101
|
Ullah M, Qian NPM, Yannarelli G. Advances in innovative exosome-technology for real time monitoring of viable drugs in clinical translation, prognosis and treatment response. Oncotarget 2021; 12:1029-1031. [PMID: 34084276 PMCID: PMC8169069 DOI: 10.18632/oncotarget.27927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/07/2023] Open
|
102
|
Liu QW, Chen Y, Li JY, Xiao L, Zhang WJ, Zhao JL, Gu HC, Wu HY, Zuo GSL, Deng KY, Xin HB. Bone marrow cells are differentiated into MDSCs by BCC-Ex through down-regulating the expression of CXCR4 and activating STAT3 signalling pathway. J Cell Mol Med 2021; 25:5497-5510. [PMID: 33955151 PMCID: PMC8184685 DOI: 10.1111/jcmm.16559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Studies showed that the increase of myeloid‐derived suppressor cells (MDSCs) in tumour microenvironment is closely related to the resistant treatment and poor prognosis of metastatic breast cancer. However, the effect of tumour‐derived exosomes on MDSCs and its mechanism are not clear. Here, we reported that breast cancer cells (4T1)‐secreted exosomes (BCC‐Ex) were able to differentiate bone marrow cells into MDSCs and significantly inhibited the proliferation of T lymphocytes to provide an immunosuppressive microenvironment for cancer cells in vivo and in vitro. The number of MDSCs in bone marrow and spleen of 4T1 tumour‐bearing mice and BCC‐Ex infused mice was significantly higher than that of normal mice, whereas the number of T lymphocytes in spleen was significantly decreased. In addition, BCC‐Ex markedly promoted the differentiation of MDSCs from bone marrow cells or bone marrow cells derived macrophages, seen as the increased expressions of MDSCs‐related functional proteins Arginase‐1 (Arg‐1) and inducible nitric oxide synthase (iNOS). Furthermore, BCC‐Ex significantly down‐regulated the expressions of chemokine receptor CXCR4 and markedly up‐regulated the levels of inflammatory cytokines IL‐6 and IL‐10 in bone marrow cells and macrophages and remarkably inhibited the division and proliferation of T cells. Importantly, CXCR4 agonist, CXCL12, could reverse the function of BCC‐Ex, indicating that BCC‐Ex‐induced MDSCs might be dependent on the down‐regulation of CXCR4. Western blot showed that BCC‐Ex significantly promoted the phosphorylation of STAT3 in bone marrow cells, resulting in the inhibitions of the proliferation and apoptosis of bone marrow cells, and the aggravation of the differentiation of bone marrow cells into MDSCs.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yong Chen
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jing-Yuan Li
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, China
| | - Ling Xiao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Wen-Jie Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jia-Le Zhao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life and Science, Nanchang University, Nanchang, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life and Science, Nanchang University, Nanchang, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China.,School of Life and Science, Nanchang University, Nanchang, China
| |
Collapse
|
103
|
Transcriptome Analysis and Autophagy Investigation of LoVo Cells Stimulated with Exosomes Derived from T. asiatica Adult Worms. Microorganisms 2021; 9:microorganisms9050994. [PMID: 34062985 PMCID: PMC8147967 DOI: 10.3390/microorganisms9050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Taenia asiatica is a zoonotic parasite found in the human intestine and pig liver that evolved various strategies to survive the host’s defenses. Exosomes are membranous vesicles released by cells and are an important vehicle in parasite-host interactions. However, no literature exists on the specific infection mechanisms of T. asiatica against the host defense response, and further research is required to understand the parasite-host interaction. In this study, we investigated the host’s differentially expressed genes (DEGs) while stimulating them with exosomes derived from the T. asiatica adult worm (Tas-exo) on LoVo by RNA-seq analysis. Our results identified 348 genes as being significantly differentially expressed for the Tas-exo group when comparing with that of the NC group. Some of these genes are related to modulation of cell proliferation and cell autophagy. Surprisingly, autophagy and cell proliferation have crucial roles in the defense against parasites; accordingly, we detected cell proliferation and autophagy in LoVo cells by CCK8, immunofluorescence, and Western blotting, demonstrating that Tas-exo could inhibit LoVo cell proliferation and autophagy via AMPK pathway. When P62 and p-mTOR/mTOR expression were significantly increased, BeclinI and pAMPK/AMPK were significantly decreased. These results expand our understanding of parasite-host interactions mediated by exosomes.
Collapse
|
104
|
González MF, Díaz P, Sandoval-Bórquez A, Herrera D, Quest AFG. Helicobacter pylori Outer Membrane Vesicles and Extracellular Vesicles from Helicobacter pylori-Infected Cells in Gastric Disease Development. Int J Mol Sci 2021; 22:ijms22094823. [PMID: 34062919 PMCID: PMC8124820 DOI: 10.3390/ijms22094823] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.
Collapse
Affiliation(s)
- María Fernanda González
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Paula Díaz
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Alejandra Sandoval-Bórquez
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Daniela Herrera
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Andrew F. G. Quest
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago 7680201, Chile
- Correspondence: ; Tel.: +56-2-29786832
| |
Collapse
|
105
|
Ullah MS, Zhivonitko VV, Samoylenko A, Zhyvolozhnyi A, Viitala S, Kankaanpää S, Komulainen S, Schröder L, Vainio SJ, Telkki VV. Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chem Sci 2021; 12:8311-8319. [PMID: 34221312 PMCID: PMC8221169 DOI: 10.1039/d1sc01402a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are a subset of secreted lipid envelope-encapsulated extracellular vesicles (EVs) of 50-150 nm diameter that can transfer cargo from donor to acceptor cells. In the current purification protocols of exosomes, many smaller and larger nanoparticles such as lipoproteins, exomers and microvesicles are typically co-isolated as well. Particle size distribution is one important characteristics of EV samples, as it reflects the cellular origin of EVs and the purity of the isolation. However, most of the physicochemical analytical methods today cannot illustrate the smallest exosomes and other small particles like the exomers. Here, we demonstrate that diffusion ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) method enables the determination of a very broad distribution of extracellular nanoparticles, ranging from 1 to 500 nm. The range covers sizes of all particles included in EV samples after isolation. The method is non-invasive, as it does not require any labelling or other chemical modification. We investigated EVs secreted from milk as well as embryonic kidney and renal carcinoma cells. Western blot analysis and immuno-electron microscopy confirmed expression of exosomal markers such as ALIX, TSG101, CD81, CD9, and CD63 in the EV samples. In addition to the larger particles observed by nanoparticle tracking analysis (NTA) in the range of 70-500 nm, the DOSY distributions include a significant number of smaller particles in the range of 10-70 nm, which are visible also in transmission electron microscopy images but invisible in NTA. Furthermore, we demonstrate that hyperpolarized chemical exchange saturation transfer (Hyper-CEST) with 129Xe NMR indicates also the existence of smaller and larger nanoparticles in the EV samples, providing also additional support for DOSY results. The method implies also that the Xe exchange is significantly faster in the EV pool than in the lipoprotein/exomer pool.
Collapse
Affiliation(s)
| | | | - Anatoliy Samoylenko
- Laboratory of Developmental Biology, Infotech Oulu, Oulu Center for Cell-Matrix Research, Kvantum Institute, Faculty of Biochemistry and Molecular Medicine Oulu Finland
| | - Artem Zhyvolozhnyi
- Laboratory of Developmental Biology, Infotech Oulu, Oulu Center for Cell-Matrix Research, Kvantum Institute, Faculty of Biochemistry and Molecular Medicine Oulu Finland
| | - Sirja Viitala
- Production Systems, Natural Resources Institute Finland (Luke) Jokioinen Finland
| | - Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke) Jokioinen Finland
| | | | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
- Division of Translational Molecular Imaging, German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Infotech Oulu, Oulu Center for Cell-Matrix Research, Kvantum Institute, Faculty of Biochemistry and Molecular Medicine Oulu Finland
| | | |
Collapse
|
106
|
Carrera-Bravo C, Koh EY, Tan KSW. The roles of parasite-derived extracellular vesicles in disease and host-parasite communication. Parasitol Int 2021; 83:102373. [PMID: 33933651 DOI: 10.1016/j.parint.2021.102373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
In recent years, several parasites have been shown to interact with their hosts through intra- and inter-community communication mechanisms, which were identified to be mediated by extracellular vesicles (EVs) through various uptake mechanisms. EVs are a heterogenous group of nanoparticles (~30-5000 nm) classified into three main types according to their size and biogenesis. EVs contain proteins, lipids, nucleic acids and metabolites from the cell of origin which are essential for genetic exchange, biomarker identification and diagnosis of pathological diseases. As important "forward lines of parasite infectivity", the parasite-secreted EVs function as information transmitters in the early-stage of host-parasite interaction and subsequent host-cell colonization. For this review, we summarize from the literature the relevance of EVs to the pathogenesis and development of human parasitic protistan diseases such as giardiasis, leishmaniasis, amoebiasis, malaria and Blastocystis-mediated gut pathology. Specific in vitro and in vivo interactions of the parasite-EVs and the host, with the reported cellular and immunological outcomes are discussed in this review. EVs have great potential to be further developed as diagnostic, immunomodulation and therapeutic alternatives to fill the knowledge gaps in the current parasitic diseases discussed in this review. Nanomedicine and vaccine development could be explored, with the utilization and/or modification of the parasitic EVs as novel treatment and prevention strategies.
