101
|
Bendek MJ, Canedo-Marroquín G, Realini O, Retamal IN, Hernández M, Hoare A, Busso D, Monteiro LJ, Illanes SE, Chaparro A. Periodontitis and Gestational Diabetes Mellitus: A Potential Inflammatory Vicious Cycle. Int J Mol Sci 2021; 22:ijms222111831. [PMID: 34769262 PMCID: PMC8584134 DOI: 10.3390/ijms222111831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a chronic inflammatory immune disease associated with a dysbiotic state, influenced by keystone bacterial species responsible for disrupting the periodontal tissue homeostasis. Furthermore, the severity of periodontitis is determined by the interaction between the immune cell response in front of periodontitis-associated species, which leads to the destruction of supporting periodontal tissues and tooth loss in a susceptible host. The persistent bacterial challenge induces modifications in the permeability and ulceration of the sulcular epithelium, which facilitates the systemic translocation of periodontitis-associated bacteria into distant tissues and organs. This stimulates the secretion of pro-inflammatory molecules and a chronic activation of immune cells, contributing to a systemic pro-inflammatory status that has been linked with a higher risk of several systemic diseases, such as type 2 diabetes mellitus (T2DM) and gestational diabetes mellitus (GDM). Although periodontitis and GDM share the common feature of systemic inflammation, the molecular mechanistic link of this association has not been completely clarified. This review aims to examine the potential biological mechanisms involved in the association between periodontitis and GDM, highlighting the contribution of both diseases to systemic inflammation and the role of new molecular participants, such as extracellular vesicles and non-coding RNAs, which could act as novel molecular intercellular linkers between periodontal and placental tissues.
Collapse
Affiliation(s)
- María José Bendek
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
| | - Gisela Canedo-Marroquín
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
| | - Ornella Realini
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
| | - Ignacio N. Retamal
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
| | - Marcela Hernández
- Laboratory of Periodontal Biology and Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago 8380544, Chile;
| | - Anilei Hoare
- Laboratory of Oral Microbiology, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Olivos 943, Independencia, Santiago 8380544, Chile;
| | - Dolores Busso
- Program in Biology of Reproduction, Centre for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 8380544, Chile; (D.B.); (L.J.M.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8380544, Chile
| | - Lara J. Monteiro
- Program in Biology of Reproduction, Centre for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 8380544, Chile; (D.B.); (L.J.M.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8380544, Chile
| | - Sebastián E. Illanes
- Program in Biology of Reproduction, Centre for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 8380544, Chile; (D.B.); (L.J.M.); (S.E.I.)
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8380544, Chile
| | - Alejandra Chaparro
- Department of Periodontology, Centre for Biomedical Research, Faculty of Dentistry, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 7620157, Chile; (M.J.B.); (G.C.-M.); (O.R.); (I.N.R.)
- Correspondence: ; Tel.: +56-998376593
| |
Collapse
|
102
|
Investigation of the relationship between periodontal and systemic inflammation in children with Sickle Cell Disease: A case- control study. Cytokine 2021; 149:155724. [PMID: 34653827 DOI: 10.1016/j.cyto.2021.155724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
Periodontal diseases are chronic inflammatory diseases and tissue destruction increases with oxidative stress in periodontal tissues. Periodontal diseases are associated with systemic diseases such as diabetes, cardio-vascular diseases and rheumatoid arthritis by means of systemic inflammation. Sickle cell disease (SCD) is a chronic inflammatory disease in which vaso-occlusive crisis and endothelial dysfunction are present. It is not known whether the chronic systemic inflammation seen in SCD affect periodontal tissues. The aim of this study was to investigate the relationship between periodontal and systemic inflammation in children with SCD. Forty-three children with SCD and 43 healthy children were included in the study. Physical, dental and periodontal statuses were examined, blood and saliva samples were taken. Levels of pro-inflammatory and oxidative stress mediators in serum and saliva were evaluated. The periodontal findings of the groups were similar. The majority of the subjects in both groups had gingival inflammation. In SCD group, significantly higher serum high sensitive C-reactive protein (Hs-CRP), interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, total oxidant status (TOS), nitric oxide (NO) and salivary IL-6 were observed (p < 0.05). There were positive correlations between salivary IL-6 levels and serum Hs-CRP levels (r = 0.303, p < 0.05). In addition; it was determined that salivary IL-6, TNF-α and NO levels were increased 3-6 times in children with a history of painful crisis or acute chest syndrome compared to children who had never had a painful crisis or acute chest syndrome. Although, observed oral health status was similar in both groups, salivary cytokine levels were increased in children with SCD. The higher salivary cytokine levels may be associated with chronic systemic inflammation and vaso-occlusion observed in children with SCD.
Collapse
|
103
|
Gianos E, Jackson EA, Tejpal A, Aspry K, O'Keefe J, Aggarwal M, Jain A, Itchhaporia D, Williams K, Batts T, Allen KE, Yarber C, Ostfeld RJ, Miller M, Reddy K, Freeman AM, Fleisher KE. Oral health and atherosclerotic cardiovascular disease: A review. Am J Prev Cardiol 2021; 7:100179. [PMID: 34611631 PMCID: PMC8387275 DOI: 10.1016/j.ajpc.2021.100179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Periodontal disease (PD) is common in the US and globally. Evidence suggests that poor oral health is associated with atherosclerotic cardiovascular disease (ASCVD); however, this relationship has not been a major focus in clinical cardiology. This manuscript will review the growing evidence linking PD to ASCVD, including pathophysiologic mechanisms and coexistent risk factors. Public health considerations with a focus on disparities, social determinants, preventive strategies, and a call to action to reduce the burden of coincident ASCVD and PD are also reviewed.
Collapse
Affiliation(s)
- Eugenia Gianos
- Division of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Elizabeth A Jackson
- Division of Cardiovascular Disease, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Astha Tejpal
- Division of Cardiology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Karen Aspry
- Lifespan Cardiovascular Institute, and Division of Cardiology, Brown University, Alpert Medical School, Providence, RI, United States
| | - James O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City School of Medicine, Kansas City, MI, United States
| | - Monica Aggarwal
- Division of Cardiology, University of Florida, Gainesville, FL, United States
| | - Ankur Jain
- Division of Cardiology, University of Florida, Gainesville, FL, United States
| | - Dipti Itchhaporia
- Jeffrey M. Carlton Heart & Vascular Institute, Hoag Memorial Hospital, Newport Beach, CA, United States
| | - Kim Williams
- Department of Medicine, Division of Cardiology, Rush University Medical Center, Chicago, IL, United States
| | - Travis Batts
- Division of Cardiology, Department of Medicine, Wilford Hall Ambulatory Surgical Center, San Antonio, TX, United States
| | - Kathleen E Allen
- Geisel School of Medicine at Dartmouth, Hanover, NY, United States
| | - Clark Yarber
- Department of Internal Medicine, Montefiore Health System, Bronx, NY, United States
| | - Robert J Ostfeld
- Division of Cardiology, Department of Medicine, Montefiore Health System, Bronx, NY, United States
| | - Michael Miller
- Department of Cardiovascular Medicine, Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Koushik Reddy
- Division of Cardiology, James A. Haley VA Medical Center, University of South Florida, Tampa, FL, United States
| | - Andrew M Freeman
- Division of Cardiology, Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Kenneth E Fleisher
- Department of Oral and Maxillofacial Surgery, NYU College of Dentistry, New York, NY, United States
| |
Collapse
|
104
|
Pirih FQ, Monajemzadeh S, Singh N, Sinacola RS, Shin JM, Chen T, Fenno JC, Kamarajan P, Rickard AH, Travan S, Paster BJ, Kapila Y. Association between metabolic syndrome and periodontitis: The role of lipids, inflammatory cytokines, altered host response, and the microbiome. Periodontol 2000 2021; 87:50-75. [PMID: 34463996 PMCID: PMC8457155 DOI: 10.1111/prd.12379] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Periodontitis has been associated with many systemic diseases and conditions, including metabolic syndrome. Metabolic syndrome is a cluster of conditions that occur concomitantly and together they increase the risk of cardiovascular disease and double the risk of type 2 diabetes. In this review, we focus on the association between metabolic syndrome and periodontitis; however, we also include information on diabetes mellitus and cardiovascular disease, since these two conditions are significantly intertwined with metabolic syndrome. With regard to periodontitis and metabolic syndrome, to date, the vast majority of studies point to an association between these two conditions and also demonstrate that periodontitis can contribute to the development of, or can worsen, metabolic syndrome. Evaluating the effect of metabolic syndrome on the salivary microbiome, data presented herein support the hypothesis that the salivary bacterial profile is altered in metabolic syndrome patients compared with healthy patients. Considering periodontitis and these three conditions, the vast majority of human and animal studies point to an association between periodontitis and metabolic syndrome, diabetes, and cardiovascular disease. Moreover, there is evidence to suggest that metabolic syndrome and diabetes can alter the oral microbiome. However, more studies are needed to fully understand the influence these conditions have on each other.
Collapse
Affiliation(s)
- Flavia Q Pirih
- Section of Periodontics, UCLA School of Dentistry, Los Angeles, California
| | | | - Neelima Singh
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| | | | - Jae Min Shin
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Tsute Chen
- The Forsyth Institute, Cambridge, Massachusetts
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Suncica Travan
- Department of Periodontics & Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Bruce J Paster
- The Forsyth Institute, Cambridge, Massachusetts
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
105
|
Kuraji R, Sekino S, Kapila Y, Numabe Y. Periodontal disease-related nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: An emerging concept of oral-liver axis. Periodontol 2000 2021; 87:204-240. [PMID: 34463983 PMCID: PMC8456799 DOI: 10.1111/prd.12387] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontal disease, a chronic inflammatory disease of the periodontal tissues, is not only a major cause of tooth loss, but it is also known to exacerbate/be associated with various metabolic disorders, such as obesity, diabetes, dyslipidemia, and cardiovascular disease. Recently, growing evidence has suggested that periodontal disease has adverse effects on the pathophysiology of liver disease. In particular, nonalcoholic fatty liver disease, a hepatic manifestation of metabolic syndrome, has been associated with periodontal disease. Nonalcoholic fatty liver disease is characterized by hepatic fat deposition in the absence of a habitual drinking history, viral infections, or autoimmune diseases. A subset of nonalcoholic fatty liver diseases can develop into more severe and progressive forms, namely nonalcoholic steatohepatitis. The latter can lead to cirrhosis and hepatocellular carcinoma, which are end‐stage liver diseases. Extensive research has provided plausible mechanisms to explain how periodontal disease can negatively affect nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, namely via hematogenous or enteral routes. During periodontitis, the liver is under constant exposure to various pathogenic factors that diffuse systemically from the oral cavity, such as bacteria and their by‐products, inflammatory cytokines, and reactive oxygen species, and these can be involved in disease promotion of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Also, gut microbiome dysbiosis induced by enteral translocation of periodontopathic bacteria may impair gut wall barrier function and promote the transfer of hepatotoxins and enterobacteria to the liver through the enterohepatic circulation. Moreover, in a population with metabolic syndrome, the interaction between periodontitis and systemic conditions related to insulin resistance further strengthens the association with nonalcoholic fatty liver disease. However, most of the pathologic links between periodontitis and nonalcoholic fatty liver disease in humans are provided by epidemiologic observational studies, with the causal relationship not yet being established. Several systematic and meta‐analysis studies also show conflicting results. In addition, the effect of periodontal treatment on nonalcoholic fatty liver disease has hardly been studied. Despite these limitations, the global burden of periodontal disease combined with the recent nonalcoholic fatty liver disease epidemic has important clinical and public health implications. Emerging evidence suggests an association between periodontal disease and liver diseases, and thus we propose the term periodontal disease–related nonalcoholic fatty liver disease or periodontal disease–related nonalcoholic steatohepatitis. Continued efforts in this area will pave the way for new diagnostic and therapeutic approaches based on a periodontologic viewpoint to address this life‐threatening liver disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.,Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Satoshi Sekino
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne Kapila
- Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, California, USA
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
106
|
Staedt H, Heimes D, Kämmerer PW. Antibiotika im Rahmen der Endokarditisprophylaxe – Risiko und Nutzen. WISSEN KOMPAKT : FORTBILDUNG FUR ZAHNARZTE 2021; 15:113-122. [PMID: 34426751 PMCID: PMC8374404 DOI: 10.1007/s11838-021-00134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Für die Effektivität und Effizienz einer antibiotischen Prophylaxe vor zahnmedizinischen Eingriffen zum Schutz vor einer infektiösen Endokarditis liegt nur eine geringe Evidenz vor, die keine Rechtfertigung zur generalisierten Therapie von Patienten mit einem erhöhten Endokarditisrisiko darstellt. Aktuelle Leitlinien empfehlen daher, Antibiotika im Rahmen der Endokarditisprophylaxe auf Patienten zu beschränken, die zum einen ein hohes Risiko für die Entstehung einer infektiösen Endokarditis aufweisen und die sich zum anderen zahnärztlichen Eingriffen mit höchstem Endokarditisrisiko unterziehen. Einen hohen Stellwert besitzen allerdings auch Mund- und Hauthygienemaßnahmen, die nicht nur auf Risikopatienten, sondern auch auf die Allgemeinbevölkerung angewendet werden sollten, da die Inzidenz der infektiösen Endokarditis bei Patienten ohne anamnestisch bekannte Herzerkrankung zunehmend ansteigt.
