101
|
Extensive divergence of projections to the forebrain from neurons in the paraventricular nucleus of the thalamus. Brain Struct Funct 2021; 226:1779-1802. [PMID: 34032911 PMCID: PMC8203552 DOI: 10.1007/s00429-021-02289-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/05/2021] [Indexed: 01/05/2023]
Abstract
Neurons in the paraventricular nucleus of the thalamus (PVT) respond to emotionally salient events and project densely to subcortical regions known to mediate adaptive behavioral responses. The areas of the forebrain most densely innervated by the PVT include striatal-like subcortical regions that consist of the shell of the nucleus accumbens (NAcSh), the dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral-capsular division of the central nucleus of the amygdala (CeL). A recent tracing experiment demonstrated that the PVT is composed of two intermixed populations of neurons that primarily project to either the dorsomedial (dmNAcSh) or ventromedial region of the NAcSh (vmNAcSh) with many of the vmNAcSh projecting neurons providing collateral innervation of the BSTDL and CeL. The present study used triple injections of the retrograde tracer cholera toxin B to provide a detailed map of the location of PVT neurons that provide collaterals to the vmNAcSh, BSTDL and CeL. These neurons were intermixed throughout the PVT and did not form uniquely localized subpopulations. An intersectional viral anterograde tracing approach was used to demonstrate that regardless of its presumed target of innervation (dmNAcSh, vmNAcSh, BSTDL, or CeL), most neurons in the PVT provide collateral innervation to a common set of forebrain regions. The paper shows that PVT-dmNAcSh projecting neurons provide the most divergent projection system and that these neurons express the immediate early gene product cFos following an aversive incident. We propose that the PVT may regulate a broad range of responses to physiological and psychological challenges by simultaneously influencing functionally diverse regions of the forebrain that include the cortex, striatal-like regions in the basal forebrain and a number of hypothalamic nuclei.
Collapse
|
102
|
Ahmadlou M, Houba JHW, van Vierbergen JFM, Giannouli M, Gimenez GA, van Weeghel C, Darbanfouladi M, Shirazi MY, Dziubek J, Kacem M, de Winter F, Heimel JA. A cell type-specific cortico-subcortical brain circuit for investigatory and novelty-seeking behavior. Science 2021; 372:372/6543/eabe9681. [PMID: 33986154 DOI: 10.1126/science.abe9681] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Exploring the physical and social environment is essential for understanding the surrounding world. We do not know how novelty-seeking motivation initiates the complex sequence of actions that make up investigatory behavior. We found in mice that inhibitory neurons in the medial zona incerta (ZIm), a subthalamic brain region, are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands.
| | - Janou H W Houba
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Jacqueline F M van Vierbergen
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Maria Giannouli
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Geoffrey-Alexander Gimenez
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Christiaan van Weeghel
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Maryam Darbanfouladi
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Maryam Yasamin Shirazi
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Julia Dziubek
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Mejdy Kacem
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Fred de Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - J Alexander Heimel
- Cortical Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands.
| |
Collapse
|
103
|
Kooiker CL, Birnie MT, Baram TZ. The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Front Behav Neurosci 2021; 15:673162. [PMID: 34079442 PMCID: PMC8166219 DOI: 10.3389/fnbeh.2021.673162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Early-life experiences influence a broad spectrum of behaviors throughout the lifespan that contribute to resilience or vulnerability to mental health disorders. Yet, how emotionally salient experiences early in life are encoded, stored, and processed and the mechanisms by which they influence future behaviors remain poorly understood. The paraventricular nucleus of the thalamus (PVT) is a key structure in modulating positive and negative experiences and behaviors in adults. However, little is known of the PVT's role in encoding and integrating emotionally salient experiences that occur during neonatal, infancy, and childhood periods. In this review, we (1) describe the functions and connections of the PVT and its regulation of behavior, (2) introduce novel technical approaches to elucidating the role of the PVT in mediating enduring changes in adult behaviors resulting from early-life experiences, and (3) conclude that PVT neurons of neonatal rodents are engaged by both positive and negative emotionally salient experiences, and their activation may enduringly govern future behavior-modulating PVT activity during emotionally salient contexts.
Collapse
Affiliation(s)
- Cassandra L. Kooiker
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Matthew T. Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
104
|
Phua SC, Tan YL, Kok AMY, Senol E, Chiam CJH, Lee CY, Peng Y, Lim ATJ, Mohammad H, Lim JX, Fu Y. A distinct parabrachial-to-lateral hypothalamus circuit for motivational suppression of feeding by nociception. SCIENCE ADVANCES 2021; 7:7/19/eabe4323. [PMID: 33962958 PMCID: PMC8104871 DOI: 10.1126/sciadv.abe4323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/18/2021] [Indexed: 05/26/2023]
Abstract
The motivation to eat is not only shaped by nutrition but also competed by external stimuli including pain. How the mouse hypothalamus, the feeding regulation center, integrates nociceptive inputs to modulate feeding is unclear. Within the key nociception relay center parabrachial nucleus (PBN), we demonstrated that neurons projecting to the lateral hypothalamus (LHPBN) are nociceptive yet distinct from danger-encoding central amygdala-projecting (CeAPBN) neurons. Activation of LHPBN strongly suppressed feeding by limiting eating frequency and also reduced motivation to work for food reward. Refined approach-avoidance paradigm revealed that suppression of LHPBN, but not CeAPBN, sustained motivation to obtain food. The effect of LHPBN neurons on feeding was reversed by suppressing downstream LHVGluT2 neurons. Thus, distinct from a circuit for fear and escape responses, LHPBN neurons channel nociceptive signals to LHVGluT2 neurons to suppress motivational drive for feeding. Our study provides a new perspective in understanding feeding regulation by external competing stimuli.
Collapse
Affiliation(s)
- Siew Cheng Phua
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore.
| | - Yu Lin Tan
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore.
| | - Alison Maun Yeng Kok
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Esra Senol
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Christine Jin Hui Chiam
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
| | - Chun-Yao Lee
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
| | - Yanmin Peng
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Hasan Mohammad
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
| | - Jing-Xuan Lim
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore
| | - Yu Fu
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), 138667, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
105
|
Saruco E, Pleger B. A Systematic Review of Obesity and Binge Eating Associated Impairment of the Cognitive Inhibition System. Front Nutr 2021; 8:609012. [PMID: 33996871 PMCID: PMC8116510 DOI: 10.3389/fnut.2021.609012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/09/2021] [Indexed: 02/04/2023] Open
Abstract
Altered functioning of the inhibition system and the resulting higher impulsivity are known to play a major role in overeating. Considering the great impact of disinhibited eating behavior on obesity onset and maintenance, this systematic review of the literature aims at identifying to what extent the brain inhibitory networks are impaired in individuals with obesity. It also aims at examining whether the presence of binge eating disorder leads to similar although steeper neural deterioration. We identified 12 studies that specifically assessed impulsivity during neuroimaging. We found a significant alteration of neural circuits primarily involving the frontal and limbic regions. Functional activity results show BMI-dependent hypoactivity of frontal regions during cognitive inhibition and either increased or decreased patterns of activity in several other brain regions, according to their respective role in inhibition processes. The presence of binge eating disorder results in further aggravation of those neural alterations. Connectivity results mainly report strengthened connectivity patterns across frontal, parietal, and limbic networks. Neuroimaging studies suggest significant impairment of various neural circuits involved in inhibition processes in individuals with obesity. The elaboration of accurate therapeutic neurocognitive interventions, however, requires further investigations, for a deeper identification and understanding of obesity-related alterations of the inhibition brain system.
Collapse
Affiliation(s)
- Elodie Saruco
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Burkhard Pleger
- Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
106
|
Petrovich GD. The Function of Paraventricular Thalamic Circuitry in Adaptive Control of Feeding Behavior. Front Behav Neurosci 2021; 15:671096. [PMID: 33986649 PMCID: PMC8110711 DOI: 10.3389/fnbeh.2021.671096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is a complex area that is uniquely embedded across the core feeding, reward, arousal, and stress circuits. The PVT role in the control of feeding behavior is discussed here within a framework of adaptive behavioral guidance based on the body’s energy state and competing drives. The survival of an organism depends on bodily energy resources and promotion of feeding over other behaviors is adaptive except when in danger or sated. The PVT is structurally set up to respond to homeostatic and hedonic needs to feed, and to integrate those signals with physiological and environmental stress, as well as anticipatory needs and other cognitive inputs. It can regulate both food foraging (seeking) and consumption and may balance their expression. The PVT is proposed to accomplish these functions through a network of connections with the brainstem, hypothalamic, striatal, and cortical areas. The connectivity of the PVT further indicates that it could broadcast the information about energy use/gain and behavioral choice to impact cognitive processes—learning, memory, and decision-making—through connections with the medial and lateral prefrontal cortical areas, the hippocampal formation, and the amygdala. The PVT is structurally complex and recent evidence for specific PVT pathways in different aspects of feeding behavior will be discussed.