Collapse
Affiliation(s)
- Claudia Carrera-Bravo
- Healthy Longevity Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545, Singapore; A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Immunos, Biopolis, Singapore 138648, Singapore.
| | - Eileen Y Koh
- Healthy Longevity Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Kevin S W Tan
- Healthy Longevity Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545, Singapore.
| |
Collapse
|
107
|
Tavasolian F, Hosseini AZ, Rashidi M, Soudi S, Abdollahi E, Momtazi-Borojeni AA, Sathyapalan T, Sahebkar A. The Impact of Immune Cell-derived Exosomes on Immune Response Initiation and Immune System Function. Curr Pharm Des 2021; 27:197-205. [PMID: 33290196 DOI: 10.2174/1381612826666201207221819] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Exosomes are small extracellular vesicles that pass genetic material between various cells to modulate or alter their biological function. The role of exosomes is to communicate with the target cell for cell-to-cell communication. Their inherent characteristics of exosomes, such as adhesion molecules, allow targeting specifically to the receiving cell. Exosomes are involved in cell to cell communication in the immune system including antigen presentation, natural killer cells (NK cells) and T cell activation/polarisation, immune suppression and various anti-inflammatory processes. In this review, we have described various functions of exosomes secreted by the immune cells in initiating, activating and modulating immune responses; and highlight the distinct roles of exosomal surface proteins and exosomal cargo. Potential applications of exosomes such as distribution vehicles for immunotherapy are also discussed.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Z Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU3 2JZ, United Kingdom
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
108
|
Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021; 8:640355. [PMID: 33968983 PMCID: PMC8101706 DOI: 10.3389/fmolb.2021.640355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell membranes and govern various membrane functions. Lipid organization within membrane plane dictates recruitment of specific proteins and lipids into distinct nanoclusters that initiate cellular signaling while modulating protein and lipid functions. In addition, one of the most versatile function of lipids is the formation of diverse lipid membrane vesicles for regulating various cellular processes including intracellular trafficking of molecular cargo. In this review, we focus on the various kinds of membrane vesicles in eukaryotes and bacteria, their biogenesis, and their multifaceted functional roles in cellular communication, host-pathogen interactions and biotechnological applications. We elaborate on how their distinct lipid composition of membrane vesicles compared to parent cells enables early and non-invasive diagnosis of cancer and tuberculosis, while inspiring vaccine development and drug delivery platforms. Finally, we discuss the use of membrane vesicles as excellent tools for investigating membrane lateral organization and protein sorting, which is otherwise challenging but extremely crucial for normal cellular functioning. We present current limitations in this field and how the same could be addressed to propel a fundamental and technology-oriented future for extracellular membrane vesicles.
Collapse
Affiliation(s)
- Aswin T. Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Wadhwani Research Center of Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
109
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
110
|
Emerging technologies and commercial products in exosome-based cancer diagnosis and prognosis. Biosens Bioelectron 2021; 183:113176. [PMID: 33845291 DOI: 10.1016/j.bios.2021.113176] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/20/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Academic and industrial groups worldwide have reported technological advances in exosome-based cancer diagnosis and prognosis. However, the potential translation of these emerging technologies for research and clinical settings remains unknown. This work overviews the role of exosomes in cancer diagnosis and prognosis, followed by a survey on emerging exosome technologies, particularly microfluidic advances for the isolation and detection of exosomes in cancer research. The advantages and drawbacks of each of the technologies used for the isolation, detection and engineering of exosomes are evaluated to address their clinical challenges for cancer diagnosis and prognosis. Furthermore, commercial platforms for exosomal detection and analysis are introduced, and their performance and impact on cancer diagnosis and prognosis are assessed. Also, the risks associated with the further development of the next generation of exosome devices are discussed. The outcome of this work could facilitate recognizing deliverable Exo-devices and technologies with unprecedented functionality and predictable manufacturability for the next-generation of cancer diagnosis and prognosis.
Collapse
|
111
|
Raman Spectral Signatures of Serum-Derived Extracellular Vesicle-Enriched Isolates May Support the Diagnosis of CNS Tumors. Cancers (Basel) 2021; 13:cancers13061407. [PMID: 33808766 PMCID: PMC8003579 DOI: 10.3390/cancers13061407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Investigating the molecular composition of small extracellular vesicles (sEVs) for tumor diagnostic purposes is becoming increasingly popular, especially for diseases for which diagnosis is challenging, such as central nervous system (CNS) malignancies. Thorough examination of the molecular content of sEVs by Raman spectroscopy is a promising but hitherto barely explored approach for these tumor types. We attempt to reveal the potential role of serum-derived sEVs in diagnosing CNS tumors through Raman spectroscopic analyses using a relevant number of clinical samples. A total of 138 serum samples were obtained from four patient groups (glioblastoma multiforme, non-small-cell lung cancer brain metastasis, meningioma and lumbar disc herniation as control). After isolation, characterization and Raman spectroscopic assessment of sEVs, the Principal Component Analysis-Support Vector Machine (PCA-SVM) algorithm was performed on the Raman spectra for pairwise classifications. Classification accuracy (CA), sensitivity, specificity and the Area Under the Curve (AUC) value derived from Receiver Operating Characteristic (ROC) analyses were used to evaluate the performance of classification. The groups compared were distinguishable with 82.9-92.5% CA, 80-95% sensitivity and 80-90% specificity. AUC scores in the range of 0.82-0.9 suggest excellent and outstanding classification performance. Our results support that Raman spectroscopic analysis of sEV-enriched isolates from serum is a promising method that could be further developed in order to be applicable in the diagnosis of CNS tumors.
Collapse
|
112
|
Lv L, Liu Y. Clinical Application of Liquid Biopsy in Non-Hodgkin Lymphoma. Front Oncol 2021; 11:658234. [PMID: 33816315 PMCID: PMC8013700 DOI: 10.3389/fonc.2021.658234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a common type of hematological malignant tumor, composed of multiple subtypes that originate from B lymphocytes, T lymphocytes, and natural killer cells. A diagnosis of NHL depends on the results of a pathology examination, which requires an invasive tissue biopsy. However, due to their invasive nature, tissue biopsies have many limitations in clinical applications, especially in terms of evaluating the therapeutic response and monitoring tumor progression. To overcome these limitations of traditional tissue biopsies, a technique known as "liquid biopsies" (LBs) was proposed. LBs refer to noninvasive examinations that can provide biological tumor data for analysis. Many studies have shown that LBs can be broadly applied to the diagnosis, treatment, prognosis, and monitoring of NHL. This article will briefly review various LB methods that aim to improve NHL management, including the evaluation of cell-free DNA/circulating tumor DNA, microRNA, and tumor-derived exosomes extracted from peripheral blood in NHL.
Collapse
Affiliation(s)
- Liwei Lv
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
113
|
Yi J, Wang Y, Zhang H, Deng X, Xi J, Li H, Yang N, Ma Z, Wang Y, Chen C. Interferon-Inducible Transmembrane Protein 3-Containing Exosome as a New Carrier for the Cell-to-Cell Transmission of Anti- Brucella Activity. Front Vet Sci 2021; 8:642968. [PMID: 33816587 PMCID: PMC8010673 DOI: 10.3389/fvets.2021.642968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
Exosomes are small extracellular vesicles that are released from cells and that function in intercellular communication. Recently, interferon-inducible transmembrane protein 3 (IFITM3) has been identified as a highly effective anti-intracellular pathogen protein that can inhibit the invasion of a wide range of pathogenic microorganisms. However, whether Brucella infection induces secretion of exosomes and whether these exosomes contain IFITM3 protein remain unknown. Here, we focused on the immune function of extracellular IFITM3 protein in the process of Brucella infection. This study is the first to show that Brucella melitensis strain M5 (Brucella M5) can stimulate macrophages to secrete large amounts of exosomes. Most importantly, we identified exosomes from Brucella M5-infected cells that were rich in molecules of IFITM3, and these exosomes could transmit the IFITM3 from one cell to another, thereby effectively inhibiting the intracellular survival of Brucella. Moreover, immunization with exosomes carrying IFITM3 decreased mouse spleen tissue damage and spleen colony forming unit (CFU), leading to the establishment of an anti-Brucella state in mice. In conclusion, our findings provide new insights into the anti-Brucella mechanism of IFITM3-containg exosomes, thus providing a theoretical foundation for systematic elaboration of the mechanisms of Brucella infection and host immunity. The results provide new ideas for the development of candidate vaccines for Brucella.
