101
|
Vaid M, Mehra K, Gupta A. Microplastics as contaminants in Indian environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68025-68052. [PMID: 34648156 PMCID: PMC8514609 DOI: 10.1007/s11356-021-16827-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/26/2021] [Indexed: 05/02/2023]
Abstract
The increased production and consumption scale of plastic items has led to the generation of microplastics (MPs), an emerging class of contaminants, in our environment. MPs are plastic particles less than 5 mm in size and could originate due to primary and secondary sources. The primary ones are generated as such in the MP size range while the secondary MPs are a result of fragmentation of larger plastic particles which eventually enters the aquatic, terrestrial and atmospheric environments. The increasing concern of MP pollution in every compartment of our environment is being globally explored, with relatively fewer studies in India. Among the total studies published on MP prevalence in the Indian environments, marine systems have received significantly higher attention compared to the other compartments like freshwater, atmosphere, terrestrial and human consumables. This review article is an effort to present current understanding of MP pollution in aquatic systems, terrestrial systems, atmosphere and human consumables of India by reviewing available scientific literature. Along with this, the review also focuses on identification of the gap areas in current knowledge and highlights way forward for future research. This would further help in meeting the goals of this emergent pollutant management.
Collapse
Affiliation(s)
- Mansi Vaid
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Dwarka Sector 16C, New Delhi, 110078, India
| | - Komal Mehra
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Dwarka Sector 16C, New Delhi, 110078, India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Dwarka Sector 16C, New Delhi, 110078, India.
| |
Collapse
|
102
|
First evidence of microplastics in the Marine Protected Area Namuncurá at Burdwood Bank, Argentina: a study on Henricia obesa and Odontaster penicillatus (Echinodermata: Asteroidea). Polar Biol 2021. [DOI: 10.1007/s00300-021-02959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
103
|
Karimi Estahbanati MR, Kong XY, Eslami A, Soo HS. Current Developments in the Chemical Upcycling of Waste Plastics Using Alternative Energy Sources. CHEMSUSCHEM 2021; 14:4152-4166. [PMID: 34048150 DOI: 10.1002/cssc.202100874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The management of plastics waste is one of the most urgent and significant global problems now. Historically, waste plastics have been predominantly discarded, mechanically recycled, or incinerated for energy production. However, these approaches typically relied on thermal processes like conventional pyrolysis, which are energy-intensive and unsustainable. In this Minireview, some of the latest advances and future trends in the chemical upcycling of waste plastics by photocatalytic, electrolytic, and microwave-assisted pyrolysis processes are discussed as more environmentally friendly alternatives to conventional thermal reactions. We highlight how the transformation of different types of plastics waste by exploiting alternative energy sources can generate value-added products such as fuels (H2 and other carbon-containing small molecules), chemical feedstocks, and newly functionalized polymers, which can contribute to a more sustainable and circular economy.
Collapse
Affiliation(s)
- M R Karimi Estahbanati
- Centre Eau Terre Environnement (ETE), Institut National de la recherche scientifique (INRS), 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Xin Ying Kong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ali Eslami
- Department of Chemical Engineering, Université Laval, Québec, QC G1V 0A6, Canada
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
104
|
Xie S, Zhou A, Wei T, Li S, Yang B, Xu G, Zou J. Nanoplastics Induce More Serious Microbiota Dysbiosis and Inflammation in the Gut of Adult Zebrafish than Microplastics. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:640-650. [PMID: 34379141 DOI: 10.1007/s00128-021-03348-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Microplastics (MPs) (< 5 mm) and nanoplastics (NPs) (< 100 nm) are emerging environmental pollutants and have been proved could cause a series of toxicity in aquatic organisms. In this study, the effects on gut microbiota of adult zebrafish exposed for 21 days to 10 μg/L and 1 mg/L of MPs (8 μm) and NPs (80 nm) were evaluated. We analyzed the intestinal microbial community of zebrafish using high throughput sequencing of the 16S rRNA gene V3-V4 region and also performed transcriptional profiling of the inflammation pathway related genes in the intestinal tissues. Our results showed that both spherical polystyrene MPs and NPs could induce microbiota dysbiosis in the gut of zebrafish. The flora diversity of gut microbiota significantly increased under a high concentration of NPs. At the phylum level, the abundance of Proteobacteria increased significantly and the abundance of Fusobacteria, Firmicutes and Verrucomicrobiota decreased significantly in the gut after 21-day exposure to 1 mg/L of both MPs and NPs. Furthermore, interestingly, the abundance of Actinobacteria decreased in the MPs treatment groups but increased in the NPs treatment groups. At the genus level, revealed that the relative abundance of Aeromonas significantly increased both in the MPs and NPs treatment groups. Moreover, it was observed that NPs increased mRNA levels of il8, il10, il1β and tnfα in the gut, but not in MPs exposure group, indicating that the NPs may have a more serious effect on the gut of zebrafish than MPs to induce microbiota dysbiosis and inflammation in the gut.
Collapse
Affiliation(s)
- Shaolin Xie
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Aiguo Zhou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Tianli Wei
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Siying Li
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Bing Yang
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
105
|
Purahong W, Wahdan SFM, Heinz D, Jariyavidyanont K, Sungkapreecha C, Tanunchai B, Sansupa C, Sadubsarn D, Alaneed R, Heintz-Buschart A, Schädler M, Geissler A, Kressler J, Buscot F. Back to the Future: Decomposability of a Biobased and Biodegradable Plastic in Field Soil Environments and Its Microbiome under Ambient and Future Climates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12337-12351. [PMID: 34486373 DOI: 10.1021/acs.est.1c02695] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Decomposition by microorganisms of plastics in soils is almost unexplored despite the fact that the majority of plastics released into the environment end up in soils. Here, we investigate the decomposition process and microbiome of one of the most promising biobased and biodegradable plastics, poly(butylene succinate-co-adipate) (PBSA), under field soil conditions under both ambient and future predicted climates (for the time between 2070 and 2100). We show that the gravimetric and molar mass of PBSA is already largely reduced (28-33%) after 328 days under both climates. We provide novel information on the PBSA microbiome encompassing the three domains of life: Archaea, Bacteria, and Eukarya (fungi). We show that PBSA begins to decompose after the increase in relative abundances of aquatic fungi (Tetracladium spp.) and nitrogen-fixing bacteria. The PBSA microbiome is distinct from that of surrounding soils, suggesting that PBSA serves as a new ecological habitat. We conclude that the microbial decomposition process of PBSA in soil is more complex than previously thought by involving interkingdom relationships, especially between bacteria and fungi.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Daniel Heinz
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Katalee Jariyavidyanont
- Center of Engineering Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Chanita Sungkapreecha
- Center of Engineering Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Dolaya Sadubsarn
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Razan Alaneed
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Anna Heintz-Buschart
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
| | - Andreas Geissler
- Department of Macromolecular Chemistry and Paper Chemistry, Technical University of Darmstadt, Darmstadt D-64287, Germany
| | - Joerg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, Halle (Saale) D-06120, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig D-04103, Germany
| |
Collapse
|
106
|
Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Ecological risks in a 'plastic' world: A threat to biological diversity? JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126035. [PMID: 33992919 DOI: 10.1016/j.jhazmat.2021.126035] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microplastics pollution is predicted to increase in the coming decades, raising concerns about its effects on living organisms. Although the effects of microplastics on individual organisms have been extensively studied, the effects on communities, biological diversity, and ecosystems remain underexplored. This paper reviews the published literature concerning how microplastics affect communities, biological diversity, and ecosystem processes. Microplastics increase the abundance of some taxa but decrease the abundance of some other taxa, indicating trade-offs among taxa and altered microbial community composition in both the natural environment and animals' gut. The alteration of community composition by microplastics is highly conserved across taxonomic ranks, while the alpha diversity of microbiota is often reduced or increased, depending on the microplastics dose and environmental conditions, suggesting potential threats to biodiversity. Biogeochemical cycles, greenhouse gas fluxes, and atmospheric chemistry, can also be altered by microplastics pollution. These findings suggest that microplastics may impact the U.N. Sustainability Development Goals (SDGs) to improve atmospheric, soil, and water quality and sustaining biodiversity.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
107
|
Identification of 20 polymer types by means of laser-induced breakdown spectroscopy (LIBS) and chemometrics. Anal Bioanal Chem 2021; 413:6581-6594. [PMID: 34462788 PMCID: PMC8510961 DOI: 10.1007/s00216-021-03622-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 11/02/2022]
Abstract
Over the past few years, laser-induced breakdown spectroscopy (LIBS) has earned a lot of attention in the field of online polymer identification. Unlike the well-established near-infrared spectroscopy (NIR), LIBS analysis is not limited by the sample thickness or color and therefore seems to be a promising candidate for this task. Nevertheless, the similar elemental composition of most polymers results in high similarity of their LIBS spectra, which makes their discrimination challenging. To address this problem, we developed a novel chemometric strategy based on a systematic optimization of two factors influencing the discrimination ability: the set of experimental conditions (laser energy, gate delay, and atmosphere) employed for the LIBS analysis and the set of spectral variables used as a basis for the polymer discrimination. In the process, a novel concept of spectral descriptors was used to extract chemically relevant information from the polymer spectra, cluster purity based on the k-nearest neighbors (k-NN) was established as a suitable tool for monitoring the extent of cluster overlaps and an in-house designed random forest (RDF) experiment combined with a cluster purity-governed forward selection algorithm was employed to identify spectral variables with the greatest relevance for polymer identification. Using this approach, it was possible to discriminate among 20 virgin polymer types, which is the highest number reported in the literature so far. Additionally, using the optimized experimental conditions and data evaluation, robust discrimination performance could be achieved even with polymer samples containing carbon black or other common additives, which hints at an applicability of the developed approach to real-life samples.
Collapse
|
108
|
Environmental Microplastic Particles vs. Engineered Plastic Microparticles-A Comparative Review. Polymers (Basel) 2021; 13:polym13172881. [PMID: 34502921 PMCID: PMC8434362 DOI: 10.3390/polym13172881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 08/21/2021] [Indexed: 11/17/2022] Open
Abstract
Microplastic particles (MPs) pose a novel threat to nature. Despite being first noticed in the 1970s, research on this topic has only surged in recent years. Researchers have mainly focused on environmental plastic particles; however, studies with defined microplastic particles as the sample input are scarce. Furthermore, comparison of those studies indicates a discrepancy between the particles found (e.g., in the environment) and those used for further research (e.g., exposure studies). Obviously, it is important to use particles that resemble those found in the environment to conduct appropriate research. In this review, different categories of microplastic particles are addressed, before covering an overview of the most common separation and analysis methods for environmental MPs is covered. After showing that the particles found in the environment are mostly irregular and polydisperse, while those used in studies with plastic microparticles as samples are often not, different particle production techniques are investigated and suggestions for preparing realistic plastic particles are given.