Collapse
Affiliation(s)
- Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
107
|
Christoffel DJ, Walsh JJ, Heifets BD, Hoerbelt P, Neuner S, Sun G, Ravikumar VK, Wu H, Halpern CH, Malenka RC. Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding. Nat Commun 2021; 12:2135. [PMID: 33837200 PMCID: PMC8035198 DOI: 10.1038/s41467-021-22430-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hedonic feeding is driven by the "pleasure" derived from consuming palatable food and occurs in the absence of metabolic need. It plays a critical role in the excessive feeding that underlies obesity. Compared to other pathological motivated behaviors, little is known about the neural circuit mechanisms mediating excessive hedonic feeding. Here, we show that modulation of prefrontal cortex (PFC) and anterior paraventricular thalamus (aPVT) excitatory inputs to the nucleus accumbens (NAc), a key node of reward circuitry, has opposing effects on high fat intake in mice. Prolonged high fat intake leads to input- and cell type-specific changes in synaptic strength. Modifying synaptic strength via plasticity protocols, either in an input-specific optogenetic or non-specific electrical manner, causes sustained changes in high fat intake. These results demonstrate that input-specific NAc circuit adaptations occur with repeated exposure to a potent natural reward and suggest that neuromodulatory interventions may be therapeutically useful for individuals with pathologic hedonic feeding.
Collapse
Affiliation(s)
- Daniel J Christoffel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jessica J Walsh
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul Hoerbelt
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sophie Neuner
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Gordon Sun
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Vinod K Ravikumar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hemmings Wu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
108
|
Barrett LR, Nunez J, Zhang X. Oxytocin activation of paraventricular thalamic neurons promotes feeding motivation to attenuate stress-induced hypophagia. Neuropsychopharmacology 2021; 46:1045-1056. [PMID: 33495546 PMCID: PMC8114915 DOI: 10.1038/s41386-021-00961-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
The neuropeptide oxytocin (OT) regulates important brain functions including feeding through activating OT receptors in multiple brain areas. Both OT fibers and OT receptors have been reported in the paraventricular thalamus (PVT), an area that was revealed to be important for the control of emotion, motivation, and food intake. However, the function and modulation of PVT OT signaling remain unknown. Here, we used a progressive ratio (PR) schedule of reinforcement to examine the role of PVT OT signaling in regulating the motivation for food and patch-clamp electrophysiology to study the modulation of OT on PVT neurons in brain slices. We demonstrate that PVT OT administration increases active lever presses to earn food rewards in both male and female mice under PR trials and OT receptor antagonist atosiban inhibits OT-induced increase in motivated lever presses. However, intra-PVT OT infusion does not affect food intake in normal conditions but attenuates hypophagia induced by stress and anxiety. Using patch-clamp recordings, we find OT induces long-lasting excitatory effects on neurons in all PVT regions, especially the middle to posterior PVT. OT not only evokes tonic inward currents but also increases the frequency of spontaneous excitatory postsynaptic currents on PVT neurons. The excitatory effect of OT on PVT neurons is mimicked by the specific OT receptor agonist [Thr4, Gly7]-oxytocin (TGOT) and blocked by OT receptor antagonist atosiban. Together, our study reveals a critical role of PVT OT signaling in promoting feeding motivation to attenuate stress-induced hypophagia through exciting PVT neurons.
Collapse
Affiliation(s)
- Lily R. Barrett
- grid.255986.50000 0004 0472 0419Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306 USA
| | - Jeremiah Nunez
- grid.255986.50000 0004 0472 0419Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306 USA
| | - Xiaobing Zhang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
109
|
Anticipatory human subthalamic area beta-band power responses to dissociable tastes correlate with weight gain. Neurobiol Dis 2021; 154:105348. [PMID: 33781923 PMCID: PMC9208339 DOI: 10.1016/j.nbd.2021.105348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
The availability of enticing sweet, fatty tastes is prevalent in the modern diet and contribute to overeating and obesity. In animal models, the subthalamic area plays a role in mediating appetitive and consummatory feeding behaviors, however, its role in human feeding is unknown. We used intraoperative, subthalamic field potential recordings while participants (n = 5) engaged in a task designed to provoke responses of taste anticipation and receipt. Decreased subthalamic beta-band (15-30 Hz) power responses were observed for both sweet-fat and neutral tastes. Anticipatory responses to taste-neutral cues started with an immediate decrease in beta-band power from baseline followed by an early beta-band rebound above baseline. On the contrary, anticipatory responses to sweet-fat were characterized by a greater and sustained decrease in beta-band power. These activity patterns were topographically specific to the subthalamic nucleus and substantia nigra. Further, a neural network trained on this beta-band power signal accurately predicted (AUC ≥ 74%) single trials corresponding to either taste. Finally, the magnitude of the beta-band rebound for a neutral taste was associated with increased body mass index after starting deep brain stimulation therapy. We provide preliminary evidence of discriminatory taste encoding within the subthalamic area associated with control mechanisms that mediate appetitive and consummatory behaviors.
Collapse
|
110
|
The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021; 44:538-549. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Early anatomical evidence suggested that the paraventricular nucleus of the thalamus (PVT) regulates arousal, as well as emotional and motivated behaviors. We discuss recent studies using modern techniques which now confirm and expand the involvement of the rodent PVT in these functions. Despite the emerging notion that the PVT is implicated in various behavioral processes, a recurrent theme is that activity in this brain region depends on internal state information arriving from the hypothalamus and brainstem, and is influenced by prior experience. We propose that the primary function of the PVT is to detect homeostatic challenges by integrating information about prior experiences, competing needs, and internal state to guide adaptive behavioral responses aimed at restoring homeostasis.
Collapse
|
111
|
Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021; 125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/16/2020] [Accepted: 02/13/2021] [Indexed: 11/22/2022]
Abstract
Although significant progress has been made in understanding the behavioral and brain mechanisms for motivational systems, much less is known about competition between motivational states or motivational conflict (e.g., approach - avoidance conflict). Despite being produced under diverse conditions, behavior during motivational competition has two signatures: bistability and metastability. These signatures reveal the operation of positive feedback mechanisms in behavioral selection. Different neuronal architectures can instantiate this selection to achieve bistability and metastability in behavior, but each relies on circuit-level inhibition to achieve rapid and stable selection between competing tendencies. Paraventricular thalamus (PVT) is identified as critical to this circuit level inhibition, resolving motivational competition via its extensive projections to local inhibitory networks in the ventral striatum and extended amygdala, enabling adaptive responding under motivational conflict.
Collapse
|
112
|
Zhou K, Zhu L, Hou G, Chen X, Chen B, Yang C, Zhu Y. The Contribution of Thalamic Nuclei in Salience Processing. Front Behav Neurosci 2021; 15:634618. [PMID: 33664657 PMCID: PMC7920982 DOI: 10.3389/fnbeh.2021.634618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The brain continuously receives diverse information about the external environment and changes in the homeostatic state. The attribution of salience determines which stimuli capture attention and, therefore, plays an essential role in regulating emotions and guiding behaviors. Although the thalamus is included in the salience network, the neural mechanism of how the thalamus contributes to salience processing remains elusive. In this mini-review, we will focus on recent advances in understanding the specific roles of distinct thalamic nuclei in salience processing. We will summarize the functional connections between thalamus nuclei and other key nodes in the salience network. We will highlight the convergence of neural circuits involved in reward and pain processing, arousal, and attention control in thalamic structures. We will discuss how thalamic activities represent salience information in associative learning and how thalamic neurons modulate adaptive behaviors. Lastly, we will review recent studies which investigate the contribution of thalamic dysfunction to aberrant salience processing in neuropsychiatric disorders, such as drug addiction, posttraumatic stress disorder (PTSD), and schizophrenia. Based on emerging evidence from both human and rodent research, we propose that the thalamus, different from previous studies that as an information relay, has a broader role in coordinating the cognitive process and regulating emotions.
Collapse
Affiliation(s)
- Kuikui Zhou
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Lin Zhu
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Guoqiang Hou
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xueyu Chen
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Bo Chen
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Chuanzhong Yang
- Department of Neonatology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
113
|
Zeng Q, Shan W, Zhang H, Yang J, Zuo Z. Paraventricular thalamic nucleus plays a critical role in consolation and anxious behaviors of familiar observers exposed to surgery mice. Am J Cancer Res 2021; 11:3813-3829. [PMID: 33664863 PMCID: PMC7914349 DOI: 10.7150/thno.45690] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Consolation behaviors toward the sick are common in humans. Anxiety in the relatives of the sick is also common. Anxiety can cause detrimental effects on multiple systems. However, our understanding on the neural mechanisms of these behaviors is limited because of the lack of small animal models. Methods: Five of 6- to 8-week-old CD-1 male mice were housed in a cage. Among them, 2 mice had right common artery exposure (surgery) and the rest were without surgery. Allo-grooming and performance in light and dark box and elevated plus maze tests of the mice were determined. Results: Mice without surgery had increased allo-grooming toward mice with surgery but decreased allo-grooming toward non-surgery intruders. This increased allo-grooming toward surgery mice was higher in familiar observers of surgery mice than that of mice that were not cage-mates of surgery mice before the surgery. Familiar observers developed anxious behavior after being with surgery mice. Surgery mice with familiar observers had less anxious behavior than surgery mice without interacting with familiar observers. Multiple brain regions including paraventricular thalamic nucleus (PVT) were activated in familiar observers. The activated cells in PVT contained orexin receptors. Injuring the neurons with ibotenic acid, antagonizing orexin signaling with an anti-orexin antibody or inhibiting neurons by chemogenetic approach in PVT abolished the consolation and anxious behaviors of familiar observers. Conclusions: Mice show consolation behavior toward the sick. This behavior attenuates the anxious behavior of surgery mice. The orexin signaling in the PVT neurons play a critical role in the consolation of familiar observers toward surgery mice and their anxious behavior. Considering that about 50 million patients have surgery annually in the United States, our study represents the initial attempt to understand neural mechanisms for consolation and anxiety of a large number of people.
