101
|
van Gaal N, Lakenman R, Covington J, Savage R, de Groot E, Bomers M, Benninga M, Mulder C, de Boer N, de Meij T. Faecal volatile organic compounds analysis using field asymmetric ion mobility spectrometry: non-invasive diagnostics in paediatric inflammatory bowel disease. J Breath Res 2017; 12:016006. [PMID: 28439048 DOI: 10.1088/1752-7163/aa6f1d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), remains challenging to diagnose. Diagnostic work-up carries a high burden, especially in paediatric patients, due to invasive endoscopic procedures. IBD is associated with alterations in intestinal microbiota composition. Faecal volatile organic compounds (VOCs) reflect gut microbiota composition. The aim of this study was to assess the diagnostic accuracy of faecal VOC profiling as a non-invasive diagnostic biomarker for paediatric IBD. METHODS In this diagnostic accuracy study performed in two tertiary centres in the Netherlands, faecal VOC profiles of 36 de novo, treatment-naïve paediatric IBD patients (23 CD, 13 UC), and 24 healthy, matched controls were measured by field asymmetric ion mobility spectrometry (Owlstone Ltd, Lonestar®, UK). RESULTS Faecal VOC profiles of de novo paediatric IBD patients could be differentiated from healthy controls (AUC ± 95% CI, p-value, sensitivity, specificity; 0.76 ± 0.14, p < 0.001, 79%, 78%). This discrimination from controls was observed in both CD (0.90 ± 0.10, p < 0.0001, 83%, 83%) and UC (0.74 ± 0.19, p = 0.02, 77%, 75%). VOC profiles from UC could not be discriminated from CD (0.67 ± 0.19, p = 0.0996, 65%, 62%). CONCLUSION Field asymmetric ion mobility spectrometry allowed for discrimination between faecal VOC profiles of de novo paediatric IBD patients and healthy controls, confirming the potential of faecal VOC analysis as a non-invasive diagnostic biomarker for paediatric IBD. This method may serve as a complementary, non-invasive technique in the diagnosis of IBD, possibly limiting the number of endoscopies needed in children suspected for IBD.
Collapse
Affiliation(s)
- Nora van Gaal
- Department of Gastroenterology and Hepatology, VU University Medical Centre, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives. Int J Mol Sci 2017; 18:ijms18112360. [PMID: 29112157 PMCID: PMC5713329 DOI: 10.3390/ijms18112360] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence supports the concept that the vitamin D axis possesses immunoregulatory functions, with vitamin D receptor (VDR) status representing the major determinant of vitamin D’s pleiotropic effects. Vitamin D promotes the production of anti-microbial peptides, including β-defensins and cathelicidins, the shift towards Th2 immune responses, and regulates autophagy and epithelial barrier integrity. Impairment of vitamin D-mediated pathways are associated with chronic inflammatory conditions, including inflammatory bowel diseases (IBD). Interestingly, inhibition of vitamin D pathways results in dysbiosis of the gut microbiome, which has mechanistically been implicated in the development of IBD. Herein, we explore the role of the vitamin D axis in immune-mediated diseases, with particular emphasis on its interplay with the gut microbiome in the pathogenesis of IBD. The potential clinical implications and therapeutic relevance of this interaction will also be discussed, including optimizing VDR function, both with vitamin D analogues and probiotics, which may represent a complementary approach to current IBD treatments.
Collapse
|
103
|
AZZOUZ DOUAF, SILVERMAN GREGGJ. Is Gut Microbial LPS a Potential Trigger of Juvenile Idiopathic Arthritis? J Rheumatol 2017; 44:1569-1571. [DOI: 10.3899/jrheum.170791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
104
|
Abstract
BACKGROUND Inflammatory bowel disease (IBD), once considered to be a Western disease, is increasingly being reported from India and other Asian countries. The present review summarizes epidemiology and disease characteristics of IBD in India with reference to other Asian countries and the West. SUMMARY India is projected to have one of the highest disease burden of IBD across the globe. The overall genetic risk and microbial signature in Indian IBD patients are similar to those of patients in the West as demonstrated by the similar incidence of IBD in second-generation Indian immigrants and matching perturbations in the structural and functional component of gut microbiota in Indian studies. The concept of the hygiene hypothesis continues to remain controversial with Indian studies demonstrating contradictory findings. The disease characteristics, long-term outcomes including the risk of colorectal cancer, and the effect of pregnancy on IBD and vice versa in Indian patients with IBD are in general similar with few differences. Unlike patients in the West, very few Indian patients have a positive family history. KEY MESSAGE The Indian disease pattern is going through a phase of epidemiological transition with a surge in the incidence of IBD. The epidemiology and disease characteristics of IBD mirror the patterns observed in the West.
Collapse
Affiliation(s)
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
105
|
Czaja AJ. Review article: next-generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Aliment Pharmacol Ther 2017; 46:920-937. [PMID: 28901565 DOI: 10.1111/apt.14324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Advances in autoimmune hepatitis that transform current concepts of pathogenesis and management can be anticipated as products of ongoing investigations driven by unmet clinical needs and an evolving biotechnology. AIM To describe the advances that are likely to become transformative in autoimmune hepatitis, based on the direction of current investigations. METHODS Pertinent abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and a secondary bibliography was developed. The discovery process was repeated, and a tertiary bibliography was identified. The number of abstracts reviewed was 2830, and the number of full-length articles reviewed exceeded 150. RESULTS Risk-laden allelic variants outside the major histocompatibility complex (rs3184504, r36000782) are being identified by genome-wide association studies, and their gene products are potential therapeutic targets. Epigenetic changes associated with environmental cues can enhance the transcriptional activity of genes, and chromatin re-structuring and antagonists of noncoding molecules of ribonucleic acid are feasible interventions. The intestinal microbiome is a discovery field for microbial products and activated immune cells that may translocate to the periphery and respond to manipulation. Epidemiological studies and controlled interview-based surveys may implicate environmental and xenobiotic factors that warrant evidence-based changes in lifestyle, and site-directed molecular and cellular interventions promise to change the paradigm of treatment from one of blanket immunosuppression. CONCLUSIONS Advances in genetics, epigenetics, pathophysiology, epidemiology, and site-directed molecular and cellular interventions constitute the next generation of transformative advances in autoimmune hepatitis.
Collapse
Affiliation(s)
- A J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
106
|
Zhang S, Langer R, Traverso G. Nanoparticulate Drug Delivery Systems Targeting Inflammation for Treatment of Inflammatory Bowel Disease. NANO TODAY 2017; 16:82-96. [PMID: 31186671 PMCID: PMC6557461 DOI: 10.1016/j.nantod.2017.08.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, idiopathic inflammatory set of conditions that can affect the entire gastrointestinal (GI) tract and is associated with an increased risk of colorectal cancer. To date there is no curative therapy for IBD; therefore life-long medication can be necessary for IBD management if surgery is to be avoided. Drug delivery systems specific to the colon have improved IBD treatment and several such systems are available to patients. However, current delivery systems for IBD do not target drugs to the site of inflammation, which leads to frequent dosing and potentially severe side effects that can adversely impact patients' adherence to medication. There is a need for novel drug delivery systems that can target drugs to the site of inflammation, prolong local drug availability, improve therapeutic efficacy, and reduce drug side effects. Nanoparticulate (NP) systems are attractive in designing targeted drug delivery systems for the treatment of IBD because of their unique physicochemical properties and capability of targeting the site of disease. This review analyzes the microenvironment at the site of inflammation in IBD, highlighting the pathophysiological features as possible cues for targeted delivery; discusses different strategies and mechanisms of NP targeting IBD, including size-, charge-, ligand-receptor, degradation- and microbiome-mediated approaches; and summarizes recent progress on using NPs towards improved therapies for IBD. Finally, challenges and future directions in this field are presented to advance the development of targeted drug delivery for IBD treatment.
Collapse
Affiliation(s)
- Sufeng Zhang
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- The David H. Koch Institute for Integrative Cancer Research and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Giovanni Traverso
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
107
|
Sharpton T, Lyalina S, Luong J, Pham J, Deal EM, Armour C, Gaulke C, Sanjabi S, Pollard KS. Development of Inflammatory Bowel Disease Is Linked to a Longitudinal Restructuring of the Gut Metagenome in Mice. mSystems 2017; 2:e00036-17. [PMID: 28904997 PMCID: PMC5585689 DOI: 10.1128/msystems.00036-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023] Open
Abstract
The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late-stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regard to function. To investigate microbiome-mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where damped transforming growth factor β (TGF-β) signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including damped acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, levels of lipooligosaccharide transporter abundance diverge prior to immune activation, indicating that it could be a predisease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundances of particular taxa, including several species of Bacteroides, correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed-effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering the potential mechanisms through which the gut microbiome becomes altered in IBD. IMPORTANCE IBD patients harbor distinct microbial communities with functional capabilities different from those seen with healthy people. But is this cause or effect? Answering this question requires data on changes in gut microbial communities leading to disease onset. By performing weekly metagenomic sequencing and mixed-effects modeling on an established mouse model of IBD, we identified several functional pathways encoded by the gut microbiome that covary with host immune status. These pathways are novel early biomarkers that may either enable microbes to live inside an inflamed gut or contribute to immune activation in IBD mice. Future work will validate the potential roles of these microbial pathways in host-microbe interactions and human disease. This study was novel in its longitudinal design and focus on microbial pathways, which provided new mechanistic insights into the role of gut microbes in IBD development.
