferases Unveils Rice General Control Non-repressible 5-Related N-Acetyltransferase2 Activity. FRONTIERS IN PLANT SCIENCE 2022; 13:832144. [PMID: 35273627 PMCID: PMC8902505 DOI: 10.3389/fpls.2022.832144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 05/19/2023]
Abstract
Protein N-acetyltransferases (NATs) belong to the general control non-repressible 5 (Gcn5)-related N-acetyltransferases (GNATs) superfamily. GNATs catalyze the transfer of acetyl from acetyl-CoA to the reactive amine moiety of a wide range of acceptors. NAT sequences are difficult to distinguish from other members of the GNAT superfamily and there are many uncharacterized GNATs. To facilitate the discovery and characterization of new GNATs, we have developed a new continuous, non-radioactive assay. This assay is virtually independent of the substrate and can be used to get substrate specificity hints. We validated first the assay with the well-characterized Schizosaccharomyces pombe NatA (SpNatA). The SpNatA kinetic parameters were determined with various peptides confirming the robustness of the new assay. We reveal that the longer the peptide substrate the more efficient the enzyme. As a proof of concept of the relevance of the new assay, we characterized a NAA90 member from rice (Oryza sativa), OsGNAT2. We took advantage of an in vivo medium-scale characterization of OsGNAT2 specificity to identify and then validate in vitro several specific peptide substrates. With this assay, we reveal long-range synergic effects of basic residues on OsGNAT2 activity. Overall, this new, high-throughput assay allows better understanding of the substrate specificity and activity of any GNAT.
Collapse
|
141
|
Network Biology and Artificial Intelligence Drive the Understanding of the Multidrug Resistance Phenotype in Cancer. Drug Resist Updat 2022; 60:100811. [DOI: 10.1016/j.drup.2022.100811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
|
142
|
Kadefors M, Rolandsson Enes S, Åhrman E, Michaliková B, Löfdahl A, Dellgren G, Scheding S, Westergren-Thorsson G. CD105 +CD90 +CD13 + identifies a clonogenic subset of adventitial lung fibroblasts. Sci Rep 2021; 11:24417. [PMID: 34952905 PMCID: PMC8709856 DOI: 10.1038/s41598-021-03963-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal cells are important components of specified niches in the lung, and can mediate a wide range of processes including tissue regeneration and repair. Dysregulation of these processes can lead to improper remodeling of tissue as observed in several lung diseases. The mesenchymal cells responsible remain poorly described, partially due to the heterogenic nature of the mesenchymal compartment and the absence of appropriate markers. Here, we describe that CD105+CD90+ mesenchymal cells can be divided into two populations based on their expression of CD13/aminopeptidase N (CD105+CD90+CD13− and CD105+CD90+CD13+). By prospective isolation using FACS, we show that both these populations give rise to clonogenic fibroblast-like cells, but with an increased clonogenic and proliferative capacity of CD105+CD90+CD13+ cells. Transcriptomic and spatial analysis pinpoints an adventitial fibroblast subset as the origin of CD105+CD90+CD13+ clonogenic mesenchymal cells in human lung.
Collapse
Affiliation(s)
- Måns Kadefors
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | - Emma Åhrman
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Anna Löfdahl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Hematology, Skåne University Hospital Lund, Lund, Sweden
| | | |
Collapse
|
143
|
Pérez MD, Olaya-Abril A, Cabello P, Sáez LP, Roldán MD, Moreno-Vivián C, Luque-Almagro VM. Alternative Pathway for 3-Cyanoalanine Assimilation in Pseudomonas pseudoalcaligenes CECT5344 under Noncyanotrophic Conditions. Microbiol Spectr 2021; 9:e0077721. [PMID: 34730416 PMCID: PMC8567248 DOI: 10.1128/spectrum.00777-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
3-Cyanoalanine and cyanohydrins are intermediate nitriles produced in cyanide degradation pathways in plants and bacteria. 3-Cyanoalanine is generated from cyanide by the 3-cyanoalanine synthase, an enzyme mainly characterized in cyanogenic plants. NIT4-type nitrilases use 3-cyanoalanine as a substrate, forming ammonium and aspartate. In some organisms, this enzyme also generates asparagine through an additional nitrile hydratase activity. The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 assimilates cyanide through an intermediate cyanohydrin, which is further converted into ammonium by the nitrilase NitC. This bacterium also contains three additional nitrilases, including Nit4. In this work, a proteomic analysis of P. pseudoalcaligenes CECT5344 cells grown with 3-cyanoalanine as the sole nitrogen source has revealed the overproduction of different proteins involved in nitrogen metabolism, including the nitrilase NitC. In contrast, the nitrilase Nit4 was not induced by 3-cyanoalanine, and it was only overproduced in cells grown with a cyanide-containing jewelry-manufacturing residue. Phenotypes of single and double mutant strains defective in nit4 or/and nitC revealed the implication of the nitrilase NitC in the assimilation of 3-cyanoalanine and suggest that the 3-cyanoalanine assimilation pathway in P. pseudoalcaligenes CECT5344 depends on the presence or absence of cyanide. When cyanide is present, 3-cyanoalanine is assimilated via Nit4, but in the absence of cyanide, a novel pathway for 3-cyanoalanine assimilation, in which the nitrilase NitC uses the nitrile generated after deamination of the α-amino group from 3-cyanoalanine, is proposed. IMPORTANCE Nitriles are organic cyanides with important industrial applications, but they are also found in nature. 