Collapse
|
114
|
Li JN, Ren JH, Zhao LJ, Wu XM, Li H, Dong YL, Li YQ. Projecting neurons in spinal dorsal horn send collateral projections to dorsal midline/intralaminar thalamic complex and parabrachial nucleus. Brain Res Bull 2021; 169:184-195. [PMID: 33508400 DOI: 10.1016/j.brainresbull.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Itch is an annoying sensation that always triggers scratching behavior, yet little is known about its transmission pathway in the central nervous system. Parabrachial nucleus (PBN), an essential transmission nucleus in the brainstem, has been proved to be the first relay station in itch sensation. Meanwhile, dorsal midline/intralaminar thalamic complex (dMITC) is proved to be activated with nociceptive stimuli. However, whether the PBN-projecting neurons in spinal dorsal horn (SDH) send collateral projections to dMITC, and whether these projections involve in itch remain unknown. In the present study, a double retrograde tracing method was applied when the tetramethylrhodamine-dextran (TMR) was injected into the dMITC and Fluoro-gold (FG) was injected into the PBN, respectively. Immunofluorescent staining for NeuN, substance P receptor (SPR), substance P (SP), or FOS induced by itch or pain stimulations with TMR and FG were conducted to provide morphological evidence. The results revealed that TMR/FG double-labeled neurons could be predominately observed in superficial laminae and lateral spinal nucleus (LSN) of SDH; Meanwhile, most of the collateral projection neurons expressed SPR and some of them expressed FOS in acute itch model induced by histamine. The present results implicated that some of the SPR-expressing neurons in SDH send collateral projections to the dMITC and PBN in itch transmission, which might be involved in itch related complex affective/emotional processing to the higher brain centers.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Hao Ren
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Liu-Jie Zhao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue-Mei Wu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, China.
| |
Collapse
|
115
|
Garcia A, Coss A, Luis-Islas J, Puron-Sierra L, Luna M, Villavicencio M, Gutierrez R. Lateral Hypothalamic GABAergic Neurons Encode and Potentiate Sucrose's Palatability. Front Neurosci 2021; 14:608047. [PMID: 33551725 PMCID: PMC7859279 DOI: 10.3389/fnins.2020.608047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Sucrose is attractive to most species in the animal kingdom, not only because it induces a sweet taste sensation but also for its positive palatability (i.e., oromotor responses elicited by increasing sucrose concentrations). Although palatability is such an important sensory attribute, it is currently unknown which cell types encode and modulate sucrose's palatability. Studies in mice have shown that activation of GABAergic LHAVgat+ neurons evokes voracious eating; however, it is not known whether these neurons would be driving consumption by increasing palatability. Using optrode recordings, we measured sucrose's palatability while VGAT-ChR2 transgenic mice performed a brief access sucrose test. We found that a subpopulation of LHAVgat+ neurons encodes palatability by increasing (or decreasing) their activity as a function of the increment in licking responses evoked by sucrose concentrations. Optogenetic gain of function experiments, where mice were able to choose among available water, 3% and 18% sucrose solutions, uncovered that opto-stimulation of LHAVgat+ neurons consistently promoted higher intake of the most palatable stimulus (18% sucrose). In contrast, if they self-stimulated near the less palatable stimulus, some VGAT-ChR2 mice preferred water over 18% sucrose. Unexpectedly, activation of LHAVgat+ neurons increased quinine intake but only during water deprivation, since in sated animals, they failed to promote quinine intake or tolerate an aversive stimulus. Conversely, these neurons promoted overconsumption of sucrose when it was the nearest stimulus. Also, experiments with solid foods further confirmed that these neurons increased food interaction time with the most palatable food available. We conclude that LHAVgat+ neurons increase the drive to consume, but it is potentiated by the palatability and proximity of the tastant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| |
Collapse
|
116
|
Hildebrandt BA, Ahmari SE. Breaking It Down: Investigation of Binge Eating Components in Animal Models to Enhance Translation. Front Psychiatry 2021; 12:728535. [PMID: 34484010 PMCID: PMC8414642 DOI: 10.3389/fpsyt.2021.728535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Binge eating (BE) is a core eating disorder behavior that is present across nearly all eating disorder diagnoses (e. g., bulimia nervosa, binge eating disorder, anorexia nervosa binge/purge subtype), and is also widely present in the general population. Despite the prevalence of BE, limited treatment options exist and there are often high rates of relapse after treatment. There is evidence showing that genetic factors contribute to the heritability of BE and support for biological contributions to BE. However, more work is needed to fully understand neurobiological mechanisms underlying BE. One approach to target this problem is to separate BE into its distinct clinical components that can be more easily modeled using pre-clinical approaches. To date, a variety of animal models for BE have been used in pre-clinical studies; but there have been challenges translating this work to human BE. Here, we review these pre-clinical approaches by breaking them down into three clinically-significant component parts (1) consumption of a large amount of food; (2) food consumption within a short period of time; and (3) loss of control over eating. We propose that this rubric identifies the most frequently used and effective ways to model components of BE behavior using pre-clinical approaches with the strongest clinical relevance. Finally, we discuss how current pre-clinical models have been integrated with techniques using targeted neurobiological approaches and propose ways to improve translation of pre-clinical work to human investigations of BE that could enhance our understanding of BE behavior.
Collapse
Affiliation(s)
- Britny A Hildebrandt
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Susanne E Ahmari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
117
|
Robinson SL, Dornellas APS, Burnham NW, Houck CA, Luhn KL, Bendrath SC, Companion MA, Brewton HW, Thomas RD, Navarro M, Thiele TE. Distinct and Overlapping Patterns of Acute Ethanol-Induced C-Fos Activation in Two Inbred Replicate Lines of Mice Selected for Drinking to High Blood Ethanol Concentrations. Brain Sci 2020; 10:brainsci10120988. [PMID: 33333877 PMCID: PMC7765285 DOI: 10.3390/brainsci10120988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
The inbred high drinking in the dark (iHDID1 and iHDID2) strains are two replicate lines bred from the parent HS/Npt (HS) line for achieving binge levels of blood ethanol concentration (≥80 mg/dL BEC) in a four-hour period. In this work, we sought to evaluate differences in baseline and ethanol-induced c-Fos activation between the HS, iHDID1, and iHDID2 genetic lines in brain regions known to process the aversive properties of ethanol. Methods: Male and female HS, iHDID1, and iHDID2 mice underwent an IP saline 2 3 g/kg ethanol injection. Brain sections were then stained for c-Fos expression in the basolateral/central amygdala (BLA/CeA), bed nucleus of the stria terminals (BNST), A2, locus coeruleus (LC), parabrachial nucleus (PBN), lateral/medial habenula (LHb/MHb), paraventricular nucleus of the thalamus (PVT), periaqueductal gray (PAG), Edinger–Westphal nuclei (EW), and rostromedial tegmental nucleus (RMTg). Results: The iHDID1 and iHDID2 lines showed similar and distinct patterns of regional c-Fos; however, in no region did the two both significantly differ from the HS line together. Conclusions: Our findings lend further support to the hypothesis the iHDID1 and the iHDID2 lines arrive at a similar behavior phenotype through divergent genetic mechanisms.
Collapse
Affiliation(s)
- Stacey L. Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ana Paula S. Dornellas
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nathan W. Burnham
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA;
| | - Christa A. Houck
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendall L. Luhn
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
| | - Sophie C. Bendrath
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michel A. Companion
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Honoreé W. Brewton
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rhiannon D. Thomas
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Montserrat Navarro
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd E. Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; (S.L.R.); (A.P.S.D.); (C.A.H.); (K.L.L.); (S.C.B.); (M.A.C.); (H.W.B.); (R.D.T.); (M.N.)
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-1519; Fax: +1-919-962-2537
| |
Collapse
|
118
|
de Git KCG, Hazelhoff EM, Nota MHC, Schele E, Luijendijk MCM, Dickson SL, van der Plasse G, Adan RAH. Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding. J Physiol 2020; 599:709-724. [PMID: 33296086 PMCID: PMC7839680 DOI: 10.1113/jp276513] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/03/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The zona incerta (ZI) and ventral tegmental area (VTA) are brain areas that are both implicated in feeding behaviour. The ZI projects to the VTA, although it has not yet been investigated whether this projection regulates feeding. We experimentally (in)activated the ZI to VTA projection by using dual viral vector technology, and studied the effects on feeding microstructure, the willingness to work for food, general activity and body temperature. Activity of the ZI to VTA projection promotes feeding by facilitating action initiation towards food, as reflected in meal frequency and the willingness to work for food reward, without affecting general activity or directly modulating body temperature. We show for the first time that activity of the ZI to VTA projection promotes feeding, which improves the understanding of the neurobiology of feeding behaviour and body weight regulation. ABSTRACT Both the zona incerta (ZI) and the ventral tegmental area (VTA) have been implicated in feeding behaviour. The ZI provides prominent input to the VTA, although it has not yet been investigated whether this projection regulates feeding. Therefore, we investigated the role of ZI to VTA projection neurons in the regulation of several aspects of feeding behaviour. We determined the effects of (in)activation of ZI to VTA projection neurons on feeding microstructure, food-motivated behaviour under a progressive ratio schedule of reinforcement, locomotor activity and core body temperature. To activate or inactivate ZI neurons projecting to the VTA, we used a combination of canine adenovirus-2 in the VTA, as well as Cre-dependent designer receptors exclusively activated by designer drugs (DREADD) or tetanus toxin (TetTox) light chain in the ZI. TetTox-mediated inactivation of ZI to VTA projection neurons reduced food-motivated behaviour and feeding by reducing meal frequency. Conversely, DREADD-mediated chemogenetic activation of ZI to VTA projection neurons promoted food-motivated behaviour and feeding. (In)activation of ZI to VTA projection neurons did not affect locomotor activity or directly regulate core body temperature. Taken together, ZI neurons projecting to the VTA exert bidirectional control overfeeding behaviour. More specifically, activity of ZI to VTA projection neurons facilitate action initiation towards feeding, as reflected in both food-motivated behaviour and meal initiation, without affecting general activity.