Collapse
Affiliation(s)
- Thomas Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Statistics, Oregon State University, Corvallis, Oregon
| | | | - Julie Luong
- Gladstone Institutes, San Francisco, California, USA
| | - Joey Pham
- Gladstone Institutes, San Francisco, California, USA
| | - Emily M. Deal
- Gladstone Institutes, San Francisco, California, USA
| | - Courtney Armour
- Department of Microbiology, Oregon State University, Corvallis, Oregon
| | | | - Shomyseh Sanjabi
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, California, USA
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
108
|
Chen GL, Zhang Y, Wang WY, Ji XL, Meng F, Xu PS, Yang NM, Ye FQ, Bo XC. Partners of patients with ulcerative colitis exhibit a biologically relevant dysbiosis in fecal microbial metacommunities. World J Gastroenterol 2017; 23:4624-4631. [PMID: 28740351 PMCID: PMC5504378 DOI: 10.3748/wjg.v23.i25.4624] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/10/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate alterations in the fecal microbiome using 16S rRNA amplicon sequencing in couples in the same cohabitation environment.
METHODS Fecal samples were collected from eight ulcerative colitis (UC) patients and their healthy partners at Lishui People’s Hospital, Zhejiang Province, China. DNA was extracted and the variable regions V3 and V4 of the 16S rRNA genes were PCR amplified using a two-step protocol. Clear reads were clustered into operational taxonomic units (OTUs) at the 97% sequence similarity level using UCLUST v1.2.22. The Wilcoxon rank-sum test (R v3.1.2) was used to compare inter-individual differences. Differences with a P value < 0.05 were considered statistically significant.
RESULTS Fecal microbial communities were more similar among UC patients than their healthy partners (P = 0.024). UC individuals had a lower relative abundance of bacteria belonging to the Firmicutes, especially Blautia, Clostridium, Coprococcus and Roseburia (P < 0.05). Microbiota dysbiosis was detected in UC patients and their healthy partners. Relevant genera included Akkermansiam, Bacteroides, Escherichia, Lactobacillales, Klebsiella and Parabacteroides. The enriched pathways in fecal samples of UC patients were related to lipid and nucleotide metabolism. Additionally, the pathways involved in membrane transport and metabolism of cofactors and vitamins were more abundant in the healthy partners.
CONCLUSION Our results suggested that the microbial composition might be affected in healthy partners cohabiting with UC patients, especially in terms of microbiota dysbiosis.
Collapse
|
109
|
Köhling HL, Plummer SF, Marchesi JR, Davidge KS, Ludgate M. The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clin Immunol 2017; 183:63-74. [PMID: 28689782 DOI: 10.1016/j.clim.2017.07.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Since the 1970s, the role of infectious diseases in the pathogenesis of Graves' disease (GD) has been an object of intensive research. The last decade has witnessed many studies on Yersinia enterocolitica, Helicobacter pylori and other bacterial organisms and their potential impact on GD. Retrospective, prospective and molecular binding studies have been performed with contrary outcomes. Until now it is not clear whether bacterial infections can trigger autoimmune thyroid disease. Common risk factors for GD (gender, smoking, stress, and pregnancy) reveal profound changes in the bacterial communities of the gut compared to that of healthy controls but a pathogenetic link between GD and dysbiosis has not yet been fully elucidated. Conventional bacterial culture, in vitro models, next generation and high-throughput DNA sequencing are applicable methods to assess the impact of bacteria in disease onset and development. Further studies on the involvement of bacteria in GD are needed and may contribute to the understanding of pathogenetic processes. This review will examine available evidence on the subject.
Collapse
Affiliation(s)
- Hedda L Köhling
- University Hopital Essen, Institute of Medical Microbiology, Essen, Germany; Cultech Ltd., Baglan, Port Talbot, United Kingdom.
| | | | - Julian R Marchesi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Centre for Digestive and Gut Health, Imperial College London, London, W2 1NY, United Kingdom
| | | | - Marian Ludgate
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
110
|
Herstad KMV, Gajardo K, Bakke AM, Moe L, Ludvigsen J, Rudi K, Rud I, Sekelja M, Skancke E. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet Res 2017; 13:147. [PMID: 28558792 PMCID: PMC5450340 DOI: 10.1186/s12917-017-1073-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diet has a major influence on the composition of the gut microbiota, whose importance for gut health and overall well-being is increasingly recognized. Knowledge is limited regarding health implications, including effects on the faecal microbiota, of feeding a diet with high content of red meat to dogs, despite some owners' apparent preference to do so. The aim of this study was to evaluate how a diet change from commercial dry food to one with a high content of boiled minced beef and vice versa influenced the faecal microbiota, and short chain fatty acid profile in healthy, adult, client-owned dogs. RESULTS The diet change influenced the faecal microbiota composition and diversity (Shannon diversity index). The most abundant OTUs in samples of dogs fed the dry food and high minced beef were affiliated with the species Faecalibacterium prausnitzii and Clostridia hiranonis respectively. The high minced beef diet apparently also influenced the short chain fatty acid profile, with increased isovaleric acid, as well as an increase in faecal pH. These effects were reversed when the commercial dry food was reintroduced in weeks 6 and 7. CONCLUSIONS Results of this study can aid in the understanding of how diet changes influence the faecal microbiota and metabolite content on a short-term basis. Long-term studies are required to investigate potential implications for canine gut and general health.
Collapse
Affiliation(s)
- Kristin M V Herstad
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| | - Karina Gajardo
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NBMU), Oslo, Norway
| | - Anne Marie Bakke
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NBMU), Oslo, Norway
| | - Lars Moe
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Jane Ludvigsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ida Rud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Monika Sekelja
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ellen Skancke
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
111
|
Zhang S, Cao X, Huang H. Sampling Strategies for Three-Dimensional Spatial Community Structures in IBD Microbiota Research. Front Cell Infect Microbiol 2017; 7:51. [PMID: 28286741 PMCID: PMC5323387 DOI: 10.3389/fcimb.2017.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Identifying intestinal microbiota is arguably an important task that is performed to determine the pathogenesis of inflammatory bowel diseases (IBD); thus, it is crucial to collect and analyze intestinally-associated microbiota. Analyzing a single niche to categorize individuals does not enable researchers to comprehensively study the spatial variations of the microbiota. Therefore, characterizing the spatial community structures of the inflammatory bowel disease microbiome is critical for advancing our understanding of the inflammatory landscape of IBD. However, at present there is no universally accepted consensus regarding the use of specific sampling strategies in different biogeographic locations. In this review, we discuss the spatial distribution when screening sample collections in IBD microbiota research. Here, we propose a novel model, a three-dimensional spatial community structure, which encompasses the x-, y-, and z-axis distributions; it can be used in some sampling sites, such as feces, colonoscopic biopsy, the mucus gel layer, and oral cavity. On the basis of this spatial model, this article also summarizes various sampling and processing strategies prior to and after DNA extraction and recommends guidelines for practical application in future research.
Collapse
Affiliation(s)
- Shaocun Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital; Tianjin Medical University Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| |
Collapse
|
112
|
Nagao-Kitamoto H, Kamada N. Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Netw 2017; 17:1-12. [PMID: 28261015 PMCID: PMC5334117 DOI: 10.4110/in.2017.17.1.1] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
A vast community of commensal microorganisms, commonly referred to as the gut microbiota, colonizes the gastrointestinal tract (GI). The involvement of the gut microbiota in the maintenance of the gut ecosystem is two-fold: it educates host immune cells and protects the host from pathogens. However, when healthy microbial composition and function are disrupted (dysbiosis), the dysbiotic gut microbiota can trigger the initiation and development of various GI diseases, including inflammatory bowel disease (IBD). IBD, primarily includes ulcerative colitis (UC) and Crohn's disease (CD), is a major global public health problem affecting over 1 million patients in the United States alone. Accumulating evidence suggests that various environmental and genetic factors contribute to the pathogenesis of IBD. In particular, the gut microbiota is a key factor associated with the triggering and presentation of disease. Gut dysbiosis in patients with IBD is defined as a reduction of beneficial commensal bacteria and an enrichment of potentially harmful commensal bacteria (pathobionts). However, as of now it is largely unknown whether gut dysbiosis is a cause or a consequence of IBD. Recent technological advances have made it possible to address this question and investigate the functional impact of dysbiotic microbiota on IBD. In this review, we will discuss the recent advances in the field, focusing on host-microbial cross-talk in IBD.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
113
|
|
114
|
Machiels K, Sabino J, Vandermosten L, Joossens M, Arijs I, de Bruyn M, Eeckhaut V, Van Assche G, Ferrante M, Verhaegen J, Van Steen K, Van Immerseel F, Huys G, Verbeke K, Wolthuis A, de Buck Van Overstraeten A, D'Hoore A, Rutgeerts P, Vermeire S. Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC. Gut 2017; 66:79-88. [PMID: 26423113 DOI: 10.1136/gutjnl-2015-309398] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pouchitis is the most common complication after colectomy with ileal pouch-anal anastomosis (IPAA) for UC and the risk is the highest within the 1st year after surgery. The pathogenesis is not completely understood but clinical response to antibiotics suggests a role for gut microbiota. We hypothesised that the risk for pouchitis can be predicted based on the faecal microbial composition before colectomy. DESIGN Faecal samples from 21 patients with UC undergoing IPAA were prospectively collected before colectomy and at predefined clinical visits at 1 month, 3 months, 6 months and 12 months after IPAA. The predominant microbiota was analysed using community profiling with denaturing gradient gel electrophoresis followed by quantitative real-time PCR validation. RESULTS Cluster analysis before colectomy distinguished patients with pouchitis from those with normal pouch during the 1st year of follow-up. In patients developing pouchitis, an increase of Ruminococcus gnavus (p<0.001), Bacteroides vulgatus (p=0.043), Clostridium perfringens (p=0.011) and a reduction of two Lachnospiraceae genera (Blautia (p=0.04), Roseburia (p=0.008)) was observed. A score combining these five bacterial risk factors was calculated and presence of at least two risk factors showed a sensitivity and specificity of 100% and 63.6%, respectively. CONCLUSIONS Presence of R. gnavus, B. vulgatus and C. perfringens and absence of Blautia and Roseburia in faecal samples of patients with UC before surgery is associated with a higher risk of pouchitis after IPAA. Our findings suggest new predictive and therapeutic strategies in patients undergoing colectomy with IPAA.
