101
|
Amancherla K, Schlendorf KH, Chow N, Sheng Q, Freedman JE, Rathmell JC. Single-cell RNA-sequencing identifies unique cell-specific gene expression profiles in high-grade cardiac allograft vasculopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602989. [PMID: 39026730 PMCID: PMC11257508 DOI: 10.1101/2024.07.10.602989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Background Cardiac allograft vasculopathy (CAV), a diffuse thickening of the intima of the coronary arteries and microvasculature, is the leading cause of late graft failure and mortality after heart transplantation (HT). Diagnosis involves invasive coronary angiography, which carries substantial risk, and minimally-invasive approaches to CAV diagnosis are urgently needed. Using single-cell RNA-sequencing in peripheral blood mononuclear cells (PBMCs), we sought to identify cell-specific gene expression profiles in CAV. Methods Whole blood was collected from 22 HT recipients with angiographically-confirmed CAV and 18 HT recipients without CAV. PBMCs were isolated and subjected to single-cell RNA-sequencing using a 10X Genomics microfluidic platform. Downstream analyses focused on differential expression of genes, cell compositional changes, and T cell receptor repertoire analyses. Results Across 40 PBMC samples, we isolated 134,984 cells spanning 8 major clusters and 31 subclusters of cell types. Compositional analyses showed subtle, but significant increases in CD4+ T central memory cells, and CD14+ and CD16+ monocytes in high-grade CAV (CAV-2 and CAV-3) as compared to low-grade or absent CAV. After adjusting for age, gender, and prednisone use, 745 genes were differentially expressed in a cell-specific manner in high-grade CAV. Weighted gene co-expression network analyses showed enrichment for putative pathways involved in inflammation and angiogenesis. There were no significant differences in T cell clonality or diversity with increasing CAV severity. Conclusions Unbiased whole transcriptomic analyses at single-cell resolution identify unique, cell-specific gene expression patterns in CAV, suggesting the potential utility of peripheral gene expression biomarkers in diagnosing CAV.
Collapse
|
102
|
Nie MS, Li XH, Zhang S, Zeng DD, Cai YR, Peng DX, Jiang T, Shi JP, Li J. Screening for anti-influenza virus compounds from traditional Mongolian medicine by GFP-based reporter virus. Front Cell Infect Microbiol 2024; 14:1431979. [PMID: 39071166 PMCID: PMC11272615 DOI: 10.3389/fcimb.2024.1431979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Screening for effective antiviral compounds from traditional Mongolian medicine not only aids in the research of antiviral mechanisms of traditional medicines, but is also of significant importance for the development of new antiviral drugs targeting influenza A virus. Our study aimed to establish high-throughput, rapid screening methods for antiviral compounds against influenza A virus from abundant resources of Mongolian medicine. Methods The use of GFP-based reporter viruses plays a pivotal role in antiviral drugs screening by enabling rapid and precise identification of compounds that inhibit viral replication. Herein, a GFP-based reporter influenza A virus was used to identify potent anti-influenza compounds within traditional Mongolian medicine. Results Our study led to the discovery of three active compounds: Cardamonin, Curcumin, and Kaempferide, all of which exhibited significant antiviral properties in vitro. Subsequent analysis confirmed that their effectiveness was largely due to the stimulation of the antiviral signaling pathways of host cells, rather than direct interference with the viral components, such as the viral polymerase. Discussion This study showcased the use of GFP-based reporter viruses in high-throughput screening to unearth antiviral agents from traditional Mongolian medicine, which contains rich antiviral compounds and deserves further exploration. Despite certain limitations, fluorescent reporter viruses present substantial potential for antiviral drug screening research due to their high throughput and efficiency.
