101
|
Kobayashi K, Kato T, Yamamoto I, Shimizu A, Mizutani S, Asai M, Kawamoto H, Ito S, Yoshizumi T, Hirayama M, Ozaki S, Ohta H, Okamoto O. Optimization of benzimidazole series as opioid receptor-like 1 (ORL1) antagonists: SAR study directed toward improvement of selectivity over hERG activity. Bioorg Med Chem Lett 2009; 19:3100-3. [DOI: 10.1016/j.bmcl.2009.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 11/25/2022]
|
102
|
Nociceptin receptor antagonist JTC-801 inhibits nitrous oxide-induced analgesia in mice. J Anesth 2009; 23:301-3. [DOI: 10.1007/s00540-009-0739-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 01/08/2009] [Indexed: 10/20/2022]
|
103
|
Fischetti C, Camarda V, Rizzi A, Pelà M, Trapella C, Guerrini R, McDonald J, Lambert DG, Salvadori S, Regoli D, Calo' G. Pharmacological characterization of the nociceptin/orphanin FQ receptor non peptide antagonist Compound 24. Eur J Pharmacol 2009; 614:50-7. [PMID: 19445927 DOI: 10.1016/j.ejphar.2009.04.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/16/2009] [Accepted: 04/29/2009] [Indexed: 11/16/2022]
Abstract
Compound 24, 1-benzyl-N-[3-[spiroisobenzofuran-1(3H),4'-piperidin-1-yl]propyl] pyrrolidine-2-carboxamide was recently identified as a nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) ligand. In this study, the in vitro and in vivo pharmacological profiles of Compound 24 were investigated. In vitro studies were performed measuring receptor and [(35)S]GTPgammaS binding and calcium mobilization in cells expressing the recombinant NOP receptor as well as using N/OFQ sensitive tissues. In vivo studies were conducted using the tail withdrawal assay in mice. Compound 24 produced a concentration-dependent displacement of [(3)H]N/OFQ binding to CHO(hNOP) cell membranes showing high affinity (pK(i) 9.62) and selectivity (1000 fold) over classical opioid receptors. Compound 24 antagonized with high potency the following in vitro effects of N/OFQ: stimulation of [(35)S]GTPgammaS binding in CHO(hNOP) cell membranes (pA(2) 9.98), calcium mobilization in CHO(hNOP) cells expressing the Galpha(qi5) chimeric protein (pK(B) 8.73), inhibition of electrically evoked twitches in the mouse (pA(2) 8.44) and rat (pK(B) 8.28) vas deferens, and in the guinea pig ileum (pK(B) 9.12). In electrically stimulated tissues, Compound 24 up to 1 microM did not modify the effects of classical opioid receptor agonists. Finally in vivo, in the mouse tail withdrawal assay, Compound 24 at 10 mg/kg antagonized the pronociceptive and antinociceptive effects of 1 nmol N/OFQ given supraspinally and spinally, respectively. Under the same experimental conditions Compound 24 did not affect the antinociceptive action of 3 nmol endomorphin-1 injected intrathecally. The present study demonstrated that Compound 24 is a pure, competitive, and highly potent non-peptide NOP receptor selective antagonist.
Collapse
Affiliation(s)
- Carmela Fischetti
- Department Experimental and Clinical Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Khroyan TV, Polgar WE, Orduna J, Jiang F, Olsen C, Toll L, Zaveri NT. Activity of new NOP receptor ligands in a rat peripheral mononeuropathy model: potentiation of morphine anti-allodynic activity by NOP receptor antagonists. Eur J Pharmacol 2009; 610:49-54. [PMID: 19285491 DOI: 10.1016/j.ejphar.2009.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/19/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
The effect of new NOP receptor agonists and antagonists in the rat chronic constriction injury model was investigated. Intraperitoneally administered NOP receptor agonist SR14150 and antagonists SR16430 and SR14148, had no effect on mechanical allodynia when given alone. The nonselective NOP/mu-opioid receptor agonist SR16435, however, produced an anti-allodynic response, similar to morphine and reversible by naloxone. Notably, co-administration of the NOP receptor antagonists potentiated the anti-allodynic activity of both morphine and SR16435. Increased levels of the NOP receptor are implicated in the reduced efficacy of morphine in neuropathic pain. Our results suggest the utility of NOP receptor antagonists for potentiating opioid efficacy in chronic pain.
Collapse
Affiliation(s)
- Taline V Khroyan
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Pharmacological profile of NOP receptors coupled with calcium signaling via the chimeric protein G alpha qi5. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2009; 379:599-607. [PMID: 19183962 DOI: 10.1007/s00210-009-0396-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
In this study, the Galpha(qi5) protein was used to force the human nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor to signal through the Ca(2+) pathway in CHO cells. [Ca(2+)](i) levels were monitored using the fluorometer FlexStation II and the Ca(2+) dye Fluo 4 AM. Concentration response curves were generated with a panel of full and partial agonists, while NOP antagonists were assessed in inhibition-response curves. The following rank order of potency of antagonists was measured: SB - 612111 > J - 113397 = Trap - 101 > or = UFP - 101 > [Nphe1]N/OF Q(1 - 13)NH2 >> naloxone, which is superimposable to literature findings. The rank order of potency of full and partial agonists is also similar to that obtained in previous studies with the exception of a panel of ligands (UFP-112, Ro 64-6198, ZP120, UFP-113) whose potency was relatively low in the Galpha(qi5)-NOP receptor calcium assay. Interestingly, these NOP ligands are characterized by slow kinetic of interaction with the NOP receptor, as demonstrated by bioassay experiments. These results demonstrated that the FlexStation II-Galpha(qi5)-NOP receptor calcium assay represents an adequate and useful screening for NOP receptor ligands, particularly for antagonists.