Collapse
Affiliation(s)
- Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Huan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xiaoyu Deng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Xi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ningning Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
114
|
Modani S, Tomar D, Tangirala S, Sriram A, Mehra NK, Kumar R, Khatri DK, Singh PK. An updated review on exosomes: biosynthesis to clinical applications. J Drug Target 2021; 29:925-940. [PMID: 33709876 DOI: 10.1080/1061186x.2021.1894436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes are membrane-based extracellular vesicles naturally released by the cells. Nano size range of exosomes and unique properties such as stability, biocompatibility and low immunogenicity are key parameters, which make them suitable as nanoparticulate drug delivery system and also considered as promising delivery carriers for future clinical use. This review outlines the composition, biogenesis, isolation and characterisation methods along with biological and clinical applications of exosomes. Further, the biopharmaceutical features of exosomes include loading method, modified exosomes and potential use of exosomes for different diseases are well explained with the current case studies. We well elaborate the future directions for clinical use of exosomes as drug delivery platforms.
Collapse
Affiliation(s)
- Sheela Modani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Devendrasingh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Suma Tangirala
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
115
|
Jan AT, Rahman S, Badierah R, Lee EJ, Mattar EH, Redwan EM, Choi I. Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development. Cancers (Basel) 2021; 13:1157. [PMID: 33800282 PMCID: PMC7962655 DOI: 10.3390/cancers13051157] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-enclosed distinct cellular entities of endocytic origin that shuttle proteins and RNA molecules intercellularly for communication purposes. Their surface is embossed by a huge variety of proteins, some of which are used as diagnostic markers. Exosomes are being explored for potential drug delivery, although their therapeutic utilities are impeded by gaps in knowledge regarding their formation and function under physiological condition and by lack of methods capable of shedding light on intraluminal vesicle release at the target site. Nonetheless, exosomes offer a promising means of developing systems that enable the specific delivery of therapeutics in diseases like cancer. This review summarizes information on donor cell types, cargoes, cargo loading, routes of administration, and the engineering of exosomal surfaces for specific peptides that increase target specificity and as such, therapeutic delivery.
Collapse
Affiliation(s)
- Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India;
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India;
| | - Raied Badierah
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Ehab H. Mattar
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Elrashdy M. Redwan
- Biological Sciences Department, Faculty of Science, and Laboratory University Hospital, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (R.B.); (E.H.M.)
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
116
|
Zhu Y, Pu Z, Wang G, Li Y, Wang Y, Li N, Peng F. FAM3C: an emerging biomarker and potential therapeutic target for cancer. Biomark Med 2021; 15:373-384. [PMID: 33666514 DOI: 10.2217/bmm-2020-0179] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
FAM3C is a member of the FAM3 family. Recently, overexpression of FAM3C has been reported in numerous types of cancer, including breast and colon cancer. Increasing evidence suggests that elevated FAM3C and its altered subcellular localization are closely associated with tumor formation, invasion, metastasis and poor survival. Moreover, FAM3C has been found to be the regulator of various proteins that associate with cancer, including Ras, STAT3, TGF-β and LIFR. This review summarizes the current knowledge regarding FAM3C, including its structure, expression patterns, regulation, physiological roles and regulatory functions in various malignancies. These findings highlight the importance of FAM3C in cancer development and provide evidence that FAM3C is a novel biomarker and potential therapeutic target for various cancers.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Zhangya Pu
- Department of Infectious Diseases & Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Guoqiang Wang
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Yubin Li
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Yinmiao Wang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
| |
Collapse
|
117
|
Kidney Mesenchymal Stem Cell-derived Extracellular Vesicles Engineered to Express Erythropoietin Improve Renal Anemia in Mice with Chronic Kidney Disease. Stem Cell Rev Rep 2021; 18:980-992. [PMID: 33651336 DOI: 10.1007/s12015-021-10141-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 12/29/2022]
Abstract
Extracellular vesicles (EVs) shed from kidney mesenchymal stem cells (KMSCs) show protective effects against acute kidney injury and progressive kidney fibrosis via mRNA transfer. Previous studies report improvement of renal anemia following administration of genetically modified MSCs or peritoneal mesothelial cells that secrete erythropoietin (EPO). Here, we determined whether EPO-secreting KMSC-derived EVs (EPO(+)-EVs) can improve renal anemia in mouse models of chronic kidney disease (CKD). The mouse CKD and renal anemia model was induced by electrocoagulation of the right renal cortex and sequential left nephrectomy. At six weeks post-nephrectomy, we observed significantly lower hemoglobin (10.4 ± 0.2 vs. 13.2 ± 0.2 g/dL) and significantly higher blood urea nitrogen and serum creatinine levels in CKD mice relative to controls (60.5 ± 0.5 and 0.37 ± 0.09 mg/dL vs. 19.9 ± 0.5 and 0.12 ± 0.02 mg/dL, respectively). Genetically engineered EPO(+)-KMSCs secreted 71 IU/mL EPO/106 cells/24 h in vitro, and EPO(+)-EVs isolated by differential ultracentrifugation expressed EPO mRNA and horizontally transferred EPO mRNA into target cells in vitro and in vivo. Furthermore, at two weeks post-injection of EPO(+)-KMSCs or EPO(+)-EVs into CKD mice with renal anemia, we observed significant increases in hemoglobin levels (11.7 ± 0.2 and 11.5 ± 0.2 vs. 10.1 ± 0.2 g/dL, respectively) and significantly lower serum creatinine levels at eight weeks in comparison to mice receiving vehicle control (0.30 ± 0.00 and 0.23 ± 0.03 vs. 0.43 ± 0.06 mg/dL, respectively). These results demonstrate that intraperitoneal administration of EPO(+)-EVs significantly increased hemoglobin levels and renal function in CKD mice, suggesting the efficacy of these genetically engineered EVs as a promising novel strategy for the treatment of renal anemia.
Collapse
|
118
|
Decruyenaere P, Offner F, Vandesompele J. Circulating RNA biomarkers in diffuse large B-cell lymphoma: a systematic review. Exp Hematol Oncol 2021; 10:13. [PMID: 33593440 PMCID: PMC7885416 DOI: 10.1186/s40164-021-00208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype of non-Hodgkin's lymphomas (NHL). DLBCL is an aggressive malignancy that displays a great heterogeneity in terms of morphology, genetics and biological behavior. While a sustained complete remission is obtained in the majority of patients with standard immunochemotherapy, patients with refractory of relapsed disease after first-line treatment have a poor prognosis. This patient group represents an important unmet need in lymphoma treatment. In recent years, improved understanding of the underlying molecular pathogenesis had led to new classification and prognostication tools, including the development of cell-free biomarkers in liquid biopsies. Although the majority of studies have focused on the use of cell-free fragments of DNA (cfDNA), there has been an increased interest in circulating-free coding and non-coding RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), as well as RNA encapsulated in extracellular vesicles or tumor-educated platelets (TEPs). We performed a systematic search in PubMed to identify articles that evaluated circulating RNA as diagnostic, subtype, treatment response or prognostic biomarkers in a human DLBCL population. A total of 35 articles met the inclusion criteria. The aim of this systematic review is to present the current understanding of circulating RNA molecules as biomarker in DLBCL and to discuss their future potential.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
119
|
Liu WZ, Ma ZJ, Li JR, Kang XW. Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther 2021; 12:102. [PMID: 33536064 PMCID: PMC7860030 DOI: 10.1186/s13287-021-02153-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) often leads to serious motor and sensory dysfunction of the limbs below the injured segment. SCI not only results in physical and psychological harm to patients but can also cause a huge economic burden on their families and society. As there is no effective treatment method, the prevention, treatment, and rehabilitation of patients with SCI have become urgent problems to be solved. In recent years, mesenchymal stem cells (MSCs) have attracted more attention in the treatment of SCI. Although MSC therapy can reduce injured volume and promote axonal regeneration, its application is limited by tumorigenicity, a low survival rate, and immune rejection. Accumulating literature shows that exosomes have great potential in the treatment of SCI. In this review, we summarize the existing MSC-derived exosome studies on SCI and discuss the advantages and challenges of treating SCI based on exosomes derived from MSCs.
Collapse
Affiliation(s)
- Wen-Zhao Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China
| | - Jie-Ru Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China.
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China.