3-Cyanoalanine is synthesized by plants and some bacteria to detoxify cyanide from endogenous or exogenous sources, but this nitrile may be also involved in other processes such as stress tolerance, nitrogen and sulfur metabolism, and signaling. The cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344 grows with 3-cyanoalanine as the sole nitrogen source, but it does not use this nitrile as an intermediate in the cyanide assimilation pathway. In this work, a quantitative proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed to study, for the first time, the response to 3-cyanoalanine at the proteomic level. Proteomic data, together with phenotypes of different nitrilase-defective mutants of P. pseudoalcaligenes CECT5344, provide evidence that in the absence of cyanide, the nitrilase Nit4 is not involved in 3-cyanoalanine assimilation, and instead, the nitrilase NitC participates in a novel alternative 3-cyanoalanine assimilation pathway.
Collapse
Affiliation(s)
- María D. Pérez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - M. Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor M. Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
144
|
Huang D, Chowdhury S, Wang H, Savage SR, Ivey RG, Kennedy JJ, Whiteaker JR, Lin C, Hou X, Oberg AL, Larson MC, Eskandari N, Delisi DA, Gentile S, Huntoon CJ, Voytovich UJ, Shire ZJ, Yu Q, Gygi SP, Hoofnagle AN, Herbert ZT, Lorentzen TD, Calinawan A, Karnitz LM, Weroha SJ, Kaufmann SH, Zhang B, Wang P, Birrer MJ, Paulovich AG. Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer. Cell Rep Med 2021; 2:100471. [PMID: 35028612 PMCID: PMC8714940 DOI: 10.1016/j.xcrm.2021.100471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Resistance to platinum compounds is a major determinant of patient survival in high-grade serous ovarian cancer (HGSOC). To understand mechanisms of platinum resistance and identify potential therapeutic targets in resistant HGSOC, we generated a data resource composed of dynamic (±carboplatin) protein, post-translational modification, and RNA sequencing (RNA-seq) profiles from intra-patient cell line pairs derived from 3 HGSOC patients before and after acquiring platinum resistance. These profiles reveal extensive responses to carboplatin that differ between sensitive and resistant cells. Higher fatty acid oxidation (FAO) pathway expression is associated with platinum resistance, and both pharmacologic inhibition and CRISPR knockout of carnitine palmitoyltransferase 1A (CPT1A), which represents a rate limiting step of FAO, sensitize HGSOC cells to platinum. The results are further validated in patient-derived xenograft models, indicating that CPT1A is a candidate therapeutic target to overcome platinum resistance. All multiomic data can be queried via an intuitive gene-query user interface (https://sites.google.com/view/ptrc-cell-line).
Collapse
Affiliation(s)
- Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hong Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Najmeh Eskandari
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Davide A Delisi
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Saverio Gentile
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | - Uliana J Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zahra J Shire
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N Hoofnagle
- Department of Lab Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Travis D Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Larry M Karnitz
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Birrer
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
145
|
R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat Commun 2021; 12:7314. [PMID: 34916496 PMCID: PMC8677849 DOI: 10.1038/s41467-021-27530-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription poses a threat to genomic stability through the formation of R-loops that can obstruct progression of replication forks. R-loops are three-stranded nucleic acid structures formed by an RNA-DNA hybrid with a displaced non-template DNA strand. We developed RNA-DNA Proximity Proteomics to map the R-loop proximal proteome of human cells using quantitative mass spectrometry. We implicate different cellular proteins in R-loop regulation and identify a role of the tumor suppressor DDX41 in opposing R-loop and double strand DNA break accumulation in promoters. DDX41 is enriched in promoter regions in vivo, and can unwind RNA-DNA hybrids in vitro. R-loop accumulation upon loss of DDX41 is accompanied with replication stress, an increase in the formation of double strand DNA breaks and transcriptome changes associated with the inflammatory response. Germline loss-of-function mutations in DDX41 lead to predisposition to acute myeloid leukemia in adulthood. We propose that R-loop accumulation and genomic instability-associated inflammatory response may contribute to the development of familial AML with mutated DDX41.