Collapse
|
109
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Zhang W, Sun C, Liu G. The toxic impacts of microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) on haematic parameters in a marine bivalve species and their potential mechanisms of action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147003. [PMID: 33865135 DOI: 10.1016/j.scitotenv.2021.147003] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are universally detected in the marine ecosystem and may exert adverse impacts on marine species. Although under realistic pollution scenarios, PAH pollution usually occurs as a mixture of different PAH compounds, the toxic impacts of PAH mixtures on marine organisms remain largely unknown to date, including their interactions with other emergent pollutants such as MPs. In this study, the single and combined toxic impacts of polystyrene MPs and a mixture of PAHs (standard mix of 16 representative PAHs) on haematic parameters were evaluated in the blood clam Tegillarca granosa. Our data demonstrated that blood clams treated with the pollutants examined led to decreased total haemocyte count (THC), changed haematic composition, and inhibited phagocytosis of haemocytes. Further analyses indicated that MPs and a mixture of PAHs may exert toxic impacts on haematic parameters by elevating the intracellular contents of reactive oxygen species (ROS), giving rise to lipid peroxidation (LPO) and DNA damage, reducing the viability of haemocytes, and disrupting important molecular signalling pathways (indicated by significantly altered expressions of key genes). In addition, compared to clams treated with a single type of pollutant, coexposure to MPs and a mixture of PAHs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect of MPs and PAHs.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Changsen Sun
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, PR China.
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
110
|
Kim J, Rhee JS. Biochemical and physiological responses of the water flea Moina macrocopa to microplastics: a multigenerational study. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00162-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
111
|
Goswami P, Vinithkumar NV, Dharani G. Microplastics particles in seafloor sediments along the Arabian Sea and the Andaman Sea continental shelves: First insight on the occurrence, identification, and characterization. MARINE POLLUTION BULLETIN 2021; 167:112311. [PMID: 33831703 DOI: 10.1016/j.marpolbul.2021.112311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) are widely-recognized contaminants and marine sediments act as a sink of MPs and therefore may cause a potential threat to benthic communities. We aim to analyze the MPs abundances and characteristics in the seafloor sediments from the continental shelves of the Arabian and Andaman seas. Twenty-two seafloor sediments were collected from 8 and 14 locations of the Arabian and Andaman seas, respectively. MPs concentrations varied from not detected (ND) to 267 particles kg-1 with mean values of 128.02 ± 33.92 and 15.36 ± 2.61 particles kg-1, respectively for the Arabian and Andaman seas. Among different shapes, fiber had the highest distribution over fragments and pellet. FT-IR analysis revealed acrylic was most dominant polymer, followed by polyethylene, and nylon. Mean MP concentration at the Arabian Sea was significantly higher (p < 0.001) than in the Andaman Sea. The present study revealed the wide-spread occurrence of MPs throughout the Indian seas.
Collapse
Affiliation(s)
- Prasun Goswami
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, India.
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair 744103, India
| | - Gopal Dharani
- Marine Biotechnology Division, NIOT, Earth System Sciences Organization, Chennai 600100, India
| |
Collapse
|
112
|
Du M, Peng X, Zhang H, Ye C, Dasgupta S, Li J, Li J, Liu S, Xu H, Chen C, Jing H, Xu H, Liu J, He S, He L, Cai S, Chen S, Ta K. Geology, environment, and life in the deepest part of the world's oceans. ACTA ACUST UNITED AC 2021; 2:100109. [PMID: 34557759 PMCID: PMC8454626 DOI: 10.1016/j.xinn.2021.100109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
The hadal zone, mostly comprising of deep trenches and constituting of the deepest part of the world’s oceans, represents the least explored habitat but one of the last frontiers on our planet. The present scientific understanding of the hadal environment is still relatively rudimentary, particularly in comparison with that of shallower marine environments. In the last 30 years, continuous efforts have been launched in deepening our knowledge regarding the ecology of the hadal trench. However, the geological and environmental processes that potentially affect the sedimentary, geochemical and biological processes in hadal trenches have received less attention. Here, we review recent advances in the geology, biology, and environment of hadal trenches and offer a perspective of the hadal science involved therein. For the first time, we release high-definition images taken by a new full-ocean-depth manned submersible Fendouzhe that reveal novel species with an unexpectedly high density, outcrops of mantle and basaltic rocks, and anthropogenic pollutants at the deepest point of the world’s ocean. We advocate that the hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary, geochemical, and biological processes in the hadal trench. Hadal lithosphere might host the Earth’s deepest subsurface microbial ecosystem. Future research, combined with technological advances and international cooperation, should focus on establishing the intrinsic linkage of the geology, biology, and environment of the hadal trenches. This paper provides a comprehensive review on hadal geology, environment, and biology, as well as potential interactions among them For the first time, we release high-definition images taken by a new full-ocean-depth manned submersible Fendouzhe The hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary, geochemical, and biological processes in the hadal trench The development of deep-sea technology and international cooperation will greatly promote the progress of hadal science
Collapse
Affiliation(s)
- Mengran Du
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiaotong Peng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Corresponding author
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Cong Ye
- China Ship Scientific Research Center, Wuxi 214082, China
| | - Shamik Dasgupta
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiwei Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiangtao Li
- State Key Lab of Marine Geology, Tongji University, Shanghai 200092, China
| | - Shuangquan Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hengchao Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chuanxu Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongmei Jing
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongzhou Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shun Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Kaiwen Ta
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
113
|
Kitahashi T, Nakajima R, Nomaki H, Tsuchiya M, Yabuki A, Yamaguchi S, Zhu C, Kanaya Y, Lindsay DJ, Chiba S, Fujikura K. Development of robust models for rapid classification of microplastic polymer types based on near infrared hyperspectral images. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2215-2222. [PMID: 33908466 DOI: 10.1039/d1ay00110h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hyperspectral data in the near infrared range were examined for nine common types of plastic particles of 1 mm and 100-500 μm sizes on dry and wet glass fiber filters. Weaker peak intensities were detected for small particles compared to large particles, and the reflectances were weaker at longer wavelengths when the particles were measured on a wet filter. These phenomena are explainable due to the effect of the correlation between the particle size and the absorption of infrared light by water. We constructed robust classification models that are capable of classifying polymer types, regardless of particle size or filter conditions (wet vs. dry), based on hyperspectral data for small particles measured on wet filters. Using the models, we also successfully classified the polymer type of polystyrene beads covered with microalgae, which simulates the natural conditions of microplastics in the ocean. This study suggests that hyperspectral imaging techniques with appropriate classification models allow the identification of microplastics without the time- and labor-consuming procedures of drying samples and removing biofilms, thus enabling more rapid analyses.
Collapse
Affiliation(s)
- Tomo Kitahashi
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Ryota Nakajima
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Hidetaka Nomaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Masashi Tsuchiya
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Akinori Yabuki
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Sojiro Yamaguchi
- JFE Techno Research, 1 Kawasaki-cho, Chuo-ku, Chiba 260-0835, Japan
| | - Chunmao Zhu
- Earth Surface System Research Center (ESS), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
| | - Yugo Kanaya
- Earth Surface System Research Center (ESS), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
| | - Dhugal J Lindsay
- Advanced Science and Technology Research (ASTER) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Chiba
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | - Katsunori Fujikura
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| |
Collapse
|
114
|
Weston JNJ, Espinosa-Leal L, Wainwright JA, Stewart ECD, González CE, Linley TD, Reid WDK, Hidalgo P, Oliva ME, Ulloa O, Wenzhöfer F, Glud RN, Escribano R, Jamieson AJ. Eurythenes atacamensis sp. nov. (Crustacea: Amphipoda) exhibits ontogenetic vertical stratification across abyssal and hadal depths in the Atacama Trench, eastern South Pacific Ocean. MARINE BIODIVERSITY : A JOURNAL OF THE SENCKENBERG RESEARCH INSTITUTE 2021; 51:51. [PMID: 34007343 PMCID: PMC8120496 DOI: 10.1007/s12526-021-01182-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Eurythenes S.I. Smith in Scudder, 1882 (Crustacea: Amphipoda) are prevalent scavengers of the benthopelagic community from bathyal to hadal depths. While a well-studied genus, molecular systematic studies have uncovered cryptic speciation and multiple undescribed lineages. Here, we apply an integrative taxonomic approach and describe the tenth species, Eurythenes atacamensis sp. nov., based on specimens from the 2018 Atacamex and RV Sonne SO261 Expeditions to the southern sector of the Peru-Chile Trench, the Atacama Trench (24-21°S). Eurythenes atacamensis sp. nov. is a large species, max. observed length 83.2 mm, possesses diagnostic features, including a short gnathopod 1 palm and a chelate gnathopod 2 palm, and a distinct genetic lineage based on a 16S rRNA and COI phylogeny. This species is a dominant bait-attending fauna with an extensive bathymetric range, spanning from 4974 to 8081 m. The RV Sonne SO261 specimens were recovered along a 10-station transect from abyssal to hadal depths and further examined for demographic and bathymetric-related patterns. Ontogenetic vertical stratification was evident across the trench axis, with only juveniles present at abyssal depths (4974-6025 m). Total length-depth analysis revealed that the size of females was unrelated to depth, whereas juveniles followed a sigmoidal relationship with a step-up in size at depths >7200 m. Thus, these bathymetric trends suggest that juveniles and females employ differing ecological strategies in subduction trench environments. This study highlights that even dominant and ecologically important species are still being discovered within the abyssal and hadal environments. Continued systematic expeditions will lead to an improved understanding of the eco-evolutionary drivers of speciation in the world's largest ecosystem.