Collapse
Affiliation(s)
- Kathy C G de Git
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Esther M Hazelhoff
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Minke H C Nota
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Erik Schele
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Göteborg, 41390, Sweden
| | - Mieneke C M Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzanne L Dickson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Göteborg, 41390, Sweden
| | - Geoffrey van der Plasse
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Göteborg, 41390, Sweden
| |
Collapse
|
119
|
An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat Commun 2020; 11:6326. [PMID: 33303759 PMCID: PMC7728757 DOI: 10.1038/s41467-020-20093-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
It is well recognized that ventromedial hypothalamus (VMH) serves as a satiety center in the brain. However, the feeding circuit for the VMH regulation of food intake remains to be defined. Here, we combine fiber photometry, chemo/optogenetics, virus-assisted retrograde tracing, ChR2-assisted circuit mapping and behavioral assays to show that selective activation of VMH neurons expressing steroidogenic factor 1 (SF1) rapidly inhibits food intake, VMH SF1 neurons project dense fibers to the paraventricular thalamus (PVT), selective chemo/optogenetic stimulation of the PVT-projecting SF1 neurons or their projections to the PVT inhibits food intake, and chemical genetic inactivation of PVT neurons diminishes SF1 neural inhibition of feeding. We also find that activation of SF1 neurons or their projections to the PVT elicits a flavor aversive effect, and selective optogenetic stimulation of ChR2-expressing SF1 projections to the PVT elicits direct excitatory postsynaptic currents. Together, our data reveal a neural circuit from VMH to PVT that inhibits food intake. The ventromedial hypothalamus (VMH) serves as a satiety center in the brain, however, the neural circuits involved are incompletely understood. Here, the authors decipher a neural circuit from VMH to the paraventricular thalamus that suppresses food intake.
Collapse
|
120
|
Sofia Beas B, Gu X, Leng Y, Koita O, Rodriguez-Gonzalez S, Kindel M, Matikainen-Ankney BA, Larsen RS, Kravitz AV, Hoon MA, Penzo MA. A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding. Nat Commun 2020; 11:6218. [PMID: 33277492 PMCID: PMC7719163 DOI: 10.1038/s41467-020-19980-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Marked deficits in glucose availability, or glucoprivation, elicit organism-wide counter-regulatory responses whose purpose is to restore glucose homeostasis. However, while catecholamine neurons of the ventrolateral medulla (VLMCA) are thought to orchestrate these responses, the circuit and cellular mechanisms underlying specific counter-regulatory responses are largely unknown. Here, we combined anatomical, imaging, optogenetic and behavioral approaches to interrogate the circuit mechanisms by which VLMCA neurons orchestrate glucoprivation-induced food seeking behavior. Using these approaches, we found that VLMCA neurons form functional connections with nucleus accumbens (NAc)-projecting neurons of the posterior portion of the paraventricular nucleus of the thalamus (pPVT). Importantly, optogenetic manipulations revealed that while activation of VLMCA projections to the pPVT was sufficient to elicit robust feeding behavior in well fed mice, inhibition of VLMCA-pPVT communication significantly impaired glucoprivation-induced feeding while leaving other major counterregulatory responses intact. Collectively our findings identify the VLMCA-pPVT-NAc pathway as a previously-neglected node selectively controlling glucoprivation-induced food seeking. Moreover, by identifying the ventrolateral medulla as a direct source of metabolic information to the midline thalamus, our results support a growing body of literature on the role of the PVT in homeostatic regulation.
Collapse
Affiliation(s)
- B Sofia Beas
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Xinglong Gu
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA
| | - Yan Leng
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | - Omar Koita
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | | | - Morgan Kindel
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research, Bethesda, MD, USA.
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
121
|
Assessing the Role of Corticothalamic and Thalamo-Accumbens Projections in the Augmentation of Heroin Seeking in Chronically Food-Restricted Rats. J Neurosci 2020; 41:354-365. [PMID: 33219004 DOI: 10.1523/jneurosci.2103-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Drug addiction is a chronic disorder characterized by compulsive drug seeking, and involves repetitive cycles of compulsive drug use, abstinence, and relapse. In both human and animal models of addiction, chronic food restriction increases rates of relapse. Our laboratory has reported a robust increase in drug seeking following a period of withdrawal in chronically food-restricted rats compared with sated controls. Recently, we reported that activation of the paraventricular nucleus of the thalamus (PVT) abolished heroin seeking in chronically food-restricted rats. However, the precise inputs and outputs of the PVT that mediate this effect remain elusive. The goal of the current study was to determine the role of corticothalamic and thalamo-accumbens projections in the augmentation of heroin seeking induced by chronic food restriction. Male Long-Evans rats were trained to self-administer heroin for 10 d. Next, rats were removed from the self-administration chambers and were subjected to a 14 d withdrawal period while sated (unlimited access to food) or mildly food-restricted (FDR). On day 14, rats were returned to the self-administration context for a 3 h heroin-seeking test under extinction conditions during which corticothalamic and thalamo-accumbens neural activity was altered using chemogenetics. Surprisingly, chemogenetic activation or inhibition of corticothalamic projections did not alter heroin-seeking behavior. Chemogenetic activation of thalamo-accumbens shell, but not core, projectors attenuated heroin seeking in FDR rats. The results indicate an important role for the PVT to nucleus accumbens shell projections in the augmentation of heroin seeking induced by chronic food restriction.SIGNIFICANCE STATEMENT Relapse to heroin use is one of the major obstacles in the treatment of opiate addiction. Triggers for relapse are modulated by environmental challenges such as caloric restriction. Elucidating the brain mechanisms that underlie relapse is critical for evidence-based treatment development. Here we demonstrate a critical role for the input from the paraventricular thalamus (PVT), a hub for cortical, sensory, and limbic information, to the nucleus accumbens shell (an area known to be important for reward and motivation) in the augmentation of heroin seeking in food-restricted rats. Our findings highlight a previously unknown role for the PVT in heroin seeking following a period of abstinence.
Collapse
|
122
|
Projections from Infralimbic Cortex to Paraventricular Thalamus Mediate Fear Extinction Retrieval. Neurosci Bull 2020; 37:229-241. [PMID: 33180308 DOI: 10.1007/s12264-020-00603-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT), which serves as a hub, receives dense projections from the medial prefrontal cortex (mPFC) and projects to the lateral division of central amygdala (CeL). The infralimbic (IL) cortex plays a crucial role in encoding and recalling fear extinction memory. Here, we found that neurons in the PVT and IL were strongly activated during fear extinction retrieval. Silencing PVT neurons inhibited extinction retrieval at recent time point (24 h after extinction), while activating them promoted extinction retrieval at remote time point (7 d after extinction), suggesting a critical role of the PVT in extinction retrieval. In the mPFC-PVT circuit, projections from IL rather than prelimbic cortex to the PVT were dominant, and disrupting the IL-PVT projection suppressed extinction retrieval. Moreover, the axons of PVT neurons preferentially projected to the CeL. Silencing the PVT-CeL circuit also suppressed extinction retrieval. Together, our findings reveal a new neural circuit for fear extinction retrieval outside the classical IL-amygdala circuit.
Collapse
|
123
|
McGinty JF, Otis JM. Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci 2020; 14:590528. [PMID: 33177999 PMCID: PMC7596164 DOI: 10.3389/fnbeh.2020.590528] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) is highly interconnected with brain areas that control reward-seeking behavior. Despite this known connectivity, broad manipulations of PVT often lead to mixed, and even opposing, behavioral effects, clouding our understanding of how PVT precisely contributes to reward processing. Although the function of PVT in influencing reward-seeking is poorly understood, recent studies show that forebrain and hypothalamic inputs to, and nucleus accumbens (NAc) and amygdalar outputs from, PVT are strongly implicated in PVT responses to conditioned and appetitive or aversive stimuli that determine whether an animal will approach or avoid specific rewards. These studies, which have used an array of chemogenetic, optogenetic, and calcium imaging technologies, have shown that activity in PVT input and output circuits is highly heterogeneous, with mixed activity patterns that contribute to behavior in highly distinct manners. Thus, it is important to perform experiments in precisely defined cell types to elucidate how the PVT network contributes to reward-seeking behaviors. In this review, we describe the complex heterogeneity within PVT circuitry that appears to influence the decision to seek or avoid a reward and point out gaps in our understanding that should be investigated in future studies.