Collapse
|
106
|
The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 2008; 7:694-710. [DOI: 10.1038/nrd2572] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
107
|
Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest 2008; 118:2471-81. [PMID: 18551194 PMCID: PMC2423866 DOI: 10.1172/jci35115] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 05/07/2008] [Indexed: 11/17/2022] Open
Abstract
Stress-induced analgesia (SIA) is a key component of the defensive behavioral "fight-or-flight" response. Although the neural substrates of SIA are incompletely understood, previous studies have implicated the hypocretin/orexin (Hcrt) and nociceptin/orphanin FQ (N/OFQ) peptidergic systems in the regulation of SIA. Using immunohistochemistry in brain tissue from wild-type mice, we identified N/OFQ-containing fibers forming synaptic contacts with Hcrt neurons at both the light and electron microscopic levels. Patch clamp recordings in GFP-tagged mouse Hcrt neurons revealed that N/OFQ hyperpolarized, decreased input resistance, and blocked the firing of action potentials in Hcrt neurons. N/OFQ postsynaptic effects were consistent with opening of a G protein-regulated inwardly rectifying K+ (GIRK) channel. N/OFQ also modulated presynaptic release of GABA and glutamate onto Hcrt neurons in mouse hypothalamic slices. Orexin/ataxin-3 mice, in which the Hcrt neurons degenerate, did not exhibit SIA, although analgesia was induced by i.c.v. administration of Hcrt-1. N/OFQ blocked SIA in wild-type mice, while coadministration of Hcrt-1 overcame N/OFQ inhibition of SIA. These results establish what is, to our knowledge, a novel interaction between the N/OFQ and Hcrt systems in which the corticotropin-releasing factor and N/OFQ systems coordinately modulate the Hcrt neurons to regulate SIA.
Collapse
Affiliation(s)
- Xinmin Xie
- Biosciences Division, SRI International, Menlo Park, California 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Sakoori K, Murphy NP. Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology 2008; 33:877-91. [PMID: 17522627 DOI: 10.1038/sj.npp.1301459] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The opioid peptide nociceptin (orphanin FQ) suppresses drug reward, drug self-administration, and impedes some of the processes believed to underlie the transition to addiction. As virtually all previous studies have used administration of nociceptin receptor agonists to evaluate the role of nociceptin on addiction-like behavior, the current study used a pharmacological (nociceptin receptor antagonist) and genetic (nociceptin receptor knockout mice) approach to elucidate the role of endogenous nociceptin. The nociceptin receptor antagonist UFP-101 induced a modest place preference, and enhanced the conditioned place preference induced by methamphetamine. In agreement with this, nociceptin receptor knockout mice had slightly enhanced methamphetamine and ethanol conditioned place preferences compared to wild-type mice. This effect did not appear to depend on differences in learning ability, as nociceptin receptor knockout mice had slightly weaker-conditioned place aversions to lithium chloride, the kappa-opioid receptor agonist, U50488H, and the general opiate antagonist, naloxone. The development of behavioral sensitization to methamphetamine was lower in nociceptin receptor knockout mice, and attenuated by UFP-101 administration to wild-type mice. Additionally, ethanol consumption and preference in a two-bottle choice test was lower in nociceptin receptor knockout mice, though ethanol-stimulated locomotion was stronger. Whereas the rewarding effect of methamphetamine and ethanol following chronic treatment, as measured by place conditioning, strengthened in wild-type mice, this effect was absent in nociceptin receptor knockout mice. These results suggest that endogenous N/OFQ suppresses basal and drug-stimulated increases in hedonic state, and plays either a permissive or facilitatory role in the development of addiction.
Collapse
Affiliation(s)
- Kazuto Sakoori
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan
| | | |
Collapse
|
109
|
Abstract
BACKGROUND AND PURPOSE Compounds that activate both NOP and mu-opioid receptors might be useful as analgesics and drug abuse medications. Studies were carried out to better understand the biological activity of such compounds. EXPERIMENTAL APPROACH Binding affinities were determined on membranes from cells transfected with NOP and opioid receptors. Functional activity was determined by [(35)S]GTPgammaS binding on cell membranes and using the mouse vas deferens preparation in vitro and the tail flick antinociception assay in vivo. KEY RESULTS Compounds ranged in affinity from SR14150, 20-fold selective for NOP receptors, to buprenorphine, 50-fold selective for mu-opioid receptors. In the [(35)S]GTPgammaS assay, SR compounds ranged from full agonist to antagonist at NOP receptors and most were partial agonists at mu-opioid receptors. Buprenorphine was a low efficacy partial agonist at mu-opioid receptors, but did not stimulate [(35)S]GTPgammaS binding through NOP. In the mouse vas deferens, each compound, except for SR16430, inhibited electrically induced contractions. In each case, except for N/OFQ itself, the inhibition was due to mu-opioid receptor activation, as determined by equivalent results in NOP receptor knockout tissues. SR14150 showed antinociceptive activity in the tail flick test, which was reversed by the opioid antagonist naloxone. CONCLUSIONS AND IMPLICATIONS Compounds that bind to both mu-opioid and NOP receptors have antinociceptive activity but the relative contribution of each receptor is unclear. These experiments help characterize compounds that bind to both receptors, to better understand the mechanism behind their biological activities, and identify new pharmacological tools to characterize NOP and opioid receptors.