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
120
|
Li P, Jia Y, Tang W, Cui Q, Liu M, Jiang J. Roles of Non-coding RNAs in Central Nervous System Axon Regeneration. Front Neurosci 2021; 15:630633. [PMID: 33597844 PMCID: PMC7882506 DOI: 10.3389/fnins.2021.630633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Axons in the central nervous system often fail to regenerate after injury due to the limited intrinsic regeneration ability of the central nervous system (CNS) and complex extracellular inhibitory factors. Therefore, it is of vital importance to have a better understanding of potential methods to promote the regeneration capability of injured nerves. Evidence has shown that non-coding RNAs play an essential role in nerve regeneration, especially long non-coding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA). In this review, we profile their separate roles in axon regeneration after CNS injuries, such as spinal cord injury (SCI) and optic nerve injury. In addition, we also reveal the interactive networks among non-coding RNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingjing Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
121
|
Yang HC, Ham YM, Kim JA, Rhee WJ. Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads. J Extracell Vesicles 2021; 10:e12074. [PMID: 33664938 PMCID: PMC7902527 DOI: 10.1002/jev2.12074] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) contain useful biomarkers for disease diagnosis and are promising biomaterials for the delivery of therapeutic molecules in vivo. Accordingly, an efficient concentration method is necessary for large-scale production or high-throughput isolation of EVs from bulk liquid samples, including culture medium and body fluids, to achieve their clinical application. However, current EV concentration methods, including ultrafiltration, are limited with respect to cost, efficiency, and centrifugation time. In this study, we developed the first single-step, equipment-free EV concentration method using super absorbent polymer (SAP) beads. SAP beads absorb small molecules, including water, via nano-sized channels but expel and thereby concentrate EVs. Consequently, the beads drastically enrich EVs by reducing the solution volume in a single step, without affecting EV characteristics. Moreover, the purity of the concentrated EV solution was high due to the absorption of protein impurities by SAP beads. To further demonstrate the versatility of the method, we showed that SAP beads successfully enrich EVs in human urine samples and culture medium, enabling better isolation performance than conventional ultrafiltration. We believe the newly developed approach and insight gained in this study will facilitate the use of EVs as prominent biomaterials for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Hee Cheol Yang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Yoo Min Ham
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Jeong Ah Kim
- Center for Scientific InstrumentationKorea Basic Science InstituteChungbukRepublic of Korea
- Department of Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Division of BioengineeringIncheon National UniversityIncheonRepublic of Korea
| |
Collapse
|
122
|
Han KY, Chang JH, Azar DT. Proteomics-Based Characterization of the Effects of MMP14 on the Protein Content of Exosomes from Corneal Fibroblasts. Protein Pept Lett 2021; 27:979-988. [PMID: 32268857 DOI: 10.2174/0929866527666200408142827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. OBJECTIVE The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. METHODS Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. RESULTS Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. CONCLUSION Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
123
|
Zhang T, Zhang P, Li HX. CAFs-Derived Exosomal miRNA-130a Confers Cisplatin Resistance of NSCLC Cells Through PUM2-Dependent Packaging. Int J Nanomedicine 2021; 16:561-577. [PMID: 33542625 PMCID: PMC7851405 DOI: 10.2147/ijn.s271976] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Chemoresistance is a significant barrier to the treatment and management of non-small cell lung cancer (NSCLC). Exosomes play an essential role in intercellular communication. Understanding the mechanism underlying the role of tumor stroma, especially cancer-associated fibroblasts (CAFs), during chemoresistance would significantly contribute to the clinical application of chemotherapy agents. RESULTS In this study, we demonstrated that NSCLC-derived CAFs were innately resistant to cisplatin treatment and CAFs-conditioned medium significantly promoted the survival rate of NSCLC cells after cisplatin treatment. Additionally, CAFs-derived exosomes were taken up by NSCLC cells. Moreover, exosomal miRNA-130a was transferred from CAFs to recipient NSCLC cells and knockdown of miRNA-130a reversed the effect of CAFs-derived exosomes during chemoresistance of NSCLC cells. Furthermore, pumilio homolog 2 (PUM2), a RNA-binding protein, mediated the packaging of miRNA-130a into exosomes. The overexpression and knockdown of PUM2 promoted and inhibited tumor growth of xenograft mice, respectively. CONCLUSION Taken together, these results suggest that CAFs-derived exosomes confer cisplatin resistance of NSCLC cells through transferring miRNA-130a and that PUM2 is a critical factor for packaging miRNA-130a into exosomes. This study indicates that CAFs-derived exosomal miRNA-130a may be a potential therapeutic target for cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Tuberculosis, Linyi People’s Hospital, Linyi, Shandong276034, People’s Republic of China
| | - Ping Zhang
- Reproductive Medicine, Linyi People’s Hospital, Linyi, Shandong276034, People’s Republic of China
| | - Hong-Xia Li
- Endoscopic Room, Linyi Chest Hospital, Linyi, Shandong276034, People’s Republic of China
| |
Collapse
|
124
|
Wang Y, Zhang Q, Yuan W, Wang Y, Loghry HJ, Zhao Z, Kimber MJ, Dong L, Lu M. Hyperspectral imaging-based exosome microarray for rapid molecular profiling of extracellular vesicles. LAB ON A CHIP 2021; 21:196-204. [PMID: 33289759 PMCID: PMC7785694 DOI: 10.1039/d0lc01006e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
One of the challenges of exploiting extracellular vesicles (EVs) as a disease biomarker is to differentiate EVs released by similar cell types or phenotypes. This paper reports a high-throughput and label-free EV microarray technology to differentiate EVs by simultaneous characterization of a panel of EV membrane proteins. The EsupplV microarray platform, which consists of an array of antibodies printed on a photonic crystal biosensor and a microscopic hyperspectral imaging technique, can rapidly assess the binding of the EV membrane proteins with their corresponding antibodies. The EV microarray assay requires only a 2 μL sample volume and a detection time of less than 2 h. The EV microarray assay was validated by not only quantifying seven membrane proteins carried by macrophage-derived EVs but also distinguishing the EVs secreted by three macrophage phenotypes. In particular, the EV microarray technology can generate a molecular fingerprint of target EVs that can be used to identify the EVs' parental cells, and thus has utility for basic science research as well as for point-of-care disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
| | - Qinming Zhang
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
| | - Wang Yuan
- Department of Biomedical Sciences., Iowa State University, Ames, Iowa 50011, USA
| | - Yixuan Wang
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
| | - Hannah J. Loghry
- Department of Biomedical Sciences., Iowa State University, Ames, Iowa 50011, USA
| | - Zijian Zhao
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
| | - Michael J. Kimber
- Department of Biomedical Sciences., Iowa State University, Ames, Iowa 50011, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
- Microelectronics Research Centre, Iowa State University, Ames, Iowa 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering., Iowa State University, Ames, Iowa 50011, USA
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
- Microelectronics Research Centre, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
125
|
Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U. Composition and Clinical Significance of Exosomes in Tuberculosis: A Systematic Literature Review. J Clin Med 2021; 10:E145. [PMID: 33406750 PMCID: PMC7795701 DOI: 10.3390/jcm10010145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health issue worldwide. In order to contain TB infections, improved vaccines as well as accurate and reliable diagnostic tools are desirable. Exosomes are employed for the diagnosis of various diseases. At present, research on exosomes in TB is still at the preliminary stage. Recent studies have described isolation and characterization of Mycobacterium tuberculosis (Mtb) derived exosomes in vivo and in vitro. Mtb-derived exosomes (Mtbexo) may be critical for TB pathogenesis by delivering mycobacterial-derived components to the recipient cells. Proteomic and transcriptomic analysis of Mtbexo have revealed a variety of proteins and miRNA, which are utilized by the TB bacteria for pathogenesis. Exosomes has been isolated in body fluids, are amenable for fast detection, and could contribute as diagnostic or prognostic biomarker to disease control. Extraction of exosomes from biological fluids is essential for the exosome research and requires careful standardization for TB. In this review, we summarized the different studies on Mtbexo molecules, including protein and miRNA and the method used to detect exosomes in biological fluids and cell culture supernatants. Thus, the detection of Mtbexo molecules in biological fluids may have a potential to expedite the diagnosis of TB infection. Moreover, the analysis of Mtbexo may generate new aspects in vaccine development.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Arne C. Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
126
|
Chen P, Wang L, Fan X, Ning X, Yu B, Ou C, Chen M. Targeted delivery of extracellular vesicles in heart injury. Am J Cancer Res 2021; 11:2263-2277. [PMID: 33500724 PMCID: PMC7797669 DOI: 10.7150/thno.51571] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale extracellular vesicles derived from endocytosis that are crucial to intercellular communication. EVs possess natural biocompatibility and stability that allow them to cross biological membranes and that protect them from degradation. Recent studies have shown that EVs-mediated crosstalk between different cell types in the heart could play important roles in the maintenance of cardiac homeostasis and the pathogenesis of heart diseases. In particular, EVs secreted by different types of stem cells exhibit cardioprotective effects. However, numerous studies have shown that intravenously injected EVs are quickly cleared by macrophages of the mononuclear phagocyte system (MPS) and preferentially accumulate in MPS organs such as the liver, spleen, and lung. In this review, we discuss exosome biogenesis, the role of EVs in heart diseases, and challenges in delivering EVs to the heart. Furthermore, we extensively discuss the targeted delivery of EVs for treating ischemic heart disease. These understandings will aid in the development of effective treatment strategies for heart diseases.