Collapse
Affiliation(s)
- Mao-Shun Nie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiao-He Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dan-Dan Zeng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yu-Rong Cai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Da-Xin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jian-Ping Shi
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jing Li
- College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
103
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
104
|
Zohar K, Linial M. Knockdown of DJ-1 Resulted in a Coordinated Activation of the Innate Immune Antiviral Response in HEK293 Cell Line. Int J Mol Sci 2024; 25:7550. [PMID: 39062793 PMCID: PMC11277157 DOI: 10.3390/ijms25147550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
PARK7, also known as DJ-1, plays a critical role in protecting cells by functioning as a sensitive oxidation sensor and modulator of antioxidants. DJ-1 acts to maintain mitochondrial function and regulate transcription in response to different stressors. In this study, we showed that cell lines vary based on their antioxidation potential under basal conditions. The transcriptome of HEK293 cells was tested following knockdown (KD) of DJ-1 using siRNAs, which reduced the DJ-1 transcripts to only 12% of the original level. We compared the expression levels of 14k protein-coding transcripts and 4.2k non-coding RNAs relative to cells treated with non-specific siRNAs. Among the coding genes, approximately 200 upregulated differentially expressed genes (DEGs) signified a coordinated antiviral innate immune response. Most genes were associated with the regulation of type 1 interferons (IFN) and the induction of inflammatory cytokines. About a quarter of these genes were also induced in cells treated with non-specific siRNAs that were used as a negative control. Beyond the antiviral-like response, 114 genes were specific to the KD of DJ-1 with enrichment in RNA metabolism and mitochondrial functions. A smaller set of downregulated genes (58 genes) was associated with dysregulation in membrane structure, cell viability, and mitophagy. We propose that the KD DJ-1 perturbation diminishes the protective potency against oxidative stress. Thus, it renders the cells labile and responsive to the dsRNA signal by activating a large number of genes, many of which drive apoptosis, cell death, and inflammatory signatures. The KD of DJ-1 highlights its potency in regulating genes associated with antiviral responses, RNA metabolism, and mitochondrial functions, apparently through alteration in STAT activity and downstream signaling. Given that DJ-1 also acts as an oncogene in metastatic cancers, targeting DJ-1 could be a promising therapeutic strategy where manipulation of the DJ-1 level may reduce cancer cell viability and enhance the efficacy of cancer treatments.
Collapse
Affiliation(s)
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
105
|
Ramos A, Bizri N, Novak E, Mollen K, Khan S. The role of cGAS in epithelial dysregulation in inflammatory bowel disease and gastrointestinal malignancies. Front Pharmacol 2024; 15:1409683. [PMID: 39050748 PMCID: PMC11266671 DOI: 10.3389/fphar.2024.1409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
The gastrointestinal tract is lined by an epithelial monolayer responsible for selective permeability and absorption, as well as protection against harmful luminal contents. Recognition of foreign or aberrant DNA within these epithelial cells is, in part, regulated by pattern recognition receptors such as cyclic GMP-AMP synthase (cGAS). cGAS binds double-stranded DNA from exogenous and endogenous sources, resulting in the activation of stimulator of interferon genes (STING) and a type 1 interferon response. cGAS is also implicated in non-canonical pathways involving the suppression of DNA repair and the upregulation of autophagy via interactions with PARP1 and Beclin-1, respectively. The importance of cGAS activation in the development and progression of inflammatory bowel disease and gastrointestinal cancers has been and continues to be explored. This review delves into the intricacies of the complex role of cGAS in intestinal epithelial inflammation and gastrointestinal malignancies, as well as recent therapeutic advances targeting cGAS pathways.