Collapse
|
110
|
Rizzi A, Spagnolo B, Wainford RD, Fischetti C, Guerrini R, Marzola G, Baldisserotto A, Salvadori S, Regoli D, Kapusta DR, Calo’ G. In vitro and in vivo studies on UFP-112, a novel potent and long lasting agonist selective for the nociceptin/orphanin FQ receptor. Peptides 2007; 28:1240-51. [PMID: 17532097 PMCID: PMC1975813 DOI: 10.1016/j.peptides.2007.04.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/27/2007] [Accepted: 04/30/2007] [Indexed: 11/18/2022]
Abstract
[(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112) has been designed as a novel ligand for the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) by combining into the same peptide different chemical modifications reported to increase N/OFQ potency. In vitro data obtained in the electrically stimulated mouse vas deferens demonstrated that UFP-112 behaved as a high potency (pEC(50) 9.43) full agonist at the NOP receptor. UFP-112 effects were sensitive to the NOP antagonist UFP-101 but not to naloxone and no longer evident in tissues taken from NOP(-/-) mice. In vitro half life of UFP-112 in mouse plasma and brain homogenate was 2.6- and 3.5-fold higher than that of N/OFQ. In vivo, in the mouse tail withdrawal assay, UFP-112 (1-100pmol, i.c.v.) mimicked the actions of N/OFQ producing pronociceptive effects after i.c.v. administration and antinociceptive effects when given i.t.; in both cases, UFP-112 was approximately 100-fold more potent than the natural peptide and produced longer lasting effects. UFP-112 also mimicked the hyperphagic effect of N/OFQ producing a bell shaped dose response curve with the maximum reached at 10pmol. The hyperphagic effects of N/OFQ and UFP-112 were absent in NOP(-/-) mice. Equi-effective high doses of UFP-112 (0.1nmol) and N/OFQ (10nmol) were injected i.c.v. in mice and spontaneous locomotor activity recorded for 16h. N/OFQ produced a clear inhibitory effect which lasted for 60min while UFP-112 elicited longer lasting effects (>6h). In conscious rats, UFP-112 (0.1 and 10nmol/kg, i.v.) produced a marked and sustained decrease in heart rate, blood pressure, and urinary sodium excretion and a profound increase in urine flow. Collectively, these findings demonstrate that UFP-112 behaves in vitro and in vivo as a highly potent and selective ligand able to produce full and long lasting activation of NOP receptors.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | - Barbara Spagnolo
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Carmela Fischetti
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | - Remo Guerrini
- Dept of Pharmaceutical Sciences and Biotechnology Centre, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | - Giuliano Marzola
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | - Anna Baldisserotto
- Dept of Pharmaceutical Sciences and Biotechnology Centre, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | - Severo Salvadori
- Dept of Pharmaceutical Sciences and Biotechnology Centre, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | - Domenico Regoli
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | - Daniel R Kapusta
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Girolamo Calo’
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy
- Corresponding author: Girolamo Calò, MD, PhD Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 19, 44100 Ferrara, Italy, ph: +39-0532-291 221 fax: +39-0532-291 205, e-mail:
| |
Collapse
|
111
|
Spagnolo B, Carrà G, Fantin M, Fischetti C, Hebbes C, McDonald J, Barnes TA, Rizzi A, Trapella C, Fanton G, Morari M, Lambert DG, Regoli D, Calò G. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: in vitro studies. J Pharmacol Exp Ther 2007; 321:961-7. [PMID: 17329552 DOI: 10.1124/jpet.106.116764] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The compound SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol] was recently identified as a selective antagonist for the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP). In the present study, the in vitro pharmacological profile of SB-612111 at human recombinant NOP receptors expressed in Chinese hamster ovary (CHO) cells [receptor binding, guanosine 5'-O-(3-[(35)S]thio)triphosphate (GTPgamma[(35)S]) binding, and cAMP level experiments] as well as at native NOP receptors expressed in peripheral (mouse and rat vas deferens, guinea pig ileum) and central (mouse cerebral cortex synaptosomes releasing [(3)H]5-HT) preparations was evaluated and compared with that of the standard nonpeptide antagonist (+/-)J-113397 [(+/-)-trans-1-[1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one]. SB-612111 produced a concentration-dependent displacement of [(3)H]N/OFQ binding to CHO(hNOP) cell membranes, showing higher affinity and NOP selectivity over classical opioid receptors than (+/-)J-113397. SB-612111 and (+/-)J-113397 competitively antagonized the effects of N/OFQ on GTPgamma[(35)S] binding in CHO(hNOP) cell membranes (pK(B), 9.70 and 8.71, respectively) and on cAMP accumulation in CHO(hNOP) cells (pK(B), 8.63 and 7.95, respectively), being per se inactive. In isolated peripheral tissues of mice, rats, and guinea pigs and in mouse cerebral cortex synaptosomes preloaded with [(3)H]5-HT, SB-612111 competitively antagonized the inhibitory effects of N/OFQ, with pA(2) values in the range of 8.20 to 8.50. In parallel experiments, (+/-)J-113397 was found to be 2- to 9-fold less potent than SB-612111. In the electrically stimulated tissues, 1 microM SB-612111 did not modify the effects of classical opioid receptor agonists. In conclusion, the results of the present study demonstrated that SB-612111 is among the most potent and NOP-selective nonpeptide antagonists identified to date.
Collapse
Affiliation(s)
- Barbara Spagnolo
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Rizzi A, Gavioli EC, Marzola G, Spagnolo B, Zucchini S, Ciccocioppo R, Trapella C, Regoli D, Calò G. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: in vivo studies. J Pharmacol Exp Ther 2007; 321:968-74. [PMID: 17329551 DOI: 10.1124/jpet.106.116780] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The excellent pharmacological profile displayed by the selective nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol] in vitro prompted us to investigate the actions of this compound in vivo. In the mouse tail withdrawal assay, SB-612111 given i.p. up to 3 mg/kg did not modify per se tail withdrawal latencies but was able to prevent the pronociceptive and the antinociceptive action of 1 nmol of N/OFQ given i.c.v. and i.t., respectively. In food intake studies performed in sated mice, SB-612111 (1 mg/kg i.p.) had no effect on food consumption but fully prevented the orexigenic effect of 1 nmol of N/OFQ i.c.v. In 17-h food-deprived mice, the opioid receptor antagonist naltrexone (1 mg/kg s.c.), but not SB-612111 (1 and 10 mg/kg i.p.), produced a statistically significant reduction of food intake. In the mouse forced swimming and tail suspension tests, SB-612111 (1-10 mg/kg) reduced immobility time. The antidepressant-like effect elicited by SB-612111 in the forced swimming test was reversed by the i.c.v. injection of 1 nmol of N/OFQ and no longer evident in mice knockout for the NOP receptor gene. In conclusion, the present findings demonstrate that SB-612111 behaves in vivo as a potent and selective NOP antagonist and suggest that the N/OFQ-NOP receptor endogenous system plays an important role in regulating mood-related behaviors. The use of SB-612111 in future pathophysiological studies will certainly contribute to define the therapeutic potential of selective NOP receptor antagonists in different disease areas.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Khroyan TV, Zaveri NT, Polgar WE, Orduna J, Olsen C, Jiang F, Toll L. SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice. J Pharmacol Exp Ther 2006; 320:934-43. [PMID: 17132815 DOI: 10.1124/jpet.106.111997] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We identified a novel nociceptin/orphanin FQ (NOP)/mu-opioid receptor agonist, SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], with high binding affinity and partial agonist activity at both receptors. It was hypothesized that SR 16435 would produce antinociception and yet, unlike morphine, would have diminished rewarding properties and tolerance development. Antinociception was assessed in mice using the tail-flick assay, whereas behavioral and rewarding effects were assessed using the place conditioning (PC) paradigm. PC was established by pairing drug injections with a distinct compartment. Behavioral effects were measured after acute and repeated drug administration, and the test for PC was carried out 24 h after four drug- and vehicle-pairing sessions. SR 16435 produced an increase in tail-flick latency, but SR 16435-induced antinociception was lower than that observed with morphine. Given that naloxone blocked SR 16435-induced antinociception, it is highly likely that this effect was mediated by mu-opioid receptors. Compared with morphine, chronic SR 16435 treatment resulted in reduced development of tolerance to its antinociceptive effects. SR 16435-induced conditioned place preference (CPP) was evident, an effect that was probably mediated via mu-opioid receptors, as it was reversed by coadministration of naloxone. NOP agonist activity was also present, given that SR 16435 decreased global activity, and this effect was partially reversed with the selective NOP antagonist, SR 16430 [1-(cyclooctylmethyl)-4-(3-(trifluoromethyl)phenyl)piperidin-4-ol]. Naloxone, however, also reversed the SR 16435-induced decrease in activity, indicating that both opioid and NOP receptors mediate this behavior. In summary, the mixed NOP/mu-opioid partial agonist SR 16435 exhibited both NOP and mu-opioid receptor-mediated behaviors.