Collapse
Affiliation(s)
- Kathleen Machiels
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - João Sabino
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Marie Joossens
- Department Microbiology and Immunology, KU Leuven, Leuven, Belgium.,Center for the Biology of Disease, VIB, Leuven, Belgium.,Faculty of Sciences and Bioengineering Sciences, Microbiology Unit, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ingrid Arijs
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Magali de Bruyn
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Venessa Eeckhaut
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Jan Verhaegen
- Department of Microbiology and Immunology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Kristel Van Steen
- Department of Electrical Engineering and Computer Science, Montefiore Institute, Liège, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Geert Huys
- Laboratory of Microbiology & BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Albert Wolthuis
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | | | - Andre D'Hoore
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Paul Rutgeerts
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
115
|
Jing W, Gao X, Han B, Wei B, Hu N, Li S, Yan R, Wang Y. Mori Cortex regulates P-glycoprotein in Caco-2 cells and colons from rats with experimental colitis via direct and gut microbiota-mediated mechanisms. RSC Adv 2017. [DOI: 10.1039/c6ra25448a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mori cortex enhances intestinal epithelial barrier function by up-regulating P-glycoproteinviadirect and gut microbiota-mediated mechanisms.
Collapse
Affiliation(s)
- Wanghui Jing
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Xuejiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Beilei Han
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Nan Hu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Sai Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
116
|
Kim MS, Byun JS, Yoon YS, Yum DY, Chung MJ, Lee JC. A probiotic combination attenuates experimental colitis through inhibition of innate cytokine production. Benef Microbes 2016; 8:231-241. [PMID: 28008786 DOI: 10.3920/bm2016.0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a severe immune cell-mediated syndrome characterised by extensive inflammatory and effector mucosal responses leading to tissue destruction in the colon and small intestine. The leading hypothesis is that dysbiosis of the gut flora causes an excessive immune response and inflammation in the gastrointestinal track. Lactic acid bacteria (LAB) can correct dysbiosis of the normal microbiota. In the current study, the therapeutic potential of seven LAB strains in combination to treat IBD was evaluated using experimental colitis model. This LAB cocktail, designated GI7, includes four strains of Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis, two strains of Bifidobacterium bifidum, Bifidobacterium breve, and one strain of Streptococcus thermophilus. We confirmed that GI7 suppressed pro-inflammatory cytokines in Raw264.7 macrophages. When dextran sulphate sodium-induced colitic mice were treated with GI7, their symptoms of colitis, as assessed by body weight, colon length, myeloperoxidase activity, intestinal bleeding, and histological damage, were reduced compared to untreated mice. In addition, GI7 treatment significantly inhibited the production of innate pro-inflammatory cytokines during colitic progression. Therefore, we suggest that GI7, a combination of seven LAB, has a potential role in the treatment of IBD.
Collapse
Affiliation(s)
- M S Kim
- 1 R&D Center, Cell Biotech Co. Ltd., 134 Gaegok-Ri, Wolgot-Myeon Gimpo-Si, Gyeonggi-Do 10003, Republic of Korea
| | - J S Byun
- 1 R&D Center, Cell Biotech Co. Ltd., 134 Gaegok-Ri, Wolgot-Myeon Gimpo-Si, Gyeonggi-Do 10003, Republic of Korea
| | - Y S Yoon
- 1 R&D Center, Cell Biotech Co. Ltd., 134 Gaegok-Ri, Wolgot-Myeon Gimpo-Si, Gyeonggi-Do 10003, Republic of Korea
| | - D Y Yum
- 1 R&D Center, Cell Biotech Co. Ltd., 134 Gaegok-Ri, Wolgot-Myeon Gimpo-Si, Gyeonggi-Do 10003, Republic of Korea
| | - M J Chung
- 1 R&D Center, Cell Biotech Co. Ltd., 134 Gaegok-Ri, Wolgot-Myeon Gimpo-Si, Gyeonggi-Do 10003, Republic of Korea
| | - J C Lee
- 1 R&D Center, Cell Biotech Co. Ltd., 134 Gaegok-Ri, Wolgot-Myeon Gimpo-Si, Gyeonggi-Do 10003, Republic of Korea
| |
Collapse
|
117
|
Prosberg M, Bendtsen F, Vind I, Petersen AM, Gluud LL. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Scand J Gastroenterol 2016; 51:1407-1415. [PMID: 27687331 DOI: 10.1080/00365521.2016.1216587] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The pathogenesis of inflammatory bowel diseases (IBD) involves complex interactions between the microbiome and the immune system. We evaluated the association between the gut microbiota and disease activity in IBD patients. METHODS Systematic review of clinical studies based on a published protocol. Included patients had ulcerative colitis (UC) or Crohn's disease (CD) classified as active or in remission. We selected bacteria assessed in at least three studies identified through electronic and manual searches (November 2015). Bias control was evaluated with the Newcastle Ottawa scale (NOS). Results of random-effects meta-analyses were presented as mean differences (MD). RESULTS Three prospective and seven cross-sectional studies (NOS score 6-8) were included. Five studies included patients with CD (231 patients) and eight included patients with UC (392 patients). Compared to patients in remission, patients with active IBD had lower abundance of Clostridium coccoides (MD = -0.49, 95% CI: -0.79 to -0.19), Clostridium leptum (MD = -0.44, 95% CI: -0.74 to -0.14), Faecalibacterium prausnitzii (MD = -0.81, 95% CI: -1.23 to -0.39) and Bifidobacterium (MD = -0.37, 95% CI: -0.56 to -0.17). Subgroup analyses showed a difference in all four bacteria between patients with UC classified as active or in remission. Patients with active CD had fewer C. leptum, F. prausnitzii and Bifidobacterium, but not C. coccoides. CONCLUSION This systematic review suggests that dysbiosis may be involved in the activity of IBD and that there may be differences between patients with CD and UC.
Collapse
Affiliation(s)
- Michelle Prosberg
- a Department of Gastroenterology , Hvidovre Hospital, Copenhagen University , Hvidovre , Denmark
| | - Flemming Bendtsen
- a Department of Gastroenterology , Hvidovre Hospital, Copenhagen University , Hvidovre , Denmark
| | - Ida Vind
- a Department of Gastroenterology , Hvidovre Hospital, Copenhagen University , Hvidovre , Denmark
| | - Andreas M Petersen
- a Department of Gastroenterology , Hvidovre Hospital, Copenhagen University , Hvidovre , Denmark.,b Department of Clinical Microbiology , Hvidovre Hospital, Copenhagen University , Hvidovre , Denmark
| | - Lise L Gluud
- a Department of Gastroenterology , Hvidovre Hospital, Copenhagen University , Hvidovre , Denmark
| |
Collapse
|
118
|
Duranti S, Gaiani F, Mancabelli L, Milani C, Grandi A, Bolchi A, Santoni A, Lugli GA, Ferrario C, Mangifesta M, Viappiani A, Bertoni S, Vivo V, Serafini F, Barbaro MR, Fugazza A, Barbara G, Gioiosa L, Palanza P, Cantoni AM, de'Angelis GL, Barocelli E, de'Angelis N, van Sinderen D, Ventura M, Turroni F. Elucidating the gut microbiome of ulcerative colitis: bifidobacteria as novel microbial biomarkers. FEMS Microbiol Ecol 2016; 92:fiw191. [PMID: 27604252 DOI: 10.1093/femsec/fiw191] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Ulcerative colitis (UC) is associated with a substantial alteration of specific gut commensals, some of which may be involved in microbiota-mediated protection. In this study, microbiota cataloging of UC patients by 16S rRNA microbial profiling revealed a marked reduction of bifidobacteria, in particular the Bifidobacterium bifidum species, thus suggesting that this taxon plays a biological role in the aetiology of UC. We investigated this further through an in vivo trial by testing the effects of oral treatment with B. bifidum PRL2010 in a wild-type murine colitis model. TNBS-treated mice receiving 10(9) cells of B. bifidum PRL2010 showed a marked reduction of all colitis-associated histological indices as well as maintenance of mucosal integrity as it was shown by the increase in the expression of many tight junction-encoding genes. The protective role of B. bifidum PRL2010, as well as its sortase-dependent pili, appears to be established through the induction of an innate immune response of the host. These results highlight the importance of B. bifidum as a microbial biomarker for UC, revealing its role in protection against experimentally induced colitis.