Collapse
|
127
|
Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K, Lyu P, Gong P, Yao Y. Radiation-Induced Bystander Effect can be Transmitted Through Exosomes Using miRNAs as Effector Molecules. Radiat Res 2020; 194:89-100. [PMID: 32343639 DOI: 10.1667/rade-20-00019.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023]
Abstract
The radiation-induced bystander effect (RIBE) is a destructive reaction in nonirradiated cells and is one primary factor in determining the efficacy and success of radiation therapy in the field of cancer treatment. Previously reported studies have shown that the RIBE can be mediated by exosomes that carry miRNA components within. Exosomes, which are one type of cell-derived vesicle, exist in different biological conditions and serve as an important additional pathway for signal exchange between cells. In addition, exosome-derived miRNAs are confirmed to play an important role in RIBE, activating the bystander effect and genomic instability after radiotherapy. After investigating the field of RIBE, it is important to understand the mechanisms and consequences of biological effects as well as the role of exosomes and exosomal miRNAs therein, from different sources and under different circumstances, respectively. More discoveries could help to establish early interventions against RIBE while improving the efficacy of radiotherapy. Meanwhile, measures that would alleviate or even inhibit RIBE to some extent may exist in the near future.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feihong Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
128
|
Prikryl P, Satrapova V, Frydlova J, Hruskova Z, Zima T, Tesar V, Vokurka M. Mass spectrometry-based proteomic exploration of the small urinary extracellular vesicles in ANCA-associated vasculitis in comparison with total urine. J Proteomics 2020; 233:104067. [PMID: 33307252 DOI: 10.1016/j.jprot.2020.104067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 11/29/2020] [Indexed: 01/07/2023]
Abstract
ANCA-associated vasculitis (AAV) is a rare, but potentially severe autoimmune disease, even nowadays displaying increased mortality and morbidity. Finding early biomarkers of activity and prognosis is thus very important. Small extracellular vesicles (EVs) isolated from urine can be considered as a non-invasive source of biomarkers. We evaluated several protocols for urinary EV isolation. To eliminate contaminating non-vesicular proteins due to AAV associated proteinuria we used proteinase K treatment. We investigated the differences in proteomes of small EVs of patients with AAV compared to healthy controls by label-free LC-MS/MS. In parallel, we performed an analogous proteomic analysis of urine samples from identical patients. The study results showed significant differences and similarities in both EV and urine proteome, the latter one being highly affected by proteinuria. Using bioinformatics tools we explored differentially changed proteins and their related pathways with a focus on the pathophysiology of AAV. Our findings indicate significant regulation of Golgi enzymes, such as MAN1A1, which can be involved in T cell activation by N-glycans glycosylation and may thus play a key role in pathogenesis and diagnosis of AAV. SIGNIFICANCE: The present study explores for the first time the changes in proteomes of small extracellular vesicles and urine of patients with renal ANCA-associated vasculitis compared to healthy controls by label-free LC-MS/MS. Isolation of vesicles from proteinuric urine samples has been modified to minimize contamination by plasma proteins and to reduce co-isolation of extraluminal proteins. Differentially changed proteins and their related pathways with a role in the pathophysiology of AAV were described and discussed. The results could be helpful for the research of potential biomarkers in renal vasculitis associated with ANCA.
Collapse
Affiliation(s)
- Petr Prikryl
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Satrapova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Frydlova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Hruskova
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Zima
- Institute of Clinical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
129
|
Statistical Analysis for Identifying Differentially MicroRNA in Serum Exosomes of Lead Workers. JOURNAL OF HEALTHCARE ENGINEERING 2020. [DOI: 10.1155/2020/8841127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exosomes can transmit central nervous system (CNS) information to the peripheral circulatory system through the brain barrier, and exosomes in the blood can also enter the central nervous system likewise. The components of exosomal contents play a pivotal role in cell signal communication, and thus, the transmission of exosomal content components is considered as a newly discovered method of long-distance communication between cells. The current is aimed to explore the changes of the exosomal microRNA group in the serum of lead-exposed workers, which might be involved in the lead-induced neuroinflammation, especially the activation of microglia and the release of inflammatory factors. We proposed a method combining statistical analysis and experiment according to the different expression of exosomal microRNA. Firstly, we divided workers into two groups, lead-exposed group and control group, and then questionnaires were used to obtain their basic information, and medical testing methods were used to obtain their serum exosomes. Secondly, principal component analysis was used to construct a comprehensive index of neurobehavioral function. Furthermore, volcano map and heatmap were used to display the differential gene distribution and correlation analysis of expression levels, respectively. Finally, two software applications, TargetScan and miRanda, were used to predict the target genes of the significantly different microRNAs, respectively, and the target genes predicted by the two software applications are screened according to the scoring standards of each software. Our results showed that 73 microRNAs were changed in the serum exosomes of lead-exposed worker, among which 48 microRNAs are upregulated and 25 microRNAs are downregulated. Moreover, the miR-124 and miR-506 were identified, and they might be involved in the process of lead-induced neuroinflammation.
Collapse
|
130
|
Zhang J, Sun P, Zhou C, Zhang X, Ma F, Xu Y, Hamblin MH, Yin K. Regulatory microRNAs and vascular cognitive impairment and dementia. CNS Neurosci Ther 2020; 26:1207-1218. [PMID: 33459504 PMCID: PMC7702235 DOI: 10.1111/cns.13472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is defined as a progressive dementia disease related to cerebrovascular injury and often occurs in aged populations. Despite decades of research, effective treatment for VCID is still absent. The pathological processes of VCID are mediated by the molecular mechanisms that are partly modulated at the post-transcriptional level. As small endogenous non-coding RNAs, microRNAs (miRs) can regulate target gene expression through post-transcriptional gene silencing. miRs have been reported to play an important role in the pathology of VCID and have recently been suggested as potential novel pharmacological targets for the development of new diagnosis and treatment strategies in VCID. In this review, we summarize the current understanding of VCID, the possible role of miRs in the regulation of VCID and attempt to envision future therapeutic strategies. Since manipulation of miR levels by either pharmacological or genetic approaches has shown therapeutic effects in experimental VCID models, we also emphasize the potential therapeutic value of miRs in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Ping Sun
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Chao Zhou
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Xuejing Zhang
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Feifei Ma
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Yang Xu
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Milton H. Hamblin
- Department of PharmacologyTulane University School of MedicineNew OrleansLAUSA
| | - Ke‐Jie Yin
- Department of NeurologyPittsburgh Institute of Brain Disorders & RecoveryUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Geriatric ResearchEducation and Clinical CenterVeterans Affairs Pittsburgh Healthcare SystemPittsburghPAUSA
| |
Collapse
|
131
|
Li Z, Suo B, Long G, Gao Y, Song J, Zhang M, Feng B, Shang C, Wang D. Exosomal miRNA-16-5p Derived From M1 Macrophages Enhances T Cell-Dependent Immune Response by Regulating PD-L1 in Gastric Cancer. Front Cell Dev Biol 2020; 8:572689. [PMID: 33330451 PMCID: PMC7734296 DOI: 10.3389/fcell.2020.572689] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/27/2020] [Indexed: 01/03/2023] Open
Abstract
Macrophages have an affinity to developing tumors and have been shown to play a role in tumor combat and immune surveillance. However, the exact mechanism by which macrophages participate in the anti-tumor immune response remains unclear. Hence, the current study aimed to identify the effect of macrophages on gastric cancer (GC) cells via exosomes. Paired cancerous, tumor-adjacent, and non-cancerous stomach tissues were initially from 68 GC patients. T cells were isolated from peripheral blood mononuclear cells (PBMCs) obtained from both the GC patients as well as the healthy donors. Next, the exosomes were isolated from LPS and IFN-γ-induced PBMCs (M1 macrophages) and co-cultured with human GC cells. Another co-culture system comprised of CD3+ T cells and exosomes-treated GC cells was then performed. BALB/c mice and NOD/SCID nude mice were prepared for effects of exosomal miR-16-5p on tumor growth and anti-tumor immune response in GC in vivo. A relationship between M1 macrophages and the poor survival of GC patients was identified, while they secreted exosomes to inhibit GC development and activate a T cell-dependent immune response. Our results revealed that miR-16-5p was transferred intercellularly from M1 macrophages to GC cells via exosomes and targeted PD-L1. M1 macrophage-derived exosomes containing miR-16-5p were found to trigger a T cell immune response which inhibited tumor formation both in vitro and in vivo by decreasing the expression of PD-L1. Taken together, the key findings of the current study suggest that M1 macrophage-derived exosomes carrying miR-16-5p exert an inhibitory effect on GC progression through activation of T cell immune response via PD-L1. Our study highlights the promise of M1 macrophages as a potential cell-based therapy for GC treatment by increasing miR-16-5p in exosomes.