Collapse
Affiliation(s)
- Taline V Khroyan
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
114
|
Rizzi A, Nazzaro C, Marzola GG, Zucchini S, Trapella C, Guerrini R, Zeilhofer HU, Regoli D, Calo' G. Endogenous nociceptin/orphanin FQ signalling produces opposite spinal antinociceptive and supraspinal pronociceptive effects in the mouse formalin test: pharmacological and genetic evidences. Pain 2006; 124:100-8. [PMID: 16697109 DOI: 10.1016/j.pain.2006.03.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 03/14/2006] [Accepted: 03/27/2006] [Indexed: 11/18/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) has been demonstrated to modulate nociceptive transmission via selective activation of N/OFQ peptide (NOP) receptors. Despite huge research efforts, the role(s) of the endogenous N/OFQ-NOP receptor system in pain processing remains incompletely understood. In the present study, we investigated the role of endogenous N/OFQ in the processing of tonic nociceptive input. To address this issue the effects of NOP-selective antagonists [Nphe1,Arg14,Lys15]N/OFQ-NH2 (UFP-101) and J-113397 on nociceptive behaviour, and the nociceptive phenotype of NOP receptor-deficient mice were tested in the mouse formalin test. Twenty microliters of 1.5% formalin solution was injected subcutaneously into the right hind paw causing a characteristic pattern of nociceptive behaviours (licking, biting and lifting of the injected paw). In control mice, the injection of formalin resulted in a classical biphasic nociceptive response with the first phase lasting from 0 to 10 min and the second phase from 15 to 45 min. UFP-101 at 10 nmol/mouse (but not at 1 nmol/mouse) produced antinociceptive action when injected intracerebroventricularly and a pronociceptive action when given intrathecally. Systemic administration of J-113397 (10 mg/kg, intravenously) and the genetic ablation of the NOP receptor gene both produced a significant increase of mouse nociceptive behaviour. Collectively, these results demonstrate that endogenous N/OFQ-NOP receptor signalling is activated during the mouse formalin test producing spinal antinociceptive and supraspinal pronociceptive effects. The overall effect of blocking NOP receptor signalling, by either systemic pharmacological antagonism or genetic ablation, indicates that the spinal antinociceptive action prevails over supraspinal pronociceptive effects.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Gunduz O, Sipos F, Spagnolo B, Kocsis L, Magyar A, Orosz G, Borsodi A, Calò G, Benyhe S. In vitro binding and functional studies of Ac-RYYRIK-ol and its derivatives, novel partial agonists of the nociceptin/orphanin F/Q receptor. Neurosignals 2006; 15:91-101. [PMID: 16874009 DOI: 10.1159/000094743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 06/07/2006] [Indexed: 11/19/2022] Open
Abstract
Following the discovery of nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) and its endogenous ligand, an extensive search has started to find selective agonists and antagonists targeting this novel receptor-ligand system due to their therapeutic potentials. By the help of the combinatorial chemistry a series of hexapeptides with a general formula of Ac-RYY-R/K-W/I-R/K-NH(2) having high NOP receptor affinity and selectivity were identified. On the basis of this information we developed a number of novel compounds. The detailed structure-activity studies on the partial agonist Ac-RYYRIK-NH(2) are reported in this communication. Besides the modifications on N- and C-terminal, Arg-Cit exchange was performed on the template structure. The novel hexapeptides were analyzed in radioligand binding, functional biochemical [(35)S]GTPgammaS binding assays by using membranes from rat brains and Chinese hamster ovary cells expressing human NOP receptor. The agonist/antagonist properties were also tested on in the mouse vas deferens bioassay. C-terminal modification yielded a high affinity, selective and potent NOP ligand (Ac-RYYRIK-ol) with a partial agonist property. Several analogs of this compound were synthesized. The presence of the positively charged arginine residue at the first position turned out to be crucial for the biological activity of the hexapeptide. The N-terminal modifications with various acyl groups (ClAc, pivaloyl, formyl, benzoyl, mesyl) decreased the affinity of the ligand towards the receptor and the intrinsic activity for stimulating the G-protein activation was also decreased. The structure-activity studies on the hexapeptide derivatives provided some basic information on the structural requirements for receptor binding and activation.
Collapse
Affiliation(s)
- Ozge Gunduz
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Sugimoto Y, Shimizu A, Kato T, Satoh A, Ozaki S, Ohta H, Okamoto O. Design, synthesis, and biological evaluation of indole derivatives as novel nociceptin/orphanin FQ (N/OFQ) receptor antagonists. Bioorg Med Chem Lett 2006; 16:3569-73. [PMID: 16621546 DOI: 10.1016/j.bmcl.2006.03.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/10/2006] [Accepted: 03/24/2006] [Indexed: 11/16/2022]
Abstract
A novel series of 2-(1,2,4-oxadiazol-5-yl)-1H-indole derivatives as nociceptin/orphanin FQ (N/OFQ) receptor antagonists was discovered. Systematic modification of our original lead by changing the pendant functional groups, linker, heterocyclic core, and basic side chain revealed the structure-activity requirements for this novel template and resulted in the identification of more potent analog with improved potency as compared to the parent compound.