Collapse
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | - Federica Gaiani
- Gastroenterology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | - Andrea Grandi
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Angelo Bolchi
- Laboratory of Molecular Biology, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Andrea Santoni
- Laboratory of Molecular Biology, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | | | - Alice Viappiani
- GenProbio srl, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | - Simona Bertoni
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Valentina Vivo
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fausta Serafini
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | - Maria Raffaella Barbaro
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Alessandro Fugazza
- Gastroenterology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences and Center for Applied Biomedical Research (CRBA), University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Laura Gioiosa
- Department of Neurosciences, University of Parma, 43124 Parma, Italy
| | - Paola Palanza
- Department of Neurosciences, University of Parma, 43124 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Gian Luigi de'Angelis
- Gastroenterology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elisabetta Barocelli
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Nicola de'Angelis
- Unit of Digestive, Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Henri Mondor Hospital, 51 Avenue du Maréchal de Lattre de Tassigny, Créteil 94010, France
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, 43124 Parma, Italy
| |
Collapse
|
119
|
Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease. Inflamm Bowel Dis 2016; 22:2767-2787. [PMID: 27824648 DOI: 10.1097/mib.0000000000000970] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. METHODS The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. RESULTS Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. CONCLUSIONS Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.
Collapse
|
120
|
Lower Level of Bacteroides in the Gut Microbiota Is Associated with Inflammatory Bowel Disease: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5828959. [PMID: 27999802 PMCID: PMC5143693 DOI: 10.1155/2016/5828959] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Background and Aims. Multiple studies have reported associations between inflammatory bowel disease (IBD) and the flora disequilibrium of Bacteroides. We performed a meta-analysis of the available data to provide a more precise estimate of the association between Bacteroides level in the gut and IBD. Methods. We searched PubMed/MEDLINE, EMBASE, Cochrane Library, Wiley Library, BIOSIS previews, Web of Science, CNKI, and ScienceDirect databases for published literature on IBD and gut microbiota from 1990 to 2016. Quality of all eligible studies was assessed using the Newcastle-Ottawa Quality Assessment Scale (NOS). We compared the level of Bacteroides in IBD patients with that in a control group without IBD, different types of IBD patients, and IBD patients with active phase and in remission. Results. We identified 63 articles, 9 of which contained sufficient data for evaluation. The mean level of Bacteroides was significantly lower in Crohn's disease (CD) and ulcerative colitis (UC) patients in active phase than in normal controls. The level of Bacteroides in remission CD and UC patients was much lower than patients in the control group. Bacteroides level was even lower in patients with CD and UC in active phase than in remission. Conclusions. This analysis suggests that lower levels of Bacteroides are associated with IBD, especially in active phase.
Collapse
|
121
|
Czaja AJ. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World J Gastroenterol 2016; 22:9257-9278. [PMID: 27895415 PMCID: PMC5107691 DOI: 10.3748/wjg.v22.i42.9257] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/07/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.
Collapse
|
122
|
Lankelma JM, van Vught LA, Belzer C, Schultz MJ, van der Poll T, de Vos WM, Wiersinga WJ. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med 2016; 43:59-68. [PMID: 27837233 PMCID: PMC5203863 DOI: 10.1007/s00134-016-4613-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
Abstract
Purpose
The intestinal microbiota has emerged as a virtual organ with essential functions in human physiology. Antibiotic-induced disruption of the microbiota in critically ill patients may have a negative influence on key energy resources and immunity. We set out to characterize the fecal microbiota composition in critically ill patients both with and without sepsis and to explore the use of microbiota-derived markers for clinical outcome measurements in this setting. Methods In this prospective observational cohort study we analyzed the fecal microbiota of 34 patients admitted to the intensive care unit. Fifteen healthy subjects served as controls. The fecal microbiota was phylogenetically characterized by 16S rRNA gene sequencing, and associations with clinical outcome parameters were evaluated. Results A marked shift in fecal bacterial composition was seen in all septic and non-septic critically ill patients compared with controls, with extreme interindividual differences. In 13 of the 34 patients, a single bacterial genus made up >50% of the gut microbiota; in 4 patients this was even >75%. A significant decrease in bacterial diversity was observed in half of the patients. No associations were found between microbiota diversity, Firmicutes/Bacteroidetes ratio, or Gram-positive/Gram-negative ratio and outcome measurements such as complications and survival. Conclusions We observed highly heterogeneous patterns of intestinal microbiota in both septic and non-septic critically ill patients. Nevertheless, some general patterns were observed, including disappearance of bacterial genera with important functions in host metabolism. More detailed knowledge of the short- and long-term health consequences of these major shifts in intestinal bacterial communities is needed. Electronic supplementary material The online version of this article (doi:10.1007/s00134-016-4613-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline M Lankelma
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.,Division of Infectious Diseases, Department of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.,Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, Helsinski, Finland
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.,Division of Infectious Diseases, Department of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
123
|
Mai V, Waugh S, Byrd D, Simpson D, Ukhanova M. Novel encapsulation improves recovery of probiotic strains in fecal samples of human volunteers. Appl Microbiol Biotechnol 2016; 101:1419-1425. [DOI: 10.1007/s00253-016-7915-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
|
124
|
Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth's cells in a model of ileitis in mice. Eur J Nutr 2016; 57:155-166. [PMID: 27581119 DOI: 10.1007/s00394-016-1304-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE In this study, we showed the beneficial effects of donkey milk (DM) on inflammatory damages, endogenous antimicrobial peptides levels and fecal microbiota profile in a mice model of Crohn's disease. Nowadays, new strategies of microbiome manipulations are on the light involving specific diets to induce and/or to maintain clinical remission. Interest of DM is explained by its high levels of antimicrobial peptides which confer it anti-inflammatory properties. METHODS C57BL/6 mice were orally administered with or without indomethacin for 5 days and co-treated with vehicle, DM or heated DM during 7 days. Intestinal length and macroscopic damage scores (MDSs) were determined; ileal samples were taken off for microscopic damage (MD), lysozyme immunostaining and mRNA α-defensin assessments. Ileal luminal content and fecal pellets were collected for lysozyme enzymatic activity and lipocalin-2 (LCN-2) evaluations. Fecal microbiota profiles were compared using a real-time quantitative PCR-based analysis. RESULTS Administration of indomethacin caused an ileitis in mice characterized by (1) a decrease in body weight and intestinal length, (2) a significant increase in MDS, MD and LCN-2, (3) a reduction in both α-defensin mRNA expression and lysozyme levels in Paneth's cells reflected by a decrease in lysozyme activity in feces, and (4) a global change in relative abundance of targeted microbial communities. DM treatment significantly reduced almost of all these ileitis damages, whereas heated DM has no impact on ileitis. CONCLUSIONS DM consumption exerts anti-inflammatory properties in mice by restoring the endogenous levels of antimicrobial peptides which contribute in turn to reduce microbiota imbalance.
Collapse
|
125
|
Dąbrowska K, Witkiewicz W. Correlations of Host Genetics and Gut Microbiome Composition. Front Microbiol 2016; 7:1357. [PMID: 27625642 PMCID: PMC5003823 DOI: 10.3389/fmicb.2016.01357] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiome has a considerable impact on host health. The long list of microbiome-related health disorders raises the question of what in fact determines microbiome composition. In this review we sought to understand how the host itself impacts the structure of the gut microbiota population, specifically by correlations of host genetics and gut microbiome composition. Host genetic profile has been linked to differences in microbiome composition, thus suggesting that host genetics can shape the gut microbiome of the host. However, cause-consequence mechanisms behind these links are still unclear. A survey of the possible mechanisms allowing host genetics to shape microbiota composition in the gut demonstrated the major role of metabolic functions and the immune system. A considerable impact of other factors, such as diet, may outweigh the effects of host genetic background. More studies are necessary for good understanding of the relations between the host genetic profile, gut microbiome composition, and host health. According to the idea of personalized medicine, patient-tailored management of microbiota content remains a fascinating area for further inquiry.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Research and Development Center, Regional Specialized HospitalWrocław, Poland; Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital Wrocław, Poland
| |
Collapse
|
126
|
Diamanti AP, Manuela Rosado M, Laganà B, D’Amelio R. Microbiota and chronic inflammatory arthritis: an interwoven link. J Transl Med 2016; 14:233. [PMID: 27492386 PMCID: PMC4973033 DOI: 10.1186/s12967-016-0989-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Only recently, the scientific community gained insights on the importance of the intestinal resident flora for the host's health and disease. Gut microbiota in fact plays a crucial role in modulating innate and acquired immune responses and thus interferes with the fragile balance inflammation versus tolerance. MAIN BODY Correlations between gut bacteria composition and the severity of inflammation have been studied in inflammatory bowel diseases. More recently similar alterations in the gut microbiota have been reported in patients with spondyloarthritis, whereas in rheumatoid arthritis an accumulating body of evidence evokes a pathogenic role for the altered oral microbiota in disease development and course. In the context of dysbiosis it is also important to remember that different environmental factors like stress, smoke and dietary components can induce strong bacterial changes and consequent exposure of the intestinal epithelium to a variety of different metabolites, many of which have an unknown function. In this perspective, and in complex disorders like autoimmune diseases, not only the genetic makeup, sex and immunologic context of the individual but also the structure of his microbial community should be taken into account. CONCLUSIONS Here we provide a review of the role of the microbiota in the onset, severity and progression of chronic inflammatory arthritis as well as its impact on the therapeutic management of these patients. Furthermore we point-out the complex interwoven link between gut-joint-brain and immune system by reviewing the most recent data on the literature on the importance of environmental factors such as diet, smoke and stress.