Collapse
Affiliation(s)
- Zhengtian Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Suo
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Gang Long
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Song
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengzhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiyu Feng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ce Shang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
132
|
Ofori K, Bhagat G, Rai AJ. Exosomes and extracellular vesicles as liquid biopsy biomarkers in diffuse large B-cell lymphoma: Current state of the art and unmet clinical needs. Br J Clin Pharmacol 2020; 87:284-294. [PMID: 33080045 DOI: 10.1111/bcp.14611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma, and it constitutes biologically heterogeneous entities. Standard first-line therapies cure ~60% of patients, the rest being either refractory or experiencing relapse. Currently, there are no robust predictive biomarkers of therapeutic response. Heterogeneity of DLBCL is partly explained by the cell of origin (COO), ie, germinal centre B cell or activated B cell, with the latter exhibiting worse prognosis. While gene expression profiling (GEP) is the gold standard for determining COO, surrogate immunohistochemical algorithms are used clinically, but show significant discordance with GEP. Recently, additional genetic subgroups with different prognoses have been reported. However, the tools/expertise required for analysis prohibit widespread deployment. Liquid biopsy-based assays show promise in providing clinically actionable information, are noninvasive and facilitate serial sampling to assess mechanisms of therapy resistance. Circulating, cell-free DNA analysis has shown enhanced sensitivity for detecting molecular alterations, but this modality cannot determine alterations of the tumor proteome or on signalling pathways. Exosomes are endosomally derived vesicles, are found in high abundance in body fluids and are readily isolated using a variety of methods. Tumour-derived exosomes can yield data regarding genetic, transcriptional, and proteomic changes useful for diagnosis, prognosis, and therapy of DLBCL. At present, standardized techniques for isolating exosomes are lacking and discriminating between exosomes from neoplastic and normal B cells is challenging. Refinements in isolation procedures are required to realize their full potential as precision medicine tools to provide comprehensive information on disease subtypes, identify prognostic factors, allow real-time monitoring of therapy response and delineate novel drug targets.
Collapse
Affiliation(s)
- Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032
| | - Alex J Rai
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032
| |
Collapse
|
133
|
Si XL, Fang YJ, Li LF, Gu LY, Yin XZ, Jun-Tian, Yan YP, Pu JL, Zhang BR. From inflammasome to Parkinson's disease: Does the NLRP3 inflammasome facilitate exosome secretion and exosomal alpha-synuclein transmission in Parkinson's disease? Exp Neurol 2020; 336:113525. [PMID: 33161049 DOI: 10.1016/j.expneurol.2020.113525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
A pivotal neuropathological manifestation of synucleinopathies, like Parkinson's disease (PD), is the aggregation of α-synuclein. In a recent cell-to-cell transmission model of α-synuclein, α-synuclein propagation was demonstrated to resemble that of prion proteins in the central nervous system. Furthermore, exosomes, as biomolecule carriers, have been shown to transmit α-synuclein from neuron to neuron. However, the mechanisms underlying exosomal α-synuclein transmission have not been well understood. The NLR family pyrin domain containing 3 protein (NLRP3) inflammasome activation in microglia, and the subsequent release of proinflammatory cytokines, are two crucial pathological events involved in neuroinflammation and PD progression. Research has revealed that the NLRP3 inflammasome may facilitate the secretion of extracellular vesicles, as well as exosomal transmission of proteins like aggregated α-synuclein. However, only a few reports have evaluated these pathogenic mechanisms. Herein we evaluate for the first time the current evidence for the involvement of the NLRP3 inflammasome in microvesicle generation by microglial cells, and the various mechanisms regarding the production, shedding, and content of exosomes in relation to α-synuclein transmission from neuron to neuron. Furthermore, we propose a model of microglial NLRP3 inflammasome-dependent exosome secretion and exosomal α-synuclein transmission in PD. This knowledge may lead to the identification of novel potential targets for drug development and stimulate further research in PD.
Collapse
Affiliation(s)
- Xiao-Li Si
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yuan-Jian Fang
- Department of Neurosurgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ling-Fei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Lu-Yan Gu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xin-Zhen Yin
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jun-Tian
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ya-Ping Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
134
|
Cancer Extracellular Vesicles: Next-Generation Diagnostic and Drug Delivery Nanotools. Cancers (Basel) 2020; 12:cancers12113165. [PMID: 33126572 PMCID: PMC7692229 DOI: 10.3390/cancers12113165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are secreted continuously from different cell types. The composition of EVs, like proteins, nucleic acids and lipids is linked with the cells of origin and they are involved in cell-cell communication. The presence of EVs in the majority of the body fluids makes them attractive to investigate and define their role in physiological and in pathological processes. This review is focused on EVs with dimensions between 30 and 150 nm like exosomes (EEVs). We described the biogenesis of EEVs, methods for isolation and their role in cancer as innovative diagnostic tools and new drug delivery systems. Abstract Nanosized extracellular vesicles (EVs) with dimensions ranging from 100 to 1000 nm are continuously secreted from different cells in their extracellular environment. They are able to encapsulate and transfer various biomolecules, such as nucleic acids, proteins, and lipids, that play an essential role in cell‒cell communication, reflecting a novel method of extracellular cross-talk. Since EVs are present in large amounts in most bodily fluids, challengeable hypotheses are analyzed to unlock their potential roles. Here, we review EVs by discussing their specific characteristics (structure, formation, composition, and isolation methods), focusing on their key role in cell biology. Furthermore, this review will summarize the biomedical applications of EVs, in particular those between 30 and 150 nm (like exosomes), as next-generation diagnostic tools in liquid biopsy for cancer and as novel drug delivery vehicles.
Collapse
|
135
|
Scholl JN, Dias CK, Muller L, Battastini AMO, Figueiró F. Extracellular vesicles in cancer progression: are they part of the problem or part of the solution? Nanomedicine (Lond) 2020; 15:2625-2641. [PMID: 33094653 DOI: 10.2217/nnm-2020-0256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are released especially by cancer cells. They modulate the tumor microenvironment by interacting with immune cells while carrying immunosuppressive or immunostimulatory molecules. In this review, we will explore some conflicting reports regarding the immunological outcomes of EVs in cancer progression, in which they might initiate an antitumor immune response or an immunosuppressive response. Concerning immunosuppression, the role of tumor-derived EVs' in the adenosinergic system is underexplored. The enhancement of adenosine (ADO) levels in the tumor microenvironment impairs T-cell function and cytokine release. However, some tumor-derived EVs may deliver immunostimulatory factors, promoting immunogenic activity, even with ADO production. The modulatory role of ADO over the tumor progression represents a piece in an intricate microenvironment with anti and pro tumoral seesaw-like mechanisms.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Laurent Muller
- Department of Otolaryngology, Head & Neck Surgery, University of Basel, Basel, 4031, Switzerland
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
136
|
Identification of Lymphatic and Hematogenous Routes of Rapidly Labeled Radioactive and Fluorescent Exosomes through Highly Sensitive Multimodal Imaging. Int J Mol Sci 2020; 21:ijms21217850. [PMID: 33105908 PMCID: PMC7660226 DOI: 10.3390/ijms21217850] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
There has been considerable interest in the clinical use of exosomes as delivery vehicles for treatments as well as for promising diagnostic biomarkers, but the physiological distribution of exosomes must be further elucidated to validate their efficacy and safety. Here, we aimed to develop novel methods to monitor exosome biodistribution in vivo using positron emission tomography (PET) and optical imaging. Exosomes were isolated from cultured mouse breast cancer cells and labeled for PET and optical imaging. In mice, radiolabeled and fluorescently labeled exosomes were injected both via lymphatic and hematogenous metastatic routes. PET and fluorescence images were obtained and quantified. Radioactivity and fluorescence intensity of ex vivo organs were measured. PET signals from exosomes in the lymphatic metastatic route were observed in the draining sentinel lymph nodes. Immunohistochemistry revealed greater exosome uptake in brachial and axillary versus inguinal lymph nodes. Following administration through the hematogenous metastasis pathway, accumulation of exosomes was clearly observed in the lungs, liver, and spleen. Exosomes from tumor cells were successfully labeled with 64Cu (or 68Ga) and fluorescence and were visualized via PET and optical imaging, suggesting that this simultaneous and rapid labeling method could provide valuable information for further exosome translational research and clinical applications.
Collapse
|
137
|
Gharbi T, Zhang Z, Yang GY. The Function of Astrocyte Mediated Extracellular Vesicles in Central Nervous System Diseases. Front Cell Dev Biol 2020; 8:568889. [PMID: 33178687 PMCID: PMC7593543 DOI: 10.3389/fcell.2020.568889] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocyte activation plays an important role during disease-induced inflammatory response in the brain. Exosomes in the brain could be released from bone marrow (BM)-derived stem cells, neuro stem cells (NSC), mesenchymal stem cells (MSC), etc. We summarized that exosomes release and transport signaling to the target cells, and then produce function. Furthermore, we discussed the pathological interactions between astrocytes and other brain cells, which are related to brain diseases such as stroke, Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) disease, multiple sclerosis (MS), psychiatric, traumatic brain injury (TBI), etc. We provide up-to-date, comprehensive and valuable information on the involvement of exosomes in brain diseases, which is beneficial for basic researchers and clinical physicians.