Collapse
Affiliation(s)
- Anna Ramos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nazih Bizri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Novak
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin Mollen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sidrah Khan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
106
|
Chatelain C, Berland L, Grard M, Jouand N, Fresquet J, Nader J, Hirigoyen U, Petithomme T, Combredet C, Pons-Tostivint E, Fradin D, Treps L, Blanquart C, Boisgerault N, Tangy F, Fonteneau JF. Interplay between oncolytic measles virus, macrophages and cancer cells induces a proinflammatory tumor microenvironment. Oncoimmunology 2024; 13:2377830. [PMID: 39005546 PMCID: PMC11244337 DOI: 10.1080/2162402x.2024.2377830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Attenuated measles virus (MV) exerts its oncolytic activity in malignant pleural mesothelioma (MPM) cells that lack type-I interferon (IFN-I) production or responsiveness. However, other cells in the tumor microenvironment (TME), such as myeloid cells, possess functional antiviral pathways. In this study, we aimed to characterize the interplay between MV and the myeloid cells in human MPM. We cocultured MPM cell lines with monocytes or macrophages and infected them with MV. We analyzed the transcriptome of each cell type and studied their secretion and phenotypes by high-dimensional flow cytometry. We also measured transgene expression using an MV encoding GFP (MV-GFP). We show that MPM cells drive the differentiation of monocytes into M2-like macrophages. These macrophages inhibit GFP expression in tumor cells harboring a defect in IFN-I production and a functional signaling downstream of the IFN-I receptor, while having minimal effects on GFP expression in tumor cells with defect of responsiveness to IFN-I. Interestingly, inhibition of the IFN-I signaling by ruxolitinib restores GFP expression in tumor cells. Upon MV infection, cocultured macrophages express antiviral pro-inflammatory genes and induce the expression of IFN-stimulated genes in tumor cells. MV also increases the expression of HLA and costimulatory molecules on macrophages and their phagocytic activity. Finally, MV induces the secretion of inflammatory cytokines, especially IFN-I, and PD-L1 expression in tumor cells and macrophages. These results show that macrophages reduce viral proteins expression in some MPM cell lines through their IFN-I production and generate a pro-inflammatory interplay that may stimulate the patient's anti-tumor immune response.
Collapse
Affiliation(s)
- Camille Chatelain
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Laurine Berland
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Marion Grard
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Nicolas Jouand
- LabEx IGO, Nantes Université, Nantes, France
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Judith Fresquet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Joëlle Nader
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Ugo Hirigoyen
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Tacien Petithomme
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Chantal Combredet
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Elvire Pons-Tostivint
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
- Centre Hospitalier Universitaire Nantes, Medical Oncology, Nantes University, Nantes, France
| | - Delphine Fradin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Lucas Treps
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| | - Frédéric Tangy
- Vaccines Innovation Laboratory, Institut Pasteur, Université de Paris Cité, Paris, France
- Oncovita, Paris, France
| | - Jean-François Fonteneau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, Nantes, France
- LabEx IGO, Nantes Université, Nantes, France
| |
Collapse
|
107
|
Luo W, Wang L, Chen Z, Liu M, Zhao Y, Wu Y, Huang B, Wang P. Pathoimmunological analyses of fatal E11 infection in premature infants. Front Cell Infect Microbiol 2024; 14:1391824. [PMID: 39045132 PMCID: PMC11263194 DOI: 10.3389/fcimb.2024.1391824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
E11 causes acute fulminant hepatitis in newborns. We investigated the pathological changes of different tissues from premature male twins who died due to E11 infection. The E11 expression level was higher in the liver than in other tissues. IP10 was upregulated in liver tissue in the patient group, and might be regulated by IFNAR and IRF7, whereas IFNα was regulated by IFNAR or IRF5.
Collapse
Affiliation(s)
- Wei Luo
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lixia Wang
- College of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Chen
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yixue Zhao
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yucan Wu
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
108
|