Collapse
Affiliation(s)
- H. Staedt
- Private Universität im Fürstentum Liechtenstein, Triesen, Liechtenstein
| | - D. Heimes
- Universitätsmedizin Mainz, Mainz, Deutschland
- Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie – plastische Operationen, Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Augustusplatz 2, 55131 Mainz, Deutschland
| | - P. W. Kämmerer
- Universitätsmedizin Mainz, Mainz, Deutschland
- Klinik und Poliklinik für Mund‑, Kiefer- und Gesichtschirurgie – plastische Operationen, Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Augustusplatz 2, 55131 Mainz, Deutschland
| |
Collapse
|
107
|
Agossa K, Roman L, Gosset M, Yzet C, Fumery M. Periodontal and dental health in inflammatory bowel diseases: a systematic review. Expert Rev Gastroenterol Hepatol 2021:1-15. [PMID: 34227446 DOI: 10.1080/17474124.2021.1952866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Introduction: An increased risk of dental caries and periodontal diseases has been reported for inflammatory bowel disease (IBD) patients and are challenging conditions to manage.Areas covered: The authors searched international databases to find all studies assessing dental/periodontal outcomes in patients with IBD and other immune-mediated inflammatory disease (IMID), as well as the association between IMID medications and dental/periodontal status.Expert opinion: IBD are associated with a higher risk of both periodontitis and caries. Some evidence from rheumatoid arthritis suggests that periodontitis may be associated with a lower response to anti-TNF. There is no reliable evidence that IBD patients may be at greater risk of complications during routine dental care. On the basis of current data, guidelines can be proposed for the dental management focusing on the detection and eradication of infectious foci prior to the implementation of immunosuppressants/biologics and modified dental treatment protocol for invasive dental procedures that includes antibiotic prophylaxis.
Collapse
Affiliation(s)
- Kevimy Agossa
- Univ. Lille, Inserm, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
- Department of Periodontology, Faculty of Dentistry, University of Lille, Place De Verdun, Lille, France
| | - Lidia Roman
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille France
| | - Marjolaine Gosset
- Department of Odontology, Assistance Publique-Hôpitaux De Paris, Hôpital Charles Foix, Hôpitaux Universitaires La Pitié Salpétrière - Charles Foix Ivry-sur-SeineFaculty of Dental Surgery, University Paris Descartes PRES Sorbonne Paris Cité, University of Paris, EA 2496
| | - Clara Yzet
- Department of Gastroenterology, Amiens University Hospital, Picardie University, Amiens, France
| | - Mathurin Fumery
- Department of Gastroenterology, Amiens University Hospital, Picardie University, Amiens, France
- Department of Gastroenterology, PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| |
Collapse
|
108
|
Zhang X, Wang M, Wang X, Qu H, Zhang R, Gu J, Wu Y, Ni T, Tang W, Li Q. Relationship between periodontitis and microangiopathy in type 2 diabetes mellitus: a meta-analysis. J Periodontal Res 2021; 56:1019-1027. [PMID: 34254680 DOI: 10.1111/jre.12916] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Whether periodontitis increases the risk of diabetic microangiopathy remains controversial. The present meta-analysis aims to investigate the relationship between periodontitis and diabetic microangiopathy in patients with type 2 diabetes mellitus. METHODS PubMed, EMBASE, Web of Science, the Cochrane Library, CNKI, and WanFang data were searched without language restrictions. The methodological quality of the studies included was assessed using Newcastle-Ottawa Scale method, and meta-analysis was performed by Review Manager 5.3. Odds ratio (OR) and 95% confidence interval (CI) were used to assess the risk of periodontitis for diabetic microangiopathy among patients with type 2 diabetes. RESULTS Thirteen cross-sectional studies, covering 10 570 participants, were included in the present meta-analysis. The results demonstrated that periodontitis was associated with increased risk of type 2 diabetic microangiopathy (OR: 2.43, 95% CI: 1.65-3.56), diabetic retinopathy (OR: 4.33, 95% CI: 2.19-8.55), and diabetic nephropathy (OR: 1.75, 95% CI: 1.07-2.85), while periodontitis was not associated with diabetic neuropathy (OR: 0.99, 95% CI: 0.19-5.12). Subgroup analysis among the studies in Asian (OR: 3.06, 95% CI: 1.94-4.84) and North American (OR: 1.42, 95% CI: 1.08-1.86) populations confirmed the existed association between periodontitis and type 2 diabetic microangiopathy. The relationship still existed in groups with sample size larger than 500 (OR: 1.77, 95% CI: 1.34-2.34) and smaller than 500 (OR: 3.33, 95% CI: 1.38-8.03). A sensitivity analysis confirmed the stability of the results by excluding moderate quality studies or removing articles one after the other. CONCLUSION Current evidences have proved that periodontitis is associated with increased risk of diabetic microangiopathy in patients with type 2 diabetes mellitus. This conclusion may provide useful evidence for correlated clinical researches. PROSPERO registration number CRD42021247773.
Collapse
Affiliation(s)
- Xuexue Zhang
- Xiyuan hospital, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Miaoran Wang
- Xiyuan hospital, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Xujie Wang
- Xiyuan hospital, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qu
- Xiyuan hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiyu Gu
- Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Tian Ni
- Xiyuan hospital, China Academy of Chinese Medical Sciences, Beijing, China.,China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Tang
- Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyan Li
- Xiyuan hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
109
|
Hallikainen J, Pyysalo M, Keränen S, Kellokoski J, Koivisto T, Suominen AL, Pussinen P, Pessi T, Frösen J. Systemic immune response against the oral pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans is associated with the formation and rupture of intracranial aneurysms. Eur J Neurol 2021; 28:3089-3099. [PMID: 34145948 DOI: 10.1111/ene.14986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Periodontal infections are associated with the formation and rupture of intracranial aneurysms (IAs). This study investigated the role of two key periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. METHODS Immunoglobulin A (IgA) and IgG antibodies against P. gingivalis and A. actinomycetemcomitans were measured with enzyme immune assay from the serum of 227 IA patients, of whom 64 also underwent clinical oral examination. As a control group, 1096 participants in a cross-sectional health survey, Health 2000, underwent serological studies and oral examination. Logistic regression was used for multivariate analysis. Immunohistochemistry was performed to demonstrate bacteria-derived epitopes in the IA wall. RESULTS Widespread gingivitis and severe periodontitis were more common in IA patients than in controls (2× and 1.5×, respectively). IgA antibodies against P. gingivalis and A. actinomycetemcomitans were 1.5× and 3-3.4× higher, respectively, in both unruptured and ruptured IA patients compared to controls (p ≤ 0.003). IgG antibodies against P. gingivalis were 1.8× lower in unruptured IA patients (p < 0.001). In multivariate analysis, high IgA, but low IgG, antibody levels against P. gingivalis (odds ratio [OR] = 1.4, 95% confidence interval [Cl] = 1.1-1.8 and OR = 1.5, 95% Cl = 1.1-1.9; OR = 0.6, 95% Cl = 0.4-0.7 and OR = 0.5, 95% Cl = 0.4-0.7) and against A. actinomycetemcomitans (OR = 2.3, 95% Cl = 1.7-3.1 and OR = 2.1, 95% Cl = 1.5-2.9; OR = 0.6, 95% Cl = 0.4-0.8 and OR = 0.6, 95% Cl = 0.5-0.9) were associated with the risk of IA formation and rupture. Immunohistochemistry showed P. gingivalis epitopes in the IA wall. CONCLUSIONS Exposure to the periodontal pathogens P. gingivalis and A. actinomycetemcomitans and dysfunctional acquired immune response against them may increase the risk of IA formation and IA rupture.
Collapse
Affiliation(s)
- Joona Hallikainen
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland.,Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland
| | - Mikko Pyysalo
- Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland
| | - Sara Keränen
- Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland.,A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jari Kellokoski
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland
| | - Timo Koivisto
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Anna Liisa Suominen
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Department of Oral and Maxillofacial Diseases, Kuopio University Hospital, Kuopio, Finland.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tanja Pessi
- Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland
| | - Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, University of Tampere, Tampere, Finland.,Department of Neurosurgery, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
110
|
Hamza SA, Asif S, Khurshid Z, Zafar MS, Bokhari SAH. Emerging Role of Epigenetics in Explaining Relationship of Periodontitis and Cardiovascular Diseases. Diseases 2021; 9:48. [PMID: 34209817 PMCID: PMC8293072 DOI: 10.3390/diseases9030048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases such as ischemic heart diseases or stroke are among the leading cause of deaths globally, and evidence suggests that these diseases are modulated by a multifactorial and complex interplay of genetic, environmental, and lifestyle factors. Genetic predisposition and chronic exposure to modifiable risk factors have been explored to be involved in the pathophysiology of CVD. Environmental factors contribute to an individual's propensity to develop major cardiovascular risk factors through epigenetic modifications of DNA and histones via miRNA regulation of protein translation that are types of epigenetic mechanisms and participate in disease development. Periodontal disease (PD) is one of the most common oral diseases in humans that is characterized by low-grade inflammation and has been shown to increase the risk of CVDs. Risk factors involved in PD and CVD are determined both genetically and behaviorally. Periodontal diseases such as chronic inflammation promote DNA methylation. Epigenetic modifications involved in the initiation and progression of atherosclerosis play an essential role in plaque development and vulnerability. Epigenetics has opened a new world to understand and manage human diseases, including CVDs and periodontal diseases. Genetic medicine has started a new era of epigenetics to overcome human diseases with various new methodology. Epigenetic profiling may aid in better diagnosis and stratification of patients showing potential predisposed states for disease. A better understanding of the exact regulatory mechanisms of epigenetic pathways driving inflammation is slowly emerging and will aid in developing novel tools for the treatment of disease.
Collapse
Affiliation(s)
- Syed Ameer Hamza
- Department of Oral Medicine, University Medical & Dental College, Faisalabad 38000, Pakistan;
| | - Saba Asif
- Department of Periodontology, Sharif Medical & Dental College, Lahore 54000, Pakistan;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al Munawwrah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Syed Akhtar Hussain Bokhari
- Department of Dental Public Health, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
111
|
Chakaroun RM, Massier L, Heintz-Buschart A, Said N, Fallmann J, Crane A, Schütz T, Dietrich A, Blüher M, Stumvoll M, Musat N, Kovacs P. Circulating bacterial signature is linked to metabolic disease and shifts with metabolic alleviation after bariatric surgery. Genome Med 2021; 13:105. [PMID: 34158092 PMCID: PMC8218394 DOI: 10.1186/s13073-021-00919-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The microbiome has emerged as an environmental factor contributing to obesity and type 2 diabetes (T2D). Increasing evidence suggests links between circulating bacterial components (i.e., bacterial DNA), cardiometabolic disease, and blunted response to metabolic interventions. In this aspect, thorough next-generation sequencing-based and contaminant-aware approaches are lacking. To address this, we tested whether bacterial DNA could be amplified in the blood of subjects with obesity and high metabolic risk under strict experimental and analytical control and whether a putative bacterial signature is related to metabolic improvement after bariatric surgery. METHODS Subjects undergoing bariatric surgery were recruited into sex- and BMI-matched subgroups with (n = 24) or without T2D (n = 24). Bacterial DNA in the blood was quantified and prokaryotic 16S rRNA gene amplicons were sequenced. A contaminant-aware approach was applied to derive a compositional microbial signature from bacterial sequences in all subjects at baseline and at 3 and 12 months after surgery. We modeled associations between bacterial load and composition with host metabolic and anthropometric markers. We further tested whether compositional shifts were related to weight loss response and T2D remission. Lastly, bacteria were visualized in blood samples using catalyzed reporter deposition (CARD)-fluorescence in situ hybridization (FISH). RESULTS The contaminant-aware blood bacterial signature was associated with metabolic health. Based on bacterial phyla and genera detected in the blood samples, a metabolic syndrome classification index score was derived and shown to robustly classify subjects along their actual clinical group. T2D was characterized by decreased bacterial richness and loss of genera associated with improved metabolic health. Weight loss and metabolic improvement following bariatric surgery were associated with an early and stable increase of these genera in parallel with improvements in key cardiometabolic risk parameters. CARD-FISH allowed the detection of living bacteria in blood samples in obesity. CONCLUSIONS We show that the circulating bacterial signature reflects metabolic disease and its improvement after bariatric surgery. Our work provides contaminant-aware evidence for the presence of living bacteria in the blood and suggests a putative crosstalk between components of the blood and metabolism in metabolic health regulation.