Collapse
Affiliation(s)
- Johanna N. J. Weston
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| | - Liliana Espinosa-Leal
- Programa de Doctorado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile
- Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile
| | - Jennifer A. Wainwright
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| | - Eva C. D. Stewart
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
- Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Carolina E. González
- Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile
| | - Thomas D. Linley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| | - William D. K. Reid
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| | - Pamela Hidalgo
- Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile
| | - Marcelo E. Oliva
- Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Osvaldo Ulloa
- Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile
| | - Frank Wenzhöfer
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, 28358 Bremen, Germany
- Department of Biology, Nordcee and HADAL, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ronnie N. Glud
- Department of Biology, Nordcee and HADAL, University of Southern Denmark, 5230 Odense M, Denmark
- Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477 Japan
| | - Rubén Escribano
- Departamento de Oceanografía and Instituto Milenio de Oceanografía, Universidad de Concepción, P.O. Box 160 C, Concepción, Chile
| | - Alan J. Jamieson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU UK
| |
Collapse
|
115
|
Hankins C, Moso E, Lasseigne D. Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116649. [PMID: 33571858 PMCID: PMC8904081 DOI: 10.1016/j.envpol.2021.116649] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 05/03/2023]
Abstract
Scleractinian coral are experiencing global and regional stressors. Microplastics (<5 mm) are an additional stressor that may cause adverse effects on coral. Experiments were conducted to investigate ingestion size limits and retention times of microspheres in a two-day exposure as well as observing growth responses in a 12-week exposure in two Atlantic species, Pseudodiploria clivosa and Acropora cervicornis. In the two-day exposure, P. clivosa ingested a higher number of microspheres ranging in size from 425 μm-2.8 mm than A. cervicornis. Both species egested the majority of microspheres within 48 h of ingestion. In the long-term exposure, calcification and tissue surface area were negatively affected in the treatment group of both species. Exposure also negatively affected buoyant weight in A. cervicornis but not in P. clivosa. The results indicate that microplastics can affect growth responses, yet additional research is warranted to investigate potential synergistic impacts of microplastics and other stressors.
Collapse
Affiliation(s)
- Cheryl Hankins
- United States Environmental Protection Agency, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA.
| | - Elizabeth Moso
- United States Environmental Protection Agency, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
| | - Danielle Lasseigne
- United States Environmental Protection Agency, Center for Environmental Measurement & Modeling, Gulf Ecosystem Measurement & Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
| |
Collapse
|
116
|
Li X, Han X, Vogt RD, Zhou J, Zheng B, Song Y, Lu X. Distributions, temporal trends and ecological risks of polyethylene terephthalate (PET) and di-(2-ethylhexyl) phthalate (DEHP) in sediments of Jiaozhou Bay, China. MARINE POLLUTION BULLETIN 2021; 165:112176. [PMID: 33621904 DOI: 10.1016/j.marpolbul.2021.112176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Spatiotemporal distribution and ecological risk of the polyethylene terephthalate (PET) plastic polymer and plasticizer di-(2-ethylhexyl) phthalate (DEHP) were investigated using both surface and core sediments in Jiaozhou Bay, China. The concentrations of PET and DEHP ranged 210.6-1929.7 μg/kg and 0-591.2 μg/kg, respectively. The depth profiles of PET and DEHP in the sediment cores indicated that PET and DEHP pollution increased since the 1970s, which is in accord with the regional PET and DEHP consumption history. The levels of PET in Jiaozhou Bay was found to represent low ecological risk based on the assessment models for Potential Ecological Risk factor and Potential Ecological Risk. The amounts of DEHP also posed a low risk to the aquatic organisms in the sediment phase as indicated by the Risk Quotient method.
Collapse
Affiliation(s)
- Xue Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Xiaoxin Han
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway; Chuangchun Bureau of Ecology and Environment, Chuangchun 130022, China
| | - Rolf D Vogt
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China; Department of Chemistry, University of Oslo, 0315 Oslo, Norway; Centre for Biogeochemistry in the Anthropocene, University of Oslo, 0316 Oslo, Norway
| | - Jiaying Zhou
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China
| | - Boyang Zheng
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China
| | - Yutong Song
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen 1958, Denmark
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin 300350, China; Tianjin International Joint Research Center for Environmental Biogeochemical Technology, Tianjin 300350, China.
| |
Collapse
|
117
|
Corsi I, Bergami E, Caruso G. Special issue plastics in polar regions. ENVIRONMENT INTERNATIONAL 2021; 149:106203. [PMID: 33121740 DOI: 10.1016/j.envint.2020.106203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy.
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena 53100, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council, Messina 98122, Italy
| |
Collapse
|
118
|
Mateos-Cárdenas A, O'Halloran J, van Pelt FNAM, Jansen MAK. Beyond plastic microbeads - Short-term feeding of cellulose and polyester microfibers to the freshwater amphipod Gammarus duebeni. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141859. [PMID: 32898808 DOI: 10.1016/j.scitotenv.2020.141859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Monitoring studies have revealed the presence of large numbers of natural as well as anthropogenic microfibers, plastic and non-plastic, in environmental samples. However, the interaction of organisms with microfibers is largely understudied. This is the first ecotoxicological study that compares short-term feeding of anthropogenic plastic and non-plastic microfibers on a consumer (leaf-shredding detritivores) species. The freshwater amphipod Gammarus duebeni was selected for this study as it is a model ecotoxicological species. After a 96-hour exposure, 58.3% and 41.7% of the amphipods contained cellulose or polyester fibers in their digestive tracts, respectively. Microfiber ingestion was analysed per polymers in presence or absence of food. The G. duebeni group exposed to 'polyester fibers in presence of food' accumulated highest numbers of microfibers in their digestive tracts (5.2 ± 3.4 MFs/amphipod) followed by those exposed to 'cellulose in presence of food' (2.5 ± 0.9 MFs/amphipod). A significantly (Three-way ANOVA, p-value <0.05) higher number of microfibers was found in the midgut-hindgut (posterior) sections, compared to the foregut (anterior) section. Microfiber uptake had no apparent short-term negative effect on amphipod survival at 96 h. Yet, as amphipods are both predators and prey, and therefore are key species in the aquatic food web, the rapid accumulation of anthropogenic microfibers in their digestive system has potentially further ecological implications. Future studies need to consider the possible transfer of ingested anthropogenic microfibers to higher trophic levels in freshwater communities.
Collapse
Affiliation(s)
- Alicia Mateos-Cárdenas
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, University College Cork, Lee Road, Cork City, Ireland.
| | - John O'Halloran
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, University College Cork, Lee Road, Cork City, Ireland
| | - Frank N A M van Pelt
- Environmental Research Institute, University College Cork, Lee Road, Cork City, Ireland; Department of Pharmacology and Therapeutics, University College Cork, Western Gateway Building, Western Road, Cork City, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork City, Ireland; Environmental Research Institute, University College Cork, Lee Road, Cork City, Ireland
| |
Collapse
|
119
|
Gambarini V, Pantos O, Kingsbury JM, Weaver L, Handley KM, Lear G. Phylogenetic Distribution of Plastic-Degrading Microorganisms. mSystems 2021; 6:e01112-20. [PMID: 33468707 PMCID: PMC7820669 DOI: 10.1128/msystems.01112-20] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
The number of plastic-degrading microorganisms reported is rapidly increasing, making it possible to explore the conservation and distribution of presumed plastic-degrading traits across the diverse microbial tree of life. Putative degraders of conventional high-molecular-weight polymers, including polyamide, polystyrene, polyvinylchloride, and polypropylene, are spread widely across bacterial and fungal branches of the tree of life, although evidence for plastic degradation by a majority of these taxa appears limited. In contrast, we found strong degradation evidence for the synthetic polymer polylactic acid (PLA), and the microbial species related to its degradation are phylogenetically conserved among the bacterial family Pseudonocardiaceae We collated data on genes and enzymes related to the degradation of all types of plastic to identify 16,170 putative plastic degradation orthologs by mining publicly available microbial genomes. The plastic with the largest number of putative orthologs, 10,969, was the natural polymer polyhydroxybutyrate (PHB), followed by the synthetic polymers polyethylene terephthalate (PET) and polycaprolactone (PCL), with 8,233 and 6,809 orthologs, respectively. These orthologous genes were discovered in the genomes of 6,000 microbial species, and most of them are as yet not identified as plastic degraders. Furthermore, all these species belong to 12 different microbial phyla, of which just 7 phyla have reported degraders to date. We have centralized information on reported plastic-degrading microorganisms within an interactive and updatable phylogenetic tree and database to confirm the global and phylogenetic diversity of putative plastic-degrading taxa and provide new insights into the evolution of microbial plastic-degrading capabilities and avenues for future discovery.IMPORTANCE We have collated the most complete database of microorganisms identified as being capable of degrading plastics to date. These data allow us to explore the phylogenetic distribution of these organisms and their enzymes, showing that traits for plastic degradation are predominantly not phylogenetically conserved. We found 16,170 putative plastic degradation orthologs in the genomes of 12 different phyla, which suggests a vast potential for the exploration of these traits in other taxa. Besides making the database available to the scientific community, we also created an interactive phylogenetic tree that can display all of the collated information, facilitating visualization and exploration of the data. Both the database and the tree are regularly updated to keep up with new scientific reports. We expect that our work will contribute to the field by increasing the understanding of the genetic diversity and evolution of microbial plastic-degrading traits.
Collapse
Affiliation(s)
- Victor Gambarini
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Olga Pantos
- The Institute of Environmental Science and Research, Ilam, Christchurch, New Zealand
| | - Joanne M Kingsbury
- The Institute of Environmental Science and Research, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- The Institute of Environmental Science and Research, Ilam, Christchurch, New Zealand
| | - Kim M Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
120
|
Abel SM, Primpke S, Int-Veen I, Brandt A, Gerdts G. Systematic identification of microplastics in abyssal and hadal sediments of the Kuril Kamchatka trench. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116095. [PMID: 33257152 DOI: 10.1016/j.envpol.2020.116095] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/09/2020] [Accepted: 11/14/2020] [Indexed: 05/28/2023]
Abstract
The occurrence of microplastics throughout marine environments worldwide, from pelagic to benthic habitats, has become serious cause for concern. Hadal zones were recently described as the "trash bins of the oceans" and ultimate sink for marine plastic debris. The Kuril region covers a substantial area of the North Pacific Ocean and is characterised by high biological productivity, intense marine traffic through the Kuril straits, and anthropogenic activity. Moreover, strong tidal currents and eddy activity, as well as the influence of Pacific currents, have the potential for long distance transport and retention of microplastics in this area. To verify the hypothesis that the underlying Kuril Kamchatka Trench might accumulate microplastics from the surrounding environments and act as the final sink for high quantities of microplastics, we analysed eight sediment samples collected in the Kuril Kamchatka Trench at a depth range of 5143-8250 m during the Kuril Kamchatka Biodiversity Studies II (KuramBio II) expedition in summer 2016. Microplastics were characterised via Micro Fourier Transform Infrared spectroscopy. All samples were analysed in their entirety to avoid inaccuracies due to extrapolations of microplastic concentrations and polymer diversities, which would otherwise be based on commonly applied representative aliquots. The number of microplastic particles detected ranged from 14 to 209 kg-1 sediment (dry weight) with a total of 15 different plastic polymers detected. Polypropylene accounted for the largest proportion (33.2%), followed by acrylates/polyurethane/varnish (19%) and oxidized polypropylene (17.4%). By comparing extrapolated sample aliquots with in toto results, it was shown that aliquot-based extrapolations lead to severe under- or overestimations of microplastic concentrations, and an underestimation of polymer diversity.