Crow MK, Olferiev M, Kirou KA. Standing on Shoulders: Interferon Research From Viral Interference to Lupus Pathogenesis and Treatment. Arthritis Rheumatol 2024; 76:1002-1012. [PMID: 38500017 DOI: 10.1002/art.42849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The discovery of interferon in the 1950s represents much more than the identification of the first cytokine and the key mediator of antiviral host defense. Defining the molecular nature and complexity of the type I interferon family, as well as its inducers and molecular mechanisms of action, was the work of investigators working at the highest level and producing insights of great consequence. Current knowledge of receptor-ligand interactions, cell signaling, and transcriptional regulation derives from studies of type I interferon. It is on the shoulders of the giants who produced that knowledge that others stand and have revealed critical mechanisms of the pathogenesis of systemic lupus erythematosus and other autoimmune diseases. The design of novel therapeutics is informed by the advances in investigation of type I interferon, with the potential for important impact on patient management.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York City, New York
| |
Collapse
|
109
|
Li C, Long L, Wang Y, Chi X, Zhang P, Zhang Y, Ji N. Constitutive type-1 interferons signaling activity in malignant gliomas. J Neurooncol 2024; 168:381-391. [PMID: 38789844 DOI: 10.1007/s11060-024-04601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/07/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE Recent studies revealed a pro-tumor effect of constitutive Type-1 interferons (IFN-I) production and the downstream signaling activity in several malignancies. In contrast, heterogeneity and clinical significance of the signaling activity in gliomas remain unknown. Thus, we aimed to depict the heterogeneity and clinical significance of constitutive Type-1 interferon (IFN-I) production and the downstream signaling activity in gliomas. METHODS We utilized multiplex immunofluorescence (mIF) on a 364 gliomas tissue microarray from our cohort. Moreover, we conducted bioinformatic analyses on the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases to investigate the heterogeneity and clinical significance of constitutive IFN-I signaling activity in gliomas. RESULTS We observed high heterogeneity of the constitutive IFN-I signaling activity among glioma subtypes. Signaling increased with the WHO malignancy grade while decreasing in the gliomas with IDH mutations. Additionally, high IFN-I activity served as an independent predictor of unfavorable outcomes, and global DNA hypermethylation in IDH-mutant gliomas was associated with decreased IFN-I signaling activity. Positive correlations were observed between the IFN-I activity and glioma-associated inflammation, encompassing both anti-tumor and pro-tumor immune responses. Furthermore, the IFN-I activity varied significantly among tumor and immune cells in the glioma microenvironment (GME). Notably, a distinct pattern of IFN-I signaling activity distribution in GME cells was observed among glioma subtypes, and the pattern was independently associated with patient overall survival. CONCLUSIONS Constitutive IFN-I signaling activity varies significantly among glioma subtypes and represents a potential indicator for increased glioma inflammation and unfavorable clinical outcomes.
Collapse
Affiliation(s)
- Chunzhao Li
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lang Long
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yi Wang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xiaohan Chi
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Nan Ji
- Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.
| |
Collapse
|
110
|
Gal-Oz ST, Baysoy A, Vijaykumar B, Mostafavi S, Benoist C, Shay T. Microheterogeneity in the Kinetics and Sex-Specific Response to Type I IFN. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:96-104. [PMID: 38775402 PMCID: PMC11328978 DOI: 10.4049/jimmunol.2300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 04/16/2024] [Indexed: 06/19/2024]
Abstract
The response to type I IFNs involves the rapid induction of prototypical IFN signature genes (ISGs). It is not known whether the tightly controlled ISG expression observed at the cell population level correctly represents the coherent responses of individual cells or whether it masks some heterogeneity in gene modules and/or responding cells. We performed a time-resolved single-cell analysis of the first 3 h after in vivo IFN stimulation in macrophages and CD4+ T and B lymphocytes from mice. All ISGs were generally induced in concert, with no clear cluster of faster- or slower-responding ISGs. Response kinetics differed between cell types: mostly homogeneous for macrophages, but with far more kinetic diversity among B and T lymphocytes, which included a distinct subset of nonresponsive cells. Velocity analysis confirmed the differences between macrophages in which the response progressed throughout the full 3 h, versus B and T lymphocytes in which it was rapidly curtailed by negative feedback and revealed differences in transcription rates between the lineages. In all cell types, female cells responded faster than their male counterparts. The ISG response thus seems to proceed as a homogeneous gene block, but with kinetics that vary between immune cell types and with sex differences that might underlie differential outcomes of viral infections.