Collapse
Affiliation(s)
- Rima M Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| | - Lucas Massier
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research GmbH - UFZ, Halle, Germany
| | - Nedal Said
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Joerg Fallmann
- Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Alyce Crane
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Tatjana Schütz
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Arne Dietrich
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Section of Bariatric Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| |
Collapse
|
112
|
Liu K, Sun J, Shao L, He H, Liu Q, Li Y, Ge H. Correlation of periodontal diseases with intracranial aneurysm formation: novel predictive indicators. Chin Neurosurg J 2021; 7:31. [PMID: 34092261 PMCID: PMC8182916 DOI: 10.1186/s41016-021-00249-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 05/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background We investigated whether periodontal diseases, specifically, periodontitis and gingivitis, could be risk factors of the incidence of intracranial aneurysms (IAs). Methods We performed a case–control study to compare the differences in the periodontal disease parameters of 281 cases that were divided into the IAs group and non-IAs group. All cases underwent complete radiographic examination for IAs and examination for periodontal health. Results Comparing with those in the non-IAs group, the cases in the IAs group were older (53.95 ± 8.56 vs 47.79 ± 12.33, p < 0.001) and had a higher incidence of hypertension (76 vs 34, p = 0.006). Univariate logistic regression analysis revealed that age (> 50 years) and hypertension were predictive risk factors of aneurysm formation (odds ratio [OR] 1.047, 95% confidence interval [95% CI] 1.022–1.073, p < 0.001 and OR 2.047, 95% CI 1.232–3.401, p = 0.006). In addition, univariate and multivariate logistic regression analyses showed that the parameters of periodontal diseases, including gingival index, plaque index, clinical attachment loss, and alveolar bone loss, were significantly associated with the occurrence of IAs (all p < 0.05). For further statistical investigation, the parameters of periodontal diseases were divided into four layers based on the quartered data. Poorer periodontal health condition (especially gingival index > 1.1 and plaque index > 1.5) had the correlation with IAs formation (p = 0.007 and p < 0.001). Conclusion Severe gingivitis or periodontitis, combining with hypertension, is significantly associated with the incidence of IAs.
Collapse
Affiliation(s)
- Keyun Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, No. 119, West Road of South Fourth Ring, Fengtai, Beijing, 100070, People's Republic of China
| | - Jia Sun
- Department of Stomatology, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin, 300041, People's Republic of China
| | - Lingling Shao
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, People's Republic of China
| | - Hongwei He
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, No. 119, West Road of South Fourth Ring, Fengtai, Beijing, 100070, People's Republic of China
| | - Qinglin Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, No. 119, West Road of South Fourth Ring, Fengtai, Beijing, 100070, People's Republic of China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, No. 119, West Road of South Fourth Ring, Fengtai, Beijing, 100070, People's Republic of China.
| | - Huijian Ge
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, No. 119, West Road of South Fourth Ring, Fengtai, Beijing, 100070, People's Republic of China.
| |
Collapse
|
113
|
Del Giudice C, Vaia E, Liccardo D, Marzano F, Valletta A, Spagnuolo G, Ferrara N, Rengo C, Cannavo A, Rengo G. Infective Endocarditis: A Focus on Oral Microbiota. Microorganisms 2021; 9:1218. [PMID: 34199916 PMCID: PMC8227130 DOI: 10.3390/microorganisms9061218] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Infective endocarditis (IE) is an inflammatory disease usually caused by bacteria entering the bloodstream and settling in the heart lining valves or blood vessels. Despite modern antimicrobial and surgical treatments, IE continues to cause substantial morbidity and mortality. Thus, primary prevention and enhanced diagnosis remain the most important strategies to fight this disease. In this regard, it is worth noting that for over 50 years, oral microbiota has been considered one of the significant risk factors for IE. Indeed, among the disparate recommendations from the American heart association and the European Society of Cardiology, there are good oral hygiene and prophylaxis for high-risk patients undergoing dental procedures. Thus, significant interest has grown in the role of oral microbiota and it continues to be a subject of research interest, especially if we consider that antimicrobial treatments can generate drug-resistant mutant bacteria, becoming a severe social problem. This review will describe the current knowledge about the relationship between oral microbiota, dental procedures, and IE. Further, it will discuss current methods used to prevent IE cases that originate from oral pathogens and how these should be focused on improving oral hygiene, which remains the significant persuasible way to prevent bacteremia and systemic disorders.
Collapse
Affiliation(s)
- Carmela Del Giudice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Emanuele Vaia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Daniela Liccardo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
- Istituti Clinici Scientifici ICS-Maugeri, 82037 Telese Terme, Italy
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, 53100 Siena, Italy;
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
- Istituti Clinici Scientifici ICS-Maugeri, 82037 Telese Terme, Italy
| |
Collapse
|
114
|
Lawal FJ, Baer SL. Capnocytophaga gingivalis Bacteremia After Upper Gastrointestinal Bleeding in Immunocompromised Patient. J Investig Med High Impact Case Rep 2021; 9:23247096211020672. [PMID: 34041953 PMCID: PMC8165836 DOI: 10.1177/23247096211020672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Odontogenic bacteremia, most commonly involving gram-positive oral flora, can result from daily self-care practices or professional dental procedures. Though usually transient and quickly cleared by the immune system, the presence of periodontal disease increases the frequency of exposure and risk of persistence of oral-systemic infections. Comorbidities such as asplenia, alcoholism, and immunocompromise increase the risk of complications of hematogenous spread and severe systemic illness. Capnocytophaga is a genus of anaerobic fastidious gram-negative bacilli, which is a common member of human oral flora, and its density is proportional to mass of dental plaques and periodontal diseases. Capnocytophaga spp that colonize humans are less virulent and are uncommon causes of bacteremia when compared with the Capnocytophaga typical of canines. C gingivalis has been rarely reported as a cause of disease in immunocompromised or immunocompetent hosts. In this article, we present a case of an immunocompromised 70-year-old man with poor oral hygiene, on methotrexate and prednisone for rheumatoid arthritis and sarcoidosis, who was admitted for chronic obstructive pulmonary disease exacerbation and developed C gingivalis bacteremia and septic shock after an episode of upper gastrointestinal bleeding. Poor oral hygiene in our patient is believed to have increased his risk as an immunocompromised patient to developing C gingivalis bacteremia. This case highlights the importance of oral care in immunocompromised patients especially while hospitalized, and those about to receive transplant, chemotherapy, or on immune modulators.
Collapse
Affiliation(s)
- Folake J Lawal
- Augusta University, Augusta, GA, USA.,Charlie Norwood Veteran Affairs Medical Center, Augusta, GA, USA
| | - Stephanie L Baer
- Augusta University, Augusta, GA, USA.,Charlie Norwood Veteran Affairs Medical Center, Augusta, GA, USA
| |
Collapse
|
115
|
Oral Health: Global Research Performance under Changing Regional Health Burdens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115743. [PMID: 34071884 PMCID: PMC8198771 DOI: 10.3390/ijerph18115743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/03/2022]
Abstract
Objectives: Inadequate oral hygiene still leads to many serious diseases all over the world. Therefore, this study aimed to analyze scientific research in the field of oral health in order to be able to comprehend their relevant subject areas, research connections, or developments. Methods: This study aimed to assess the global publication output on oral hygiene to create a world map that provides background information on key players, trends, and incentives of research. For this purpose, established bibliometric parameters were combined with state-of-the-art visualization techniques. Results: This study shows the actual key players of research on oral hygiene in high-income economies with only marginal participation from lower economies. This still corresponds to the current burden situations, but they are more and more shifting to the disadvantage of the low-income countries. There is a clear North-South and West-East gradient, with the USA and the Western European nations being the most publishing nations on oral hygiene. As an emerging country, Brazil plays a role in the research. Conclusions: The scientific power players were concentrated in high-income countries. However, the changing epidemiological situation requires a different scientific approach to oral hygiene. This requires an expansion of the international network to meet the demands of future global oral health burdens, which are mainly related to oral hygiene.
Collapse
|
116
|
Peña-Cearra A, Belanche A, Gonzalez-Lopez M, Lavín JL, Pascual-Itoiz MÁ, Jiménez E, Rodríguez H, Aransay AM, Anguita J, Yáñez-Ruiz DR, Abecia L. Peripheral blood mononuclear cells (PBMC) microbiome is not affected by colon microbiota in healthy goats. Anim Microbiome 2021; 3:28. [PMID: 33853683 PMCID: PMC8048065 DOI: 10.1186/s42523-021-00091-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background The knowledge about blood circulating microbiome and its functional relevance in healthy individuals remains limited. An assessment of changes in the circulating microbiome was performed by sequencing peripheral blood mononuclear cells (PBMC) bacterial DNA from goats supplemented or not in early life with rumen liquid transplantation. Results Most of the bacterial DNA associated to PBMC was identified predominantly as Proteobacteria (55%) followed by Firmicutes (24%), Bacteroidetes (11%) and Actinobacteria (8%). The predominant genera found in PBMC samples were Pseudomonas, Prevotella, Sphingomonas, Acinetobacter, Corynebacterium and Ruminococcus. Other genera such as Butyrivibrivio, Bifidobacterium, Dorea and Coprococcus were also present in lower proportions. Several species known as blood pathogens or others involved in gut homeostasis such as Faecalibacterium prausnitzii were also identified. However, the PBMC microbiome phylum composition differed from that in the colon of goats (P ≤ 0.001), where Firmicutes was the predominant phylum (83%). Although, rumen liquid administration in early-life altered bacterial community structure and increased Tlr5 expression (P = 0.020) in colon pointing to higher bacterial translocation, less than 8% of OTUs in colon were also observed in PBMCs. Conclusions Data suggest that in physiological conditions, PBMC microbiome differs from and is not affected by colon gut microbiota in small ruminants. Although, further studies with larger number of animals and covering other animal tissues are required, results point to a common circulating bacterial profile on mammals being phylum Proteobacteria, and genera Pseudomonas and Prevotella the most abundants. All suggest that PBMC microbiome in healthy ruminants could be implicated in homeostatic condition. This study expands our knowledge about PBMC microbiome contribution to health in farm animals. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00091-7.
Collapse
Affiliation(s)
- Ainize Peña-Cearra
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain.,Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apartado 699, 48080, Bilbao, Spain
| | | | - Monika Gonzalez-Lopez
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain
| | - José Luis Lavín
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain.,Present Address: NEIKER Instituto Vasco de Investigación y Desarrollo Agrario, Parque Tecnológico Bizkaia Ed. 812, 48160, Derio, Spain
| | | | | | - Héctor Rodríguez
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain
| | - Ana Mª Aransay
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain.,CIBERehd, ISCIII, Madrid, Spain
| | - Juan Anguita
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | | | - Leticia Abecia
- CIC bioGUNE, Bizkaia Science and Technology Park, bld 801 A, 48160, Derio, Bizkaia, Spain. .,Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Enfermería, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Apartado 699, 48080, Bilbao, Spain.
| |
Collapse
|
117
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
118
|
Kurilenko N, Fatkhullina AR, Mazitova A, Koltsova EK. Act Locally, Act Globally-Microbiota, Barriers, and Cytokines in Atherosclerosis. Cells 2021; 10:cells10020348. [PMID: 33562334 PMCID: PMC7915371 DOI: 10.3390/cells10020348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is characterized by the formation and progressive growth of atherosclerotic plaques in the wall of arteries. Atherosclerosis is a major predisposing factor for stroke and heart attack. Various immune-mediated mechanisms are implicated in the disease initiation and progression. Cytokines are key mediators of the crosstalk between innate and adaptive immune cells as well as non-hematopoietic cells in the aortic wall and are emerging players in the regulation of atherosclerosis. Progression of atherosclerosis is always associated with increased local and systemic levels of pro-inflammatory cytokines. The role of cytokines within atherosclerotic plaque has been extensively investigated; however, the cell-specific role of cytokine signaling, particularly the role of cytokines in the regulation of barrier tissues tightly associated with microbiota in the context of cardiovascular diseases has only recently come to light. Here, we summarize the knowledge about the function of cytokines at mucosal barriers and the interplay between cytokines, barriers, and microbiota and discuss their known and potential implications for atherosclerosis development.