Collapse
Affiliation(s)
- Tahereh Gharbi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
138
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
139
|
Lin PW, Chu ML, Liu HS. Autophagy and metabolism. Kaohsiung J Med Sci 2020; 37:12-19. [PMID: 33021078 DOI: 10.1002/kjm2.12299] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolism consists of diverse life-sustaining chemical reactions in living organisms. Autophagy is a highly conservative process that responds to various internal and external stresses. Both processes utilize surrounding resources to provide energy and nutrients for the cell. Autophagy progression may proceed to the degradative or secretory pathway determined by Rab family proteins. The former is a degradative and lysosome-dependent catabolic process that produces energy and provides nutrients for the synthesis of essential proteins. The degradative pathway also balances the energy source of the cell and regulates tissue homeostasis. The latter is a newly discovered pathway in which the autophagosome is fused with the plasma membrane. Secretory autophagy participates in diverse functions and diseases ranging from the spread of viral particles to cancer and neurodegenerative diseases. Aberrant metabolism in the body causes various metabolic syndromes. This review explores the relationships among autophagy, metabolism, and related diseases.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
140
|
Negahdaripour M, Owji H, Eskandari S, Zamani M, Vakili B, Nezafat N. Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opin Biol Ther 2020; 21:371-394. [PMID: 32945228 DOI: 10.1080/14712598.2021.1825677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are cell-created delivery systems of proteins, lipids, or nucleic acids, and means of extracellular communication. Though sEVs were initially considered to be the waste disposal mechanism, today they are at the forefront of research with different biological and pathological functions. Such EVs play a key role in the immunoregulation, CNS development, nervous system physiology, mammary gland development, induction of immunosuppression in pregnancy, the developmental signaling pathways, regeneration of different tissues, inflammation, angiogenesis, coagulation, apoptosis, stem cell differentiation, and extracellular matrix turnover. AREAS COVERED SEVs contribute to the pathogenesis of different cancers and the progression of various neurodegenerative diseases, infections, as well as metabolic and cardiovascular diseases. Expert Opinion: There is no exact classification for EVs; however, according to size, density, morphological features, content, and biogenesis, they can be categorized into three major classes: microvesicles (ectosomes or microparticles), apoptotic bodies, and sEVs. SEVs, as an important class of EVs, have a crucial role in distinct biological functions. Moreover, shedding light on different structural and molecular aspects of sEV has led to their application in various therapeutic, diagnostic, and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of EVs, especially sEVs.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hajar Owji
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
141
|
Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, McGwire BS, Satoskar AR, Parinandi NL. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. ACTA ACUST UNITED AC 2020; 4. [PMID: 33089078 PMCID: PMC7575144 DOI: 10.20517/2574-1209.2020.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vascular endothelium is a vital component in maintaining the structure and function of blood vessels. The endothelial cells (ECs) mediate vital regulatory functions such as the proliferation of cells, permeability of various tissue membranes, and exchange of gases, thrombolysis, blood flow, and homeostasis. The vascular endothelium also regulates inflammation and immune cell trafficking, and ECs serve as a replicative niche for many bacterial, viral, and protozoan infectious diseases. Endothelial dysfunction can lead to vasodilation and pro-inflammation, which are the hallmarks of many severe diseases. Exosomes are nanoscale membrane-bound vesicles that emerge from cells and serve as important extracellular components, which facilitate communication between cells and maintain homeostasis during normal and pathophysiological states. Exosomes are also involved in gene transfer, inflammation and antigen presentation, and mediation of the immune response during pathogenic states. Protozoa are a diverse group of unicellular organisms that cause many infectious diseases in humans. In this regard, it is becoming increasingly evident that many protozoan parasites (such as Plasmodium, Trypanosoma, Leishmania, and Toxoplasma) utilize exosomes for the transfer of their virulence factors and effector molecules into the host cells, which manipulate the host gene expression, immune responses, and other biological activities to establish and modulate infection. In this review, we discuss the role of the vascular endothelium and exosomes in and their contribution to pathogenesis in malaria, African sleeping sickness, Chagas disease, and leishmaniasis and toxoplasmosis with an emphasis on their actions on the innate and adaptive immune mechanisms of resistance.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA.,Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Erin A Holcomb
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Jodi C McDaniel
- College of Nursing, The Ohio State University, Columbus, OH 43201, USA
| | - Manjula Karpurapu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Nidhi Srivastava
- Department of Bioscience & Biotechnology, Banasthali University, Banasthali 304022, India
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Abhay R Satoskar
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43201, USA
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43201, USA
| |
Collapse
|
142
|
Beeraka NM, Doreswamy SH, Sadhu SP, Srinivasan A, Pragada RR, Madhunapantula SV, Aliev G. The Role of Exosomes in Stemness and Neurodegenerative Diseases-Chemoresistant-Cancer Therapeutics and Phytochemicals. Int J Mol Sci 2020; 21:ijms21186818. [PMID: 32957534 PMCID: PMC7555629 DOI: 10.3390/ijms21186818] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes exhibit a wide range of biological properties and functions in the living organisms. They are nanometric vehicles and used for delivering drugs, as they are biocompatible and minimally immunogenic. Exosomal secretions derived from cancer cells contribute to metastasis, immortality, angiogenesis, tissue invasion, stemness and chemo/radio-resistance. Exosome-derived microRNAs (miRNAs) and long non-coding RNAs (lnc RNAs) are involved in the pathophysiology of cancers and neurodegenerative diseases. For instance, exosomes derived from mesenchymal stromal cells, astrocytes, macrophages, and acute myeloid leukemia (AML) cells are involved in the cancer progression and stemness as they induce chemotherapeutic drug resistance in several cancer cells. This review covered the recent research advances in understanding the role of exosomes in cancer progression, metastasis, angiogenesis, stemness and drug resistance by illustrating the modulatory effects of exosomal cargo (ex. miRNA, lncRNAs, etc.) on cell signaling pathways involved in cancer progression and cancer stem cell growth and development. Recent reports have implicated exosomes even in the treatment of several cancers. For instance, exosomes-loaded with novel anti-cancer drugs such as phytochemicals, tumor-targeting proteins, anticancer peptides, nucleic acids are known to interfere with drug resistance pathways in several cancer cell lines. In addition, this review depicted the need to develop exosome-based novel diagnostic biomarkers for early detection of cancers and neurodegenerative disease. Furthermore, the role of exosomes in stroke and oxidative stress-mediated neurodegenerative diseases including Alzheimer’s disease (AD), and Parkinson’s disease (PD) is also discussed in this article.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (N.M.B.); (S.H.D.)
| | - Shalini H. Doreswamy
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (N.M.B.); (S.H.D.)
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India; (S.P.S.); (R.R.P.)
| | - Asha Srinivasan
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Rajeswara Rao Pragada
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India; (S.P.S.); (R.R.P.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Correspondence: (S.V.M.); or (G.A.); Tel.: +1-440-263-7461 or +7-964-493-1515 (G.A.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
- Correspondence: (S.V.M.); or (G.A.); Tel.: +1-440-263-7461 or +7-964-493-1515 (G.A.)
| |
Collapse
|
143
|
Zhou ZR, Wang XY, Lv J, Qian RC. A polydopamine-based biomimetic multifunctional nanoplatform for multilayer imaging of cancer biomarkers carried by extracellular vesicles. Analyst 2020; 145:6061-6070. [PMID: 32780057 DOI: 10.1039/d0an01428a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer-derived extracellular vesicles (EVs) have attracted considerable attention for clinical diagnosis. However, a limiting factor in current EV assays is the ability to detect various EV cancer biomarkers expressed at different locations. Here, we report a biomimetic multifunctional nanoplatform for multilayer imaging of cancer biomarkers from the EV surface to the interior without complex pretreatment. Constructed from polydopamine-wrapped gold nanoparticles modified with multiple functional molecules, this nanoplatform can capture EVs from complex samples and target different EV cancer biomarkers for imaging analysis at the single-vesicle level. Combined with 96-well plates, this assay can distinguish cancer cell-derived EVs from normal ones in a high-throughput manner. Using serum samples, EVs from hepatocellular carcinoma (HCC) patients can be distinguished from healthy controls. This convenient workflow represents a promising tool for EV-based cancer diagnosis.