Collapse
Affiliation(s)
- Andrea Picchianti Diamanti
- Department of Clinical and Molecular Sciences, II School of Medicine, S. Andrea University Hospital, “Sapienza” University of Rome, Rome, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, S. Andrea University Hospital, “Sapienza” University, Via di Grottarossa 1039, 00189 Rome, Italy
| | | | - Bruno Laganà
- Department of Clinical and Molecular Sciences, II School of Medicine, S. Andrea University Hospital, “Sapienza” University of Rome, Rome, Italy
| | - Raffaele D’Amelio
- Department of Clinical and Molecular Sciences, II School of Medicine, S. Andrea University Hospital, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
127
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
128
|
Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME, Al Khodor S, Al-Asmakh M, Abdel-Aziz H, Cenciarelli C. Human Microbiome and its Association With Health and Diseases. J Cell Physiol 2016; 231:1688-1694. [PMID: 26660761 DOI: 10.1002/jcp.25284] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
Human microbiota are distinct communities of microorganisms that resides at different body niches. Exploration of the human microbiome has become a reality due to the availability of powerful metagenomics and metatranscriptomic analysis technologies. Recent advances in sequencing and bioinformatics over the past decade help provide a deep insight into the nature of the host-microbial interactions and identification of potential deriver genes and pathways associated with human health, well-being, and predisposition to different diseases. In the present review, we outline recent studies devoted to elucidate the possible link between the microbiota and various type of diseases. The present review also highlights the potential utilization of microbiota as a potential therapeutic option to treat a wide array of human diseases. J. Cell. Physiol. 231: 1688-1694, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Asmaa A Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hany E Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Wedad S Hamdi
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | | | - Souhaila Al Khodor
- Infectious Disease Unit, Division of Translational Medicine, SIDRA Medical and Research Center, Qatar
| | - Maha Al-Asmakh
- Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hassan Abdel-Aziz
- Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Carlo Cenciarelli
- CNR-Institute of Translational Pharmacology, Via Fosso del Cavaliere, Roma, Italy
| |
Collapse
|
129
|
Sun J, Jin J, Beger RD, Cerniglia CE, Yang M, Chen H. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena. Toxicol In Vitro 2016; 36:133-141. [PMID: 27480511 DOI: 10.1016/j.tiv.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/26/2022]
Abstract
The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, US FDA, 3900 NCTR Rd, Jefferson, AR 72079, United States.
| | - Jinshan Jin
- Division of Microbiology, National Center for Toxicological Research, US FDA, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, US FDA, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US FDA, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Maocheng Yang
- Office of Science, Center for Tobacco Products, US FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
| | - Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, US FDA, 3900 NCTR Rd, Jefferson, AR 72079, United States.
| |
Collapse
|
130
|
Dubourg G, Lagier JC, Hüe S, Surenaud M, Bachar D, Robert C, Michelle C, Ravaux I, Mokhtari S, Million M, Stein A, Brouqui P, Levy Y, Raoult D. Gut microbiota associated with HIV infection is significantly enriched in bacteria tolerant to oxygen. BMJ Open Gastroenterol 2016; 3:e000080. [PMID: 27547442 PMCID: PMC4985784 DOI: 10.1136/bmjgast-2016-000080] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022] Open
Abstract
Objectives Gut microbiota modifications occurring during HIV infection have recently been associated with inflammation and microbial translocation. However, discrepancies between studies justified a comprehensive analysis performed on a large sample size. Design and methods In a case–control study, next-generation sequencing of the 16S rRNA gene was applied to the faecal microbiota of 31 HIV-infected patients, of whom 18 were treated with antiretroviral treatment (ART), compared with 27 healthy controls. 21 sera samples from HIV-infected patients and 7 sera samples from control participants were used to test the presence of 25 markers of inflammation and/or immune activation. Results Diversity was significantly reduced in HIV individuals when compared with controls and was not restored in the ART group. The relative abundance of several members of Ruminococcaceae such as Faecalibacterium prausnitzii was critically less abundant in the HIV-infected group and inversely correlated with inflammation/immune activation markers. Members of Enterobacteriaceae and Enterococcaceae were found to be enriched and positively correlated with these markers. There were significantly more aerotolerant species enriched in HIV samples (42/52 species, 80.8%) when compared with the control group (14/87 species, 16.1%; χ2 test, p<10−5, conditional maximum-likelihood estimate (CMLE) OR=21.9). Conclusions Imbalance between aerobic and anaerobic flora observed in HIV faecal microbiota could be a consequence of the gut impairment classically observed in HIV infection via the production of oxygen. Overgrowth of proinflammatory aerobic species during HIV infection raises the question of antioxidant supplementation, such as vitamin C, E or N-acetylcysteine.
Collapse
Affiliation(s)
- Grégory Dubourg
- Faculté de Médecine, URMITE, UMR CNRS 6236-IRD 198, Aix-Marseille Université, Marseille, France; Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Jean-Christophe Lagier
- Faculté de Médecine, URMITE , UMR CNRS 6236-IRD 198, Aix-Marseille Université , Marseille , France
| | - Sophie Hüe
- INSERM, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, France; Vaccine Research Institute (VRI), Créteil, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie biologique, Créteil, France
| | - Mathieu Surenaud
- INSERM, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Dipankar Bachar
- Faculté de Médecine, URMITE , UMR CNRS 6236-IRD 198, Aix-Marseille Université , Marseille , France
| | - Catherine Robert
- Faculté de Médecine, URMITE , UMR CNRS 6236-IRD 198, Aix-Marseille Université , Marseille , France
| | - Caroline Michelle
- Faculté de Médecine, URMITE , UMR CNRS 6236-IRD 198, Aix-Marseille Université , Marseille , France
| | - Isabelle Ravaux
- Service de Maladies Infectieuses et tropicales, CHU de la Conception , 147, boulevard Baille, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection , Marseille , France
| | - Saadia Mokhtari
- Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection , Marseille , France
| | - Matthieu Million
- Faculté de Médecine, URMITE, UMR CNRS 6236-IRD 198, Aix-Marseille Université, Marseille, France; Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Andreas Stein
- Service de Maladies Infectieuses et tropicales, CHU de la Conception , 147, boulevard Baille, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection , Marseille , France
| | - Philippe Brouqui
- Faculté de Médecine, URMITE, UMR CNRS 6236-IRD 198, Aix-Marseille Université, Marseille, France; Assistance Publique Hôpitaux de Marseille, CHU Nord, Pôle Infectieux, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Yves Levy
- INSERM, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, France; Vaccine Research Institute (VRI), Créteil, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie biologique, Créteil, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie clinique et maladies infectieuses, Créteil, France
| | - Didier Raoult
- Faculté de Médecine, URMITE, UMR CNRS 6236-IRD 198, Aix-Marseille Université, Marseille, France; Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Marseille, France; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
131
|
Kedia S, Rampal R, Paul J, Ahuja V. Gut microbiome diversity in acute infective and chronic inflammatory gastrointestinal diseases in North India. J Gastroenterol 2016; 51:660-71. [PMID: 26994772 DOI: 10.1007/s00535-016-1193-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 02/04/2023]
Abstract
The disease profile in the Indian population provides a unique opportunity for studying the host microbiome interaction in both infectious (amebiasis) and autoimmune diseases like inflammatory bowel disease (IBD) from a similar environment and genetic background. Analysis of fecal samples from untreated amebic liver abscess (ALA) patients, Entamoeba histolytica (Eh)-negative and -positive asymptomatic individuals, and pus samples from naive ALA patients revealed a significant reduction in Lactobacillus in asymptomatic individuals (Eh +ve) and ALA patients. Two anaerobic genera, namely Bacteroides and Peptostreptococcus, were detected in naive ALA pus samples. Analysis of fecal samples from amoebic colitis patients showed a significant decline in population of Bacteroides, Clostridium coccoides and leptum subgroup, Lactobacillus, Campylobacter, and Eubacterium, whereas a significant increase in Bifidobacterium was observed. Mucosa-associated bacterial flora analysis from IBD patients and healthy controls revealed a significant difference in concentration of bacteria among predominating and subdominating genera between ulcerative colitis (UC), Crohn's disease (CD) patients, and controls. In contrast to the mucosal studies, we found a significant increase in lactobacilli population in fecal samples of active UC patients. Another study revealed a significant decrease of Clostridium coccoides and leptum clusters in fecal samples of active UC patients along with decreased concentrations of fecal SCFAs, especially of n-butyrate, iso-butyrate, and acetate. We therefore found similar perturbations in gut microbiome in both infectious and autoimmune diseases, indicating inflammation to be the major driver for changes in gut microbiome.