Collapse
Affiliation(s)
- Jacqueline F. McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | | |
Collapse
|
124
|
Timshel PN, Thompson JJ, Pers TH. Genetic mapping of etiologic brain cell types for obesity. eLife 2020; 9:55851. [PMID: 32955435 PMCID: PMC7505664 DOI: 10.7554/elife.55851] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
The underlying cell types mediating predisposition to obesity remain largely obscure. Here, we integrated recently published single-cell RNA-sequencing (scRNA-seq) data from 727 peripheral and nervous system cell types spanning 17 mouse organs with body mass index (BMI) genome-wide association study (GWAS) data from >457,000 individuals. Developing a novel strategy for integrating scRNA-seq data with GWAS data, we identified 26, exclusively neuronal, cell types from the hypothalamus, subthalamus, midbrain, hippocampus, thalamus, cortex, pons, medulla, pallidum that were significantly enriched for BMI heritability (p<1.6×10−4). Using genes harboring coding mutations associated with obesity, we replicated midbrain cell types from the anterior pretectal nucleus and periaqueductal gray (p<1.2×10−4). Together, our results suggest that brain nuclei regulating integration of sensory stimuli, learning and memory are likely to play a key role in obesity and provide testable hypotheses for mechanistic follow-up studies.
Collapse
Affiliation(s)
- Pascal N Timshel
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan J Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
125
|
Cai P, Chen L, Guo YR, Yao J, Chen HY, Lu YP, Huang SN, He P, Zheng ZH, Liu JY, Chen J, Hu LH, Chen SY, Huang LT, Chen GQ, Tang WT, Su WK, Li HY, Wang WX, Yu CX. Basal forebrain GABAergic neurons promote arousal and predatory hunting. Neuropharmacology 2020; 180:108299. [PMID: 32916145 DOI: 10.1016/j.neuropharm.2020.108299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
Predatory hunting is an important approach for animals to obtain valuable nutrition and energy, which critically depends on heightened arousal. Yet the neural substrates underlying predatory hunting remain largely undefined. Here, we report that basal forebrain (BF) GABAergic neurons play an important role in regulating predatory hunting. Our results showed that BF GABAergic neurons were activated during the prey (cricket)-hunting and food feeding in mice. Optogenetic activation of BF GABAergic neurons evoked immediate predatory-like actions to both artificial and natural preys, significantly reducing the attack latency while increasing the attack probability and the number of killed natural prey (crickets). Similar to the effect of activating the soma of BF GABAergic neurons, photoactivation of their terminals in the ventral tegmental area (VTA) also strongly promotes predatory hunting. Moreover, photoactivation of GABAergic BF - VTA pathway significantly increases the intake of various food in mice. By synchronous recording of electroencephalogram and electromyogram, we showed that photoactivation of GABAergic BF - VTA pathway induces instant arousal and maintains long-term wakefulness. In summary, our results clearly demonstrated that the GABAergic BF is a key neural substrate for predatory hunting, and promotes this behavior through GABAergic BF - VTA pathway.
Collapse
Affiliation(s)
- Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian, 350108, China
| | - Yu-Rou Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Jing Yao
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Hui-Yun Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Yi-Ping Lu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China
| | - Sheng-Nan Huang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Peng He
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Ze-Hong Zheng
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Ji-Yuan Liu
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China
| | - Li-Huan Hu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China
| | - Shang-Yi Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Le-Tong Huang
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Guo-Qiang Chen
- School of Clinical Medicine, Fujian Medical University, Fujian, 350108, China
| | - Wei-Tao Tang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Wei-Kun Su
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China
| | - Huang-Yuan Li
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China
| | - Wen-Xiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fujian, 350108, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fujian, 350108, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian, 350108, China.
| |
Collapse
|
126
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
127
|
Melzer S, Monyer H. Diversity and function of corticopetal and corticofugal GABAergic projection neurons. Nat Rev Neurosci 2020; 21:499-515. [PMID: 32747763 DOI: 10.1038/s41583-020-0344-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
It is still widely thought that cortical projections to distant brain areas derive by and large from glutamatergic neurons. However, an increasing number of reports provide evidence that cortical GABAergic neurons comprise a smaller population of 'projection neurons' in addition to the well-known and much-studied interneurons. GABAergic long-range axons that derive from, or project to, cortical areas are thought to entrain distant brain areas for efficient information transfer and processing. Research conducted over the past 10 years has revealed that cortical GABAergic projection neurons are highly diverse in terms of molecular marker expression, synaptic targeting (identity of targeted cell types), activity pattern during distinct behavioural states and precise temporal recruitment relative to ongoing neuronal network oscillations. As GABAergic projection neurons connect many cortical areas unidirectionally or bidirectionally, it is safe to assume that they participate in the modulation of a whole series of behavioural and cognitive functions. We expect future research to examine how long-range GABAergic projections fine-tune activity in distinct distant networks and how their recruitment alters the behaviours that are supported by these networks.
Collapse
Affiliation(s)
- Sarah Melzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Hannah Monyer
- Department of Clinical Neurobiology of the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
128
|
Yuan MY, Chen ZK, Ni J, Wang TX, Jiang SY, Dong H, Qu WM, Huang ZL, Li RX. Ablation of olfactory bulb glutamatergic neurons induces depressive-like behaviors and sleep disturbances in mice. Psychopharmacology (Berl) 2020; 237:2517-2530. [PMID: 32445053 DOI: 10.1007/s00213-020-05552-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/11/2020] [Indexed: 11/24/2022]
Abstract
RATIONALE Major depression is a serious, but common, psychological disorder, which consists of a long-lasting depressive mood, feelings of helplessness, anhedonia, and sleep disturbances. It has been reported that rats with bilateral olfactory bulbectomies (OBXs) exhibit depressive-like behaviors which indicates that the olfactory bulb (OB) plays an important role in the formation of depression. However, which type of OB neurons plays an important role in the formation of depression remains unclear. OBJECTIVE To determine the role of OB neuronal types in depression and related sleep-wake dysfunction. METHODS Firstly, we established and evaluated a conventional physical bilateral OBX depression model. Secondly, we used chemical methods to ablate OB neurons, while maintaining the original shape, and evaluated depressive-like behaviors. Thirdly, we utilized AAV-flex-taCasp3-TEVp and transgenetic mice to specifically ablate the OB GABAergic or glutamatergic neurons, then evaluated depressive-like behaviors. RESULTS Compared with measured parameters in sham mice, mice with OBXs or ibotenic acid-induced OB lesions exhibited depressive-like behaviors and sleep disturbances, as demonstrated by results of depressive-like behavior tests and sleep recordings. Selective lesioning of OB glutamatergic neurons, but not GABAergic neurons induced depressive-like behaviors and increased rapid eye movement sleep during the light phase of the circadian cycle. CONCLUSIONS These results indicate that OB glutamatergic neurons play a key role in olfactory-related depression and sleep disturbance.
Collapse
Affiliation(s)
- Mao-Yun Yuan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian Ni
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tian-Xiao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shi-Yu Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Rui-Xi Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
129
|
Ventral tegmental area GABAergic neurons induce anxiety-like behaviors and promote palatable food intake. Neuropharmacology 2020; 173:108114. [DOI: 10.1016/j.neuropharm.2020.108114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
|
130
|
Nishioka T, Hamaguchi K, Yawata S, Hikida T, Watanabe D. Chemogenetic Suppression of the Subthalamic Nucleus Induces Attentional Deficits and Impulsive Action in a Five-Choice Serial Reaction Time Task in Mice. Front Syst Neurosci 2020; 14:38. [PMID: 32714157 PMCID: PMC7344274 DOI: 10.3389/fnsys.2020.00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
The subthalamic nucleus (STN), a key component of the basal ganglia circuitry, receives inputs from broad cerebral cortical areas and relays cortical activity to subcortical structures. Recent human and animal studies have suggested that executive function, which is assumed to consist of a set of different cognitive processes for controlling behavior, depends on precise information processing between the cerebral cortex and subcortical structures, leading to the idea that the STN contains neurons that transmit the information required for cognitive processing through their activity, and is involved in such cognitive control directly and dynamically. On the other hand, the STN activity also affects intracellular signal transduction and gene expression profiles influencing plasticity in other basal ganglia components. The STN may also indirectly contribute to information processing for cognitive control in other brain areas by regulating slower signaling mechanisms. However, the precise correspondence and causal relationship between the STN activity and cognitive processes are not fully understood. To address how the STN activity is involved in cognitive processes for controlling behavior, we applied Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-based chemogenetic manipulation of neural activity to behavioral analysis using a touchscreen operant platform. We subjected mice selectively expressing DREADD receptors in the STN neurons to a five-choice serial reaction time task, which has been developed to quantitatively measure executive function. Chemogenetic suppression of the STN activity reversibly impaired attention, especially required under highly demanding conditions, and increased impulsivity but not compulsivity. These findings, taken together with the results of previous lesion studies, suggest that the STN activity, directly and indirectly, participates in cognitive processing for controlling behavior, and dynamically regulates specific types of subprocesses in cognitive control probably through fast synaptic transmission.