Collapse
|
146
|
Klähn S, Mikkat S, Riediger M, Georg J, Hess WR, Hagemann M. Integrative analysis of the salt stress response in cyanobacteria. Biol Direct 2021; 16:26. [PMID: 34906211 PMCID: PMC8670252 DOI: 10.1186/s13062-021-00316-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Microorganisms evolved specific acclimation strategies to thrive in environments of high or fluctuating salinities. Here, salt acclimation in the model cyanobacterium Synechocystis sp. PCC 6803 was analyzed by integrating transcriptomic, proteomic and metabolomic data. A dynamic reorganization of the transcriptome occurred during the first hours after salt shock, e.g. involving the upregulation of genes to activate compatible solute biochemistry balancing osmotic pressure. The massive accumulation of glucosylglycerol then had a measurable impact on the overall carbon and nitrogen metabolism. In addition, we observed the coordinated induction of putative regulatory RNAs and of several proteins known for their involvement in other stress responses. Overall, salt-induced changes in the proteome and transcriptome showed good correlations, especially among the stably up-regulated proteins and their transcripts. We define an extended salt stimulon comprising proteins directly or indirectly related to compatible solute metabolism, ion and water movements, and a distinct set of regulatory RNAs involved in post-transcriptional regulation. Our comprehensive data set provides the basis for engineering cyanobacterial salt tolerance and to further understand its regulation.
Collapse
Affiliation(s)
- Stephan Klähn
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Matthias Riediger
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, A.-Einstein-Str. 3, 18059 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
147
|
Taher L, Israel S, Drexler HCA, Makalowski W, Suzuki Y, Fuellen G, Boiani M. The proteome, not the transcriptome, predicts that oocyte superovulation affects embryonic phenotypes in mice. Sci Rep 2021; 11:23731. [PMID: 34887460 PMCID: PMC8660899 DOI: 10.1038/s41598-021-03054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
Superovulation is the epitome for generating oocytes for molecular embryology in mice, and it is used to model medically assisted reproduction in humans. However, whether a superovulated oocyte is normal, is an open question. This study establishes for the first time that superovulation is associated with proteome changes that affect phenotypic traits in mice, whereas the transcriptome is far less predictive. The proteins that were differentially expressed in superovulated mouse oocytes and embryos compared to their naturally ovulated counterparts were enriched in ontology terms describing abnormal mammalian phenotypes: a thinner zona pellucida, a smaller oocyte diameter, increased frequency of cleavage arrest, and defective blastocyst formation, which could all be verified functionally. Moreover, our findings indicate that embryos with such abnormalities are negatively selected during preimplantation, and ascribe these abnormalities to incomplete ovarian maturation during the time of the conventional superovulation, since they could be corrected upon postponement of the ovulatory stimulus by 24 h. Our data place constraints on the common view that superovulated oocytes are suitable for drawing general conclusions about developmental processes, and underscore the importance of including the proteins in a modern molecular definition of oocyte quality.
Collapse
Affiliation(s)
- Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, 8010, Graz, Austria.
| | - Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Niels Stensen Str. 14, 48149, Münster, Germany
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany.