Collapse
Affiliation(s)
- Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Ritika Rampal
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
132
|
Ahmed I, Roy BC, Khan SA, Septer S, Umar S. Microbiome, Metabolome and Inflammatory Bowel Disease. Microorganisms 2016; 4:microorganisms4020020. [PMID: 27681914 PMCID: PMC5029486 DOI: 10.3390/microorganisms4020020] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160, USA.
| | - Badal C Roy
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160, USA.
| | - Salman A Khan
- Department of Internal Medicine and Department of Pediatrics, University of Missouri, Kansas City, MO 64110, USA.
| | - Seth Septer
- Department of Internal Medicine and Department of Pediatrics, University of Missouri, Kansas City, MO 64110, USA.
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160, USA.
| |
Collapse
|
133
|
Ceulemans LJ, Canovai E, Verbeke L, Pirenne J, Farré R. The expanding role of the bile acid receptor farnesoid X in the intestine and its potential clinical implications. Acta Chir Belg 2016; 116:156-163. [PMID: 27684270 DOI: 10.1080/00015458.2016.1215953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Knowledge about the role of farnesoid X receptor (FXR) in the intestine is rapidly expanding. In pre-clinical animal models of inflammatory bowel disease and bile duct ligation, FXR activation has proven to directly target the three pillars of intestinal homeostasis: intestinal permeability, inflammation and bacterial translocation. The protective role of FXR-ligands on this homeostasis has implications for many intestinal pathologies like inflammatory bowel disease, ischemia reperfusion injury, the metabolic syndrome, colon cancer and even diarrhea. In this review, we summarize the mechanisms by which FXR-activation exerts these protective effects and we discuss its potential clinical applications.
Collapse
|
134
|
Abstract
Consistent interactions between the gut microbiome and adaptive immunity recently led several research groups to evaluate modifications of human gut microbiota composition during HIV infection. Herein we propose to review the shifts reported in infected individuals, as their correlation to disease progression. Though the gut microbiota is consistently altered in HIV individuals, the literature reveals several discrepancies, such as changes in microbial diversity associated with HIV status, taxa modified in infected subjects or influence of ART on gut flora restoration. Similarly, mechanisms involved in interactions between gut bacteria and immunity are to date poorly elucidated, emphasizing the importance of understanding how microbes can promote HIV replication. Further research is needed to propose adjuvant therapeutics dedicated to controlling disease progression through gut microbiome restoration.
Collapse
|
135
|
Schäffler H, Kaschitzki A, Alberts C, Bodammer P, Bannert K, Köller T, Warnke P, Kreikemeyer B, Lamprecht G. Alterations in the mucosa-associated bacterial composition in Crohn's disease: a pilot study. Int J Colorectal Dis 2016; 31:961-971. [PMID: 26951181 DOI: 10.1007/s00384-016-2548-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Changes in the intestinal bacterial composition seem to play a major role in the pathogenesis and in the clinical course of inflammatory bowel diseases (IBD), which consist of Crohn's disease (CD), and ulcerative colitis (UC). Mutations in the NOD2 gene are the most important genetic risk factors for the development of CD. In this study, the association between mucosal biopsies and the mucosa-associated bacterial composition from CD and UC patients regarding their genetic risk factors (mutations in the NOD2 gene), their endoscopic activity, and their medical therapy (TNF-α blocking therapy) was examined. MATERIAL AND METHODS Seventy biopsies from routine colonoscopies from 33 IBD patients (26 CD and 7 UC) were obtained. Disease activity and clinical characteristics were assessed. Seven different bacterial strains (Bacteroides fragilis, Escherichia coli, Prevotella melaninogenica, Clostridium coccoides, Clostridium difficile, Bifidobacterium bifidum, and Faecalibacterium prausnitzii) were quantified using real-time PCR. NOD2 genotyping from patients with CD was performed. RESULTS Five of the 24 patients were positive for at least one mutation in the NOD2 gene. The bacterial composition was different in CD compared to UC, in macroscopic healthy compared to macroscopic inflamed biopsies, in NOD2 mutated compared to NOD2 wildtype patients, and in patients receiving TNF-α blocking therapy compared to patients without this treatment. CONCLUSION This study further characterizes the mucosa-associated bacteria in IBD patients. Different clinical situations lead to an altered mucosa-associated bacterial composition. The analyzed bacteria could be promising targets for cost-effective surveillance or therapies in IBD patients.
Collapse
Affiliation(s)
- Holger Schäffler
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.
| | - Annika Kaschitzki
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Christian Alberts
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Peggy Bodammer
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Karen Bannert
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Thomas Köller
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Philipp Warnke
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
136
|
The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiol Spectr 2016; 3. [PMID: 26185088 DOI: 10.1128/microbiolspec.mbp-0008-2014] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae (Vibrio cholerae) and the Campylobacteriaceae (Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial "blooms" are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation (11). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, but that the immune system also contributes to host control over microbiota composition. These two ways of mutual communication between the microbiota and the immune system were coined as "outside-in" and "inside-out," respectively (12). The significance of those interactions for human health is particularly evident in Crohn's disease (CD) and Ulcerative Colitis (UC). The symptoms of these recurrent, chronic types of gut inflammation are caused by an excessive immune response against one's own commensal microbiota (13). It is assumed that deregulated immune responses can be caused by a genetic predisposition, leading to, for example, the impairment of intestinal barrier function or disruption of mucosal T-cell homeostasis. In CD or UC patients, an abnormally composed microbiota, referred to as "dysbiosis," is commonly observed (discussed later). This is often characterized by an increased relative abundance of facultative anaerobic bacteria (e.g., Enterobacteriaeceae, Bacilli) and, at the same time, depletion of obligate anaerobic bacteria of the classes Bacteroidia and Clostridia. So far, it is unclear whether dysbiosis is a cause or a consequence of inflammatory bowel disease (IBD). In fact, both scenarios are equally conceivable. Recent work suggests that inflammatory immune responses in the gut (both IBD and pathogen-induced) can alter the gut luminal milieu in a way that favors dysbiosis (14). In this chapter, I present a survey on our current state of understanding of the characteristics and mechanisms underlying gut inflammation-associated dysbiosis. The role of dysbiosis in enteric infections and human IBD is discussed. In addition, I will focus on competition of enteric pathogens and the gut microbiota in the inflamed gut and the role of dysbiotic microbiota alterations (e.g., "Enterobacterial blooms" (11)) for the evolution of pathogenicity.
Collapse
|
137
|
Underner M, Perriot J, Cosnes J, Beau P, Peiffer G, Meurice JC. [Smoking, smoking cessation and Crohn's disease]. Presse Med 2016; 45:390-402. [PMID: 27016849 DOI: 10.1016/j.lpm.2016.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 02/05/2023] Open
Abstract
CONTEXT Smoking whose prevalence is higher in patients with Crohn's disease (CD) worsens its evolution. Ulcerative colitis mostly affect non- or ex-smokers; smoking may improve the course of the disease. OBJECTIVES Systematic literature review of data on the relationship between smoking, smoking cessation and Crohn'disease. DOCUMENTARY SOURCES Medline, on the period 1980-2015 with the keywords "Crohn's disease" or "inflammatory bowel disease" and "smoking" or "smoking cessation"; limits "Title/Abstract"; the selected languages were English or French. STUDY SELECTION Among 1315 articles, 168 abstracts have given rise to a dual reading to select 69 studies (case-control, retrospective, reviews or meta-analysis). Data were extracted using a reading gate. RESULTS Smoking increases the risk of complications, recurrences and resort of surgery, corticosteroids or immunosuppressants. These deleterious effects are more common in women. Stopping smoking improves the course of the disease and represents an essential component of its management. LIMITS Heterogeneity of the studies collected according to the type, population characteristics, definition of smoking status and the validation of smoking cessation. CONCLUSION Smokers suffering from CD must routinely be made aware of the disadvantages of smoking, benefits of abstinence and helped to quit smoking.
Collapse
Affiliation(s)
- Michel Underner
- CHU La Milétrie, pavillon René-Beauchant, service de pneumologie, unité de tabacologie, BP 577, 86021 Poitiers cedex, France.