Collapse
Affiliation(s)
- Shani T Gal-Oz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alev Baysoy
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Brinda Vijaykumar
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA
| | - Christophe Benoist
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
111
|
Rizvi ZA, Sadhu S, Dandotiya J, Sharma P, Binayke A, Singh V, Das V, Khatri R, Kumar R, Samal S, Kalia M, Awasthi A. SARS-CoV-2 infection induces thymic atrophy mediated by IFN-γ in hACE2 transgenic mice. Eur J Immunol 2024; 54:e2350624. [PMID: 38655818 DOI: 10.1002/eji.202350624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Pathogenic infections cause thymic atrophy, perturb thymic T-cell development, and alter immunological response. Previous studies reported dysregulated T-cell function and lymphopenia in coronavirus disease-19 (COVID-19). However, immunopathological changes in the thymus associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have not been elucidated. Here, we report that SARS-CoV-2 infects thymocytes, and induces CD4+CD8+ (double positive; DP) T-cell apoptosis leading to thymic atrophy and loss of peripheral TCR repertoire in K18-hACE2 transgenic mice. Infected thymus led to increased CD44+CD25- T-cells, indicating an early arrest in the T-cell maturation pathway. Thymic atrophy was notably higher in male hACE2-Tg mice than in females and involved an upregulated de-novo synthesis pathway of thymic glucocorticoid. Further, IFN-γ was crucial for thymic atrophy, as anti-IFN-γ -antibody neutralization blunted thymic involution. Therapeutic use of Remdesivir also rescued thymic atrophy. While the Omicron variant and its sub-lineage BA.5 variant caused marginal thymic atrophy, the delta variant of SARS-CoV-2 exhibited severe thymic atrophy characterized by severely depleted DP T-cells. Recently characterized broadly SARS-CoV-2 neutralizing monoclonal antibody P4A2 was able to rescue thymic atrophy and restore the thymic maturation pathway of T-cells. Together, we report SARS-CoV-2-associated thymic atrophy resulting from impaired T-cell maturation pathway which may contribute to dyregulated T cell response during COVID-19.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Jyotsna Dandotiya
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Puja Sharma
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Akshay Binayke
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Virendra Singh
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Vinayaka Das
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Ritika Khatri
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajesh Kumar
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre Biotechnology, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
112
|
Wang M, Reynolds KL, Montazeri K, Schaefer EA, Sullivan RJ, Dougan M. Tofacitinib is Effective in Treating Refractory Immune Checkpoint Inhibitor Hepatitis. Clin Gastroenterol Hepatol 2024; 22:1539-1541.e2. [PMID: 38142835 DOI: 10.1016/j.cgh.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Immune checkpoint inhibitors (ICI) have improved metastatic melanoma outcomes; however, toxicities, such as hepatitis, can be dose-limiting or even fatal.1 Systemic glucocorticoids and antimetabolite immunosuppressive medications remain the mainstay of treatment for ICI-hepatitis, but options for patients refractory to these therapies are limited.2 Herein we present 3 cases of glucocorticoid-refractory ICI-hepatitis treated with tofacitinib, an inhibitor of Janus kinase (JAK) 1 and 3. These patients represent consecutive patients referred to the Massachusetts General Hospital Severe Immunotherapy Complications service who were determined by our experts to have treatment failure with systemic glucocorticoid and antimetabolite combination therapy between August 2022 and September 2023.3 These were the only 3 patients managed by the Severe Immunotherapy Complications service who were treated with tofacitinib for ICI-hepatitis during that time.
Collapse
Affiliation(s)
- Mike Wang
- Mass General Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Kerry L Reynolds
- Mass General Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Kamaneh Montazeri
- Mass General Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Esperance A Schaefer
- Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ryan J Sullivan
- Mass General Cancer Center, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Michael Dougan
- Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
113
|
Calvo-Apalategi A, Nevado ML, Bravo-Gallego LY, González-Granado LI, Allende LM, Pena RR, López-Granados E, Reyburn HT. The lack of either IRF9, or STAT2, has surprisingly little effect on human natural killer cell development and function. Immunology 2024; 172:440-450. [PMID: 38514903 DOI: 10.1111/imm.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Analysis of genetically defined immunodeficient patients allows study of the effect of the absence of specific proteins on human immune function in real-world conditions. Here we have addressed the importance of type I interferon signalling for human NK cell development by studying the phenotype and function of circulating NK cells isolated from patients suffering primary immunodeficiency disease due to mutation of either the human interferon regulatory factor 9 (IRF9) or the signal transducer and activator of transcription 2 (STAT2) genes. IRF9, together with phosphorylated STAT1 and STAT2, form a heterotrimer called interferon stimulated gene factor 3 (ISGF3) which promotes the expression of hundreds of IFN-stimulated genes that mediate antiviral function triggered by exposure to type I interferons. IRF9- and STAT2-deficient patients are unable to respond efficiently to stimulation by type I interferons and so our experiments provide insights into the importance of type I interferon signalling and the consequences of its impairment on human NK cell biology. Surprisingly, the NK cells of these patients display essentially normal phenotype and function.