Collapse
Affiliation(s)
- Tadaaki Nishioka
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosuke Hamaguchi
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Yawata
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
| | - Dai Watanabe
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
131
|
Long-range inputome of cortical neurons containing corticotropin-releasing hormone. Sci Rep 2020; 10:12209. [PMID: 32699360 PMCID: PMC7376058 DOI: 10.1038/s41598-020-68115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
Dissection of the neural circuits of the cerebral cortex is essential for studying mechanisms underlying brain function. Herein, combining a retrograde rabies tracing system with fluorescent micro-optical sectional tomography, we investigated long-range input neurons of corticotropin-releasing hormone containing neurons in the six main cortical areas, including the prefrontal, somatosensory, motor, auditory, and visual cortices. The whole brain distribution of input neurons showed similar patterns to input neurons distributed mainly in the adjacent cortical areas, thalamus, and basal forebrain. Reconstruction of continuous three-dimensional datasets showed the anterior and middle thalamus projected mainly to the rostral cortex whereas the posterior and lateral projected to the caudal cortex. In the basal forebrain, immunohistochemical staining showed these cortical areas received afferent information from cholinergic neurons in the substantia innominata and lateral globus pallidus, whereas cholinergic neurons in the diagonal band nucleus projected strongly to the prefrontal and visual cortex. Additionally, dense neurons in the zona incerta and ventral hippocampus were found to project to the prefrontal cortex. These results showed general patterns of cortical input circuits and unique connection patterns of each individual area, allowing for valuable comparisons among the organisation of different cortical areas and new insight into cortical functions.
Collapse
|
132
|
Augustine V, Lee S, Oka Y. Neural Control and Modulation of Thirst, Sodium Appetite, and Hunger. Cell 2020; 180:25-32. [PMID: 31923398 DOI: 10.1016/j.cell.2019.11.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
The function of central appetite neurons is instructing animals to ingest specific nutrient factors that the body needs. Emerging evidence suggests that individual appetite circuits for major nutrients-water, sodium, and food-operate on unique driving and quenching mechanisms. This review focuses on two aspects of appetite regulation. First, we describe the temporal relationship between appetite neuron activity and consumption behaviors. Second, we summarize ingestion-related satiation signals that differentially quench individual appetite circuits. We further discuss how distinct appetite and satiation systems for each factor may contribute to nutrient homeostasis from the functional and evolutional perspectives.
Collapse
Affiliation(s)
- Vineet Augustine
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA; Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Sangjun Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
133
|
Loutit AJ, Vickery RM, Potas JR. Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. J Comp Neurol 2020; 529:187-220. [PMID: 32374027 DOI: 10.1002/cne.24942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
The dorsal column nuclei complex (DCN-complex) includes the dorsal column nuclei (DCN, referring to the gracile and cuneate nuclei collectively), external cuneate, X, and Z nuclei, and the median accessory nucleus. The DCN are organized by both somatotopy and modality, and have a diverse range of afferent inputs and projection targets. The functional organization and connectivity of the DCN implicate them in a variety of sensorimotor functions, beyond their commonly accepted role in processing and transmitting somatosensory information to the thalamus, yet this is largely underappreciated in the literature. To consolidate insights into their sensorimotor functions, this review examines the morphology, organization, and connectivity of the DCN and their associated nuclei. First, we briefly discuss the receptors, afferent fibers, and pathways involved in conveying tactile and proprioceptive information to the DCN. Next, we review the modality and somatotopic arrangements of the remaining constituents of the DCN-complex. Finally, we examine and discuss the functional implications of the myriad of DCN-complex projection targets throughout the diencephalon, midbrain, and hindbrain, in addition to their modulatory inputs from the cortex. The organization and connectivity of the DCN-complex suggest that these nuclei should be considered a complex integration and distribution hub for sensorimotor information.
Collapse
Affiliation(s)
- Alastair J Loutit
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Richard M Vickery
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jason R Potas
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia.,The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
134
|
Incerta-thalamic Circuit Controls Nocifensive Behavior via Cannabinoid Type 1 Receptors. Neuron 2020; 107:538-551.e7. [PMID: 32502461 DOI: 10.1016/j.neuron.2020.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/06/2019] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Pain is a source of substantial discomfort. Abnormal activity in both the zona incerta (ZI) and posterior complex of the thalamus (Po) are implicated in neuropathic pain, but their exact roles remain unclear. In particular, the precise cell types and molecular mechanisms of the ZI-Po circuit that regulate nociception are largely uncharacterized. Here, we found that parvalbumin (PV)-positive neuronal projections from the ventral ZI (ZIv) to the Po (ZIv-Po) are critical for promoting nocifensive behaviors, whereas selectively inhibiting ZIv-Po activity reduces nocifensive withdrawal responses. Furthermore, cannabinoid type 1 receptors (CB1Rs) are expressed specifically at ZIv-Po axon terminals in this circuit, and cannabinoids attenuate nocifensive responses through presynaptic inhibition. Selective inhibition of the ZIv-Po circuit or administration of cannabinoids into the Po are sufficient to ameliorate pathological pain. These findings identify the critical role of the ZIv-Po circuit and its modulation by endocannabinoids in controlling nocifensive behaviors.
Collapse
|
135
|
Carr KD. Homeostatic regulation of reward via synaptic insertion of calcium-permeable AMPA receptors in nucleus accumbens. Physiol Behav 2020; 219:112850. [PMID: 32092445 PMCID: PMC7108974 DOI: 10.1016/j.physbeh.2020.112850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
The incentive effects of food and related cues are determined by stimulus properties and the internal state of the organism. Enhanced hedonic reactivity and incentive motivation in energy deficient subjects have been demonstrated in animal models and humans. Defining the neurobiological underpinnings of these state-based modulatory effects could illuminate fundamental mechanisms of adaptive behavior, as well as provide insight into maladaptive consequences of weight loss dieting and the relationship between disturbed eating behavior and substance abuse. This article summarizes research of our laboratory aimed at identifying neuroadaptations induced by chronic food restriction (FR) that increase the reward magnitude of drugs and associated cues. The main findings are that FR decreases basal dopamine (DA) transmission, upregulates signaling downstream of the D1 DA receptor (D1R), and triggers synaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). Selective antagonism of CP-AMPARs decreases excitatory postsynaptic currents in NAc medium spiny neurons of FR rats and blocks the enhanced rewarding effects of d-amphetamine and a D1R, but not a D2R, agonist. These results suggest that FR drives CP-AMPARs into the synaptic membrane of D1R-expressing MSNs, possibly as a homeostatic response to reward loss. FR subjects also display diminished aversion for contexts associated with LiCl treatment and centrally infused cocaine. An encompassing, though speculative, hypothesis is that NAc synaptic incorporation of CP-AMPARs in response to food scarcity and other forms of sustained reward loss adaptively increases incentive effects of reward stimuli and, at the same time, diminishes responsiveness to aversive stimuli that have potential to interfere with goal pursuit.
Collapse
Affiliation(s)
- Kenneth D Carr
- Departments of Psychiatry and Biochemistry and Molecular Pharmacology, New York University School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| |
Collapse
|
136
|
A limbic circuitry involved in emotional stress-induced grooming. Nat Commun 2020; 11:2261. [PMID: 32385304 PMCID: PMC7210270 DOI: 10.1038/s41467-020-16203-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
Prolonged exposure to negative stressors could be harmful if a subject cannot respond appropriately. Strategies evolved to respond to stress, including repetitive displacement behaviours, are important in maintaining behavioural homoeostasis. In rodents, self-grooming is a frequently observed repetitive behaviour believed to contribute to post-stress de-arousal with adaptive value. Here we identified a rat limbic di-synaptic circuit that regulates stress-induced self-grooming with positive affective valence. This circuit links hippocampal ventral subiculum to ventral lateral septum (LSv) and then lateral hypothalamus tuberal nucleus. Optogenetic activation of this circuit triggers delayed but robust excessive grooming with patterns closely resembling those evoked by emotional stress. Consistently, the neural activity of LSv reaches a peak before emotional stress-induced grooming while inhibition of this circuit significantly suppresses grooming triggered by emotional stress. Our results uncover a previously unknown limbic circuitry involved in regulating stress-induced self-grooming and pinpoint a critical role of LSv in this ethologically important behaviour. Self-grooming is a frequently observed repetitive behaviour in rodents that is believed to contribute to post-stress de-arousal. The authors identified a previously unknown limbic circuit that includes the ventral lateral septum in rats and is involved in regulating stress-induced self-grooming.
Collapse
|
137
|
Jais A, Paeger L, Sotelo-Hitschfeld T, Bremser S, Prinzensteiner M, Klemm P, Mykytiuk V, Widdershooven PJM, Vesting AJ, Grzelka K, Minère M, Cremer AL, Xu J, Korotkova T, Lowell BB, Zeilhofer HU, Backes H, Fenselau H, Wunderlich FT, Kloppenburg P, Brüning JC. PNOC ARC Neurons Promote Hyperphagia and Obesity upon High-Fat-Diet Feeding. Neuron 2020; 106:1009-1025.e10. [PMID: 32302532 PMCID: PMC7303947 DOI: 10.1016/j.neuron.2020.03.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022]
Abstract
Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia. Acute high-fat-diet feeding activates PNOC neurons in the arcuate nucleus (ARC) GABAergic PNOCARC neurons inhibit anorexigenic POMC neurons Optogenetic activation of PNOCARC neurons promotes feeding Ablation of PNOCARC neurons protects from obesity
Collapse
Affiliation(s)
- Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lars Paeger
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Tamara Sotelo-Hitschfeld
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Stephan Bremser
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Melanie Prinzensteiner
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Paul Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vasyl Mykytiuk
- Neuronal Circuits and Behaviour Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Pia J M Widdershooven
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Anna Juliane Vesting
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Obesity and Cancer Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Katarzyna Grzelka
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Marielle Minère
- Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Anna Lena Cremer
- Multimodal Imaging of Brain Metabolism Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Jie Xu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tatiana Korotkova
- Neuronal Circuits and Behaviour Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Heiko Backes
- Multimodal Imaging of Brain Metabolism Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Henning Fenselau
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Synaptic Transmission in Energy Homeostasis Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - F Thomas Wunderlich
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Obesity and Cancer Group, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Peter Kloppenburg
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany.