| | - Jean Perriot
- Dispensaire Émile-Roux, centre de tabacologie, 63100 Clermont-Ferrand, France
| | - Jacques Cosnes
- Hôpital Saint-Antoine, service d'hépatologie, gastro-entérologie et nutrition, 75012 Paris, France
| | - Philippe Beau
- CHU La Milétrie, service d'hépatologie, gastro-entérologie et nutrition, 86021 Poitiers, France
| | - Gérard Peiffer
- CHR Metz-Thionville, service de pneumologie, 57038 Metz, France
| | - Jean-Claude Meurice
- CHU La Milétrie, pavillon René-Beauchant, service de pneumologie, unité de tabacologie, BP 577, 86021 Poitiers cedex, France
| |
Collapse
|
138
|
Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, Miquel S, Carlier L, Bermúdez-Humarán LG, Pigneur B, Lequin O, Kharrat P, Thomas G, Rainteau D, Aubry C, Breyner N, Afonso C, Lavielle S, Grill JP, Chassaing G, Chatel JM, Trugnan G, Xavier R, Langella P, Sokol H, Seksik P. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut 2016; 65:415-425. [PMID: 26045134 PMCID: PMC5136800 DOI: 10.1136/gutjnl-2014-307649] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/21/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Crohn's disease (CD)-associated dysbiosis is characterised by a loss of Faecalibacterium prausnitzii, whose culture supernatant exerts an anti-inflammatory effect both in vitro and in vivo. However, the chemical nature of the anti-inflammatory compounds has not yet been determined. METHODS Peptidomic analysis using mass spectrometry was applied to F. prausnitzii supernatant. Anti-inflammatory effects of identified peptides were tested in vitro directly on intestinal epithelial cell lines and on cell lines transfected with a plasmid construction coding for the candidate protein encompassing these peptides. In vivo, the cDNA of the candidate protein was delivered to the gut by recombinant lactic acid bacteria to prevent dinitrobenzene sulfonic acid (DNBS)-colitis in mice. RESULTS The seven peptides, identified in the F. prausnitzii culture supernatants, derived from a single microbial anti-inflammatory molecule (MAM), a protein of 15 kDa, and comprising 53% of non-polar residues. This last feature prevented the direct characterisation of the putative anti-inflammatory activity of MAM-derived peptides. Transfection of MAM cDNA in epithelial cells led to a significant decrease in the activation of the nuclear factor (NF)-κB pathway with a dose-dependent effect. Finally, the use of a food-grade bacterium, Lactococcus lactis, delivering a plasmid encoding MAM was able to alleviate DNBS-induced colitis in mice. CONCLUSIONS A 15 kDa protein with anti-inflammatory properties is produced by F. prausnitzii, a commensal bacterium involved in CD pathogenesis. This protein is able to inhibit the NF-κB pathway in intestinal epithelial cells and to prevent colitis in an animal model.
Collapse
Affiliation(s)
- E. Quévrain
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
| | - M. A. Maubert
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,APHP, Hôpital Saint Antoine - Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, F-75012 Paris, France
| | - C. Michon
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - F. Chain
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - R. Marquant
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,Ecole Normale Supérieure- PSL Research University, Département de Chimie 24 rue Lhomond, F-75005 Paris, France
| | - J. Tailhades
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,Ecole Normale Supérieure- PSL Research University, Département de Chimie 24 rue Lhomond, F-75005 Paris, France
| | - S. Miquel
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - L. Carlier
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,Ecole Normale Supérieure- PSL Research University, Département de Chimie 24 rue Lhomond, F-75005 Paris, France
| | - L. G. Bermúdez-Humarán
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - B. Pigneur
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
| | - O. Lequin
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,Ecole Normale Supérieure- PSL Research University, Département de Chimie 24 rue Lhomond, F-75005 Paris, France
| | - P. Kharrat
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - G. Thomas
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
| | - D. Rainteau
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,APHP, Hôpital Saint Antoine - Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, F-75012 Paris, France
| | - C. Aubry
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - N. Breyner
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - C. Afonso
- Université de Rouen, UMR 6014 COBRA / IRCOF, F-76130 Mont Saint Aignan, France
| | - S. Lavielle
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,Ecole Normale Supérieure- PSL Research University, Département de Chimie 24 rue Lhomond, F-75005 Paris, France
| | - J.-P. Grill
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
| | - G. Chassaing
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,Ecole Normale Supérieure- PSL Research University, Département de Chimie 24 rue Lhomond, F-75005 Paris, France
| | - J. M. Chatel
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - G. Trugnan
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,APHP, Hôpital Saint Antoine - Département PM2 Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, F-75012 Paris, France
| | - R. Xavier
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - P. Langella
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,AgroParisTech, UMR Micalis, F-78350 Jouy-en-Josas, France
| | - H. Sokol
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
,APHP, Hôpital Saint Antoine – Service de Gastroentérologie et nutrition, F-75012 Paris, France
| | - P. Seksik
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 27 rue de Chaligny, F-75012, Paris, France.
,INSERM-ERL 1157 and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), CHU Saint-Antoine 27 rue de Chaligny, F-75012 Paris, France.
,CNRS, UMR 7203 LBM, F-75005, Paris, France
,APHP, Hôpital Saint Antoine – Service de Gastroentérologie et nutrition, F-75012 Paris, France
| |
Collapse
|
139
|
Pedros C, Duguet F, Saoudi A, Chabod M. Disrupted regulatory T cell homeostasis in inflammatory bowel diseases. World J Gastroenterol 2016; 22:974-995. [PMID: 26811641 PMCID: PMC4716049 DOI: 10.3748/wjg.v22.i3.974] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/02/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In the gut, where billions of non-self-antigens from the food and the microbiota are present, the immune response must be tightly regulated to ensure both host protection against pathogenic microorganisms and the absence of immune-related pathologies. It has been well documented that regulatory T cells (Tregs) play a pivotal role in this context. Indeed, Tregs are able to prevent excessive inflammation, which can lead to the rupture of intestinal homeostasis observed in inflammatory bowel diseases (IBDs). Both the worldwide incidence and prevalence of such diseases have increased throughout the latter part of the 20th century. Therefore, it is crucial to understand how Tregs suppress the colitogenic immune cells to establish new treatments for patients suffering from IBDs. In this review, we will first summarize the results obtained in animal model studies that highlight the importance of Tregs in maintaining intestinal homeostasis and describe the specific suppressive mechanisms involved. Next, our current knowledge about Tregs contribution to human IBDs will be reviewed, as well as the current therapeutic perspective on using Tregs for clinical IBD treatment and the challenges that remain to be resolved to ensure both the safety and effectiveness of these therapies in targeting this critical immune-regulatory cell population.
Collapse
|
140
|
Treatment with a Monoclonal Anti-IL-12p40 Antibody Induces Substantial Gut Microbiota Changes in an Experimental Colitis Model. Gastroenterol Res Pract 2016; 2016:4953120. [PMID: 26880890 PMCID: PMC4736578 DOI: 10.1155/2016/4953120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
Background and Aim. Crohn's disease is associated with gut microbiota (GM) dysbiosis. Treatment with the anti-IL-12p40 monoclonal antibody (12p40-mAb) has therapeutic effect in Crohn's disease patients. This study addresses whether a 12p40-mAb treatment influences gut microbiota (GM) composition in mice with adoptive transfer colitis (AdTr-colitis). Methods. AdTr-colitis mice were treated with 12p40-mAb or rat-IgG2a or NaCl from days 21 to 47. Disease was monitored by changes in body weight, stool, endoscopic and histopathology scores, immunohistochemistry, and colonic cytokine/chemokine profiles. GM was characterized through DGGE and 16S rRNA gene-amplicon high-throughput sequencing. Results. Following 12p40-mAb treatment, most clinical and pathological parameters associated with colitis were either reduced or absent. GM was shifted towards a higher Firmicutes-to-Bacteroidetes ratio compared to rat-IgG2a treated mice. Significant correlations between 17 bacterial genera and biological markers were found. The relative abundances of the RF32 order (Alphaproteobacteria) and Akkermansia muciniphila were positively correlated with damaged histopathology and colonic inflammation. Conclusions. Shifts in GM distribution were observed with clinical response to 12p40-mAb treatment, whereas specific GM members correlated with colitis symptoms. Our study implicates that specific changes in GM may be connected with positive clinical outcomes and suggests preventing or correcting GM dysbiosis as a treatment goal in inflammatory bowel disease.
Collapse
|
141
|
Abstract
Germ-free (GF) mice are a relevant model system to study host-microbial interactions in health and disease. In this chapter, we underscore the importance of using GF mice model to study host-microbial interactions in obesity, immune development and gastrointestinal physiology by reviewing current literature. Furthermore, we also provide a brief protocol on how to setup a gnotobiotic facility in order to properly maintain and assess GF status in mice colonies.
Collapse
|
142
|
Quantitative Analysis of Intestinal Flora of Uygur and Han Ethnic Chinese Patients with Ulcerative Colitis. Gastroenterol Res Pract 2015; 2016:9186232. [PMID: 26839545 PMCID: PMC4709672 DOI: 10.1155/2016/9186232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/23/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022] Open
Abstract
Aim. To study the correlation between intestinal flora and ulcerative colitis by analyzing the abundance of Bacteroides, Fusobacterium, Clostridium, Bifidobacterium spp., and Faecalibacterium prausnitzii in the intestinal of ulcerative colitis (UC) patients and healthy controls with Uygur and Han ethnic. Methods. Bacterial genomic DNA was extracted from fecal samples and analyzed with real-time fluorescence quantitative polymerase chain reaction (PCR) to identify the abundance of Bacteroides, Fusobacterium, Clostridium, Bifidobacterium spp., and Faecalibacterium prausnitzii. Results. The samples from UC patients, Uygur and Han ethnic combined, had higher abundance of Bacteroides (P = 0.026) but lower Clostridium (P = 0.004), Bifidobacterium spp. (P = 0.009), and Faecalibacterium prausnitzii (P = 0.008) than those from healthy controls. Among UC patients, Bacteroides population was raised in acute UC patients (P ≤ 0.05), while the abundance of Clostridium, Bifidobacterium spp., Fusobacterium, and Faecalibacterium prausnitzii decreased (P ≤ 0.05) compared with the remission. In both UC patients group and control group, no difference was observed in the abundance of these 5 bacteria between the Han and the Uygur group. Conclusions. Variations in the abundance of these five bacterial strains in intestines may be associated with the occurrence of UC in Uygur and Han populations; however, these variations were not associated with ethnic difference.