Collapse
Affiliation(s)
- Yuichi Sugimoto
- Banyu Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Okubo-3, Tsukuba 300-2611, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
117
|
Chung S, Pohl S, Zeng J, Civelli O, Reinscheid RK. Endogenous orphanin FQ/nociceptin is involved in the development of morphine tolerance. J Pharmacol Exp Ther 2006; 318:262-7. [PMID: 16595734 DOI: 10.1124/jpet.106.103960] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide orphanin FQ/nociceptin (OFQ/N) has been shown to counteract several effects of endogenous and exogenous opioids, and it has been proposed as an opioid-modulating agent involved in the development of morphine tolerance and dependence. However, conflicting results have been obtained from animal models using different protocols to induce morphine tolerance. Here, we report that both genetic and pharmacological blockade of OFQ/N signaling can effectively prevent development of morphine tolerance. OFQ/N knockout mice injected daily with low doses of morphine (10 mg/kg) fail to develop tolerance even after 3 weeks of treatment, whereas their wild-type litter mates show profound tolerance starting after 10 days. Likewise, coadministration of morphine together with the synthetic N/OFQ peptide antagonist, J-113397 (1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one), is able to block tolerance development in normal mice. These data indicate that release of endogenous OFQ/N after morphine administration might produce a gradual decline of analgesic potency, i.e., tolerance. Interestingly, tolerant and nontolerant groups of mice receiving repeated daily low morphine doses did not differ in their withdrawal behavior after naloxone injection. In contrast, mice receiving escalating doses of morphine developed analgesic tolerance independent of their OFQ/N genotype, whereas withdrawal symptoms were attenuated in OFQ/N-deficient animals. These results indicate that the endogenous OFQ/N system is differentially involved in morphine tolerance development and establishment of opiate dependence, depending on the specific morphine dosage regimen. Furthermore, it suggests that OFQ/N antagonists could provide a novel therapeutic strategy to attenuate morphine tolerance development.
Collapse
Affiliation(s)
- Shinjae Chung
- Department of Pharmacology, Program in Pharmaceutical Sciences, University of California, 360 Med Surge II, Irvine, CA 92697-4625, USA
| | | | | | | | | |
Collapse
|
118
|
Gündüz O, Rizzi A, Baldisserotto A, Guerrini R, Spagnolo B, Gavioli EC, Kocsis L, Magyar A, Benyhe S, Borsodi A, Calò G. In vitro and in vivo pharmacological characterization of the nociceptin/orphanin FQ receptor ligand Ac-RYYRIK-ol. Eur J Pharmacol 2006; 539:39-48. [PMID: 16682024 DOI: 10.1016/j.ejphar.2006.03.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 03/06/2006] [Accepted: 03/29/2006] [Indexed: 11/19/2022]
Abstract
It was recently reported that the hexapeptide Ac-RYYRIK-ol binds with high affinity nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptors and competitively antagonizes N/OFQ actions in the mouse vas deferens assay. Here we further describe the in vitro and in vivo pharmacological features of this NOP receptor ligand. In mouse brain homogenate the degradation half life of Ac-RYYRIK-ol (2.48 min) was significantly higher than that of the parent compound Ac-RYYRIK-NH2 (1.20 min). In the electrically stimulated mouse vas deferens, Ac-RYYRIK-ol (10-1000 nM) competitively antagonized the inhibitory effect of N/OFQ (pA2=8.46), while in the isolated mouse colon the hexapeptide mimicked N/OFQ contractile effects thus behaving as a NOP receptor agonist (pEC50=9.09). This latter effect was no longer evident in colon tissues taken from mice knock out for the NOP receptor gene (NOP-/-). In vivo in mice, similarly to N/OFQ, Ac-RYYRIK-ol (dose range 0.001-1 nmol) produced: i) pronociceptive effects after intracerebroventricular (i.c.v.) administration and antinociceptive actions when given intrathecally (i.t.) in the tail withdrawal assay; ii) inhibition of locomotor activity and iii) stimulation of food intake after supraspinal administration. Finally, in the forced swimming test, Ac-RYYRIK-ol was inactive per se, but reversed the antidepressant-like effects elicited by the NOP receptor selective antagonist UFP-101 ([Nphe(1),Arg(14),Lys(15)]N/OFQ-NH2). Thus, in all these in vivo assays Ac-RYYRIK-ol mimicked the actions of N/OFQ showing however higher potency. In conclusion, Ac-RYYRIK-ol displayed a complex pharmacological profile which is likely due to the low efficacy agonist nature of this novel ligand of the NOP receptor. The high potency, selectivity of action, and in vivo effectiveness make Ac-RYYRIK-ol a useful pharmacological tool for future studies in the field of N/OFQ and its NOP receptor.
Collapse
Affiliation(s)
- Ozge Gündüz
- Department of Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Center, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
|
120
|
Calo G, Guerrini R, Rizzi A, Salvadori S, Burmeister M, Kapusta DR, Lambert DG, Regoli D. UFP-101, a peptide antagonist selective for the nociceptin/orphanin FQ receptor. CNS DRUG REVIEWS 2005; 11:97-112. [PMID: 16007234 PMCID: PMC6741746 DOI: 10.1111/j.1527-3458.2005.tb00264.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nociceptin/orphanin FQ modulates various biological functions at central and peripheral levels by selectively activating a G-protein coupled receptor named N/OFQ peptide (NOP) receptor. For extending our knowledge on the biological roles of the N/OFQ-NOP receptor system the identification of selective NOP ligands, especially antagonists, is mandatory. [Nphe1, Arg14, Lys15] N/OFQ-NH2 (UFP-101) is a novel NOP ligand that was designed by combining, in the same molecule, the [Nphe1] chemical modification which eliminates efficacy and the [Arg14, Lys15] substitution which increases ligand potency and duration of action in vivo. In the present article, we summarize the pharmacological features of UFP-101 as determined in a series of in vitro and in vivo assays. Moreover, some biological actions and possible therapeutic indications of NOP ligands are discussed on the basis of results obtained with UFP-101. Data obtained with this compound were compared with those generated using other NOP antagonists, especially J-113397 and [Nphe1]N/OFQ(1-13)-NH2, receptor or peptide knockout mice and other pharmacological tools useful for blocking N/OFQ - NOP receptor signaling. The analysis of the available data demonstrates that UFP-101 is a useful pharmacological tool for the investigation of the central and peripheral biological functions regulated by the N/OFQ-NOP receptor system and for defining the therapeutic potential of NOP receptor ligands.