Collapse
Affiliation(s)
| | - Marta López Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Hospital 12 Octubre Research Institute (Imas12), Madrid, Spain
| | | | - Luis Ignacio González-Granado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Luis M Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Hospital 12 Octubre Research Institute (Imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Eduardo López-Granados
- Department of Immunology, La Paz University Hospital, Madrid, Spain
- Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
114
|
Virgilio MC, Ramnani B, Chen T, Disbennett WM, Lubow J, Welch JD, Collins KL. HIV-1 Vpr combats the PU.1-driven antiviral response in primary human macrophages. Nat Commun 2024; 15:5514. [PMID: 38951492 PMCID: PMC11217462 DOI: 10.1038/s41467-024-49635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.
Collapse
Affiliation(s)
- Maria C Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Barkha Ramnani
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - W Miguel Disbennett
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Post-Baccalaureate Research Education Program (PREP), University of Michigan, Ann Arbor, MI, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Lubow
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- ImmunoVec, Inc., Los Angeles, CA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, USA
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
115
|
Tat VY, Huang P, Khanipov K, Tat NY, Tseng CTK, Golovko G. Evaluation of Type I Interferon Treatment in Hospitalized COVID-19 Patients: A Retrospective Cohort Study. Pathogens 2024; 13:539. [PMID: 39057766 PMCID: PMC11280121 DOI: 10.3390/pathogens13070539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to cause morbidity and mortality worldwide; therefore, effective treatments remain crucial to controlling it. As interferon-alpha (IFN-α) and -beta (β) have been proposed as COVID-19 treatments, we sought to assess their effectiveness on respiratory, cardiovascular, neurological, and psychiatric signs and symptoms, as well as PASC and death, in hospitalized COVID-19 patients without multiple sclerosis (MS). Using a federated data research network (TriNetX), we performed a retrospective cohort study of hospitalized COVID-19 patients without MS who received IFN-α or -β treatment, comparing them to a similar cohort who did not receive treatment. Following propensity-score matched analyses, we demonstrate that hospitalized COVID-19 patients who were treated with IFN-α or -β had significantly higher odds of death. In contrast, there was no significant difference in any other outcomes between 1-30 days or 1 day to anytime afterward. Overall, hospitalized COVID-19 patients without MS who were treated with IFN-α or -β had similar short- and long-term sequelae (except for mortality) as those who did not receive treatment. The potential benefits of utilizing IFN-α or -β treatment as therapeutics remain to be realized, and our research highlights the need to explore repurposing drugs for COVID-19 using real-world evidence.
Collapse
Affiliation(s)
- Vivian Y. Tat
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Pinghan Huang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kamil Khanipov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | | | - Chien-Te Kent Tseng
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - George Golovko
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
116
|
Juliar BA, Stanaway IB, Sano F, Fu H, Smith KD, Akilesh S, Scales SJ, El Saghir J, Bhatraju PK, Liu E, Yang J, Lin J, Eddy S, Kretzler M, Zheng Y, Himmelfarb J, Harder JL, Freedman BS. Interferon-γ induces combined pyroptotic angiopathy and APOL1 expression in human kidney disease. Cell Rep 2024; 43:114310. [PMID: 38838223 PMCID: PMC11216883 DOI: 10.1016/j.celrep.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.