Collapse
Affiliation(s)
- Natalia Kurilenko
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | | | - Aleksandra Mazitova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
| | - Ekaterina K. Koltsova
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA; (N.K.); (A.M.)
- Correspondence:
| |
Collapse
|
119
|
Periodontitis increases risk of viable bacteria in freshly drawn blood donations. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2021; 19:376-383. [PMID: 33539285 DOI: 10.2450/2021.0336-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/09/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND The aim of the study was to determine if periodontitis, which often causes transient bacteraemia, associates with viable bacteria in standard blood donations. MATERIALS AND METHODS This was a cross-sectional study of 60 self-reported medically healthy blood donors aged over 50 years. According to standard procedures, whole blood was separated by fractionation into plasma, buffy-coat, and red blood cell (RBC)-fractions. The buffy-coat was screened for bacterial contamination using BacT/ALERT. Samples from plasma and RBC-fractions were incubated anaerobically and aerobically at 37°C for 7 days on trypticase soy blood agar (TSA). For identification, colony polymerase chain reaction was performed using primers targeting 16S rDNA. RESULTS From 62% of the donors with periodontitis, bacterial growth was observed on at least 1 out of 4 plates inoculated with plasma or RBCs, whereas only 13% of plates inoculated with plasma or RBCs from periodontally healthy controls yielded bacterial growth (relative risk 6.4, 95% CI: 2.1; 19.5; p=0.0011). None of the donors tested positive for bacterial contamination using BacT/ALERT. Cutibacterium acnes was found in 31% of the donations from donors with periodontitis and in 10% of the donations from periodontally healthy donors. In addition, Staphylococcus species, Bacillus mycoides, Aggregatibacter aphrophilus, and Corynebacterium kroppenstedtii were detected. DISCUSSION Periodontitis increased the risk of bacterial contamination of blood products. Contaminating bacteria are often associated with the RBC-fraction. As the BacT/ALERT test is generally performed on platelet products, routine screening fails to detect many occurrences of viable bacteria in the RBC-fraction.
Collapse
|
120
|
De Wolf D, Genouw A, Standaert C, Victor A, Vanoverbeke N, De Groote K, Martens L. Endocarditis prophylaxis in daily practice of pediatricians and dentists in Flanders. Eur J Pediatr 2021; 180:397-405. [PMID: 32780192 DOI: 10.1007/s00431-020-03769-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 11/26/2022]
Abstract
Endocarditis is a potentially life-threatening disease in children with congenital heart disease (CHD) and correct prophylaxis (EP) is of utmost importance. We conducted two surveys among pediatricians and dentists in Flanders about their knowledge of EP guidelines. The survey was completed by 910 dentists and 100 pediatricians. Sixty-five percent of the dentists did not know any guideline. They relied for information on the internet or the child's physician. 87% identified low risk treatments correctly, but only 64% identified high risk procedures correctly. Eighty-three percent asked for the presence of CHD and allergy to antibiotics. Dentists asked advice of the patient's physician, but 29% would withhold treatments in high-risk patients and 50% did not know the pediatric antibiotic dosages. Forty-seven percent of the pediatricians did not know EP guidelines and they would preferably contact the child's cardiologist. Pediatricians had difficulties with the identification of low-risk procedures and would give unnecessary antibiotics. They identified most CHD at high risk, but scored lower for the identification of lower risk CHD.Conclusion: The knowledge of Flemish dentists and pediatricians of EP guidelines is low. The knowledge about EP guidelines and the communication between dentists and pediatricians should be improved. Patients should be provided with an individual EP card. What is Known: • The knowledge of dentists and cardiologists about EP is not perfect, which has already been described. • There are several guidelines about EP, and they are not identical and sometimes confusing. What is New: • This is the first article combining large scale surveys of the knowledge and application of EP by dentists and pediatricians, allowing us to compare knowledge and gaps of knowledge and use their complementarity in order to offer tailored solutions and use patient education and partnership.
Collapse
Affiliation(s)
- Daniel De Wolf
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | - Katya De Groote
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Luc Martens
- Department of Oral Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
121
|
Ladegaard Grønkjær L, Holmstrup P, Jepsen P, Vilstrup H. The impact of oral diseases in cirrhosis on complications and mortality. JGH Open 2021; 5:294-300. [PMID: 33553670 PMCID: PMC7857277 DOI: 10.1002/jgh3.12489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM The aims of this study were to describe the prevalence of various oral diseases and to examine the association of the oral diseases with complications and mortality of cirrhosis. METHODS A total of 184 cirrhosis patients were enrolled and were followed up for 2 years. They underwent oral clinical and radiographic examination. At study entry, the associations between oral diseases with nutrition, inflammation, and cirrhosis complication status were examined. Then, the associations of oral diseases with all-cause and cirrhosis-related mortality were examined using Cox regression to adjust for confounding by age, gender, smoking, alcohol use, alcoholic cirrhosis, cirrhosis complications, comorbidity, Child-Pugh, and Model of End-Stage Liver Disease (MELD) score. RESULTS At entry, 26% of the patients had gross caries, 46% periapical lesions, 27% oral mucosal lesions, and 68% periodontitis. Having one or more oral diseases was associated with a higher prevalence of cirrhosis complications (46.7 vs 20.5%), higher C-reactive protein (28.5 mg/L vs 10.4 mg/L), and higher nutritional risk score (4 vs 3). Two-thirds of the patients died during follow-up. The patients with more than one oral disease had an increasingly higher all-cause mortality (two diseases: hazard ratio [HR] 1.55, 95% confidence interval [CI] 1.02-1.98; three and four diseases: HR 1.75, 95% CI 1.05-3.24) and even higher cirrhosis-related mortality (two diseases: HR 1.60, 95% CI 1.01-2.40; three and four diseases: HR 2.04, 95% CI 1.05-8.83) compared to those with no oral disease. CONCLUSION In cirrhosis, having more than one oral disease was associated with more complications and with higher mortality.
Collapse
Affiliation(s)
- Lea Ladegaard Grønkjær
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of GastroenterologyHospital of South West JutlandAarhusDenmark
| | - Palle Holmstrup
- Section of Periodontology, Department of OdontologyFaculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Peter Jepsen
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Clinical EpidemiologyAarhus University HospitalAarhusDenmark
| | - Hendrik Vilstrup
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| |
Collapse
|
122
|
Bactericidal activity of a substituted thiazole against multidrug-resistant Eggerthia catenaformis isolated from patients with dental abscess. Anaerobe 2021; 69:102328. [PMID: 33524547 DOI: 10.1016/j.anaerobe.2021.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
Human infections caused by the anaerobic bacterium Eggerthia catenaformis are rare. However, a growing number of case reports have presented the bacterium as the causative agent in many serious complications. This study provides data on the isolation and antibiotic susceptibility profiles of E. catenaformis from dental abscess. Identification of isolates was performed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). We also investigated the antibacterial activity of 5-acetyl-4-methyl-2-(3-pyridyl) thiazole (AMPT) on E. catenaformis isolates. Minimum inhibitory concentrations (MICs) were determined by an agar dilution method and bactericidal activity was evaluated by a time-kill assay. Moreover, the mechanism of action of AMPT was also explored by cell membrane disruption assay and scanning electron microscopy (SEM). MALDI-TOF MS results revealed unambiguous identification of all isolates with score values between 2.120 and 2.501. Isolates NY4 and NY9 (20% of isolates) were found resistant to multiple antibiotics judged by MIC values. As multidrug-resistant strains of E. catenaformis were not reported to date, we then confirmed the identity of NY4 and NY9 based on 16S rRNA gene sequence. Favorably, all isolates were susceptible to AMPT with an MIC range of 0.25-1 mg/L. Time-kill kinetics of AMPT indicated that it exhibited potent bactericidal activity against the multidrug-resistant isolates NY4 and NY9. Furthermore, this study also hypothesizes that AMPT exerts its antibacterial effect through damaging the cell membrane and thereby induce the release of intracellular components. AMPT could therefore be considered as a therapeutic option for infections caused by multidrug-resistant bacteria.
Collapse
|
123
|
Zardawi F, Gul S, Abdulkareem A, Sha A, Yates J. Association Between Periodontal Disease and Atherosclerotic Cardiovascular Diseases: Revisited. Front Cardiovasc Med 2021; 7:625579. [PMID: 33521070 PMCID: PMC7843501 DOI: 10.3389/fcvm.2020.625579] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/17/2020] [Indexed: 01/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ACVD) is an inflammatory disease of the coronary arteries associated with atheroma formation, which can cause disability and often death. Periodontitis is ranked as the sixth most prevalent disease affecting humans affecting 740 million people worldwide. In the last few decades, researchers have focused on the effect of periodontal disease (PD) on cardiovascular disease. The aim of this review was to investigate the association between these two diseases. PD is a potential risk factor that may initiate the development, maturation, and instability of atheroma in the arteries. Two mechanisms were proposed to explain such association, either periodontal pathogens directly invade bloodstream or indirectly by increasing systemic level of inflammatory mediators. Interestingly, it has been suggested that improvement in the condition of one disease positively impact the condition of the other one. Highlighting the association between these two diseases, the importance of early diagnosis and treatment of PD and its impact on cardiovascular status may be of great value in reducing the complications associated with ACVDs. Further in vitro and in vivo studies with longer follow up are necessary to confirm the causal relationship between PD and ACVDs.
Collapse
Affiliation(s)
- Faraedon Zardawi
- Periodontics Department, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| | - Sarhang Gul
- Periodontics Department, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| | - Ali Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Aram Sha
- Periodontics Department, College of Dentistry, University of Sulaimani, Sulaymaniyah, Iraq
| | - Julian Yates
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
124
|
Severe COVID-19 Lung Infection in Older People and Periodontitis. J Clin Med 2021; 10:jcm10020279. [PMID: 33466585 PMCID: PMC7828740 DOI: 10.3390/jcm10020279] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal bacteria dissemination into the lower respiratory tract may create favorable conditions for severe COVID-19 lung infection. Once lung tissues are colonized, cells that survive persistent bacterial infection can undergo permanent damage and accelerated cellular senescence. Consequently, several morphological and functional features of senescent lung cells facilitate SARS-CoV-2 replication. The higher risk for severe SARS-CoV-2 infection, the virus that causes COVID-19, and death in older patients has generated the question whether basic aging mechanisms could be implicated in such susceptibility. Mounting evidence indicates that cellular senescence, a manifestation of aging at the cellular level, contributes to the development of age-related lung pathologies and facilitates respiratory infections. Apparently, a relationship between life-threatening COVID-19 lung infection and pre-existing periodontal disease seems improbable. However, periodontal pathogens can be inoculated during endotracheal intubation and/or aspirated into the lower respiratory tract. This review focuses on how the dissemination of periodontal bacteria into the lungs could aggravate age-related senescent cell accumulation and facilitate more efficient SARS-CoV-2 cell attachment and replication. We also consider how periodontal bacteria-induced premature senescence could influence the course of COVID-19 lung infection. Finally, we highlight the role of saliva as a reservoir for both pathogenic bacteria and SARS-CoV-2. Therefore, the identification of active severe periodontitis can be an opportune and valid clinical parameter for risk stratification of old patients with COVID-19.
Collapse
|
125
|
Yu K, Rodriguez M, Paul Z, Gordon E, Gu T, Rice K, Triplett EW, Keller-Wood M, Wood CE. Transfer of oral bacteria to the fetus during late gestation. Sci Rep 2021; 11:708. [PMID: 33436911 PMCID: PMC7804304 DOI: 10.1038/s41598-020-80653-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
The fetus develops in a privileged environment, as the placenta serves as both a gateway for nutrients and a barrier for pathogen transfer to the fetus. Regardless, recent evidence suggests the presence of bacterial DNA in both placenta and fetus, and we have reported that DNA and protein from small numbers of bacteria gain access to the fetus from the maternal bloodstream. Other routes of environmental bacterial transfer from the mother to fetus remain unknown, as well as the physiological relevance of their presence. In these experiments, we examine multiple routes by which bacterial cellular components can enter the fetus and the fetal response to influx of bacterial DNA and protein. We inoculated maternal sheep with genetically-labeled S. aureus (Staphylococcus aureus) using three routes: intravenously, orally, and intra-vaginally. The inoculum did not produce sepsis or fever in the ewes, therefore mimicking incidental exposure to bacteria during pregnancy. 3-5 days post inoculation, we assessed the presence of bacterial components in the fetal tissues and analyzed fetal brain tissue to identify any alterations in gene expression. Our results demonstrate that components of bacteria that were introduced into the maternal mouth were detected in the fetal brain and that they stimulated changes in gene expression. We conclude that an oral route of transmission is relevant for transfer of bacterial cellular components to the fetus.