Collapse
Affiliation(s)
- Ze-Rui Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | | | | | | |
Collapse
|
144
|
Rapid isolation and proteome analysis of urinary exosome based on double interactions of Fe 3O 4@TiO 2-DNA aptamer. Talanta 2020; 221:121571. [PMID: 33076118 DOI: 10.1016/j.talanta.2020.121571] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
There are accumulating evidence that proteins carried by exosomes in urine are most possibly used as biomarkers or therapeutic carriers for certain diseases. The isolation of exosomes is therefore highly desirable for aiding the downstream protein analysis. Particularly, urine is a dynamic biological fluid changing within a short time, resulting in that the separation of urinary exosome requires more efficient technology. Here, a new biocompatible material (denoted as Fe3O4@TiO2-CD63 aptamer) is designed and synthesized for rapid exosome isolation from human urine, depending on the double interactions of TiO2 with phosphate groups as well as aptamers with specific exosome proteins. Moreover, within 10 min, 92.6% exosomes with intact structure are captured from urine by Fe3O4@TiO2-CD63 aptamers, from which 999 proteins are detected through LC-MS/MS.
Collapse
|
145
|
Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12:814-840. [PMID: 32952861 PMCID: PMC7477653 DOI: 10.4252/wjsc.v12.i8.814] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/23/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities. The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes. Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange. MSC-derived exosomes (MSC-Exos) have potential for cell-free therapy for diseases of, for instance, the kidney, liver, heart, nervous system, and musculoskeletal system. Hence, MSC-Exos are an alternative to MSC-based therapy for regenerative medicine. We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.
Collapse
Affiliation(s)
- Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jing-Jing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhao-Yang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong 030600, Shaanxi Province, China
| | - Xue-Xi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
146
|
Li S, Tang Y, Dou Y. The Potential of Milk-Derived Exosomes for Drug Delivery. Curr Drug Deliv 2020; 18:688-699. [PMID: 32807052 DOI: 10.2174/1567201817666200817112503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Exosomes, one of the extracellular vesicles, are widely present in all biological fluids and play an important role in intercellular communication. Due to their hydrophobic lipid bilayer and aqueous hydrophilic core structure, they are considered a possible alternative to liposome drug delivery systems. Not only do they protect the cargo like liposomes during delivery, but they are also less toxic and better tolerated. However, due to the lack of sources and methods for obtaining enough exosomes, the therapeutic application of exosomes as drug carriers is limited. METHODS A literature search was performed using the ScienceDirect and PubMed electronic databases to obtain information from published literature on milk exosomes related to drug delivery. RESULTS Here, we briefly reviewed the current knowledge of exosomes, expounded the advantages of milk-derived exosomes over other delivery vectors, including higher yield, the oral delivery characteristic and additional therapeutic benefits. The purification and drug loading methods of milk exosomes, and the current application of milk exosomes were also introduced. CONCLUSION The emergence of milk-derived exosomes is expected to break through the limitations of exosomes as therapeutic carriers of drugs. We hope to raise awareness of the therapeutic potential of milk-derived exosomes as a new drug delivery system.
Collapse
Affiliation(s)
- Shuyuan Li
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Tang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yushun Dou
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
147
|
Stenz KT, Just J, Blauenfeldt RA, Drasbek KR. Extracellular Vesicles in Acute Stroke Diagnostics. Biomedicines 2020; 8:biomedicines8080248. [PMID: 32731351 PMCID: PMC7459954 DOI: 10.3390/biomedicines8080248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
There is a large unmet need for fast and reliable diagnostics in several diseases. One such disease is stroke, where the efficacy of modern reperfusion therapies is highly time-dependent. Diagnosis of stroke and treatment initiation should be performed as soon as possible, and preferably before arrival at the stroke center. In recent years, several potential blood biomarkers for stroke have been evaluated, but without success. In this review, we will go into detail on the possibility of utilizing extracellular vesicles (EVs) released into the blood as novel biomarkers for stroke diagnostics. EVs are known to reflect the immediate state of the secreting cells and to be able to cross the blood–brain barrier, thus making them attractive as diagnostic biomarkers of brain diseases. Indeed, several studies have reported EV markers that enable differentiation between stroke patients and controls and, to a lesser extent, the ability to correctly classify the different stroke types. Most of the studies rely on the use of sophisticated and time-consuming methods to quantify specific subpopulations of the nanosized EVs. As these methods cannot be easily implemented in a rapid point of care (POC) test, technical developments followed by prospective clinical studies are needed.
Collapse
Affiliation(s)
- Katrine Tang Stenz
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (K.T.S.); (J.J.)
- Sino-Danish Center for Education and Research, Beijing 101400, China
- Sino-Danish Center for Education and Research, DK-8000 Aarhus, Denmark
| | - Jesper Just
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (K.T.S.); (J.J.)
- Sino-Danish Center for Education and Research, Beijing 101400, China
- Sino-Danish Center for Education and Research, DK-8000 Aarhus, Denmark
| | - Rolf Ankerlund Blauenfeldt
- Department of Neurology, Aarhus University Hospital, DK-8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | - Kim Ryun Drasbek
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, DK-8000 Aarhus, Denmark; (K.T.S.); (J.J.)
- Sino-Danish Center for Education and Research, Beijing 101400, China
- Sino-Danish Center for Education and Research, DK-8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-3027-4779
| |
Collapse
|
148
|
Paul D, Roy A, Nandy A, Datta B, Borar P, Pal SK, Senapati D, Rakshit T. Identification of Biomarker Hyaluronan on Colon Cancer Extracellular Vesicles Using Correlative AFM and Spectroscopy. J Phys Chem Lett 2020; 11:5569-5576. [PMID: 32573237 DOI: 10.1021/acs.jpclett.0c01018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Extracellular vesicles (EVs), naturally occurring nanosized vesicles secreted from cells, are essential for intercellular communication. They carry unique biomolecules on the surface or interior that are of great interest as biomarkers for various pathological conditions such as cancer. In this work, we use high-resolution atomic force microscopy (AFM) and spectroscopy (AFS) techniques to demonstrate differences between EVs derived from colon cancer cells and colon epithelial cells at the single-vesicle level. We observe that EV populations are significantly increased in the cancer cell media compared to the normal cell EVs. We show that both EVs display an EV marker, CD9, while EVs derived from the cancer cells are slightly higher in density. Hyaluronan (HA) is a nonsulfated glycosaminoglycan linked to malignant tumor growth according to recent reports. Interestingly, at the single-vesicle level, colon cancer EVs exhibit significantly increased HA surface densities compared to the normal EVs. Spectroscopic measurements such as Fourier transform infrared (FT-IR), circular dichroism (CD), and Raman spectroscopy unequivocally support the AFM and AFS measurements. To our knowledge, it represents the first report of detecting HA-coated EVs as a potential colon cancer biomarker. Taken together, this sensitive approach will be useful in identifying biomarkers in the early stages of detection and evaluation of cancer.
Collapse
Affiliation(s)
- Debashish Paul
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake City, Kolkata 700106, India
| | - Anuradha Roy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Arpita Nandy
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Brateen Datta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake City, Kolkata 700106, India
| | - Prateeka Borar
- Department of Biophysics, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake City, Kolkata 700106, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Tatini Rakshit
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector - III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
149
|
Mohan A, Agarwal S, Clauss M, Britt NS, Dhillon NK. Extracellular vesicles: novel communicators in lung diseases. Respir Res 2020; 21:175. [PMID: 32641036 PMCID: PMC7341477 DOI: 10.1186/s12931-020-01423-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The lung is the organ with the highest vascular density in the human body. It is therefore perceivable that the endothelium of the lung contributes significantly to the circulation of extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies. In addition to the endothelium, EVs may arise from alveolar macrophages, fibroblasts and epithelial cells. Because EVs harbor cargo molecules, such as miRNA, mRNA, and proteins, these intercellular communicators provide important insight into the health and disease condition of donor cells and may serve as useful biomarkers of lung disease processes. This comprehensive review focuses on what is currently known about the role of EVs as markers and mediators of lung pathologies including COPD, pulmonary hypertension, asthma, lung cancer and ALI/ARDS. We also explore the role EVs can potentially serve as therapeutics for these lung diseases when released from healthy progenitor cells, such as mesenchymal stem cells.
Collapse
Affiliation(s)
- Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Matthias Clauss
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
150
|
Guo C, Liu J, Zhou Q, Song J, Zhang Z, Li Z, Wang G, Yuan W, Sun Z. Exosomal Noncoding RNAs and Tumor Drug Resistance. Cancer Res 2020; 80:4307-4313. [PMID: 32641408 DOI: 10.1158/0008-5472.can-20-0032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Tumor drug resistance is a major challenge in the treatment of cancer. Noncoding RNAs (ncRNA) play a role in the progression of drug resistance. Recent studies have indicated that exosomes, with their in vitro and in vivo compatibility, are the best natural carrier of ncRNA, and their transport of ncRNA into cells could regulate drug resistance. Exosomal ncRNA impact drug resistance through participation in drug efflux, regulation of signaling pathways, and modification of the tumor microenvironment. In this review, we evaluate the mechanism of exosomal ncRNA related to tumor drug resistance, their role in different tumors, and potential clinical applications.
Collapse
Affiliation(s)
- Chengyao Guo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junmin Song
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|