Collapse
Affiliation(s)
- Serena M Abel
- Senckenberg Research Institute and Natural History Museum; Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, Germany; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany; Goethe University Frankfurt, Institute for Ecology, Diversity and Evolution, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
| | - Sebastian Primpke
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany
| | - Ivo Int-Veen
- Thünen-Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum; Department of Marine Zoology, Senckenberganlage 25, 60325, Frankfurt am Main, Germany; Goethe University Frankfurt, Institute for Ecology, Diversity and Evolution, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany
| |
Collapse
|
121
|
Xie H, Chen J, Feng L, He L, Zhou C, Hong P, Sun S, Zhao H, Liang Y, Ren L, Zhang Y, Li C. Chemotaxis-selective colonization of mangrove rhizosphere microbes on nine different microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142223. [PMID: 33207502 DOI: 10.1016/j.scitotenv.2020.142223] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 05/26/2023]
Abstract
Microplastics pollution poses a new threat to the environment of intertidal zone. The sea forest, mangrove, has been polluted by a large number of plastic debris worldwide. To fill the gaps in knowledge of mangrove rhizosphere microbes connected with the 'plasticsphere', a semi-controlled in situ exposure experiment for nine different types of microplastics were conducted in mangrove ecosystem. A sign of biodegrading was observed on polyethylene, polyamide 6 and polyvinyl chloride microplastics surface after 3 months exposure. We discovered that the metabolic activities of the dominant bacteria on certain microplastics were related to the specific groups on polymers molecule. The selective colonization may be driven by the chemotaxis of bacteria. Specially, microplastics biofilms of polyethylene, polyamide 6, polyvinyl chloride and expanded polystyrene possess distinctive dominant bacteria assemblages which have great significance in ecosystem processes involving carbon cycle or sulfur cycle. Community of mangrove soil microorganism and microplastic biofilm varies as the seasons changes. As a new niche, microplastics has higher inclusivity to bacteria than surrounding soil. Additionally, pathogens for human beings (Vibrio parahaemolyticus and Escherichia-Shigella) were detected both in microplastics and soil. We stress that the interaction between microplastics and rhizosphere microorganisms may affect the growth and health of mangrove plants. Besides, we point out that mangrove rhizosphere microorganism can be an ideal candidate for plastics-degradation.
Collapse
Affiliation(s)
- Huifeng Xie
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Jinjun Chen
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Limin Feng
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Chunxia Zhou
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, PR China
| | - Pengzhi Hong
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, PR China
| | - Shengli Sun
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Hui Zhao
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Lei Ren
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Yueqin Zhang
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, School of Food Science and Technology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, PR China.
| |
Collapse
|
122
|
Wang G, Lu J, Li W, Ning J, Zhou L, Tong Y, Liu Z, Zhou H, Xiayihazi N. Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111477. [PMID: 33091771 DOI: 10.1016/j.ecoenv.2020.111477] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The ubiquity of microplastics in the environment has caused great influence to ecosystems and seriously threatened human health. To better understand the variation in microplastics in different seasons in an inland freshwater environment and determine the sources of microplastic pollution and its migration features, this study investigated the characteristics of microplastic pollution during dry (April) and wet (July) seasons in surface water of the Manas River Basin, China. The size, color, shape, area distribution and compound composition of microplastics were studied. Moreover, the risk of microplastic contamination was explored based on risk assessment models. The results demonstrated that the degree of pollution caused by microplastic abundance was minor in this study area. The average abundance of microplastics in April (17 ± 4 items/L) was higher than that in July (14 ± 2 items/L). The range in the abundance of microplastics in April and July were 22 ± 5-14 ± 3 items/L and 19 ± 2-10 ± 1 items/L, respectively. Highly hazardous polymers such as Polyvinyl chloride (PVC) and Polycarbonate (PC) have a significant impact on the results of the evaluation of the presence of microplastics. This study is an important reference for understanding the characteristics of the seasonal variation in microplastics in inland freshwater environments and has practical significance, as it will allow relevant agencies to accurately assess the pollution level of microplastics in different seasons. It is of practical significance to understand the sources and sinks of microplastics in inland freshwater environment.
Collapse
Affiliation(s)
- Gaoliang Wang
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jianjiang Lu
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Wanjie Li
- Environmental Monitoring Station of the First Division of Xinjiang Production and Construction Corps, Alaer 843300, China
| | - Jianying Ning
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832002, China
| | - Li Zhou
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yanbin Tong
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zilong Liu
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Hongjuan Zhou
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Nuerguli Xiayihazi
- Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
123
|
Lee DH, Lee S, Rhee JS. Consistent exposure to microplastics induces age-specific physiological and biochemical changes in a marine mysid. MARINE POLLUTION BULLETIN 2021; 162:111850. [PMID: 33223134 DOI: 10.1016/j.marpolbul.2020.111850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 05/11/2023]
Abstract
In this study, a marine mysid, Neomysis awatschensis, was exposed to 1 × 103-5 × 105 particles mL-1 of polystyrene microbeads (1 and 10 μm). Exposure to microplastics (MPs) resulted in ingestion and egestion in feces. MPs exposure during the early stage resulted in mortality and oxidative stress, while more mature stages were increasingly tolerant to MPs. Feeding rates were inhibited by MPs, and age-specific oxidative stress was observed. Growth parameters were significantly affected by MPs with lower 20-hydroxyecdysone (20E) concentrations and longer intermolt durations. The number of hatched juveniles from females that were exposed to MPs was significantly lower than the control treatment, but no significant differences were observed between survival rates of newly hatched juveniles in the different treatments. Our results suggest that the detrimental effects of prolonged exposure to MPs could be age- and size-specific and harmful for the maintenance of mysid populations.
Collapse
Affiliation(s)
- Do-Hee Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea; Institute of Green Environmental Research Center, Incheon 21999, South Korea.
| |
Collapse
|
124
|
Fang C, Zheng R, Hong F, Jiang Y, Chen J, Lin H, Lin L, Lei R, Bailey C, Bo J. Microplastics in three typical benthic species from the Arctic: Occurrence, characteristics, sources, and environmental implications. ENVIRONMENTAL RESEARCH 2021; 192:110326. [PMID: 33068580 DOI: 10.1016/j.envres.2020.110326] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) in the Arctic have raised increasing concern, but knowledge on MP contamination in benthic organisms from Arctic shelf regions, e.g., the Chukchi Sea is still limited. Therefore, the present study investigated the occurrence, characteristics, sources, and environmental implications of MPs in the three most common benthic species, namely sea anemone (Actiniidae und.), deposit-feeding starfish (Ctenodiscus crispatus), and snow crab (Chionoecetes opilio), from the Chukchi Sea. The abundances of MPs in the three benthic species were significantly greater than those from the Bering Sea, but lower than those from other regions globally. The top three compositions of MPs in the three species were polyester, nylon, and polyethylene terephthalate. The detection limit for MP size in the present study was 0.03 mm and the mean size of MP in the three species was 0.89 ± 0.06 mm. The surfaces of MPs found in the starfish and crabs were covered with many attachments, cracks, and hollows, while the surfaces of MPs found in the sea anemones were smooth, which was likely a consequence of different feeding behaviors. There was a significantly positive correlation between the abundances of MPs and other anthropogenic substances. The mean MP abundances in the sea anemones ranged from 0.2 items/individual to 1.7 items/individual, which was significantly higher than that in the deposit-feeding starfish (0.1-1.4 items/individual) and snow crabs (0.0-0.6 items/individual). Sea anemones inhabiting lower latitudes ingested relatively higher levels of MPs than those inhabiting higher latitudes. The MP abundances in the sea anemones are significantly and positively correlated with the seasonal reduced ratio of sea ice coverage from August to September. Our findings indicate that sea anemones could function as a bioindicator of MP pollution, and that the MPs in the benthos from the Chukchi Sea might originate from the melting sea ice, fishery activities and ocean currents.
Collapse
Affiliation(s)
- Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Ronghui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Fukun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yulu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005, Xiamen, China
| | - Jincan Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, 361005, Xiamen, China
| | - Heshan Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Longshan Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Ruibo Lei
- Key Laboratory for Polar Science of the Ministry of Natural Resources, Polar Research Institute of China, Shanghai, 200136, China
| | - Christyn Bailey
- Fish Immunology and Pathology Laboratory, Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
125
|
Wang L, Nabi G, Yin L, Wang Y, Li S, Hao Z, Li D. Birds and plastic pollution: recent advances. AVIAN RESEARCH 2021; 12:59. [PMID: 34745642 PMCID: PMC8561682 DOI: 10.1186/s40657-021-00293-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 05/19/2023]
Abstract
Plastic waste and debris have caused substantial environmental pollution globally in the past decades, and they have been accumulated in hundreds of terrestrial and aquatic avian species. Birds are susceptible and vulnerable to external environments; therefore, they could be used to estimate the negative effects of environmental pollution. In this review, we summarize the effects of macroplastics, microplastics, and plastic-derived additives and plastic-absorbed chemicals on birds. First, macroplastics and microplastics accumulate in different tissues of various aquatic and terrestrial birds, suggesting that birds could suffer from the macroplastics and microplastics-associated contaminants in the aquatic and terrestrial environments. Second, the detrimental effects of macroplastics and microplastics, and their derived additives and absorbed chemicals on the individual survival, growth and development, reproductive output, and physiology, are summarized in different birds, as well as the known toxicological mechanisms of plastics in laboratory model mammals. Finally, we identify that human commensal birds, long-life-span birds, and model bird species could be utilized to different research objectives to evaluate plastic pollution burden and toxicological effects of chronic plastic exposure.