Collapse
Affiliation(s)
- Kevin Yu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1345 Center Drive, Room M552, Gainesville, FL, 32610, USA
| | - Michelle Rodriguez
- Department of Microbiology and Cell Science, University of Florida Institute of Food and Agricultural Sciences, Gainesville, USA
| | - Zubin Paul
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1345 Center Drive, Room M552, Gainesville, FL, 32610, USA
| | - Elizabeth Gordon
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1345 Center Drive, Room M552, Gainesville, FL, 32610, USA
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, USA
| | - Kelly Rice
- Department of Microbiology and Cell Science, University of Florida Institute of Food and Agricultural Sciences, Gainesville, USA
| | - Eric W Triplett
- Department of Microbiology and Cell Science, University of Florida Institute of Food and Agricultural Sciences, Gainesville, USA
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, USA
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1345 Center Drive, Room M552, Gainesville, FL, 32610, USA.
| |
Collapse
|
126
|
Predictive factors for dental inflammation with exacerbation during cancer therapy with FDG-PET/CT imaging. Support Care Cancer 2021; 29:4277-4284. [PMID: 33415364 PMCID: PMC8236470 DOI: 10.1007/s00520-020-05909-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/23/2020] [Indexed: 10/27/2022]
Abstract
PURPOSE Oral adverse events, such as dental inflammation with exacerbation, are stressful and lead to poor nutrition in patients undergoing cancer therapy. Thus, the prediction of risk factors for dental inflammation with exacerbation is important before cancer therapy is initiated. We hypothesized that, during cancer therapy (DIECT), fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) imaging could be useful to predict dental inflammation with exacerbation. METHODS We enrolled 124 patients who underwent FDG-PET/CT for diagnostic staging before cancer treatment. We then assessed DIECT outcomes after basic perioperative oral treatment. Moreover, we evaluated clinical parameters, therapeutic strategies, periodontal examination (probing depth (PD) and bleeding on probing (BOP)), dental imaging, and FDG-PET/CT imaging results of patients with and without DIECT. Furthermore, PET/CT images were assessed as per the FDG accumulation of the dental lesion (PAD) grading system. RESULTS Univariate analysis demonstrated significant differences in age, periodontal examination (PD and BOP), and PAD grade between patients with and without DIECT. Furthermore, multivariate logistic regression analysis identified independent predictive factors for a positive periodontal examination (PD) (odds ratio (OR) 5.9, 95% confidence interval (CI) 1.8-19.7; P = 0.004) and PAD grade (OR 11.6, 95% CI 3.2-41.2; P = 0.0002). In patients with cancer, PAD grade using FDG-PET/CT imaging was an independent and informative risk factor for DIECT. CONCLUSION Our results suggested that, for patients with DIECT, periodontal examination and PAD grade were independent predictive factors. Hence, regardless of the presence or absence of any lesion on dental imaging, PAD grade might be an additional tool, in addition to periodontal examination that potentially improves oral care management.
Collapse
|
127
|
Emery DC, Cerajewska TL, Seong J, Davies M, Paterson A, Allen-Birt SJ, West NX. Comparison of Blood Bacterial Communities in Periodontal Health and Periodontal Disease. Front Cell Infect Microbiol 2021; 10:577485. [PMID: 33469518 PMCID: PMC7813997 DOI: 10.3389/fcimb.2020.577485] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
The use of Next Generation Sequencing (NGS) techniques has generated a wide variety of blood microbiome data. Due to the large variation in bacterial DNA profiles between studies and the likely high concentrations of cell-free bacterial DNA in the blood, it is still not clear how such microbiome data relates to viable microbiota. For these reasons much remains to be understood about the true nature of any possible healthy blood microbiota and of bacteraemic events associated with disease. The gut, reproductive tracts, skin, and oral cavity are all likely sources of blood-borne bacteria. Oral bacteria, especially those associated with periodontal diseases, are also commonly associated with cardiovascular diseases such as infective endocarditis, and also have been linked to rheumatoid arthritis and Alzheimer's disease. Periodontal treatment, dental probing, and toothbrushing have been shown to cause transient bacteraemia and oral bacteria from the phyla Firmicutes (e.g. Streptococci) and Bacteroidetes (e.g. Porphyromonas) are found in cardiovascular lesions (CVD). Many studies of blood bacterial DNA content however, find Proteobacteria DNA to be the dominant microbiome component, suggesting a gut origin. Most studies of this type use total DNA extracted from either whole blood or blood fractions, such as buffy coat. Here, using a method that purifies DNA from intact bacterial cells only, we examined blood donated by those with active, severe periodontitis and periodontally healthy controls and show that 43-52% of bacterial species in blood are classified as oral. Firmicutes, consisting largely of members of the Streptococcus mitis group and Staphylococcus epidermidis, were predominant at 63.5% of all bacterial sequences detected in periodontal health and, little changed at 66.7% in periodontitis. Compared to studies using total DNA Proteobacteria were found here at relatively low levels in blood at 13.3% in periodontitis and 17.6% in health. This study reveals significant phylogenetic differences in blood bacterial population profiles when comparing periodontal health to periodontal disease cohorts.
Collapse
Affiliation(s)
- David C. Emery
- Bristol Medical School, Translational Health Sciences, Learning & Research, Southmead Hospital, Bristol, United Kingdom
| | - Tanya L. Cerajewska
- Periodontology, Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Joon Seong
- Periodontology, Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Maria Davies
- Periodontology, Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Alex Paterson
- University of Bristol Genomics Facility, School of Biological Sciences, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Bristol Medical School, Translational Health Sciences, Learning & Research, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Periodontology, Bristol Dental School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
128
|
Massier L, Blüher M, Kovacs P, Chakaroun RM. Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:616506. [PMID: 33767669 PMCID: PMC7985551 DOI: 10.3389/fendo.2021.616506] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
An intact intestinal barrier, representing the interface between inner and outer environments, is an integral regulator of health. Among several factors, bacteria and their products have been evidenced to contribute to gut barrier impairment and its increased permeability. Alterations of tight junction integrity - caused by both external factors and host metabolic state - are important for gut barrier, since they can lead to increased influx of bacteria or bacterial components (endotoxin, bacterial DNA, metabolites) into the host circulation. Increased systemic levels of bacterial endotoxins and DNA have been associated with an impaired metabolic host status, manifested in obesity, insulin resistance, and associated cardiovascular complications. Bacterial components and cells are distributed to peripheral tissues via the blood stream, possibly contributing to metabolic diseases by increasing chronic pro-inflammatory signals at both tissue and systemic levels. This response is, along with other yet unknown mechanisms, mediated by toll like receptor (TLR) transduction and increased expression of pro-inflammatory cytokines, which in turn can further increase intestinal permeability leading to a detrimental positive feedback loop. The modulation of gut barrier function through nutritional and other interventions, including manipulation of gut microbiota, may represent a potential prevention and treatment target for metabolic diseases.
Collapse
Affiliation(s)
- Lucas Massier
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Matthias Blüher
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Rima M. Chakaroun
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: Rima M. Chakaroun,
| |
Collapse
|
129
|
Kim HY, Chung JW. Infectious Myositis of the Jaw Presenting as Trismus of Unknown Origin. ACTA ACUST UNITED AC 2020. [DOI: 10.14476/jomp.2020.45.4.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hee-Young Kim
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jin-Woo Chung
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
130
|
Donkor ES, Kotey FCN. Methicillin-Resistant Staphylococcus aureus in the Oral Cavity: Implications for Antibiotic Prophylaxis and Surveillance. Infect Dis (Lond) 2020; 13:1178633720976581. [PMID: 33402829 PMCID: PMC7739134 DOI: 10.1177/1178633720976581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism.
Collapse
Affiliation(s)
- Eric S Donkor
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Fleischer CN Kotey
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
- FleRhoLife Research Consult, Teshie, Accra, Ghana
| |
Collapse
|
131
|
Scherer RX, Scherer WJ. U.S. state correlations between oral health metrics and Alzheimer's disease mortality, prevalence and subjective cognitive decline prevalence. Sci Rep 2020; 10:20962. [PMID: 33262437 PMCID: PMC7708488 DOI: 10.1038/s41598-020-77937-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023] Open
Abstract
Given the association between periodontal disease (PdD) and Alzheimer’s disease (AD), we examined correlations between states’ age-adjusted AD mortality rates, AD prevalence, subjective cognitive decline (SCD) prevalence, and oral health data. Data sources include the Centers for Disease Control and Prevention, scientific literature, and oral health rankings formulated by WalletHub.com and Toothbrush.org. Pearson (r) or Spearman (rs) correlation coefficients were generated and evaluated. AD mortality rates correlate with dental visits (r = − 0.50, p = 0.0003), partial (r = 0.39, p = 0.005) or total (r = 0.44, p = 0.001) edentulism, WalletHub.com (rs = 0.30, p = 0.03) and Toothbrush.org (rs = 0.35, p = 0.01) rankings. AD prevalence correlates with dental visits (r = − 0.30, p = 0.03), partial (r = 0.55, p = 0.00003) or total (r = 0.46, p = 0.0009) edentulism, prevalence of any (r = 0.38, p = 0.006) or severe-stage (r = 0.46, p = 0.0009) PdD, and WalletHub.com (rs = 0.38, p = 0.006) rankings. SCD prevalence in adults aged ≥ 45 years correlates with dental visits (r = − 0.69, p < 0.00001), partial (r = 0.33, p = 0.02) or total (r = 0.37, p = 0.008) edentulism, prevalence of any (r = 0.53, p = 0.0001) or severe-stage (r = 0.57, p = 0.00002) PdD, WalletHub.com (rs = 0.53, p = 0.00008) and Toothbrush.org (rs = 0.60, p < 0.00001) rankings. State metrics indicative of compromised oral health correlate with AD mortality rates, AD prevalence and SCD prevalence.
Collapse
Affiliation(s)
- Rana X Scherer
- University of Central Florida, The Burnett Honors College, 12778 Aquarius Agora Drive, Orlando, FL, 32816-1800, USA
| | - Warren J Scherer
- St. Luke's Cataract & Laser Institute, 43309 U.S. Highway 19 N., Tarpon Springs, FL, 34689, USA.
| |
Collapse
|
132
|
Chen WA, Fletcher HM, Gheorghe JD, Oyoyo U, Boskovic DS. Platelet plug formation in whole blood is enhanced in the presence of Porphyromonas gingivalis. Mol Oral Microbiol 2020; 35:251-259. [PMID: 32949112 PMCID: PMC11139348 DOI: 10.1111/omi.12314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium and an etiologic agent of adult periodontitis. By inducing a dysbiotic state within the host microbiota it contributes to a chronic inflammatory environment in the oral cavity. Under some circumstances, the oral bacteria may gain access to systemic circulation. While the most widely recognized function of platelets is to reduce hemorrhage in case of vascular damage, it is known that platelets are also involved in the hematologic responses to bacterial infections. Some pathogenic bacteria can interact with platelets, triggering their activation and aggregation. The aim of this study was to assess platelet responses to the presence of P. gingivalis in whole blood. Human whole blood was pretreated with P. gingivalis and then platelet plug formation was measured under high shear conditions using the PFA-100. In the presence of P. gingivalis, time for a platelet plug to occlude the aperture in the collagen/ADP cartridge was shortened in a manner dependent on bacterial concentration and the duration of bacterial preincubation of blood. P. gingivalis enhances thrombus forming potential of platelets in whole blood.