Collapse
Affiliation(s)
- Girolamo Calo
- Department Experimental and Clinical Medicine, Section of Pharmacology and Neuroscience Centre, University of Ferrara, via Fossato di Mortara, 19, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Lu J, Jeon E, Lee BS, Onyuksel H, Wang ZJ. Targeted drug delivery crossing cytoplasmic membranes of intended cells via ligand-grafted sterically stabilized liposomes. J Control Release 2005; 110:505-13. [PMID: 16356575 DOI: 10.1016/j.jconrel.2005.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 11/15/2022]
Abstract
In this study, we tested whether sterically stabilized liposomes (SSL) with surface ligands specific for the mu opioid receptor (MOR) can actively target MOR-expressing cells. Dermorphin, a selective MOR agonist, was conjugated to DSPE-PEG(3400) to obtain DSPE-PEG(3400)-dermorphin. Dermorphin-grafted SSL (dermorphin-SSL) was prepared by thin-film rehydration-extrusion and post-insertion method. DSPE-PEG(3400)-dermorphin and dermorphin-SSL retained the affinity to MOR as determined by receptor binding assay using [(3)H]DAMGO, whereas plain SSL without surface ligands showed no binding to the receptor. Cellular uptake of cholesteryl BODIPY encapsulated dermorphin-SSL was studied by microplate spectrofluorometry as well as fluorescent and confocal microscopy. Significant fluorescence signal was observed inside CHO-hMOR cells after the treatment with dermorphin-SSL, indicative of MOR-mediated endocytosis. In contrast, no uptake of dermorphin-SSL was found in naive CHO cells or CHO-hDOR cells that lack MOR. Taken together, these results demonstrate that dermorphin-SSL delivery system is capable of targeting intracellular components of MOR-expressing cells. Such a system may be applied to carry pharmaceutical agents to achieve region-specific delivery of analgesics and/or to attenuate side effects associated with opioids.
Collapse
Affiliation(s)
- Jian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612-7231, USA
| | | | | | | | | |
Collapse
|
122
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
123
|
Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, Chen L, Beedle AM, Ferguson SSG, Mezghrani A, Dubel SJ, Bourinet E, McRory JE, Zamponi GW. ORL1 receptor–mediated internalization of N-type calcium channels. Nat Neurosci 2005; 9:31-40. [PMID: 16311589 DOI: 10.1038/nn1605] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 10/27/2005] [Indexed: 11/08/2022]
Abstract
The inhibition of N-type calcium channels by opioid receptor like receptor 1 (ORL1) is a key mechanism for controlling the transmission of nociceptive signals. We recently reported that signaling complexes consisting of ORL1 receptors and N-type channels mediate a tonic inhibition of calcium entry. Here we show that prolonged ( approximately 30 min) exposure of ORL1 receptors to their agonist nociceptin triggers an internalization of these signaling complexes into vesicular compartments. This effect is dependent on protein kinase C activation, occurs selectively for N-type channels and cannot be observed with mu-opioid or angiotensin receptors. In expression systems and in rat dorsal root ganglion neurons, the nociceptin-mediated internalization of the channels is accompanied by a significant downregulation of calcium entry, which parallels the selective removal of N-type calcium channels from the plasma membrane. This may provide a new means for long-term regulation of calcium entry in the pain pathway.
Collapse
MESH Headings
- Aniline Compounds
- Animals
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/physiology
- Cells, Cultured
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Electrophysiology
- Fluorescent Dyes
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiology
- Image Processing, Computer-Assisted
- Immunohistochemistry
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Pain/physiopathology
- Receptors, Opioid/agonists
- Receptors, Opioid/genetics
- Receptors, Opioid/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- Xanthenes
- Nociceptin Receptor
Collapse
Affiliation(s)
- Christophe Altier
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Heinricher MM. Nociceptin/orphanin FQ: pain, stress and neural circuits. Life Sci 2005; 77:3127-32. [PMID: 15985270 DOI: 10.1016/j.lfs.2005.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 06/01/2005] [Indexed: 11/21/2022]
Abstract
First isolated some 10 years ago as the endogenous ligand for the "orphan opioid receptor" (ORL-1, now designated NOP), nociceptin/orphanin FQ (N/OFQ) has proved to be a potent inhibitory neuropeptide found across the neuraxis. Because of the homologies between opioids and N/OFQ, functional studies of this peptide have focused most heavily on pain and analgesia. This behavioral literature has been marked by a lack of consistency across laboratories, but much of the data can be explained by considering the potent inhibitory actions of N/OFQ in well-defined modulatory circuits. Presently, the most closely studied such circuit is the rostral ventromedial medulla (RVM), where administration of N/OFQ can block opioid analgesia (by inhibiting opioid-activated pain-inhibiting neurons), but under other conditions produces apparent hypoalgesia (by inhibiting pain-facilitating neurons). The net behavioral effect of N/OFQ in the RVM thus depends on whether experimental conditions are such that the pain-facilitating or pain-inhibiting neurons are active at the time the peptide is given. An important recent finding is that N/OFQ antagonists have antinociceptive properties when given supra-spinally. Although the likelihood of interactions between stress and analgesia systems must be considered in interpreting these data, they suggest that N/OFQ antagonists have potential as clinically useful analgesic drugs.
Collapse
Affiliation(s)
- Mary M Heinricher
- Department of Neurological Surgery, L-472, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
125
|
Zaveri N, Jiang F, Olsen C, Polgar W, Toll L. Small-molecule agonists and antagonists of the opioid receptor-like receptor (ORL1, NOP): ligand-based analysis of structural factors influencing intrinsic activity at NOP. AAPS JOURNAL 2005; 7:E345-52. [PMID: 16353914 PMCID: PMC2750971 DOI: 10.1208/aapsj070234] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recently discovered fourth member of the opioid receptor family, the nociceptin receptor (NOP) and its endogenous ligand, the heptadecapeptide nociceptin, are involved in several central nervous system pathways, such as nociception, reward, tolerance, and feeding. The discovery of small-molecule ligands for NOP is being actively pursued for several therapeutic applications. This review presents a brief overview of the several recently reported NOP ligands, classified as NOP agonists and antagonists, with an emphasis on the analysis of the structural features that may be important for modulating the agonist/antagonist profile (intrinsic activity) of these ligands. Structure-activity relationships in our own series of dihydroindolinone-based NOP ligands and those of the various reported ligands indicate that the lipophilic substituent on the common basic nitrogen present in all NOP ligands plays a role in determining the agonist/antagonist profile of the NOP ligand. This analysis provides a basis for the rational drug design of NOP ligands of desired intrinsic activity and provides a framework for developing pharmacophore models for high affinity binding and intrinsic activity at the NOP receptor. Since NOP agonists and antagonists both have therapeutic value, rational approaches for obtaining both within a high-affinity binding class of compounds are very useful for designing potent and selective NOP ligands with the desired profile of intrinsic efficacy.