Collapse
Affiliation(s)
- Limin Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Ghulam Nabi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Liyun Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Yanqin Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Shuxin Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Zhuang Hao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Dongming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| |
Collapse
|
126
|
|
127
|
Soares MDO, Matos E, Lucas C, Rizzo L, Allcock L, Rossi S. Microplastics in corals: An emergent threat. MARINE POLLUTION BULLETIN 2020; 161:111810. [PMID: 33142139 DOI: 10.1016/j.marpolbul.2020.111810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
This article seeks to present a summary of knowledge and thus improve awareness of microplastic impacts on corals. Recent research suggests that microplastics have a variety of species-specific impacts. Among them, a reduced growth, a substantial decrease of detoxifying and immunity enzymes, an increase in antioxidant enzyme activity, high production of mucus, reduction of fitness, and negative effects on coral-Symbiodiniaceae relationships have been highlighted in recent papers. In addition to this, tissue necrosis, lower fertilization success, alteration of metabolite profiles, energetic costs, decreased skeletal growth and calcification, and coral bleaching have been observed under significant concentrations of microplastics. Furthermore, impairment of feeding performance and food intake, changes in photosynthetic performance and increased exposure to contaminants, pathogens and other harmful compounds have also been found. In conclusion, microplastics may cause a plethora of impacts on corals in shallow, mesophotic, and deep-sea zones at different latitudes; underlining an emerging threat globally.
Collapse
Affiliation(s)
- Marcelo de Oliveira Soares
- Instituto de Ciências do Mar-LABOMAR, Universidade Federal do Ceará, Av. da Abolição, 3207 Fortaleza, Brazil; Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona (UAB), Carrer de les Columnes, Edifici Z, Barcelona, Spain; Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DISTEBA), Università del Salento, Lecce, Italy.
| | - Eliana Matos
- Instituto de Ciências do Mar-LABOMAR, Universidade Federal do Ceará, Av. da Abolição, 3207 Fortaleza, Brazil
| | - Caroline Lucas
- Instituto de Ciências do Mar-LABOMAR, Universidade Federal do Ceará, Av. da Abolição, 3207 Fortaleza, Brazil
| | - Lucia Rizzo
- Stazione Zoologica Anton Dohrn di Napoli, Napoli, Italy
| | - Louise Allcock
- Ryan Institute & School of Natural Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Sergio Rossi
- Instituto de Ciências do Mar-LABOMAR, Universidade Federal do Ceará, Av. da Abolição, 3207 Fortaleza, Brazil; Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona (UAB), Carrer de les Columnes, Edifici Z, Barcelona, Spain; Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DISTEBA), Università del Salento, Lecce, Italy
| |
Collapse
|
128
|
Kutralam-Muniasamy G, Pérez-Guevara F, Elizalde-Martínez I, Shruti VC. Review of current trends, advances and analytical challenges for microplastics contamination in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115463. [PMID: 32866877 DOI: 10.1016/j.envpol.2020.115463] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 05/19/2023]
Abstract
Microplastics accumulation is an emerging environmental issue and a threat to marine life and human health. There is a growing number of investigations on the abundance and distribution of microplastics in different water bodies and biota worldwide, with relatively few studies conducted in Latin America, however, the current knowledge of microplastics sources, occurrence, transport, fate and potential impacts remains largely unexplored. This review presents the current trends and advances of microplastics on a lesser known region of the world by compiling the research performed to date in different environmental compartments. The sampling techniques and methods for microplastics extraction in the existing literature data are also summarized. Among 78 published studies reviewed, 34% of studies were from Brazil and 46% of studies have mainly focused on biota. The main findings showed that microplastics are not negligible across Latin America significantly varying in their distribution, with the prevalence of fibers comprising 62% of the total. Polyethylene, polypropylene, polyethylene terephthalate and polystyrene have been identified as the most common polymer types, accounting for 80% of the total. Limited studies and lack of standardized methodologies render difficulties to establish fundamental information on microplastics abundance and types in most countries of this region. Therefore, this review will primarily serve as a baseline when evaluating the environmental relevance of microplastics in Latin America and would stimulate discussions focusing on this topic, calling for more research in future.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - I Elizalde-Martínez
- Instituto Politécnico Nacional (IPN), Centro Mexicano para La Producción Más Limpia (CMP+L), Av. Acueducto S/n, Col. Barrio La Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, México, D.F., Mexico
| | - V C Shruti
- Instituto Politécnico Nacional (IPN), Centro Mexicano para La Producción Más Limpia (CMP+L), Av. Acueducto S/n, Col. Barrio La Laguna Ticomán, Del Gustavo A. Madero, C.P. 07340, México, D.F., Mexico.
| |
Collapse
|
129
|
Abstract
Mercury is a globally distributed neurotoxic pollutant that can be biomagnified in marine fish to levels that are harmful for consumption by humans and other animals. The degree to which mercury has infiltrated the oceans yields important information on the biogeochemistry of mercury and its expected effects on fisheries during changing mercury emissions scenarios. Mercury isotope measurement of biota from deep-sea trenches was used to demonstrate that surface-ocean-derived mercury has infiltrated the deepest locations in the oceans. It was found that when fish living in the surface ocean die and their carcasses sink (along with marine particles), they transfer large amounts of mercury to the trench foodwebs leading to high concentrations of mercury in trench biota. Mercury isotopic compositions of amphipods and snailfish from deep-sea trenches reveal information on the sources and transformations of mercury in the deep oceans. Evidence for methyl-mercury subjected to photochemical degradation in the photic zone is provided by odd-mass independent isotope values (Δ199Hg) in amphipods from the Kermadec Trench, which average 1.57‰ (±0.14, n = 12, SD), and amphipods from the Mariana Trench, which average 1.49‰ (±0.28, n = 13). These values are close to the average value of 1.48‰ (±0.34, n = 10) for methyl-mercury in fish that feed at ∼500-m depth in the central Pacific Ocean. Evidence for variable contributions of mercury from rainfall is provided by even-mass independent isotope values (Δ200Hg) in amphipods that average 0.03‰ (±0.02, n = 12) for the Kermadec and 0.07‰ (±0.01, n = 13) for the Mariana Trench compared to the rainfall average of 0.13 (±0.05, n = 8) in the central Pacific. Mass-dependent isotope values (δ202Hg) are elevated in amphipods from the Kermadec Trench (0.91 ±0.22‰, n = 12) compared to the Mariana Trench (0.26 ±0.23‰, n = 13), suggesting a higher level of microbial demethylation of the methyl-mercury pool before incorporation into the base of the foodweb. Our study suggests that mercury in the marine foodweb at ∼500 m, which is predominantly anthropogenic, is transported to deep-sea trenches primarily in carrion, and then incorporated into hadal (6,000-11,000-m) food webs. Anthropogenic Hg added to the surface ocean is, therefore, expected to be rapidly transported to the deepest reaches of the oceans.
Collapse
|
130
|
Bergami E, Manno C, Cappello S, Vannuccini ML, Corsi I. Nanoplastics affect moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles. ENVIRONMENT INTERNATIONAL 2020; 143:105999. [PMID: 32763632 DOI: 10.1016/j.envint.2020.105999] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Plastic debris has been identified as a potential threat to Antarctic marine ecosystems, however, the impact of nanoplastics (<1 μm) is currently unexplored. Antarctic krill (Euphausia superba) is a keystone species of Southern Ocean pelagic ecosystems, which plays a central role in the Antarctic food webs and carbon (C) cycle. Krill has been shown to rapidly fragment microplastic beads through the digestive system, releasing nanoplastics with unknown toxicological effects. Here we exposed krill juveniles to carboxylic (COOH, anionic) and amino- (NH2, cationic) polystyrene nanoparticles (PS NPs) and we investigated lethal and sub-lethal endpoints after 48 h. The analysis of PS NP suspensions in Antarctic sea water (SW) media showed that PS-COOH formed large agglomerates (1043 ± 121 nm), while PS-NH2 kept their nominal size (56.8 ± 3 nm) during the exposure time. After 48 h, no mortality was found but increase in exuviae production (12.6 ± 1.3%) and reduced swimming activity were observed in juveniles exposed to PS-NH2. The microbial community composition in SW supports the release of krill moults upon PS NP exposure and stimulates further research on the pivotal role of krill in shaping Southern Ocean bacterial assemblages. The presence of fluorescent signal in krill faecal pellets (FPs) confirmed the waterborne ingestion and egestion of PS-COOH at 48 h of exposure. Changes in FP structure and properties were also associated to the incorporation of PS NPs regardless of their surface charge. The effects of PS NPs on krill FP properties were compared to Control 0 h as a reference for full FPs (plastic vs food) and Control 48 h as a reference for more empty-like FPs (plastic vs lack of food). Exposure to PS NPs led to a FP sinking rate comparable to Control 48 h, but significantly lower than Control 0 h (58.40 ± 23.60 m/d and 51.23 ± 28.60 m/d for PS-COOH and PS-NH2; 168.80 ± 74.58 m/d for Control 0 h). Considering the important role played by krill in the food web and C export in the Southern Ocean, the present study provides cues about the potential impact of nanoplastics on Antarctic pelagic ecosystems and their biogeochemical cycles.
Collapse
Affiliation(s)
- E Bergami
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Siena 53100, Italy.
| | - C Manno
- British Antarctic Survey (BAS), Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - S Cappello
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council, Messina 98121, Italy
| | - M L Vannuccini
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Siena 53100, Italy
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Siena 53100, Italy
| |
Collapse
|
131
|
Mearns AJ, Morrison AM, Arthur C, Rutherford N, Bissell M, Rempel-Hester MA. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1510-1532. [PMID: 32671886 DOI: 10.1002/wer.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This review covers selected 2019 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field, and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris microparticulates. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appeared in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Matt Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | |
Collapse
|
132
|
Daniel DB, Ashraf PM, Thomas SN. Abundance, characteristics and seasonal variation of microplastics in Indian white shrimps (Fenneropenaeus indicus) from coastal waters off Cochin, Kerala, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139839. [PMID: 32526586 DOI: 10.1016/j.scitotenv.2020.139839] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 05/06/2023]
Abstract
The microplastic contamination of seafood species is increasingly becoming a global concern due to its potential influence on food safety and human health. This study investigated the presence and seasonal variation of microplastics in a commercially important marine shrimp species, Fenneropenaeus indicus, from the coastal waters of Cochin, India. The soft tissues of 330 shrimps were examined over a period of 12 months, from March 2018 to February 2019. A total of 128 microplastics were detected, of which 83% were fibres. An average (mean ± SD) of 0.39 ± 0.6 microplastics/shrimp (0.04 ± 0.07 microplastics/g wet weight) was obtained from the shrimps sampled. Microplastic contamination was significantly higher in July-August (Monsoon season) compared with other months. This study reports microplastic contamination in F. indicus for the first time. Results also suggest that consumption of peeled but undeveined or whole dried white shrimps can be one of the ways of the human uptake of microplastics, especially during the monsoon season.