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
138
|
Wang Q, Zhang X, Leng H, Luan X, Guo F, Sun X, Gao S, Liu X, Qin H, Xu L. Zona incerta projection neurons and GABAergic and GLP-1 mechanisms in the nucleus accumbens are involved in the control of gastric function and food intake. Neuropeptides 2020; 80:102018. [PMID: 32000986 DOI: 10.1016/j.npep.2020.102018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Our aim was to explore the effect of γ-aminobutyric acid (GABA) signaling in the nucleus accumbens (NAc) on promoting gastric function and food intake through glucagon-like peptide 1 (GLP-1)-sensitive gastric distension (GD) neurons under the regulatory control of the zona incerta (ZI). METHODS GABA neuronal projections were traced using retrograde tracing following fluorescence immunohistochemistry. An extracellular electrophysiological recording method was used to observe the firing of neurons in the NAc. HPLC was used to quantify the GABA and glutamate levels in the NAc after electrical stimulation of the ZI. Gastric functions including gastric motility and secretion, as well as food intake, were measured after the administration of different concentrations of GABA in the NAc or electrical stimulation of the ZI. RESULTS Some of the GABA-positive neurons arising from the ZI projected to the NAc. Some GABA-A receptor (GABA-AR)-immunoreactive neurons in the NAc were also positive for GLP-1 receptor (GLP-1R) immunoreactivity. The firing of most GLP-1-sensitive GD neurons was decreased by GABA infusion in the NAc. Intra-NAc GABA administration also promoted gastric function and food intake. The responses induced by GABA were partially blocked by the GABA-AR antagonist bicuculline (BIC) and weakened by the GLP-1R antagonist exendin 9-39 (Ex9). Electrical stimulation of the ZI changed the firing patterns of most GLP-1-sensitive GD neurons in the NAc and promoted gastric function and food intake. Furthermore, these excitatory effects induced by electrical stimulation of the ZI were weakened by preadministration of BIC in the NAc. CONCLUSION Retrograde tracing and immunohistochemical staining showed a GABAergic pathway from the ZI to the NAc. GABAergic and GLP-1 mechanisms in the NAc are involved in the control of gastric function and food intake. In addition, the interaction (direct or indirect) between the ZI and these NAc mechanisms is involved in the control of gastric function and food intake.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiaoqian Zhang
- Doctoral School of Biomedical Sciences, KU Leuven, B-300 Leuven, Belgium; Family Medicine Department, Qingdao United Family Hospital, Qingdao, Shandong 266001, China
| | - Hui Leng
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiao Luan
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Feifei Guo
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xiangrong Sun
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Shengli Gao
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Xuehuan Liu
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Hao Qin
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Luo Xu
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, China.
| |
Collapse
|
139
|
Bendová Z, Pačesová D, Novotný J. The day-night differences in ERK1/2, GSK3β activity and c-Fos levels in the brain, and the responsiveness of various brain structures to morphine. J Comp Neurol 2020; 528:2471-2495. [PMID: 32170720 DOI: 10.1002/cne.24906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 11/12/2022]
Abstract
As with other drugs or pharmaceuticals, opioids differ in their rewarding or analgesic effects depending on when they are applied. In the previous study, we have demonstrated the day/night difference in the sensitivity of the major circadian clock in the suprachiasmatic nucleus to a low dose of morphine, and showed the bidirectional effect of morphine on pERK1/2 and pGSK3β levels in the suprachiasmatic nucleus depending on the time of administration. The main aim of this study was to identify other brain structures that respond differently to morphine depending on the time of its administration. Using immunohistochemistry, we identified 44 structures that show time-of-day specific changes in c-Fos level and activity of ERK1/2 and GSK3β kinases in response to a single dose of 1 mg/kg morphine. Furthermore, comparison among control groups revealed the differences in the spontaneous levels of all markers with a generally higher level during the night, that is, in the active phase of the day. We thus provide further evidence for diurnal variations in the activity of brain regions outside the suprachiasmatic nucleus indicated by the temporal changes in the molecular substrate. We suggest that these changes are responsible for generating diurnal variation in the reward behavior or analgesic effect of opioid administration.
Collapse
Affiliation(s)
- Zdeňka Bendová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Dominika Pačesová
- Faculty of Science, Charles University, Prague, Czech Republic.,Department of Sleep Medicine and Chronobiology, National Institute of Mental Health, Klecany, Czech Republic
| | - Jiří Novotný
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
140
|
Zona Incerta GABAergic Output Controls a Signaled Locomotor Action in the Midbrain Tegmentum. eNeuro 2020; 7:ENEURO.0390-19.2020. [PMID: 32041743 PMCID: PMC7053170 DOI: 10.1523/eneuro.0390-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/30/2022] Open
Abstract
The zona incerta is a subthalamic nucleus proposed to link sensory stimuli with motor responses to guide behavior, but its functional role is not well established. Using mice of either sex, we studied the effect of manipulating zona incerta GABAergic cells on the expression of a signaled locomotor action, known as signaled active avoidance. We found that modulation of GABAergic zona incerta cells, but not of cells in the adjacent thalamic reticular nucleus (NRT), fully controls the expression of signaled active avoidance responses. Inhibition of zona incerta GABAergic cells drives active avoidance responses, while excitation of these cells blocks signaled active avoidance mainly by inhibiting cells in the midbrain pedunculopontine tegmental nucleus (PPT). The zona incerta regulates signaled locomotion in the midbrain.
Collapse
|
141
|
Wang X, Chou XL, Zhang LI, Tao HW. Zona Incerta: An Integrative Node for Global Behavioral Modulation. Trends Neurosci 2020; 43:82-87. [PMID: 31864676 PMCID: PMC7439563 DOI: 10.1016/j.tins.2019.11.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
Zona incerta (ZI) is a largely inhibitory subthalamic region connecting with many brain areas. Early studies have suggested involvement of ZI in various functions such as visceral activities, arousal, attention, and locomotion, but the specific roles of different ZI subdomains or cell types have not been well examined. Recent studies combining optogenetics, behavioral assays, neural tracing, and neural activity-recording reveal novel functional roles of ZI depending on specific input-output connectivity patterns. Here, we review these studies and summarize functions of ZI into four categories: sensory integration, behavioral output control, motivational drive, and neural plasticity. In view of these new findings, we propose that ZI serves as an integrative node for global modulation of behaviors and physiological states.
Collapse
Affiliation(s)
- Xiyue Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Lin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
142
|
Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, Steinbusch HWM, Khan AM, Chee MJ. Distributions of hypothalamic neuron populations coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. J Comp Neurol 2020; 528:1833-1855. [PMID: 31950494 DOI: 10.1002/cne.24857] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
The hypothalamus contains catecholaminergic neurons marked by the expression of tyrosine hydroxylase (TH). As multiple chemical messengers coexist in each neuron, we determined if hypothalamic TH-immunoreactive (ir) neurons express vesicular glutamate or GABA transporters. We used Cre/loxP recombination to express enhanced GFP (EGFP) in neurons expressing the vesicular glutamate (vGLUT2) or GABA transporter (vGAT), then determined whether TH-ir neurons colocalized with native EGFPVglut2 - or EGFPVgat -fluorescence, respectively. EGFPVglut2 neurons were not TH-ir. However, discrete TH-ir signals colocalized with EGFPVgat neurons, which we validated by in situ hybridization for Vgat mRNA. To contextualize the observed pattern of colocalization between TH-ir and EGFPVgat , we first performed Nissl-based parcellation and plane-of-section analysis, and then mapped the distribution of TH-ir EGFPVgat neurons onto atlas templates from the Allen Reference Atlas (ARA) for the mouse brain. TH-ir EGFPVgat neurons were distributed throughout the rostrocaudal extent of the hypothalamus. Within the ARA ontology of gray matter regions, TH-ir neurons localized primarily to the periventricular hypothalamic zone, periventricular hypothalamic region, and lateral hypothalamic zone. There was a strong presence of EGFPVgat fluorescence in TH-ir neurons across all brain regions, but the most striking colocalization was found in a circumscribed portion of the zona incerta (ZI)-a region assigned to the hypothalamus in the ARA-where every TH-ir neuron expressed EGFPVgat . Neurochemical characterization of these ZI neurons revealed that they display immunoreactivity for dopamine but not dopamine β-hydroxylase. Collectively, these findings indicate the existence of a novel mouse hypothalamic population that may signal through the release of GABA and/or dopamine.
Collapse
Affiliation(s)
- Kenichiro Negishi
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Mikayla A Payant
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Kayla S Schumacker
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Gabor Wittmann
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts
| | - Rebecca M Butler
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, Massachusetts
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, Section Cellular Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas
| | - Melissa J Chee
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
143
|
Abstract
Food intake and energy homeostasis determine survival of the organism and species. Information on total energy levels and metabolic state are sensed in the periphery and transmitted to the brain, where it is integrated and triggers the animal to forage, prey, and consume food. Investigating circuitry and cellular mechanisms coordinating energy balance and feeding behaviors has drawn on many state-of-the-art techniques, including gene manipulation, optogenetics, virus tracing, and single-cell sequencing. These new findings provide novel insights into how the central nervous system regulates food intake, and shed the light on potential therapeutic interventions for eating-related disorders such as obesity and anorexia.