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
148
|
Chen YJ, Yen TC, Lin YH, Chen YL, Khoo KH, Chen YJ. ZIC-cHILIC-Based StageTip for Simultaneous Glycopeptide Enrichment and Fractionation toward Large-Scale N-Sialoglycoproteomics. Anal Chem 2021; 93:15931-15940. [PMID: 34780171 DOI: 10.1021/acs.analchem.1c03224] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alterations of protein glycosylation are closely related with pathophysiological regulation. Due to the structural macro- and microheterogeneity, low stoichiometry, and low ionization efficiency of glycopeptides, high-performance tools to enrich glycopeptides, especially the negatively charged and labile sialoglycopeptides, are essential to enhance the identification of the underexplored glycoproteome. Here, we present the first implementation of zwitterionic hydrophilic interaction chromatography with the exposed choline group (ZIC-cHILIC) in StageTip for simultaneous enrichment and fractionation of intact glycopeptides. In a model study using lung cancer cells, early elution by a high percentage of acetonitrile prominently prefilters nonglycopeptides, facilitating high enrichment specificity for glycopeptides (92-96%) and sialoglycopeptides (77-89%) in the subsequent hydrophilic fractions. The stepwise elution shows a high glycopeptide fractionation efficiency by a <10% overlap of glycopeptides between adjacent fractions. Most importantly, the ZIC-cHILIC stepwise strategy demonstrated good reproducibility (>80% in triplicate analysis) as well as superior coverage of 4.6- to 12.0-fold and 2.1- to 35.6-fold more glycopeptides and sialoglycopeptides compared to conventional TiO2 and ZIC-HILIC, respectively. To the best of our knowledge, the result with 2742 sialoglycopeptides among 7367 unique glycopeptides and 166 glycans from 2434 N-glycosites of 1118 glycoproteins (Byonic score > 100) provides one of the deepest glycoproteomic profiles in single-cell type. Without the immunoprecipitation step, the large-scale glycoproteomic atlas also reveals site-specific glycosylation of many druggable receptor proteins, such as EGFR, MET, ERBB2, ERBB3, AXL, and IGF1R. The demonstrated high enrichment specificity and identification depth show that stepwise ZIC-cHILIC is an efficient method to explore the under-represented sialoglycoproteome.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsien Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yan-Lin Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
149
|
Zhang X, Schuhmachers P, Mourão A, Giansanti P, Murer A, Thumann S, Kuklik‐Roos C, Beer S, Hauck SM, Hammerschmidt W, Küppers R, Kuster B, Raab M, Strebhardt K, Sattler M, Münz C, Kempkes B. PLK1-dependent phosphorylation restrains EBNA2 activity and lymphomagenesis in EBV-infected mice. EMBO Rep 2021; 22:e53007. [PMID: 34605140 PMCID: PMC8647151 DOI: 10.15252/embr.202153007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.
Collapse
Affiliation(s)
- Xiang Zhang
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Patrick Schuhmachers
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - André Mourão
- Institute of Structural BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of ChemistryBavarian NMR CenterTechnical University of MunichGarchingGermany
| | - Piero Giansanti
- Chair of Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Anita Murer
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Sybille Thumann
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Cornelia Kuklik‐Roos
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Sophie Beer
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core FacilityHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research)University Hospital EssenEssenGermany
| | - Bernhard Kuster
- Chair of Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichFreisingGermany
| | - Monika Raab
- Department of Gynecology and ObstetricsJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Klaus Strebhardt
- Department of Gynecology and ObstetricsJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Michael Sattler
- Institute of Structural BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of ChemistryBavarian NMR CenterTechnical University of MunichGarchingGermany
| | - Christian Münz
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Bettina Kempkes
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| |
Collapse
|
150
|
Li J, Zhao T, Li J, Shen J, Jia L, Zhu B, Dang L, Ma C, Liu D, Mu F, Hu L, Sun S. Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Mol Oncol 2021; 16:2135-2152. [PMID: 34855283 PMCID: PMC9168967 DOI: 10.1002/1878-0261.13147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/09/2022] Open
Abstract
Primary liver cancer, mainly comprising hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), remains a major global health problem. Although ICC is clinically different from HCC, their molecular differences are still largely unclear. In this study, precision N‐glycoproteomic analysis was performed on both ICC and HCC tumors as well as paracancer tissues to investigate their aberrant site‐specific N‐glycosylation. By using our newly developed glycoproteomic methods and novel algorithm, termed ‘StrucGP’, a total of 486 N‐glycan structures attached on 1235 glycosites were identified from 894 glycoproteins in ICC and HCC tumors. Notably, glycans with uncommon LacdiNAc (GalNAcβ1‐4GlcNAc) structures were distinguished from their isomeric glycans. In addition to several bi‐antennary and/or bisecting glycans that were commonly elevated in ICC and HCC, a number of LacdiNAc‐containing, tri‐antennary, and core‐fucosylated glycans were uniquely increased in ICC. More interestingly, almost all LacdiNAc‐containing N‐glycopeptides were enhanced in ICC tumor but not in HCC tumor, and this phenomenon was further confirmed by lectin histochemistry and the high expression of β1‐4 GalNAc transferases in ICC at both mRNA and protein expression levels. The novel N‐glycan alterations uniquely detected in ICC provide a valuable resource for future studies regarding to the discovery of ICC diagnostic biomarkers, therapeutic targets, and mechanism investigations.
Collapse
Affiliation(s)
- Jun Li
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Ting Zhao
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Jing Li
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Jiechen Shen
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Li Jia
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Bojing Zhu
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Liuyi Dang
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Chen Ma
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Didi Liu
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Fan Mu
- Department of Hepatobiliary SurgeryInstitute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Liangshuo Hu
- Department of Hepatobiliary SurgeryInstitute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Shisheng Sun
- College of Life ScienceNorthwest UniversityXi'anChina
| |
Collapse
|