Collapse
Affiliation(s)
- Damaris Benny Daniel
- School of Industrial Fisheries, Cochin University of Science and Technology, Lake Side Campus, India.
| | - P Muhamed Ashraf
- ICAR - Central Institute of Fisheries Technology, Matsyapuri P.O., Cochin, India
| | - Saly N Thomas
- ICAR - Central Institute of Fisheries Technology, Matsyapuri P.O., Cochin, India
| |
Collapse
|
133
|
Brander SM, Renick VC, Foley MM, Steele C, Woo M, Lusher A, Carr S, Helm P, Box C, Cherniak S, Andrews RC, Rochman CM. Sampling and Quality Assurance and Quality Control: A Guide for Scientists Investigating the Occurrence of Microplastics Across Matrices. APPLIED SPECTROSCOPY 2020; 74:1099-1125. [PMID: 32643389 DOI: 10.1177/0003702820945713] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastic pollution is a defining environmental contaminant and is considered to be one of the greatest environmental threats of the Anthropocene, with its presence documented across aquatic and terrestrial ecosystems. The majority of this plastic debris falls into the micro (1 μm-5 mm) or nano (1-1000 nm) size range and comes from primary and secondary sources. Its small size makes it cumbersome to isolate and analyze reproducibly, and its ubiquitous distribution creates numerous challenges when controlling for background contamination across matrices (e.g., sediment, tissue, water, air). Although research on microplastics represents a relatively nascent subfield, burgeoning interest in questions surrounding the fate and effects of these debris items creates a pressing need for harmonized sampling protocols and quality control approaches. For results across laboratories to be reproducible and comparable, it is imperative that guidelines based on vetted protocols be readily available to research groups, many of which are either new to plastics research or, as with any new subfield, have arrived at current approaches through a process of trial-and-error rather than in consultation with the greater scientific community. The goals of this manuscript are to (i) outline the steps necessary to conduct general as well as matrix-specific quality assurance and quality control based on sample type and associated constraints, (ii) briefly review current findings across matrices, and (iii) provide guidance for the design of sampling regimes. Specific attention is paid to the source of microplastic pollution as well as the pathway by which contamination occurs, with details provided regarding each step in the process from generating appropriate questions to sampling design and collection.
Collapse
Affiliation(s)
- Susanne M Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, USA
| | - Violet C Renick
- Environmental Services Department, Orange County Sanitation District, Fountain Valley, USA
| | | | - Clare Steele
- California State University Channel Islands, Environmental Science and Resource Management, Camarillo, USA
| | - Mary Woo
- California State University Channel Islands, Environmental Science and Resource Management, Camarillo, USA
| | - Amy Lusher
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Steve Carr
- San Jose Creek Water Quality Laboratory, County Sanitation Districts of Los Angeles, Whittier, USA
| | - Paul Helm
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, Canada
| | | | - Sam Cherniak
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
134
|
O'Donovan S, Mestre NC, Abel S, Fonseca TG, Carteny CC, Willems T, Prinsen E, Cormier B, Keiter SS, Bebianno MJ. Effects of the UV filter, oxybenzone, adsorbed to microplastics in the clam Scrobicularia plana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139102. [PMID: 32446057 DOI: 10.1016/j.scitotenv.2020.139102] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) lipophilic nature and widespread distribution raises concerns due to their increasing presence in the marine environment and their ability to adsorb organic contaminants, as being potential vehicles for transport and potential source of accumulation of organic contaminants by marine organisms. The organic UV-filter, oxybenzone (BP-3) is a constituent of sunscreens and personal care products, entering the marine environment either by direct contact with swimmers or by wastewater effluents. In this study the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics with and without adsorbed BP-3 were investigated in the peppery furrow shell clam, Scrobicularia plana. LDPE microplastics with a size range of 11-13 μm were previously contaminated with an environmentally relevant concentration of BP-3 (82 ng g-1). S. plana individuals were exposed to a concentration of 1 mg L-1 of microplastics with and without BP-3 adsorbed in a water-sediment exposure system for 14 days. Clams were sampled at the beginning of the experiment and after 3, 7, and 14 days of exposure. Multiple biomarkers were analysed to investigate the effect of exposure in different clam tissues, gills, digestive gland, and haemolymph. Antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity) were assessed along with two biomarker indexes to assess the overall health status. Results indicate that after 7 days of exposure MPs with adsorbed BP-3 induced oxidative stress and damage, when compared to exposure to virgin MPs and control treatments. Neurotoxic effects were also noted in MPs with adsorbed BP-3 after 14 days exposure, while some evidence points to increased genotoxicity with exposure time. Overall results indicate that gills were more affected by exposure to microplastics than digestive gland and that biomarkers alterations are apparently more related to the toxicity of BP-3 adsorbed than virgin MPs alone.
Collapse
Affiliation(s)
- Sarit O'Donovan
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Nélia C Mestre
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Serena Abel
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Tainá G Fonseca
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal
| | - Camilla C Carteny
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Bettie Cormier
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden; UMR Centre National dela Recherche Scientifique EPOC, University of Bordeaux, Talence, France
| | - Steffen S Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro, Sweden
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Faro, Portugal.
| |
Collapse
|
135
|
Gaston E, Woo M, Steele C, Sukumaran S, Anderson S. Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies. APPLIED SPECTROSCOPY 2020; 74:1079-1098. [PMID: 32233850 DOI: 10.1177/0003702820920652] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The abundance and distribution of microplastic (<5 mm) has become a growing concern, particularly over the past decade. Research to date has focused on water, soil, and organism matrices but generally disregarded air. We explored airborne microplastic inside and outside of buildings in coastal California by filtering known volumes of air through glass fiber filters, which were then subsequently characterized with a variety of microscopy techniques: gross traditional microscopy, fluorescent microscopy following staining with Nile red, micro-Raman spectroscopy, and micro-Fourier transform infrared (µFT-IR) spectroscopy. Microplastics permeated the air, with indoor (3.3 ± 2.9 fibers and 12.6 ± 8.0 fragments m-3; mean ± 1 SD) harboring twice as much as outdoor air (0.6 ± 0.6 fibers and 5.6 ± 3.2 fragments m-3). Microplastic fiber length did not differ significantly between indoor and outdoor air, but indoor microplastic fragments (58.6 ± 55 µm) were half the size of outdoor fragments (104.8 ± 64.9 µm). Micro-Raman and FT-IR painted slightly different pictures of airborne plastic compounds, with micro-Raman suggesting polyvinyl chloride dominates indoor air, followed by polyethylene (PE) and µFT-IR showing polystyrene dominates followed by PE and polyethylene terephthalate. The ubiquity of airborne microplastic points to significant new potential sources of plastic inputs to terrestrial and marine ecosystems and raises significant concerns about inhalation exposure to humans both indoors and outdoors.
Collapse
Affiliation(s)
- Emily Gaston
- Environmental Science and Resource Management Program, 14703California State University Channel Islands, California, USA
| | - Mary Woo
- Environmental Science and Resource Management Program, 14703California State University Channel Islands, California, USA
| | - Clare Steele
- Environmental Science and Resource Management Program, 14703California State University Channel Islands, California, USA
| | | | - Sean Anderson
- Environmental Science and Resource Management Program, 14703California State University Channel Islands, California, USA
| |
Collapse
|
136
|
Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114089. [PMID: 32062100 DOI: 10.1016/j.envpol.2020.114089] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 05/23/2023]
Abstract
The prevalence of microplastic debris in aquatic ecosystems as a result of anthropogenic activity has received worldwide attention. Although extensive research has reported ubiquitous and directly adverse effects on organisms, only a few published studies have proposed the long-term ecological consequences. The research in this field still lacks a systematic overview of the toxic effects of microplastics and a coherent understanding of the potential ecological consequences. Here, we draw upon cross-disciplinary scientific research from recent decades to 1) seek to understand the correlation between the responses of organisms to microplastics and the potential ecological disturbances, 2) summarize the potential ecological consequences triggered by microplastics in aquatic environments, and 3) discuss the barriers to the understanding of microplastic toxicology. In this paper, the physiochemical characteristics and dynamic distribution of microplastics were related to the toxicological concerns about microplastic bioavailability and environmental perturbation. The extent of the ecological disturbances depends on how the ecotoxicity of microplastics is transferred and proliferated throughout an aquatic environment. Microplastics are prevalent; they interfere with nutrient productivity and cycling, cause physiological stress in organisms (e.g., behavioral alterations, immune responses, abnormal metabolism, and changes to energy budgets), and threaten the ecosystem composition and stability. By integrating the linkages among the toxicities that range from the erosion of individual species to the defective development of biological communities to the collapse of the ecosystem functioning, this review provides a bottom-up framework for future research to address the mechanisms underlying the toxicity of microplastics in aquatic environments and the substantial ecological consequences.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, 401871, Frederiksberg, Denmark
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Sandip Mandal
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
137
|
Polystyrene microplastics induce mortality through acute cell stress and inhibition of cholinergic activity in a brine shrimp. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00088-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
138
|
Montoto-Martínez T, Hernández-Brito JJ, Gelado-Caballero MD. Pump-underway ship intake: An unexploited opportunity for Marine Strategy Framework Directive (MSFD) microplastic monitoring needs on coastal and oceanic waters. PLoS One 2020; 15:e0232744. [PMID: 32384129 PMCID: PMC7209351 DOI: 10.1371/journal.pone.0232744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/29/2020] [Indexed: 11/20/2022] Open
Abstract
Broad scale sampling methods for microplastic monitoring in the open ocean waters remain a challenge in oceanography. A large number of samples is required to understand the distribution, abundance and fate of microplastic particles in the environment. Despite more than a decade of widespread study, there is currently no established time series of microplastic measurements and the research community is yet to establish a standardised set of methods that will allow data to be collected in a quick, affordable and interoperable way. We present a sampling technique involving the connection of a custom-built microplastic sampling device to the pump-underway ship intake system of a research vessel (RV) as an unexploited opportunity for oceanic monitoring needs concerning microplastic abundance and distribution. The method is cost effective, highly versatile and accurate, and is able to sample particles down to 50μm from opportunity platforms, thus contributing to an emerging area of study, and in particular helping to increase the monitoring reporting of data, and thereby serving as a valuable aid for the implementation of the Marine Strategy Framework Directive (MSFD). Sampling was performed during three consecutive oceanographic cruises in the subtropical NE Atlantic over a year, sampling subsurface waters (4 m depth) during navigation and while on coastal and oceanic stations. Microplastic particles were found in all stations and transects sampled. Fibres (64.42%) were predominant over fragments (35.58%), with the concentration values falling within the ranges of data reported for other areas of the Atlantic.