Collapse
|
143
|
Joseph J, Loscalzo J. Nutri(meta)genetics and cardiovascular disease: novel concepts in the interaction of diet and genomic variation. Curr Atheroscler Rep 2015; 17:505. [PMID: 25782777 DOI: 10.1007/s11883-015-0505-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to the interaction of nutrition and genetic variation on the genesis and natural history of cardiovascular disease, recent studies have revealed an entire new genome that resides in the trillions of microbes that exist in various human habitats, predominantly in the gut, that may also contribute to the pathogenesis of cardiovascular disease. This microbial genome and the proteins for which it codes have important functions in homeostatic adaptations to the past and present changes in diet and environment accompanying human civilization. Both preclinical and clinical investigations suggest the role of commensal microbiota in promoting adverse cardiovascular risk. Specifically, microbial metabolism of methylated amines leads to direct pro-atherogenic effects in humans. Further investigations are needed to understand the complex relationships among nutritional status, genetic variation, and the microbial genome, which may explain the recent negative results of clinical trials of nutritional interventions such as B vitamin therapy to lower plasma homocysteine levels. The results of such contemporary genomic investigations would allow us to utilize personalized nutritional interventions to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Jacob Joseph
- Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA,
| | | |
Collapse
|
144
|
Serban DE. Microbiota in Inflammatory Bowel Disease Pathogenesis and Therapy: Is It All About Diet? Nutr Clin Pract 2015; 30:760-779. [PMID: 26452390 DOI: 10.1177/0884533615606898] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis, Crohn's disease, and unclassified IBD, continues to cause significant morbidity. While its incidence is increasing, no clear etiology and no cure have yet been discovered. Recent findings suggest that IBD may have a multifactorial etiology, where complex interactions between genetics, epigenetics, environmental factors (including diet but also infections, antibiotics, and sanitation), and host immune system lead to abnormal immune responses and chronic inflammation. Over the past years, the role of altered gut microbiota (in both composition and function) in IBD pathogenesis has emerged as an outstanding area of interest. According to new findings, gut dysbiosis may appear as a key element in initiation of inflammation in IBD and its complications. Moreover, complex metagenomic studies provide possibilities to distinguish between IBD types and appreciate severity and prognosis of the disease, as well as response to therapy. This review provides an updated knowledge of recent findings linking altered bacterial composition and functions, viruses, and fungi to IBD pathogenesis. It also highlights the complex genetic, epigenetic, immune, and microbial interactions in relation to environmental factors (including diet). We overview the actual options to manipulate the altered microbiota, such as modified diet, probiotics, prebiotics, synbiotics, antibiotics, and fecal transplantation. Future possible therapies are also included. Targeting altered microbiota could be the next therapeutic personalized approach, but more research and well-designed comparative prospective studies are required to formulate adequate directions for prevention and therapy.
Collapse
Affiliation(s)
- Daniela Elena Serban
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Second Department of Pediatrics, Emergency Children's Hospital, Cluj-Napoca, Romania
| |
Collapse
|
145
|
Maukonen J, Kolho KL, Paasela M, Honkanen J, Klemetti P, Vaarala O, Saarela M. Altered Fecal Microbiota in Paediatric Inflammatory Bowel Disease. J Crohns Colitis 2015; 9:1088-95. [PMID: 26351391 DOI: 10.1093/ecco-jcc/jjv147] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/11/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Several factors support the view of inflammatory bowel disease [IBD] origin in the host responsiveness to intestinal bacteria, although no single bacterial species has been shown as a causative agent in the pathogenesis. Our aim was to analyse the fecal microbiota of paediatric IBD patients at different stages of the disease. In addition, the characteristics of immune response to the bacterial isolates showing very low abundance in IBD were studied. METHODS Fecal samples [1-3 samples/child] were collected from 10 paediatric patients with crohn's disease [CD], and 12 with ulcerative colitis [UC] and from 8 healthy children, for polyphasic microbiological analysis (culture, real-time polymerase chain reaction [PCR], and denaturing gradient gel electrophoresis). In addition, in vitro cytokine responses of peripheral blood mononuclear cells to the bacterial isolates, which showed very low abundance in IBD, were studied. RESULTS Although predominant bacterial diversity was higher in IBD, the numbers of Lachnospiraceae and Coriobacteriaceae bacteria were lower in IBD patients as compared with control children [p < 0.05]. In addition, Ruminococcaceae population diversity was lower in IBD [p < 0.05] and correlated negatively with fecal calprotectin levels. Both abundance and diversity of bifidobacterial populations were lower in children with IBD [p < 0.05], and particularly low numbers of certain bifidobacterial isolates were detected. In CD, we found enhanced up-regulation of interleukin-6 transcripts and impaired RAR-related orphan receptor C response to bifidobacteria, whereas decreased interferon-gamma response was observed in both CD and UC. CONCLUSION We demonstrate altered fecal microbiota in paediatric IBD, particularly low numbers and diversity of bifidobacterial populations. Interestingly, immunological response to bifidobacteria differed between paediatric CD patients and control children.
Collapse
Affiliation(s)
| | - Kaija-Leena Kolho
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Monika Paasela
- National Institute for Health and Welfare [THL], Helsinki, Finland
| | - Jarno Honkanen
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Paula Klemetti
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | - Outi Vaarala
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland National Institute for Health and Welfare [THL], Helsinki, Finland Respiratory, Inflammatory and Autoimmune Diseases, Innovative Medicine, AstraZeneca, Mölndal, Sweden
| | - Maria Saarela
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
146
|
Oberc A, Coombes BK. Convergence of External Crohn's Disease Risk Factors on Intestinal Bacteria. Front Immunol 2015; 6:558. [PMID: 26579131 PMCID: PMC4630591 DOI: 10.3389/fimmu.2015.00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023] Open
Abstract
Crohn’s disease (CD) is an immune-mediated intestinal illness that significantly compromises health in many developed countries. Although definitive causes remain elusive, the required contribution of microbes in the progression of disease has become an accepted concept. Known CD risk factors, such as antibiotic use and acute infectious gastroenteritis, may impact the gut. This concept is now being explored with a view toward understanding the beneficial and unfavorable microbes that may be altered in numbers during such external insults. A comprehensive understanding of the microbial component to CD could be useful clinically as future therapies may focus on preventing risk exposures on susceptible individuals, eliminating harmful microbes, or restoring a protective gut microbiome. Here, we examine how acute infectious gastroenteritis and antibiotic exposure may impact the gut microbiota in the context of inflammation in CD.
Collapse
Affiliation(s)
- Alexander Oberc
- Department of Biochemistry and Biomedical Sciences, McMaster University , Hamilton, ON , Canada ; Michael G. DeGroote Institute for Infectious Disease Research , Hamilton, ON , Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University , Hamilton, ON , Canada ; Michael G. DeGroote Institute for Infectious Disease Research , Hamilton, ON , Canada ; Farncombe Family Digestive Health Research Institute , Hamilton, ON , Canada
| |
Collapse
|
147
|
Genome-Wide Association Studies of the Human Gut Microbiota. PLoS One 2015; 10:e0140301. [PMID: 26528553 PMCID: PMC4631601 DOI: 10.1371/journal.pone.0140301] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/05/2015] [Indexed: 12/17/2022] Open
Abstract
The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10−7). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.
Collapse
|
148
|
Intestinal microbiota and ulcerative colitis. J Infect Chemother 2015; 21:761-8. [DOI: 10.1016/j.jiac.2015.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/30/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
|
149
|
Lord JD. Promises and paradoxes of regulatory T cells in inflammatory bowel disease. World J Gastroenterol 2015; 21:11236-45. [PMID: 26523099 PMCID: PMC4616201 DOI: 10.3748/wjg.v21.i40.11236] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/02/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023] Open
Abstract
Since their discovery two decades ago, CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) have become the subject of intense investigation by immunologists. Unlike other T cells, which promote an immune response, Tregs actively inhibit inflammation when activated by their cognate antigen, thus raising hope that these cells could be engineered into a highly targeted, antigen-specific, immunosuppressant therapy. Although Tregs represent less than 10% of circulating CD4(+)T cells, they have been shown to play an essential role in preventing or limiting inflammation in a variety of animal models and human diseases. In particular, spontaneous intestinal inflammation has been shown to occur in the absence of Tregs, suggesting that there may be a Treg defect central to the pathogenesis of human inflammatory bowel disease (IBD). However, over the past decade, multiple groups have reported no qualitative or quantitative deficits in Tregs from the intestines and blood of IBD patients to explain why these cells fail to regulate inflammation in Crohn's disease and ulcerative colitis. In this review, we will discuss the history of Tregs, what is known about them in IBD, and what progress and obstacles have been seen with efforts to employ them for therapeutic benefit.
Collapse
|
150
|
Abstract
Metabonomic techniques have considerable potential in the field of clinical diagnostics, typifying the application of a translational research paradigm. Care must be taken at all stages to apply appropriate methodology with accurate patient selection and profiling, and rigorous data acquisition and handling, to ensure clinical validity.An ever-increasing number of publications in a wide range of diseases and diverse patient groups suggest a variety of potential clinical uses; prospective studies in large validation cohorts are required to bring metabonomics into routine clinical practice. In this chapter, the utility of metabonomics as a diagnostic tool will be discussed.
Collapse
Affiliation(s)
- Lucy C Hicks
- Department of Medicine, Imperial College London, London, UK
| | | | | |
Collapse
|