Collapse
Affiliation(s)
- William A Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hansel M Fletcher
- Division of Microbiology, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Joseph D Gheorghe
- Department of Pathology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Udochukwu Oyoyo
- Department of Dental Education Services, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | - Danilo S Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
133
|
Sampath C, Okoro EU, Gipson MJ, Chukkapalli SS, Farmer-Dixon CM, Gangula PR. Porphyromonas gingivalis infection alters Nrf2-phase II enzymes and nitric oxide in primary human aortic endothelial cells. J Periodontol 2020; 92:54-65. [PMID: 33128253 DOI: 10.1002/jper.20-0444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Periodontal disease (PD) is known to be associated with endothelial dysfunction in patients with coronary artery and/or cardiovascular disease. In our study, we sought to explore the virulence of P. gingivalis (Pg) affecting glycogen synthase kinase 3 beta (GSK-3β)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/tetrahydrobiopterin (BH4 )/ nitric oxide synthase (NOS) expression in primary human aortic endothelial cells (pHAECs). METHODS pHAECs were infected for 48 hours with Pg in vitro using the Human oxygen-Bacteria anaerobic coculture technique. Cell viability was determined, and target gene expression changes were evaluated by quantitative real-time polymerase chain reaction at the end of each incubation period. RESULTS Pg impaired pHAEC viability 24 hours post-infection. Pg infection reduced mRNA expression levels of endothelial NOS (eNOS), Nrf2, and Phase II enzymes (heme oxygenase-1, catalase, superoxide dismutase-1) in a time-dependent manner. Significant (P <0.05) increase in the inflammatory markers (interleukin [IL]-1β, IL-6, and tumor necrosis factor-α) were observed in the medium as well as in the infected cells. Interestingly, inducible NOS mRNA levels showed a significant (P <0.05) increase at 12 hours and 24 hours and were reduced at later time points. BH4 (cofactor of eNOS) biosynthesis enzyme dihydrofolate reductase (DHFR, salvage pathway) mRNA levels showed a significant (P <0.05) decrease, while mRNA levels of GSK-3β were elevated. CONCLUSIONS These results suggest that periodontal bacterial infection may cause significant changes in the endothelial GSK-3β/BH4 /eNOS/Nrf2 pathways, which may lead to impaired vascular relaxation. Greater understanding of the factors that adversely affect endothelial cell function could contribute to the development of new therapeutic compounds to treat PD-induced vascular diseases.
Collapse
Affiliation(s)
- Chethan Sampath
- Department of ODS & Research, Meharry Medical College, Nashville, TN
| | - Emmanuel U Okoro
- Department of Microbiology, Immunology & Physiology, Meharry Medical College, Nashville, TN
| | - Michael J Gipson
- Department of ODS & Research, Meharry Medical College, Nashville, TN
| | | | | | - Pandu R Gangula
- Department of ODS & Research, Meharry Medical College, Nashville, TN
| |
Collapse
|
134
|
Mikkelsen C, Mori G, van Walraven SM, Castrén J, Zahra S, MacLennan S, Seidel K, Fontana S, Veropalumbo E, Cannata L, Pupella S, Kvist M, Happel M, Korkalainen P, Chandrasekar A, Paulus U, Bokhorst A, Wulff B, Fernandez-Sojo J, Eguizabal C, Urbano F, Vesga MA, van Kraaij M, Merz EM, van den Hurk K, Hansen MB, Slot E, Ullum H. How donor selection criteria can be evaluated with limited scientific evidence: lessons learned from the TRANSPOSE project. Vox Sang 2020; 116:342-350. [PMID: 33191514 DOI: 10.1111/vox.13028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Donor selection criteria (DSC) are a vital link in the chain of supply of Substances of Human Origin (SoHO) but are also subject to controversy and differences of opinion. Traditionally, DSC have been based on application of the precautionary principle. MATERIALS AND METHODS From 2017 to 2020, TRANSPOSE (TRANSfusion and transplantation PrOtection and SElection of donors), a European research project, aimed to identify discrepancies between current DSC by proposing a standardized risk assessment method for all SoHO (solid organs excluded) and all levels of evidence. RESULTS The current DSC were assessed using a modified risk assessment method based on the Alliance of Blood Operators' Risk-based decision-making framework for blood safety. It was found that with limited or diverging scientific evidence, it was difficult to reach consensus and an international standardized method for decision-making was lacking. Furthermore, participants found it hard to disregard their local guidelines when providing expert opinion, which resulted in substantial influence on the consensus-based decision-making process. CONCLUSIONS While the field of donation-safety research is expanding rapidly, there is an urgent need to formalize the decision-making process regarding DSC. This includes the need for standardized methods to increase transparency in the international decision-making process and to ensure that this is performed consistently. Our framework provides an easy-to-implement approach for standardizing risk assessments, especially in the context of limited scientific evidence.
Collapse
Affiliation(s)
- Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gaia Mori
- Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
| | | | | | - Sharon Zahra
- Scottish National Blood Transfusion Service, Edinburgh, Scotland
| | | | | | - Stefano Fontana
- Interregional Blood Transfusion Service SRC, University of Lausanne, Berne, Switzerland
| | - Eva Veropalumbo
- Centro Nazionale Sangue, Istituto Superiore di Sanità, Rome, Italy
| | - Livia Cannata
- Centro Nazionale Sangue, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maria Kvist
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Solna, Sweden
| | - Marjan Happel
- TRIP Hemovigilance and Biovigilance Office, Leiden, the Netherlands
| | | | | | | | - Arlinke Bokhorst
- TRIP Hemovigilance and Biovigilance Office, Leiden, the Netherlands
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg, Hamburg, Germany
| | | | - Cristina Eguizabal
- Bioef-Fundacion Vasca de Innovacion e Investigation Sanitarias-Osakidetza-Centro Vasco de Transfusión y Tejidos Humanos, Galdakao, Spain
| | - Fernando Urbano
- Bioef-Fundacion Vasca de Innovacion e Investigation Sanitarias-Osakidetza-Centro Vasco de Transfusión y Tejidos Humanos, Galdakao, Spain
| | - Miguel Angel Vesga
- Bioef-Fundacion Vasca de Innovacion e Investigation Sanitarias-Osakidetza-Centro Vasco de Transfusión y Tejidos Humanos, Galdakao, Spain
| | | | - Eva-Maria Merz
- Sanquin Research, Department of Donor Medicine Research - Donor Studies, Amsterdam, the Netherlands.,Department of Sociology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Katja van den Hurk
- Sanquin Research, Department of Donor Medicine Research - Donor Studies, Amsterdam, the Netherlands
| | - Morten Bagge Hansen
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ed Slot
- Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
135
|
Mei F, Xie M, Huang X, Long Y, Lu X, Wang X, Chen L. Porphyromonas gingivalis and Its Systemic Impact: Current Status. Pathogens 2020; 9:pathogens9110944. [PMID: 33202751 PMCID: PMC7696708 DOI: 10.3390/pathogens9110944] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
The relationship between periodontitis and systemic diseases, notably including atherosclerosis and diabetes, has been studied for several years. Porphyromonas gingivalis, a prominent component of oral microorganism communities, is the main pathogen that causes periodontitis. As a result of the extensive analysis of this organism, the evidence of its connection to systemic diseases has become more apparent over the last decade. A significant amount of research has explored the role of Porphyromonas gingivalis in atherosclerosis, Alzheimer's disease, rheumatoid arthritis, diabetes, and adverse pregnancy outcomes, while relatively few studies have examined its contribution to respiratory diseases, nonalcoholic fatty liver disease, and depression. Here, we provide an overview of the current state of knowledge about Porphyromonas gingivalis and its systemic impact in an aim to inform readers of the existing epidemiological evidence and the most recent preclinical studies. Additionally, the possible mechanisms by which Porphyromonas gingivalis is involved in the onset or exacerbation of diseases, together with its effects on systemic health, are covered. Although a few results remain controversial, it is now evident that Porphyromonas gingivalis should be regarded as a modifiable factor for several diseases.
Collapse
Affiliation(s)
- Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yanlin Long
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (X.W.); (L.C.)
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (F.M.); (M.X.); (X.H.); (Y.L.); (X.L.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Correspondence: (X.W.); (L.C.)
| |
Collapse
|
136
|
Puccio T, Kunka KS, Zhu B, Xu P, Kitten T. Manganese Depletion Leads to Multisystem Changes in the Transcriptome of the Opportunistic Pathogen Streptococcus sanguinis. Front Microbiol 2020; 11:592615. [PMID: 33250881 PMCID: PMC7674665 DOI: 10.3389/fmicb.2020.592615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus sanguinis is a primary colonizer of teeth and is typically considered beneficial due to its antagonistic relationship with the cariogenic pathogen Streptococcus mutans. However, S. sanguinis can also act as an opportunistic pathogen should it enter the bloodstream and colonize a damaged heart valve, leading to infective endocarditis. Studies have implicated manganese acquisition as an important virulence determinant in streptococcal endocarditis. A knockout mutant lacking the primary manganese import system in S. sanguinis, SsaACB, is severely attenuated for virulence in an in vivo rabbit model. Manganese is a known cofactor for several important enzymes in S. sanguinis, including superoxide dismutase, SodA, and the aerobic ribonucleotide reductase, NrdEF. To determine the effect of manganese depletion on S. sanguinis, we performed transcriptomic analysis on a ΔssaACB mutant grown in aerobic fermentor conditions after the addition of the metal chelator EDTA. Despite the broad specificity of EDTA, analysis of cellular metal content revealed a decrease in manganese, but not in other metals, that coincided with a drop in growth rate. Subsequent supplementation with manganese, but not iron, zinc, or magnesium, restored growth in the fermentor post-EDTA. Reduced activity of Mn-dependent SodA and NrdEF likely contributed to the decreased growth rate post-EDTA, but did not appear entirely responsible. With the exception of the Dps-like peroxide resistance gene, dpr, manganese depletion did not induce stress response systems. By comparing the transcriptome of ΔssaACB cells pre- and post-EDTA, we determined that manganese deprivation led to altered expression of diverse systems. Manganese depletion also led to an apparent induction of carbon catabolite repression in a glucose-independent manner. The combined results suggest that manganese limitation produces effects in S. sanguinis that are diverse and complex, with no single protein or system appearing entirely responsible for the observed growth rate decrease. This study provides further evidence for the importance of this trace element in streptococcal biology. Future studies will focus on determining mechanisms for regulation, as the multitude of changes observed in this study indicate that multiple regulators may respond to manganese levels.
Collapse
Affiliation(s)
| | | | | | | | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
137
|
Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S, Dassa B, Van Hove H, Chappell-Maor L, Boura-Halfon S, Leshkowitz D, Mueller W, Maggio N, Movahedi K, Jung S. Interleukin-10 Prevents Pathological Microglia Hyperactivation following Peripheral Endotoxin Challenge. Immunity 2020; 53:1033-1049.e7. [PMID: 33049219 DOI: 10.1016/j.immuni.2020.09.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/06/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023]
Abstract
Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.
Collapse
Affiliation(s)
- Anat Shemer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gal Ronit Frumer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Seok Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jonathan Grozovski
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Serkalem Ayanaw
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hannah Van Hove
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Werner Mueller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 5262 Tel Aviv, Israel
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
138
|
Abstract
Patient and procedural factors can increase the risk of infectious adverse events during endoscopy. Prophylactic antibiotic use must be judicious and individualized in the era of antibiotic resistance. New and emerging procedures require high-quality studies to elucidate appropriate risk profiles.
Collapse
Affiliation(s)
- Brian P H Chan
- Division of Gastroenterology, Center for Advanced Endoscopy, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Tyler M Berzin
- Division of Gastroenterology, Center for Advanced Endoscopy, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
139
|
Massier L, Chakaroun R, Tabei S, Crane A, Didt KD, Fallmann J, von Bergen M, Haange SB, Heyne H, Stumvoll M, Gericke M, Dietrich A, Blüher M, Musat N, Kovacs P. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 2020; 69:1796-1806. [PMID: 32317332 DOI: 10.1136/gutjnl-2019-320118] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Bacterial translocation to various organs including human adipose tissue (AT) due to increased intestinal permeability remains poorly understood. We hypothesised that: (1) bacterial presence is highly tissue specific and (2) related in composition and quantity to immune inflammatory and metabolic burden. DESIGN We quantified and sequenced the bacterial 16S rRNA gene in blood and AT samples (omental, mesenteric and subcutaneous) of 75 subjects with obesity with or without type 2 diabetes (T2D) and used catalysed reporter deposition (CARD) - fluorescence in situ hybridisation (FISH) to detect bacteria in AT. RESULTS Under stringent experimental and bioinformatic control for contaminants, bacterial DNA was detected in blood and omental, subcutaneous and mesenteric AT samples in the range of 0.1 to 5 pg/µg DNA isolate. Moreover, CARD-FISH allowed the detection of living, AT-borne bacteria. Proteobacteria and Firmicutes were the predominant phyla, and bacterial quantity was associated with immune cell infiltration, inflammatory and metabolic parameters in a tissue-specific manner. Bacterial composition differed between subjects with and without T2D and was associated with related clinical measures, including systemic and tissues-specific inflammatory markers. Finally, treatment of adipocytes with bacterial DNA in vitro stimulated the expression of TNFA and IL6. CONCLUSIONS Our study provides contaminant aware evidence for the presence of bacteria and bacterial DNA in several ATs in obesity and T2D and suggests an important role of bacteria in initiating and sustaining local AT subclinical inflammation and therefore impacting metabolic sequelae of obesity.