Collapse
Affiliation(s)
- Nurulain Zaveri
- Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| | | | | | | | | |
Collapse
|
126
|
Trapella C, Guerrini R, Piccagli L, Calo' G, Carra' G, Spagnolo B, Rubini S, Fanton G, Hebbes C, McDonald J, Lambert DG, Regoli D, Salvadori S. Identification of an achiral analogue of J-113397 as potent nociceptin/orphanin FQ receptor antagonist. Bioorg Med Chem 2005; 14:692-704. [PMID: 16202610 DOI: 10.1016/j.bmc.2005.08.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 08/17/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
To date, J-113397 represents the most potent and selective non peptide NOP receptor antagonist widely used in pharmacological studies. However, the synthesis, purification, and enantiomer separation of this molecule, which contains two chiral centers, is rather difficult and low-yielding. Here, we synthesized and tested a series of simplified J-113397 analogues to investigate the importance of the stereochemistry and the influence of the substituents at position 3 of the piperidine nucleus and on the nitrogen atom of the benzimidazolidinone nucleus. The compound coded as Trap-101, an achiral analogue of J-113397, combines a pharmacological profile similar to that of the parent compound with a practical, high-yielding preparation.
Collapse
Affiliation(s)
- Claudio Trapella
- Department of Pharmaceutical Sciences, Biotechnology Center, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Carra' G, Calo' G, Spagnolo B, Guerrini R, Arduin M, Marzola E, Trapella C, Regoli D, Salvadori S. Tryptophan replacement in the nociceptin/orphanin FQ receptor ligand Ac-RYYRWK-NH2. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2005; 66:39-47. [PMID: 15946194 DOI: 10.1111/j.1399-3011.2005.00272.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study we describe the in vitro pharmacological characterization of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) ligand Ac-RYYRWK-NH2 and the synthesis and biological evaluation of 13 Trp5 substituted Ac-RYYRWK-NH2 analogs. Results indicate that Ac-RYYRWK-NH2 behaves as a highly potent and selective partial agonist at the NOP receptors and that the whole indole moiety of the Trp5 side chain is not required, being a phenyl-ethyl side chain already sufficient for maintaining high potency.
Collapse
Affiliation(s)
- G Carra'
- Section of Pharmacology and Neuroscience Centre, Department of Experimental and Clinical Medicine, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Kato S, Tsuzuki Y, Hokari R, Okada Y, Miyazaki J, Matsuzaki K, Iwai A, Kawaguchi A, Nagao S, Itoh K, Suzuki H, Nabeshima T, Miura S. Role of nociceptin/orphanin FQ (Noc/oFQ) in murine experimental colitis. J Neuroimmunol 2005; 161:21-8. [PMID: 15748940 DOI: 10.1016/j.jneuroim.2004.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 12/03/2004] [Accepted: 12/06/2004] [Indexed: 11/16/2022]
Abstract
Nociceptin/orphanin (Noc/oFQ), endogenous agonist for nociceptin receptor (NOR), is thought to be a stimulator of neurogenic inflammation. We investigated the possible role of Noc/oFQ in the development of colitis using NOR-deficient mice treated with dextran sulfate sodium (DSS). Colitis was significantly improved in NOR-deficient mice against wild-type mice. Expression level of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) and infiltrating cells also significantly decreased in NOR-deficient mice against wild-type mice. Nociceptin expression increased in wild-type mice after DSS treatment. These results suggest stimulation by Noc/oFQ deteriorates colonic inflammation via up-regulation of adhesion molecule.
Collapse
Affiliation(s)
- Shingo Kato
- Second Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Carrà G, Rizzi A, Guerrini R, Barnes TA, McDonald J, Hebbes CP, Mela F, Kenigs VA, Marzola G, Rizzi D, Gavioli E, Zucchini S, Regoli D, Morari M, Salvadori S, Rowbotham DJ, Lambert DG, Kapusta DR, Calo' G. [(pF)Phe4,Arg14,Lys15]N/OFQ-NH2 (UFP-102), a highly potent and selective agonist of the nociceptin/orphanin FQ receptor. J Pharmacol Exp Ther 2004; 312:1114-23. [PMID: 15509719 DOI: 10.1124/jpet.104.077339] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel ligand for the nociceptin/orphanin FQ (N/OFQ) receptor (NOP), [(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-102), has been generated by combining in the N/OFQ-NH(2) sequence two chemical modifications, [Arg(14),Lys(15)] and [(pF)Phe(4)], that have been previously demonstrated to increase potency. In vitro, UFP-102 bound with high affinity to the human NOP receptor, showed at least 200-fold selectivity over classical opioid receptors, and mimicked N/OFQ effects in CHO(hNOP) cells, isolated tissues from various species, and mouse cortical synaptosomes releasing 5-hydroxytryptamine. UFP-102 showed similar maximal effects but higher potency (2- to 48-fold) relative to N/OFQ. The effects of UFP-102 were sensitive to NOP-selective antagonists J-113397 [(+/-)-trans-1-[1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one] (pA(2) = 7.75-8.12) and UFP-101 ([Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2))(pA(2) = 6.91-7.33) but not to naloxone, and no longer observed in tissues taken from NOP receptor knockout mice (NOP(-/-)). In vivo, UFP-102 (0.01-0.3 nmol i.c.v.) mimicked the pronociceptive action of N/OFQ (0.1-10 nmol i.c.v.) in the mouse tail withdrawal assay, displaying higher potency and longer lasting effects. The action of UFP-102 was not apparent in NOP(-/-) mice. Similar results were obtained measuring locomotor activity in mice. In conscious rats, UFP-102 (0.05 nmol i.c.v.) produced a marked and sustained decrease in heart rate, mean arterial pressure, and urinary sodium excretion and a profound increase in urine flow rate. These effects were comparable with those evoked by N/OFQ at 5 nmol. Collectively, these findings demonstrate that UFP-102 behaves as a highly potent and selective NOP receptor agonist that produces long-lasting effects in vivo.