Collapse
Affiliation(s)
- Benjamin A Juliar
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ian B Stanaway
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Fumika Sano
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Hongxia Fu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Division of Hematology, Department of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Bloodworks Northwest Research Institute, Seattle, WA 98102, USA; Plurexa, Seattle, WA 98109, USA
| | - Kelly D Smith
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Shreeram Akilesh
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Suzie J Scales
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jamal El Saghir
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pavan K Bhatraju
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Esther Liu
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Johnson Yang
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jennie Lin
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ying Zheng
- Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jennifer L Harder
- Division of Nephrology, Department of Internal Medicine, and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Benjamin S Freedman
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington School of Medicine, Seattle, WA 98109, USA; Plurexa, Seattle, WA 98109, USA.
| |
Collapse
|
117
|
Hernández-Sarmiento LJ, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Interleukin 27, Similar to Interferons, Modulates Gene Expression of Tripartite Motif (TRIM) Family Members and Interferes with Mayaro Virus Replication in Human Macrophages. Viruses 2024; 16:996. [PMID: 38932287 PMCID: PMC11209095 DOI: 10.3390/v16060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The Tripartite motif (TRIM) family includes more than 80 distinct human genes. Their function has been implicated in regulating important cellular processes, including intracellular signaling, transcription, autophagy, and innate immunity. During viral infections, macrophages are key components of innate immunity that produce interferons (IFNs) and IL27. We recently published that IL27 and IFNs induce transcriptional changes in various genes, including those involved in JAK-STAT signaling. Furthermore, IL27 and IFNs share proinflammatory and antiviral pathways in monocyte-derived macrophages (MDMs), resulting in both common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs) encoding antiviral proteins. Interestingly, many TRIM proteins have been recognized as ISGs in recent years. Although it is already very well described that TRIM expression is induced by IFNs, it is not fully understood whether TRIM genes are induced in macrophages by IL27. Therefore, in this study, we examined the effect of stimulation with IL27 and type I, II, and III IFNs on the mRNA expression profiles of TRIM genes in MDMs. METHODS We used bulk RNA-seq to examine the TRIM expression profile of MDMs treated with IFNs or IL27. Initially, we characterized the expression patterns of different TRIM subfamilies using a heatmap. Subsequently, a volcano plot was employed to identify commonly differentially expressed TRIM genes. Additionally, we conducted gene ontology analysis with ClueGO to explore the biological processes of the regulated TRIMs, created a gene-gene interaction network using GeneMANIA, and examined protein-protein interactions with the STRING database. Finally, RNA-seq data was validated using RT-qPCR. Furthermore, the effect of IL27 on Mayaro virus replication was also evaluated. RESULTS We found that IL27, similar to IFNs, upregulates several TRIM genes' expression in human macrophages. Specifically, we identified three common TRIM genes (TRIM19, 21, and 22) induced by IL27 and all types of human IFNs. Additionally, we performed the first report of transcriptional regulation of TRIM19, 21, 22, and 69 genes in response to IL27. The TRIMs involved a broad range of biological processes, including defense response to viruses, viral life cycle regulation, and negative regulation of viral processes. In addition, we observed a decrease in Mayaro virus replication in MDMs previously treated with IL27. CONCLUSIONS Our results show that IL27, like IFNs, modulates the transcriptional expression of different TRIM-family members involved in the induction of innate immunity and an antiviral response. In addition, the functional analysis demonstrated that, like IFN, IL27 reduced Mayaro virus replication in MDMs. This implies that IL27 and IFNs share many similarities at a functional level. Moreover, identifying distinct TRIM groups and their differential expressions in response to IL27 provides new insights into the regulatory mechanisms underlying the antiviral response in human macrophages.
Collapse
Affiliation(s)
| | | | | | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050001, Colombia; (L.J.H.-S.); (Y.S.T.-M.); (J.F.V.-L.)