Collapse
|
144
|
Corrigan FM, Christie-Sands J. An innate brainstem self-other system involving orienting, affective responding, and polyvalent relational seeking: Some clinical implications for a "Deep Brain Reorienting" trauma psychotherapy approach. Med Hypotheses 2019; 136:109502. [PMID: 31794877 DOI: 10.1016/j.mehy.2019.109502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Underlying any complex relational intersubjectivity there is an inherent urge to connect, to have proximity, to engage in an experience of interpersonal contact. The hypothesis set out here is that this most basic urge to connect is dependent on circuits based in three main components: the midbrain superior colliculi (SC), the midbrain periaqueductal gray (PAG), and the mesolimbic and mesocortical dopamine systems originating in the midbrain ventral tegmental area. Firstly, there is orienting towards or away from interpersonal contact, dependent on approach and/or defensive/withdrawal areas of the SC. Secondly, there is an affective response to the contact, mediated by the PAG. Thirdly, there is an associated, affectively-loaded, seeking drive based in the mesolimbic and mesocortical dopamine systems. The neurochemical milieu of these dopaminergic systems is responsive to environmental factors, creating the possibility of multiple states of functioning with different affective valences, a polyvalent range of subjectively positive and negative experiences. The recognition of subtle tension changes in skeletal muscles when orienting to an affectively significant experience or event has clinical implications for processing of traumatic memories, including those of a relational/interpersonal nature. Sequences established at the brainstem level can underlie patterns of attachment responding that repeat over many years in different contexts. The interaction of the innate system for connection with that for alarm, through circuits based in the locus coeruleus, and that for defence, based in circuits through the PAG, can lay down deep patterns of emotional and energetic responses to relational stimuli. There may be simultaneous sequences for attachment approach and defensive aggression underlying relational styles that are so deep as to be seen as personality characteristics, for example, of borderline type. A clinical approach derived from these hypotheses, Deep Brain Reorienting, is briefly outlined as it provides a way to address the somatic residues of adverse interpersonal interactions underlying relational patterns and also the residual shock and horror of traumatic experiences. We suggest that the innate alarm system involving the SC and the locus coeruleus can generate a pre-affective shock while an affective shock can arise from excessive stimulation of the PAG. Clinically significant residues can be accessed through careful, mindful, attention to orienting-tension-affect-seeking sequences when the therapist and the client collaborate on eliciting and describing them.
Collapse
Affiliation(s)
- F M Corrigan
- Trauma Psychotherapy Scotland, 15 Newton Terrace, Glasgow G3 7PJ, United Kingdom.
| | - J Christie-Sands
- Trauma Psychotherapy Scotland, 15 Newton Terrace, Glasgow G3 7PJ, United Kingdom
| |
Collapse
|
145
|
Ponti G, Farinetti A, Marraudino M, Panzica G, Gotti S. Postnatal genistein administration selectively abolishes sexual dimorphism in specific hypothalamic dopaminergic system in mice. Brain Res 2019; 1724:146434. [PMID: 31491419 DOI: 10.1016/j.brainres.2019.146434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/26/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
As demonstrated in previous studies, early postnatal genistein (GEN) administration to mice pups of both sexes, at doses similar to that of infant soy-based formulas, may affect the development of some steroid-sensitive neuronal circuits (i.e. nitrergic and vasopressinergic systems), causing irreversible alterations in adults. Here, we investigated the hypothalamic and mesencephalic dopaminergic system (identified with tyrosine hydroxylase immunohistochemistry). GEN administration (50 mg/kg) to mice of both sexes during the first week of postnatal life specifically affected tyrosine hydroxylase immunohistochemistry in the hypothalamic subpopulation of neurons, abolishing their sexual dimorphism. On the contrary, we did not observe any effects in the mesencephalic groups. Due to the large involvement of dopamine in circuits controlling rodent sexual behavior and food intake, these results clearly indicate that the early postnatal administration of GEN may irreversibly alter the control of reproduction, of energetic metabolism, and other behaviors. These results suggest the need for a careful evaluation of the use of soy products in both human and animal newborns.
Collapse
Affiliation(s)
- Giovanna Ponti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy; Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco (T0), Italy.
| | - Alice Farinetti
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - Marilena Marraudino
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - GianCarlo Panzica
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| | - Stefano Gotti
- Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano (TO), Italy
| |
Collapse
|
146
|
McGrath TM, Spreckley E, Rodriguez AF, Viscomi C, Alamshah A, Akalestou E, Murphy KG, Jones NS. The homeostatic dynamics of feeding behaviour identify novel mechanisms of anorectic agents. PLoS Biol 2019; 17:e3000482. [PMID: 31805040 PMCID: PMC6894749 DOI: 10.1371/journal.pbio.3000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022] Open
Abstract
Better understanding of feeding behaviour will be vital in reducing obesity and metabolic syndrome, but we lack a standard model that captures the complexity of feeding behaviour. We construct an accurate stochastic model of rodent feeding at the bout level in order to perform quantitative behavioural analysis. Analysing the different effects on feeding behaviour of peptide YY3-36 (PYY3-36), lithium chloride, glucagon-like peptide 1 (GLP-1), and leptin shows the precise behavioural changes caused by each anorectic agent. Our analysis demonstrates that the changes in feeding behaviour evoked by the anorectic agents investigated do not mimic the behaviour of well-fed animals and that the intermeal interval is influenced by fullness. We show how robust homeostatic control of feeding thwarts attempts to reduce food intake and how this might be overcome. In silico experiments suggest that introducing a minimum intermeal interval or modulating upper gut emptying can be as effective as anorectic drug administration.
Collapse
Affiliation(s)
- Thomas M. McGrath
- Department of Mathematics, Imperial College London, London, United Kingdom
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| | - Eleanor Spreckley
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Aina Fernandez Rodriguez
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Amin Alamshah
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Elina Akalestou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Kevin G. Murphy
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Nick S. Jones
- Department of Mathematics, Imperial College London, London, United Kingdom
- EPSRC Centre for the Mathematics of Precision Healthcare, Imperial College London, London, United Kingdom
| |
Collapse
|
147
|
Meffre J, Sicre M, Diarra M, Marchessaux F, Paleressompoulle D, Ambroggi F. Orexin in the Posterior Paraventricular Thalamus Mediates Hunger-Related Signals in the Nucleus Accumbens Core. Curr Biol 2019; 29:3298-3306.e4. [DOI: 10.1016/j.cub.2019.07.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/23/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
|
148
|
Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN, Edson P, Arthur BJ, Bruns C, Rokicki K, Schauder D, Olbris DJ, Murphy SD, Ackerman DG, Arshadi C, Baldwin P, Blake R, Elsayed A, Hasan M, Ramirez D, Dos Santos B, Weldon M, Zafar A, Dudman JT, Gerfen CR, Hantman AW, Korff W, Sternson SM, Spruston N, Svoboda K, Chandrashekar J. Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. Cell 2019; 179:268-281.e13. [PMID: 31495573 DOI: 10.1016/j.cell.2019.07.042] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/14/2019] [Accepted: 07/23/2019] [Indexed: 01/15/2023]
Abstract
Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.
Collapse
Affiliation(s)
- Johan Winnubst
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Erhan Bas
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tiago A Ferreira
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Zhuhao Wu
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Michael N Economo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Ben J Arthur
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Christopher Bruns
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David Schauder
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Donald J Olbris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sean D Murphy
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David G Ackerman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Cameron Arshadi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Perry Baldwin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Regina Blake
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ahmad Elsayed
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mashtura Hasan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Daniel Ramirez
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Bruno Dos Santos
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Monet Weldon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Amina Zafar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Charles R Gerfen
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Scott M Sternson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
149
|
Affiliation(s)
- Stephanie E Simonds
- Metabolism, Diabetes & Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Michael A Cowley
- Metabolism, Diabetes & Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
150
|
Lee YH, Kim M, Lee M, Shin D, Ha DS, Park JS, Kim YB, Choi HJ. Food Craving, Seeking, and Consumption Behaviors: Conceptual Phases and Assessment Methods Used in Animal and Human Studies. J Obes Metab Syndr 2019; 28:148-157. [PMID: 31583379 PMCID: PMC6774451 DOI: 10.7570/jomes.2019.28.3.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022] Open
Abstract
What drives us to eat? It is one of the most fundamental questions in the obesity research field which have been investigated for centuries. Numerous novel in vivo technologies in the neuroscience field allows us to reevaluate the multiple components and phases of food-related behaviors. Focused on the cognitive, executive, behavioral and temporal aspects, food-related behaviors can be distinguished into appetitive phase (food craving→food seeking) and consummatory phase (food consumption). Food craving phase is an internal state or stage in which the animal has the motivation to eat the food but there is no actual food specific behaviors or actions. Food seeking phase entails repeated behaviors with a food searching purpose until the animal discovers the food (or food-related cue) and the approach behavior stage after the discovery of food. Food consumption phase is the step that the animal grabs, chews and intake the food. This review will specifically focus on characteristics and evaluation methods for each phase of food-related behavior in rodent, non-human primates and human.
Collapse
Affiliation(s)
- Young Hee Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Meelim Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Miwoo Lee
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Dongju Shin
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - Dong-Soo Ha
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - Joon Seok Park
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
| | - You Bin Kim
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
| | - Hyung Jin Choi
- Functional Neuroanatomy of Metabolism Regulation Laboratory, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul,
Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul,
Korea
- BK21Plus Biomedical Science Project Team, Seoul National University College of Medicine, Seoul,
Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon,
Korea
| |
Collapse
|