Collapse
Affiliation(s)
- Tania Montoto-Martínez
- Environmental Technologies, Management and Biogeochemistry Research Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain
- * E-mail:
| | - José Joaquín Hernández-Brito
- Environmental Technologies, Management and Biogeochemistry Research Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain
- Atlantic International Research Centre, Azores, Portugal
- Oceanic Platform of the Canary Islands, Taliarte, Gran Canaria, Canary Islands, Spain
| | - Mª. Dolores Gelado-Caballero
- Environmental Technologies, Management and Biogeochemistry Research Group, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
139
|
Iannilli V, Corami F, Grasso P, Lecce F, Buttinelli M, Setini A. Plastic abundance and seasonal variation on the shorelines of three volcanic lakes in Central Italy: can amphipods help detect contamination? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14711-14722. [PMID: 32052329 DOI: 10.1007/s11356-020-07954-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Despite the exponential increase of studies on plastic debris in recent years, there are still few works focusing on the problem as it relates to inland waters: little is known about the accumulation and dispersion dynamics on lake shores, and there are no standardized sampling methods for monitoring purposes. The accumulation of plastic litter in natural habitats also threatens the resident organisms. In this paper, we investigated the abundance and accumulation of plastic particles, ranging in size from 1 to 50 mm, from the beach sediment of three volcanic lakes in Central Italy: Albano, Bracciano, and Vico. The collection was designed to define the most important variables that one must consider in order to obtain a representative sample of plastic litter in a lake environment. In view of the high heterogeneity of sampling protocols used, comparison among the obtained results is limited and sometimes impossible. By using one of the proposed sampling methodologies, and critically analyzing the results, we aimed to highlight a possible monitoring criterion and to identify specific elements that can be meaningful and representative. The samples were collected in May and September 2017. For each lake, we sampled plastic items and sediments from two beaches. Albano contained the largest amount of plastic (in weight), while Bracciano had the largest number of particles. Our observations lead us to infer that the number of particles is the parameter most sensitive to environmental variations, as well as the more suitable for monitoring with greater definition the differences between sites. Moreover, sampling should be taken in different seasons, following a sampling pattern that includes at least two beaches placed in strategic positions with respect to wind and waves.In order to identify new indicators to evaluate the entry points of plastic into the food web, we collected, from the same sites analyzed, some specimens of the Talitrid Amphipod Cryptorchestia garbinii, a detritivorous species having a critical role in debris turnover of these environments. To investigate the microplastic (MP) ingestion in natural conditions, we analyzed their digestive tracts with both Nile red staining method and micro-FTIR spectroscopy. The analyses confirmed that C. garbinii was able to ingest plastics in natural conditions. Therefore, it can signify one of the entry points for microplastics (MPs) in the trophic chain. This observation constitutes the first evidence of MP ingestion in this species.
Collapse
Affiliation(s)
- Valentina Iannilli
- Department for Sustainability, ENEA, C.R. Casaccia via Anguillarese, 301 00123, Rome, Italy.
| | - Fabiana Corami
- CNR ISP Institute of Polar Sciences, National Research Council, Via Torino, 155 30172, Mestre Venezia, Italy
| | - Patrizia Grasso
- Department for Sustainability, ENEA, C.R. Casaccia via Anguillarese, 301 00123, Rome, Italy
- Departement for Biology and Biotecnology C. Darwin, University of Rome Sapienza, Piazzale Aldo Moro, 5, 00185, Rome, RM, Italy
| | - Francesca Lecce
- Department for Sustainability, ENEA, C.R. Casaccia via Anguillarese, 301 00123, Rome, Italy
| | - Memmo Buttinelli
- Departement for Biology and Biotecnology C. Darwin, University of Rome Sapienza, Piazzale Aldo Moro, 5, 00185, Rome, RM, Italy
| | - Andrea Setini
- Departement for Biology and Biotecnology C. Darwin, University of Rome Sapienza, Piazzale Aldo Moro, 5, 00185, Rome, RM, Italy
| |
Collapse
|
140
|
Courtene-Jones W, Quinn B, Ewins C, Gary SF, Narayanaswamy BE. Microplastic accumulation in deep-sea sediments from the Rockall Trough. MARINE POLLUTION BULLETIN 2020; 154:111092. [PMID: 32319921 DOI: 10.1016/j.marpolbul.2020.111092] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 05/06/2023]
Abstract
Microplastics are widely dispersed through the marine environment. Few studies have assessed the long-term or historic prevalence of microplastics, yet acquiring such data can inform their distribution, transport and the environmental risks posed. To quantify the distribution and polymer types temporally, sediment cores were collected from >2000 m water depth in the Rockall Trough, North Atlantic Ocean. As hypothesized, a significant negative trend was observed in the frequency of microplastics with increasing sediment age, however there was an increase in polymer diversity. Microplastics were pervasive throughout the sediment analysed (10 cm depth), yet lead-210 (210Pb) activities were confined to the upper 4 cm, indicating this layer to be ~150 years old and thus the presence of microplastics far exceed the production of modern plastic. A number of mechanisms, including sediment reworking, could redistribute microplastics vertically. Additionally, microplastics abundance was significantly correlated with sediment porosity, suggesting interstitial transport via pore waters.
Collapse
Affiliation(s)
- Winnie Courtene-Jones
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, United Kingdom.
| | - Brian Quinn
- Institute of Biomedical and Environmental Health Research (IBEHR), School of Science & Sport, University of the West of Scotland, Paisley, PA1 2BE, Scotland, United Kingdom
| | - Ciaran Ewins
- Institute of Biomedical and Environmental Health Research (IBEHR), School of Science & Sport, University of the West of Scotland, Paisley, PA1 2BE, Scotland, United Kingdom
| | - Stefan F Gary
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, United Kingdom
| | - Bhavani E Narayanaswamy
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA37 1QA, Scotland, United Kingdom
| |
Collapse
|
141
|
Cau A, Avio CG, Dessì C, Moccia D, Pusceddu A, Regoli F, Cannas R, Follesa MC. Benthic Crustacean Digestion Can Modulate the Environmental Fate of Microplastics in the Deep Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4886-4892. [PMID: 32189493 PMCID: PMC7997365 DOI: 10.1021/acs.est.9b07705] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microplastics (MPs) are ubiquitous contaminants of the marine environment, and the deep seafloor is their ultimate sink compartment. Manipulative and field experiments provided evidence of the ingestion of MPs by deep-sea fauna, but knowledge of MPs' fate once ingested still remains scant. We provide evidence of MP partial retention and fragmentation mediated by digestion activity of a Norwegian langoustine, a good bioindicator for MP contamination of the deep sea. We report here that MPs in the intestines were more abundant and significantly smaller (up to 1 order of magnitude in surface) than those in the stomachs. Our results show that the stomach can act as a size-bottleneck for ingested MPs, enhancing the retention of larger particles within the stomach and promoting fragmentation into smaller plastic debris, which is then released in the intestine. Our results provide evidence that the langoustine is responsible for the fragmentation of MPs already accumulated in sediments through its scavenging activity and digestion. These findings highlight the existence of a new peculiar kind of "secondary" MPs, introduced in the environment by biological activities, which could represent a significant pathway of plastic degradation in a secluded and stable environment such as the deep sea.
Collapse
Affiliation(s)
- Alessandro Cau
- Dipartimento
di Scienze della Vita e dell’Ambiente, Universitá degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
- Consorzio
Interuniversitario per le Scienze del Mare, CoNISMa, ULR Cagliari, Cagliari 09126, Italy
- . Tel: +39 070 675 6626
| | - Carlo Giacomo Avio
- Dipartimento
di Scienze della Vita e dell’Ambiente, Universitá Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Claudia Dessì
- Dipartimento
di Scienze della Vita e dell’Ambiente, Universitá degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| | - Davide Moccia
- Dipartimento
di Scienze della Vita e dell’Ambiente, Universitá degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
| | - Antonio Pusceddu
- Dipartimento
di Scienze della Vita e dell’Ambiente, Universitá degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
- Consorzio
Interuniversitario per le Scienze del Mare, CoNISMa, ULR Cagliari, Cagliari 09126, Italy
| | - Francesco Regoli
- Dipartimento
di Scienze della Vita e dell’Ambiente, Universitá Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Consorzio
Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona 60131, Italy
| | - Rita Cannas
- Dipartimento
di Scienze della Vita e dell’Ambiente, Universitá degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
- Consorzio
Interuniversitario per le Scienze del Mare, CoNISMa, ULR Cagliari, Cagliari 09126, Italy
| | - Maria Cristina Follesa
- Dipartimento
di Scienze della Vita e dell’Ambiente, Universitá degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy
- Consorzio
Interuniversitario per le Scienze del Mare, CoNISMa, ULR Cagliari, Cagliari 09126, Italy
| |
Collapse
|
142
|
Li S, Wang P, Zhang C, Zhou X, Yin Z, Hu T, Hu D, Liu C, Zhu L. Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136767. [PMID: 31981864 DOI: 10.1016/j.scitotenv.2020.136767] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 05/20/2023]
Abstract
Microplastics are ubiquitous in aquatic ecosystems worldwide, but knowledge on their impacts on phytoplankton, especially freshwater microalgae, is still limited. To investigate this issue, microalgae Chlamydomonas reinhardtii was exposed to polystyrene (PS) microplastics with 4 concentration gradients (5, 25, 50 and 100 mg/L), and the growth, chlorophyll a fluorescence, photosynthetic activities (Fv/Fm), the contents of malondialdehydes (MDA), soluble proteins, extracellular polymeric substances (EPS) and settlement rate were accordingly measured. Results showed that the density of microalgae decreased as the increase of PS microplastics concentrations, and the highest inhibitory rate (IR) was 45.8% on the 7th day under the concentration of 100 mg/L. The high concentration (100 mg/L) of microplastics evidently inhibited the content of EPS released by microalgae into the solution. PS under all dosages tested could reduce both the chlorophyll a fluorescence yields and photosynthetic activities. The scanning electron microscope (SEM) images demonstrated that microplastic beads were wrapped on the surface of microalgae and damaged their membranes, which could suggest the reduction of photosynthetic activities and the increase of soluble proteins and MDA content. The results also showed that PS microplastics could inhibit the settlement of microalgae at the later stage, which also indicated the recovery of microalgae from the toxic environment. Our findings will contribute to understanding the effects of microplastics on freshwater microalgae, as well as evaluating the possible influences of microplastics on aquatic ecosystems.