Collapse
Affiliation(s)
- Lucas Massier
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Shirin Tabei
- IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Alyce Crane
- IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad David Didt
- IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Jörg Fallmann
- Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Center for Environmental Research GmbH - UFZ, Leipzig, Germany
| | - Henrike Heyne
- IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany.,Institute of Human Genetics, University of Leipzig, Leipzig, Germany.,Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Gericke
- IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany.,Institute of Anatomy and Cell Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany.,Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Arne Dietrich
- IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany.,University Hospital Leipzig, Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.,IFB AdiposityDiseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
140
|
Eckbo EJ, Mijovic H, Rathgeber S, Armstrong K, Kollmann TR. A Teenager with Migrating Leg Pains and Anemia. Pediatr Rev 2020; 41:S33-S35. [PMID: 33004577 DOI: 10.1542/pir.2018-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Eric J Eckbo
- Division of Medical Microbiology, Department of Pathology and Laboratory Medicine
| | - Hana Mijovic
- Division of Infectious Diseases, Department of Pediatrics
| | - Steven Rathgeber
- Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kathryn Armstrong
- Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
141
|
Porphyromonas gingivalis disrupts vascular endothelial homeostasis in a TLR-NF-κB axis dependent manner. Int J Oral Sci 2020; 12:28. [PMID: 32999278 PMCID: PMC7527479 DOI: 10.1038/s41368-020-00096-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is still the leading cause of mortality worldwide. Vascular endothelial dysfunction is viewed as the initial step of most cardiovascular diseases. Many studies have indicated that periodontal pathogens, especially Porphyromonas gingivalis, are closely correlated with vascular endothelial homeostasis, but the function of P. gingivalis and the underlying mechanisms are still elusive. To illuminate the effects and elucidate the mechanisms of P. gingivalis on endothelial structural integrity, we developed P. gingivalis infection models in vivo and in vitro. Endothelial cell proliferation, differentiation and apoptosis were detected. Here, we showed that P. gingivalis can impair endothelial integrity by inhibiting cell proliferation and inducing endothelial mesenchymal transformation and apoptosis of endothelial cells, which reduce the cell levels and cause the endothelium to lose its ability to repair itself. A mechanistic analysis showed that TLR antagonist or NF-κB signalling inhibitor can largely rescue the damaged integrity of the endothelium caused by P. gingivalis, suggesting that TLR-NF-κB signalling plays a vital role in vascular endothelial homeostasis destroyed by P. gingivalis. These results suggest a potential intervention method for the prevention and treatment of cardiovascular disease.
Collapse
|
142
|
Almeida VDSM, Azevedo J, Leal HF, de Queiroz ATL, da Silva Filho HP, Reis JN. Bacterial diversity and prevalence of antibiotic resistance genes in the oral microbiome. PLoS One 2020; 15:e0239664. [PMID: 32991620 PMCID: PMC7523989 DOI: 10.1371/journal.pone.0239664] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES This study aims to describe the oral microbiome diversity and prevalence of ARGs in periodontal health and disease. BACKGROUND The human oral cavity harbors a complex microbial community known as the oral microbiome. These organisms are regularly exposed to selective pressures, such as the usage of antibiotics, which drive evolution and acquisition of antibiotic resistance genes (ARGs). Resistance among oral bacteria jeopardizes not only antibiotic therapy for oral infections, but also extra-oral infections caused by bacterial translocation. METHODS We carried out a cross-sectional investigation. Saliva and subgingival plaque samples were collected during a clinical exam. 16S rRNA gene sequencing was performed to assess microbial diversity. Resistance genes were identified through PCR assays. RESULTS Of the 110 participants, only 22.7% had healthy periodontium, while the majority was diagnosed with gingivitis (55.4%) and chronic periodontitis (21.8%). The composition of the oral microbiota differed from healthy and diseased samples, being Streptococcus spp. and Rothia spp. predominant in periodontal disease. Regarding ARGs, 80 (72.7%) samples were positive for at least one of genes screened, erm being the most frequent variant (58.2%), followed by blaTEM (16.4%), mecA (2.7%), pbp2b and aac(6 ') (1.8%). Neither genes coding resistance to carbapenems nor metronidazole were detected. CONCLUSIONS Our findings indicate that there are no significant differences in terms of taxonomic enrichment between healthy and diseased oral microbiomes. However, samples retrieved from healthy patients had a more diverse microbial community, whereas diseased samples have lower taxonomic diversity. We have also identified clinically relevant ARGs, providing baseline information to guide antibiotic prescription in dentistry.
Collapse
Affiliation(s)
| | - Jailton Azevedo
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Helena Ferreira Leal
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | | | | | - Joice Neves Reis
- School of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
- Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| |
Collapse
|
143
|
Demmer RT, Norby FL, Lakshminarayan K, Walker KA, Pankow JS, Folsom AR, Mosley T, Beck J, Lutsey PL. Periodontal disease and incident dementia: The Atherosclerosis Risk in Communities Study (ARIC). Neurology 2020; 95:e1660-e1671. [PMID: 32727837 PMCID: PMC7713724 DOI: 10.1212/wnl.0000000000010312] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/06/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that periodontal disease would be associated with increased risk for dementia and mild cognitive impairment (MCI) by assessing dementia/MCI outcomes after a baseline periodontal examination. METHODS Participants enrolled in the Atherosclerosis Risk in Communities study with a clinical periodontal examination (or edentulous participants) at visit 4 (1996-1998; mean ± SD age 63 ± 6 years, 55% female, 21% black) and adjudicated dementia outcomes through 2016 were included (n = 8,275). A subgroup of 4,559 participants had adjudicated dementia and MCI assessments at visit 5 (2011-2013). Participants received a full-mouth periodontal examination and were classified into periodontal profile classes (PPCs) based on the severity and extent of gingival inflammation and attachment loss. MCI and dementia were determined via neurocognitive testing, neurological examination and history, informant interviews, and brain MRI in a subset. Cox proportional hazards models regressed incident dementia on PPCs. Relative risk regression models were used for the composite of MCI/dementia. RESULTS The cumulative incidence and incidence density of dementia during follow-up (average 18.4 years) were 19% (n = 1,569) and 11.8 cases per 1,000 person-years. Multivariable adjusted hazard ratios for incident dementia among participants with severe PPC or edentulism (vs periodontal healthy) were 1.22 (95% confidence interval [CI] 1.01-1.47) and 1.21 (95% CI 0.99-1.48), respectively. For the combined dementia/MCI outcome, adjusted risk ratios among participants with mild/intermediate PPC, severe PPC, or edentulism (vs periodontal healthy) were 1.22 (95% CI 1.00-1.48), 1.15 (95% CI 0.88-1.51), and 1.90 (95% CI 1.40-2.58). Results were stronger among younger (≤62 years) participants (p for interaction = 0.02). CONCLUSION Periodontal disease was modestly associated with incident MCI and dementia in a community-based cohort of black and white participants.
Collapse
Affiliation(s)
- Ryan T Demmer
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill.
| | - Faye L Norby
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill
| | - Kamakshi Lakshminarayan
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill
| | - Keenan A Walker
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill
| | - James S Pankow
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill
| | - Aaron R Folsom
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill
| | - Thomas Mosley
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill
| | - Jim Beck
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill
| | - Pamela L Lutsey
- From the Division of Epidemiology and Community Health (R.T.D., F.L.N., K.L., J.S.P., A.R.F., P.L.L.), School of Public Health, University of Minnesota, Minneapolis; Department of Epidemiology (R.T.D.), Mailman School of Public Health, Columbia University, New York, NY; Department of Neurology (K.A.W.), Johns Hopkins School of Medicine, Baltimore, MD; Department of Medicine (T.M.), University of Mississippi Medical Center, Jackson; and Division of Comprehensive Oral Health-Periodontology (J.B.), Adams School of Dentistry, University of North Carolina at Chapel Hill
| |
Collapse
|
144
|
Niemiec B, Gawor J, Nemec A, Clarke D, McLeod K, Tutt C, Gioso M, Steagall PV, Chandler M, Morgenegg G, Jouppi R. World Small Animal Veterinary Association Global Dental Guidelines. J Small Anim Pract 2020; 61:E36-E161. [PMID: 32715504 DOI: 10.1111/jsap.13132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental, oral, and maxillofacial diseases are some of the most common problems in small animal veterinary practice. These conditions create significant pain as well as localized and potentially systemic infection. As such, the World Small Animal Veterinary Association (WSAVA) believes that un- and under treated oral and dental diseases pose a significant animal welfare concern. Dentistry is an area of veterinary medicine which is still widely ignored and is subject to many myths and misconceptions. Effective teaching of veterinary dentistry in the veterinary school is the key to progression in this field of veterinary medicine, and to the improvement of welfare for all our patients globally. These guidelines were developed to provide veterinarians with the information required to understand best practices for dental therapy and create realistic minimum standards of care. Using the three-tiered continuing education system of WSAVA, the guidelines make global equipment and therapeutic recommendations and highlight the anaesthetic and welfare requirements for small animal patients. This document contains information on common oral and dental pathologies, diagnostic procedures (an easily implementable and repeatable scoring system for dental health, dental radiography and radiology) and treatments (periodontal therapy, extractions). Further, there are sections on anaesthesia and pain management for dental procedures, home dental care, nutritional information, and recommendations on the role of the universities in improving veterinary dentistry. A discussion of the deleterious effects of anaesthesia free dentistry (AFD) is included, as this procedure is ineffective at best and damaging at worst. Throughout the document the negative effects of undiagnosed and/or treated dental disease on the health and well-being of our patients, and how this equates to an animal welfare issue, is discussed.
Collapse
|
145
|
Badia P, Andersen H, Haslam D, Nelson AS, Pate AR, Golkari S, Teusink-Cross A, Flesch L, Bedel A, Hickey V, Kramer K, Lane A, Davies SM, Thikkurissy S, Dandoy CE. Improving Oral Health and Modulating the Oral Microbiome to Reduce Bloodstream Infections from Oral Organisms in Pediatric and Young Adult Hematopoietic Stem Cell Transplantation Recipients: A Randomized Controlled Trial. Biol Blood Marrow Transplant 2020; 26:1704-1710. [PMID: 32505810 PMCID: PMC11168732 DOI: 10.1016/j.bbmt.2020.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Abstract
Bloodstream infections (BSIs) from oral organisms are a significant cause of morbidity and mortality in hematopoietic stem cell transplantation (HSCT) recipients. There are no proven strategies to decrease BSIs from oral organisms. The aim of this study was to evaluate the impact of daily xylitol wipes in improving oral health, decreasing BSI from oral organisms, and modulating the oral microbiome in pediatric HSCT recipients. This was a single-center 1:1 randomized controlled trial in pediatric HSCT recipients age >2 years. Age-matched healthy children were enrolled to compare the oral microbiome. The oral hygiene standard of care (SOC) group continued to receive the standard oral hygiene regimen. The xylitol group received daily oral xylitol wipes (with .7 g xylitol) in addition to the SOC. The intervention started from the beginning of the transplantation chemotherapy regimen and extended to 28 days following transplantation. The primary outcome was oral health at interval time points, and secondary outcomes included BSIs from oral organisms in the first 30 days following transplantation, oral microbiome abundance, and diversity and oral pathogenic organism abundance. The study was closed early due to efficacy after an interim analysis of the first 30 HSCT recipients was performed (SOC group, n = 16; xylitol group, n = 14). The xylitol group had a significantly lower rate of gingivitis at days 7, 14, and 28 following transplantation (P = .031, .0039, and .0005, respectively); oral plaque at days 7 and 14 (P = .045 and .0023, respectively); and oral ulcers >10 mm at day 14 (P = .049) compared with the SOC group. The xylitol group had no BSI from oral organisms compared with the SOC group, which had 4 (P = .04). The xylitol group had significantly lower abundance of potential BSI pathogens, such as Staphylococcus aureus (P = .036), Klebsiella pneumoniae (P = .033), and Streptococcus spp (P = .011) at the day after transplantation compared with the SOC group. Healthy children and young adults had significantly increased oral microbiome diversity compared with all HSCT recipients (P < .001). The addition of xylitol to standard oral care significantly improves oral health, decreases BSI from oral organisms, and decreases the abundance of pathogenic oral organisms in pediatric and young adult HSCT recipients.