Collapse
Affiliation(s)
- Giacomo Carrà
- Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Goehring RR, Whitehead JFW, Brown K, Islam K, Wen X, Zhou X, Chen Z, Valenzano KJ, Miller WS, Shan S, Kyle DJ. 1,3-Dihydro-2,1,3-benzothiadiazol-2,2-diones and 3,4-dihydro-1H-2,1,3-benzothidiazin-2,2-diones as ligands for the NOP receptor. Bioorg Med Chem Lett 2004; 14:5045-50. [PMID: 15380196 DOI: 10.1016/j.bmcl.2004.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/02/2004] [Indexed: 11/23/2022]
Abstract
A series of 1,3-dihydro-2,1,3-benzothiadiazol-2,2-diones (I) and 3,4-dihydro-1H-2,1,3-benzothidiazin-2,2-diones (II) were prepared. While the five-member ring series (I) did not show good affinity for opioid receptors, the six-member ring series (II) exhibited extremely high affinity and selectivity for the NOP receptor and showed full agonist activity, as determined by stimulation of GTPgamma[35S] binding.
Collapse
Affiliation(s)
- R Richard Goehring
- Discovery Research, Purdue Pharma LP, 6 Cedar Brook Drive, Cranbury, NJ 08512, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Koizumi M, Sakoori K, Midorikawa N, Murphy NP. The NOP (ORL1) receptor antagonist Compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor-mediated mechanism. Br J Pharmacol 2004; 143:53-62. [PMID: 15289286 PMCID: PMC1575267 DOI: 10.1038/sj.bjp.0705906] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Compound B (1-[(3R, 4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, CompB) is a nociceptin/orphanin FQ (N/OFQ) antagonist showing high selectivity for the NOP (ORL1) receptor over classical opioid receptors. We studied the effect of subcutaneous CompB administration on the release of mesolimbic dopamine (DA) and the expression of hedonia in mice. 2. CompB (0.3-30 mg kg(-1)) dose dependently stimulated mesolimbic DA release as measured by in vivo freely moving microdialysis, without any change in locomotor activity. However, intracerebroventricular administered N/OFQ (endogenous agonist of the NOP receptor, 6 nmol) did not influence CompB- (10 mg kg(-1)) induced DA release, despite clearly suppressing release when administered alone. 3. Studies using NOP receptor knockout mice and no-net-flux microdialysis revealed mildly, but not statistically significantly higher endogenous DA levels in mice lacking the NOP receptor compared to wild-type mice. Administration of CompB (10 mg kg(-1)) induced identical increases in mesolimbic DA release in wild-type and NOP receptor knockout mice. 4. CompB was rewarding in approximately the same dose range in which CompB induced major increases in mesolimbic DA release when assayed using a conditioned place preference paradigm. The rewarding effect of CompB (30 mg kg(-1)) was maintained in NOP receptor knockout mice. 5. These results show that CompB stimulates mesolimbic DA release and is rewarding by an action independent of the NOP receptor, the precise site of which is unclear. Consequently, caution should be exercised when interpreting the results of studies using this drug, particularly when administered by a peripheral route.
Collapse
Affiliation(s)
- Miwako Koizumi
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| | - Kazuto Sakoori
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| | - Naoko Midorikawa
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| | - Niall P Murphy
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
- Author for correspondence:
| |
Collapse
|
132
|
Marti M, Mela F, Veronesi C, Guerrini R, Salvadori S, Federici M, Mercuri NB, Rizzi A, Franchi G, Beani L, Bianchi C, Morari M. Blockade of nociceptin/orphanin FQ receptor signaling in rat substantia nigra pars reticulata stimulates nigrostriatal dopaminergic transmission and motor behavior. J Neurosci 2004; 24:6659-66. [PMID: 15282268 PMCID: PMC6729727 DOI: 10.1523/jneurosci.0987-04.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/25/2004] [Accepted: 05/25/2004] [Indexed: 11/21/2022] Open
Abstract
A multidisciplinary approach was followed to investigate whether the opioid-like peptide nociceptin/orphanin FQ (N/OFQ) regulates the nigrostriatal dopaminergic pathway and motor behavior. Nigrostriatal dopaminergic cells, which express N/OFQ peptide (NOP) receptors, are located in the substantia nigra pars compacta and extend their dendrites in the substantia nigra pars reticulata, thereby modulating the basal ganglia output neurons. In vitro electrophysiological recordings demonstrated that N/OFQ hyperpolarized the dopaminergic cells of the substantia nigra pars compacta and inhibited their firing activity. In vivo dual-probe microdialysis showed that N/OFQ perfused in the substantia nigra pars reticulata reduced dopamine release in the ipsilateral striatum, whereas UFP-101 ([Nphe1,Arg14,Lys15]N/OFQ(1-13)-NH2) (a selective NOP receptor peptide antagonist) stimulated it. N/OFQ microinjected in the substantia nigra pars reticulata impaired rat performance on a rotarod apparatus, whereas UFP-101 enhanced it. Electromyography revealed that N/OFQ and UFP-101 oppositely affected muscle tone, inducing relaxation and contraction of triceps, respectively. The selective NOP receptor nonpeptide antagonist J-113397 (1-[3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one), either injected intranigrally or given systemically, also elevated striatal dopamine release and facilitated motor activity, confirming that these effects were caused by blockade of endogenous N/OFQ signaling. The inhibitory role played by endogenous N/OFQ on motor activity was additionally strengthened by the finding that mice lacking the NOP receptor gene outperformed wild-type mice on the rotarod. We conclude that NOP receptors in the substantia nigra pars reticulata, activated by endogenous N/OFQ, drive a physiologically inhibitory control on motor behavior, possibly via modulation of the nigrostriatal dopaminergic pathway.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, and Neuroscience Center, University of Ferrara, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Zaveri NT, Jiang F, Olsen CM, Deschamps JR, Parrish D, Polgar W, Toll L. A novel series of piperidin-4-yl-1,3-dihydroindol-2-ones as agonist and antagonist ligands at the nociceptin receptor. J Med Chem 2004; 47:2973-6. [PMID: 15163178 PMCID: PMC3852901 DOI: 10.1021/jm034249d] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of N-(4-piperidinyl)-2-indolinones were discovered as a new structural class of nociceptin receptor (NOP) ligands. Unlike other previously reported classes of NOP receptor ligands, modifications of the piperidine N substituents afforded both potent agonists and antagonists, with modest selectivities over other opioid receptors. The SAR revealed in this new series will provide important insights for the development of pharmacophores for agonist and antagonist actions at the NOP receptor.
Collapse
Affiliation(s)
- Nurulain T Zaveri
- Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|