Collapse
Affiliation(s)
- Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Panpan Wang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Chao Zhang
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Xiangjun Zhou
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Tianyi Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Dan Hu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Chenchen Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; Faculty of Technology and Innovations, University of Vaasa, Vaasa, FI65101, Finland.
| |
Collapse
|
143
|
Cunningham EM, Sigwart JD. Environmentally Accurate Microplastic Levels and Their Absence from Exposure Studies. Integr Comp Biol 2020; 59:1485-1496. [PMID: 31127301 DOI: 10.1093/icb/icz068] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microplastics (synthetic polymers; <5 mm) are ubiquitous, in the environment and in the news. The associated effects of microplastics on flora and fauna are currently only established through laboratory-based exposure trials; however, such studies have come under scrutiny for employing excessive concentrations with little environmental relevance. This critical review is intended to summarize key issues and approaches for those who are considering the need for local microplastics research, both in terms of environmental pollution and the impacts on aquatic species. A meta-analysis of results from published experimental (n = 128) and environmental (n = 180) studies allowed us to compare the reported impacts from experiments that expose organisms to microplastics, and the concentrations of environmental microplastics found in the wild. The results of this meta-analysis highlight three issues that should be modified in future work (1) use of extreme dosages, (2) incompatible and incomparable units, and (3) the problem of establishing truly informative experimental controls. We found that 5% of exposure trials examined did not use any control treatment, and 82% use dramatically elevated dosages without reference to environmental concentrations. Early studies in this field may have been motivated to produce unequivocal impacts on organisms, rather than creating a robust, environmentally relevant framework. Some of the reported impacts suggest worrying possibilities, which can now inspire more granular experiments. The existing literature on the extent of plastic pollution also has limited utility for accurately synthesizing broader trends, as has been raised in previous reviews; environmental extraction studies use many different units, among which only 76% (139/180) could be plausibly converted for comparison. Future research should adopt the units of microparticles/kg (of sediment) or mp/L (of fluid) to improve comparability. Now that the global presence of microplastic pollution is well established, with more than a decade of research, new studies should focus on comparative aspects rather than the presence of microplastics. Robustly designed, controlled, hypothesis-driven experiments based on environmentally relevant concentrations are needed now to understand our future in the new plastic world.
Collapse
Affiliation(s)
- Eoghan M Cunningham
- Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, Northern Ireland, UK.,School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Julia D Sigwart
- Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, Northern Ireland, UK.,School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| |
Collapse
|
144
|
Sparks C. Microplastics in Mussels Along the Coast of Cape Town, South Africa. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:423-431. [PMID: 32080748 DOI: 10.1007/s00128-020-02809-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Microplastic (MP) contamination in marine organisms is a growing field of research internationally. However not much is known about MP presence in invertebrates in southern Africa. The aim of this study was to determine whether MPs occurs in mussels prevalent in Cape Town, South Africa. Mussels (Mytilus galloprovincialis, Choromytilus meridionalis and Aulacomya ater) were sampled at 27 sites in October 2018 and MPs were recorded in 98% of mussels analysed. Most MPs were filaments, dark in colour and the size ranged between 50 and 1000 µm. There were no significant differences in MPs between the mussel species, with an average of 2.33 (standard error ± 0.2) MP particles/g and 4.27 (standard error ± 0.5) particles/individual being recorded for all sites combined. This is the first record of MPs in mussels in the region and provides a baseline for further investigations and monitoring of MPs.
Collapse
Affiliation(s)
- Conrad Sparks
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| |
Collapse
|
145
|
Coastal Lakes as a Buffer Zone for the Accumulation and Redistribution of Plastic Particles from Continental to Marine Environment: A Case Study of the Dishui Lake in Shanghai, China. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microplastics, as an emerging environmental contaminant, have attracted increasing attention worldwide. Previous studies have addressed this environmental problem in either the marine or continental environment, but ignored the water bodies in between. Coastal lakes are transitional aquatic systems and may play an important role in transport, reworking and redistribution of plastics across catchment scale. Here, we report results of our investigation of plastic pollution in sediment of a coastal lake, the Dishui Lake, in Shanghai, China. The lake is located in coastal Shanghai and connected to the East China Sea via a 7-km long canal. Sediment samples were collected from around the lake and the canal. Plastic particles were detected in the sediment with various shapes, colors and compositions. The total particle count in the canal sediment was orders of magnitude higher than in the lake sediment. Polypropylene was the dominant polymer in the sediment. Our results suggest that coastal lakes can serve as a reworking zone for accumulation and reworkings of plastic particles, and a buffer zone contributing to plastic pollution in the marine environment. This study addresses the most understudied area of plastic pollution, i.e., reworking and redistribution of plastic debris at catchment scale across the marine and continental environment.
Collapse
|
146
|
Jamieson AJ, Stewart HA, Nargeolet PH. Exploration of the Puerto Rico Trench in the mid-twentieth century: Today's significance and relevance. ENDEAVOUR 2020; 44:100719. [PMID: 32513412 DOI: 10.1016/j.endeavour.2020.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The Puerto Rico Trench is a deep oceanic subduction zone that runs parallel with the northern coasts of Puerto Rico and the Dominican Republic. It is the deepest place in the Atlantic Ocean with a maximum depth of approximately 8400 m. Discovered by the HMS Challenger Expedition in 1875, the depth of the trench increased multiple times in the ensuing 100 years with the onset of sonar usage. It is perhaps unique among the world's deep trenches in that a series of unrelated but equally pioneering expeditions captured the true biological and geological characteristics of one of the deepest places in the world, observations that are still highly relevant today. Multiple deep water trawling campaigns and surveys using drop cameras and exploratory dives in a deep diving submersible provided great insight into the morphology of the trench, the types of habitat within the trench, the substrate, the food supply, and the diversity of species that inhabit these extraordinary depths. Many of these accounts are obscure and disparate, yet combined bear a remarkable similarity to recent work in other trenches. These unique and insightful accounts are collated and retold here alongside recent and comparable findings to contextualise these discoveries, prevent them from being forgotten, and keep the efforts of those involved to remain relevant as we continue to explore the deepest places of the world's oceans.
Collapse
Affiliation(s)
- Alan J Jamieson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
| | - Heather A Stewart
- British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Paul-Henry Nargeolet
- RMS Titanic, Inc., a subsidiary of Premier Exhibitions, 3045 Kingston Court, Peachtree Corners, GA 30071, USA
| |
Collapse
|
147
|
Biological and Ecological Impacts of Plastic Debris in Aquatic Ecosystems. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
148
|
Microplastics in Aquaculture Systems and Their Transfer in the Food Chain. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
149
|
Peng G, Bellerby R, Zhang F, Sun X, Li D. The ocean's ultimate trashcan: Hadal trenches as major depositories for plastic pollution. WATER RESEARCH 2020; 168:115121. [PMID: 31605833 DOI: 10.1016/j.watres.2019.115121] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 05/18/2023]
Abstract
Plastic debris and marine microplastics are being discharged into the ocean at an alarming scale and have been observed throughout the marine environment. Here we report microplastic in sediments of the Challenger Deep, the deepest known region on the planet, abyssal plains and hadal trenches located in the Pacific Ocean (4900 m-10,890 m). Microplastic abundance reached 71.1 items per kg dry weight sediment. That high concentrations are found at such remote depths, knowing the very slow sinking speed of microplastics, suggests that supporting mechanisms must be at-play. We discuss cascading processes that transport microplastics on their journey from land and oceanic gyres through intermediate waters to the deepest corners of the ocean. We propose that hadal trenches will be the ultimate sink for a significant proportion of the microplastics disposed in the ocean. The build-up of microplastics in hadal trenches could have large consequences for fragile deep-sea ecosystems.
Collapse
Affiliation(s)
- Guyu Peng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Richard Bellerby
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Norwegian Institute for Water Research, Thormølensgate 53D, Bergen, Norway
| | - Feng Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xuerong Sun
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
150
|
A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids. Nat Commun 2019; 10:5804. [PMID: 31862948 PMCID: PMC6925262 DOI: 10.1038/s41467-019-13643-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
An extremely broad and important class of phenomena in nature involves the settling and aggregation of matter under gravitation in fluid systems. Here, we observe and model mathematically an unexpected fundamental mechanism by which particles suspended within stratification may self-assemble and form large aggregates without adhesion. This phenomenon arises through a complex interplay involving solute diffusion, impermeable boundaries, and aggregate geometry, which produces toroidal flows. We show that these flows yield attractive horizontal forces between particles at the same heights. We observe that many particles demonstrate a collective motion revealing a system which appears to solve jigsaw-like puzzles on its way to organizing into a large-scale disc-like shape, with the effective force increasing as the collective disc radius grows. Control experiments isolate the individual dynamics, which are quantitatively predicted by simulations. Numerical force calculations with two spheres are used to build many-body simulations which capture observed features of self-assembly. Aggregation of matter, common in stratified fluid systems, is essential to the carbon cycle and ocean ecology. Although the current understanding of aggregation involves only collision and adhesion, here Camassa et al. reveal a self-assembly phenomenon arising solely from diffusion-induced flows.
Collapse
|