Collapse
Affiliation(s)
- Priscila Badia
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona.
| | - Heidi Andersen
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David Haslam
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adam S Nelson
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Abigail R Pate
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sara Golkari
- Division of Pediatric Dentistry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashley Teusink-Cross
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura Flesch
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ashely Bedel
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Victoria Hickey
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kathi Kramer
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adam Lane
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sarat Thikkurissy
- Division of Pediatric Dentistry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Christopher E Dandoy
- Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
146
|
Scarmozzino F, Poli A, Visioli F. Microbiota and cardiovascular disease risk: A scoping review. Pharmacol Res 2020; 159:104952. [PMID: 32492487 DOI: 10.1016/j.phrs.2020.104952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
An increasing number of studies suggests that the oral and the intestinal microbiota may indirectly or directly influence cardiovascular risk. In this regard, the microbiota could act by modifying compounds naturally present in food, both in a potentially atherogenic sense and in a protective sense; on the other hand, specific bacterial strains whose growth could also be facilitated by compounds of alimentary origin, i.e. prebiotics could instead play direct effects on atherogenesis. In other words, the microbiota-food relationship is a bi-directional one in which the latter modifies the former that, in return, produces metabolites with healthful or noxious effects. In this scoping review, we examine some of the microbiota-cardiovascular risk interactions that, in light of the available evidence, can be considered to already enjoy convincing scientific solidity. Notably, we focus on the oral and intestinal microbiota, where research is most active, and we propose some future cardio-preventive opportunities: one would be to develop and test compounds that can inhibit the formation of microbiota-derived noxious molecules. After the development of appropriate, reliable, and inexpensive screening tools for metabotypes, personalized diets can be implemented and pertinent supplements could be prescribed. The other therapeutic and preventive route that could be traveled is that of microbiota modification, via the use of appropriate pro- and prebiotics.
Collapse
Affiliation(s)
| | | | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, CEI UAM + CSIC, Madrid, Spain.
| |
Collapse
|
147
|
Dijkstra GW, Glaudemans AWJM, Erba PA, Wouthuyzen-Bakker M, Sinha B, Vállez García D, van der Sluis LWM, Slart RHJA. Relationship between 18F-FDG Uptake in the Oral Cavity, Recent Dental Treatments, and Oral Inflammation or Infection: A Retrospective Study of Patients with Suspected Endocarditis. Diagnostics (Basel) 2020; 10:E625. [PMID: 32846896 PMCID: PMC7555096 DOI: 10.3390/diagnostics10090625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
[18F]-fluorodeoxyglucose positron emission tomography ([18F]FDG PET/CT) has proven to be a useful diagnostic tool in patients with suspected infective endocarditis (IE), but is conflicting in relation to dental procedures. QUESTIONS Is there a correlation between [18F]FDG PET/CT findings, recent dental treatment, and an affected oral cavity? (2) Is there a correlation between infective endocarditis (IE), oral health status, and (extra)cardiac findings on [18F]FDG PET/CT? METHODS This retrospective study included 52 patients. All [18F]FDG PET/CT scans were examined visually by pattern recognition using a three-point scale and semi-quantified within the volume of interest (VOI) using SUVmax. RESULTS 19 patients were diagnosed with IE (group 1), 14 with possible IE (group 2), and 19 without IE based on the modified Duke criteria (group 3). No correlation was found between visual PET and SUVmax and sites of oral inflammation and infection. The visual PET scores and SUVmax were not significantly different between all groups. A significant difference in the SUVmax of the valve between all groups was observed. CONCLUSIONS This study suggests that no correlation exists between the PET findings in the oral cavity and dental treatments or inflammation/infection. No correlation between IE, actual oral health status, and extra-cardiac findings was demonstrated. Additional research is needed to conclude whether [18F]FDG PET/CT imaging is a reliable diagnostic modality for oral inflammation and infection sites.
Collapse
Affiliation(s)
- Geertruida W. Dijkstra
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, PO 9700 RB Groningen, The Netherlands; (G.W.D.); (L.W.M.v.d.S.)
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO 9700 RB Groningen, The Netherlands; (P.A.E.); (D.V.G.); (R.H.J.A.S.)
| | - Paola A. Erba
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO 9700 RB Groningen, The Netherlands; (P.A.E.); (D.V.G.); (R.H.J.A.S.)
- Department of Nuclear Medicine, Department of Translational Research and New Technology in Medicine, University of Pisa, 56128 Pisa, Italy
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO 9700 RB Groningen, The Netherlands; (M.W.-B.); (B.S.)
| | - Bhanu Sinha
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, PO 9700 RB Groningen, The Netherlands; (M.W.-B.); (B.S.)
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO 9700 RB Groningen, The Netherlands; (P.A.E.); (D.V.G.); (R.H.J.A.S.)
| | - Luc W. M. van der Sluis
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, PO 9700 RB Groningen, The Netherlands; (G.W.D.); (L.W.M.v.d.S.)
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO 9700 RB Groningen, The Netherlands; (P.A.E.); (D.V.G.); (R.H.J.A.S.)
- Department of Biomedical Photonic Imaging, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
148
|
Sakaguchi W, Kubota N, Shimizu T, Saruta J, Fuchida S, Kawata A, Yamamoto Y, Sugimoto M, Yakeishi M, Tsukinoki K. Existence of SARS-CoV-2 Entry Molecules in the Oral Cavity. Int J Mol Sci 2020; 21:ijms21176000. [PMID: 32825469 PMCID: PMC7503451 DOI: 10.3390/ijms21176000] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor, angiotensin-converting enzyme 2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and furin, which promote entry of the virus into the host cell, have been identified as determinants of SARS-CoV-2 infection. Dorsal tongue and gingiva, saliva, and tongue coating samples were examined to determine the presence of these molecules in the oral cavity. Immunohistochemical analyses showed that ACE2 was expressed in the stratified squamous epithelium of the dorsal tongue and gingiva. TMPRSS2 was strongly expressed in stratified squamous epithelium in the keratinized surface layer and detected in the saliva and tongue coating samples via Western blot. Furin was localized mainly in the lower layer of stratified squamous epithelium and detected in the saliva but not tongue coating. ACE2, TMPRSS2, and furin mRNA expression was observed in taste bud-derived cultured cells, which was similar to the immunofluorescence observations. These data showed that essential molecules for SARS-CoV-2 infection were abundant in the oral cavity. However, the database analysis showed that saliva also contains many protease inhibitors. Therefore, although the oral cavity may be the entry route for SARS-CoV-2, other factors including protease inhibitors in the saliva that inhibit viral entry should be considered.
Collapse
Affiliation(s)
- Wakako Sakaguchi
- Division of Environmental Pathology, Department of Oral Science, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-0003, Japan; (W.S.); (N.K.); (M.Y.); (K.T.)
| | - Nobuhisa Kubota
- Division of Environmental Pathology, Department of Oral Science, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-0003, Japan; (W.S.); (N.K.); (M.Y.); (K.T.)
| | - Tomoko Shimizu
- Department of Highly Advanced Oral Medicine, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Yokohama, Kanagawa 221-0835, Japan;
| | - Juri Saruta
- Division of Environmental Pathology, Department of Oral Science, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-0003, Japan; (W.S.); (N.K.); (M.Y.); (K.T.)
- Correspondence: ; Tel./Fax: +81-46-822-9537
| | - Shinya Fuchida
- Division of Dental Sociology, Department of Disaster Medicine and Dental Sociology, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-0003, Japan;
| | - Akira Kawata
- Division of Histology, Embryology and Neuroanatomy, Department of Oral Science, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-0003, Japan;
| | - Yuko Yamamoto
- Division of Dental Hygiene, Kanagawa Dental University Junior College, 82 Inaoka, Yokosuka, Kanagawa 238-0003, Japan;
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Medical Research Institute, Tokyo Medical University, 6-1-1 Shinjuku, Tokyo 160-8402, Japan;
| | - Mayumi Yakeishi
- Division of Environmental Pathology, Department of Oral Science, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-0003, Japan; (W.S.); (N.K.); (M.Y.); (K.T.)
| | - Keiichi Tsukinoki
- Division of Environmental Pathology, Department of Oral Science, Kanagawa Dental University, 82 Inaoka, Yokosuka, Kanagawa 238-0003, Japan; (W.S.); (N.K.); (M.Y.); (K.T.)
| |
Collapse
|
149
|
Erchick DJ, Khatry SK, Agrawal NK, Katz J, LeClerq SC, Rai B, Reynolds MA, Mullany LC. Risk of preterm birth associated with maternal gingival inflammation and oral hygiene behaviours in rural Nepal: a community-based, prospective cohort study. BMJ Open 2020; 10:e036515. [PMID: 32819989 PMCID: PMC7443267 DOI: 10.1136/bmjopen-2019-036515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Observational studies have identified associations between periodontitis and adverse pregnancy outcomes, but randomised controlled trials evaluating the efficacy of periodontal therapy have yielded inconsistent results. Few studies have explored relationships between gingival inflammation and these outcomes or been conducted in rural, low-income communities, where confounding risk factors differ from other settings. METHODS We conducted a community-based, prospective cohort study with the aim of estimating associations between the extent of gingival inflammation in pregnant women and incidence of preterm birth in rural Nepal. Our primary exposure was gingival inflammation, defined as bleeding on probing (BOP) ≥10%, stratified by BOP <30% and BOP ≥30%. A secondary exposure, mild periodontitis, was defined as ≥2 interproximal sites with probing depth (PD) ≥4 mm (different teeth) or one site with PD ≥5 mm. Our primary outcome was preterm birth (<37 weeks gestation). We used Poisson regression to model this relationship, adjusting for potential confounders. RESULTS Of 1394 participants, 554 (39.7%) had gingival inflammation, 54 (3.9%) mild periodontitis and 197 (14.1%) delivered preterm. In the adjusted regression model, increasing extent of gingival inflammation was associated with a non-significant increase in risk of preterm birth (BOP ≥30% vs no BOP: adjusted relative risk (aRR) 1.37, 95% CI: 0.81 to 2.32). A secondary analysis, stratifying participants by when in pregnancy their oral health status was assessed, showed an association between gingival inflammation and preterm birth among women examined in their first trimester (BOP ≥30% vs no BOP: aRR 2.57, 95% CI: 1.11 to 5.95), but not later in pregnancy (BOP ≥30% vs no BOP: aRR 1.05, 95% CI: 0.52 to 2.11). CONCLUSIONS Gingival inflammation in women examined early in pregnancy and poor oral hygiene behaviours were risk factors for preterm birth. Future studies should evaluate community-based oral health interventions that specifically target gingival inflammation, delivered early in or before pregnancy, on preterm birth. TRIAL REGISTRATION NUMBER Nepal Oil Massage Study, NCT01177111.
Collapse
Affiliation(s)
- Daniel J Erchick
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Subarna K Khatry
- Nepal Nutrition Intervention Project - Sarlahi, Kathmandu, Nepal
| | - Nitin K Agrawal
- Department of Dentistry, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Joanne Katz
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Steven C LeClerq
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Nepal Nutrition Intervention Project - Sarlahi, Kathmandu, Nepal
| | - Bhola Rai
- Nepal Nutrition Intervention Project - Sarlahi, Kathmandu, Nepal
| | - Mark A Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Luke C Mullany
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
150
|
Medara N, Lenzo JC, Walsh KA, Reynolds EC, O'Brien-Simpson NM, Darby IB. Peripheral neutrophil phenotypes during management of periodontitis. J Periodontal Res 2020; 56:58-68. [PMID: 32803891 DOI: 10.1111/jre.12793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Neutrophils are emerging as a key player in periodontal pathogenesis. The surface expression of cellular markers enables functional phenotyping of neutrophils which have distinct roles in disease states. This study aimed to evaluate the effect of periodontal management on neutrophil phenotypes in peripheral blood in periodontitis patients over one year. MATERIALS AND METHODS Peripheral blood and the periodontal parameters, mean probing depth and percentage of sites with bleeding on probing (%BOP), were collected from 40 healthy controls and 54 periodontitis patients at baseline and 3-, 6- and 12- months post-treatment. Flow cytometry was used to identify CD11b+ , CD16b+ , CD62L- and CD66b+ expression on neutrophils, neutrophil maturation stages as promyelocytes (CD11b- CD16b- ), metamyelocytes (CD11b+ CD16b- ) and mature neutrophils (CD11b+ CD16b+ ), and suppressive neutrophil phenotype as bands (CD16dim CD62Lbright ), normal neutrophils (CD16bright CD62Lbright ) and suppressive neutrophils (CD16bright CD62Ldim ). RESULTS CD62L- expression decreased with treatment. No differences were observed in neutrophil maturation stages in health or disease upon treatment. Suppressive and normal neutrophils showed a reciprocal relationship, where suppressive neutrophils decreased with treatment and normal neutrophils increased with treatment. In addition, %BOP was associated with suppressive neutrophils. CONCLUSION This study demonstrates that management of periodontitis significantly modifies distinct neutrophil phenotypes in peripheral blood. Suppressive neutrophils may play a role in the pathogenesis of periodontitis. However, their exact role is unclear and requires further investigation.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Jason C Lenzo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | | | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia.,Centre for Oral Health Research, Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|