| |
Collapse
|
118
|
Stenzel T, Dziewulska D, Łukaszuk E, Custer JM, De Koch MD, Kraberger S, Varsani A. The pigeon circovirus evolution, epidemiology and interaction with the host immune system under One Loft Race rearing conditions. Sci Rep 2024; 14:13815. [PMID: 38877168 PMCID: PMC11178769 DOI: 10.1038/s41598-024-64587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
This study was aimed to investigate the frequency of PiCV recombination, the kinetics of PiCV viremia and shedding and the correlation between viral replication and host immune response in young pigeons subclinically infected with various PiCV variants and kept under conditions mimicking the OLR system. Fifteen racing pigeons originating from five breeding facilities were housed together for six weeks. Blood and cloacal swab samples were collected from birds every seven days to recover complete PiCV genomes and determine PiCV genetic diversity and recombination dynamics, as well as to assess virus shedding rate, level of viremia, expression of selected genes and level of anti-PiCV antibodies. Three hundred and eighty-eight complete PiCV genomes were obtained and thirteen genotypes were distinguished. Twenty-five recombination events were detected. Recombinants emerged during the first three weeks of the experiment which was consistent with the peak level of viremia and viral shedding. A further decrease in viremia and shedding partially corresponded with IFN-γ and MX1 gene expression and antibody dynamics. Considering the role of OLR pigeon rearing system in spreading infectious agents and allowing their recombination, it would be reasonable to reflect on the relevance of pigeon racing from both an animal welfare and epidemiological perspective.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Łukaszuk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joy M Custer
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Matthew D De Koch
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
119
|
Thiele RJ, Grünhagel B, Muenchhoff M, Pujantell-Graell M, Jocham L, Düsedau A, Hennesen J, Hildebrandt H, Hagen SH, Sandfort D, Bunders MJ, Keppler OT, Hoffmann C, Altfeld M. Magnitude of Type I Interferon Responses by Plasmacytoid Dendritic Cells After TLR7 Stimulation Is Associated With Human Immunodeficiency Virus Type 1 (HIV-1) Reservoir Sizes in Cisgender Women With HIV-1 on Antiretroviral Therapy. J Infect Dis 2024; 229:1781-1785. [PMID: 38385222 DOI: 10.1093/infdis/jiae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 02/23/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) disease manifestations differ between cisgender women and men, including better control of viral replication during primary infection and less frequent residual HIV-1 replication on antiretroviral therapy (ART) in cisgender women with HIV-1 (WWH). Investigating plasmacytoid dendritic cell (pDC) functions and HIV-1 reservoir sizes in 20 WWH on stable ART, we observed inverse correlations between interferon-α and tumor necrosis factor responses of pDCs to Toll-like receptor 7/8 stimulation and intact/total proviral HIV-1 DNA levels. Additionally, ISG15 mRNA levels in peripheral blood mononuclear cells correlated with cytokine responses of pDCs. These findings demonstrate an association between higher type I interferon responses and lower HIV-1 reservoir sizes in WWH on ART, warranting studies to identify the underlying mechanisms.
Collapse
Affiliation(s)
- Rebecca-Jo Thiele
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg
| | | | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich
- German Centre for Infection Research, Hamburg and Munich
| | | | - Linda Jocham
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich
- German Centre for Infection Research, Hamburg and Munich
| | - Arne Düsedau
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg
| | - Jana Hennesen
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg
| | - Heike Hildebrandt
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg
| | | | - Deborah Sandfort
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg
| | - Madeleine J Bunders
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg
- Center for Internal Medicine, III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich
- German Centre for Infection Research, Hamburg and Munich
| | | | - Marcus Altfeld
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg
- German Centre for Infection Research, Hamburg and Munich
| |
Collapse
|
120
|
Li X, Mi Z, Liu Z, Rong P. SARS-CoV-2: pathogenesis, therapeutics, variants, and vaccines. Front Microbiol 2024; 15:1334152. [PMID: 38939189 PMCID: PMC11208693 DOI: 10.3389/fmicb.2024.1334152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in December 2019 with staggering economic fallout and human suffering. The unique structure of SARS-CoV-2 and its underlying pathogenic mechanism were responsible for the global pandemic. In addition to the direct damage caused by the virus, SARS-CoV-2 triggers an abnormal immune response leading to a cytokine storm, culminating in acute respiratory distress syndrome and other fatal diseases that pose a significant challenge to clinicians. Therefore, potential treatments should focus not only on eliminating the virus but also on alleviating or controlling acute immune/inflammatory responses. Current management strategies for COVID-19 include preventative measures and supportive care, while the role of the host immune/inflammatory response in disease progression has largely been overlooked. Understanding the interaction between SARS-CoV-2 and its receptors, as well as the underlying pathogenesis, has proven to be helpful for disease prevention, early recognition of disease progression, vaccine development, and interventions aimed at reducing immunopathology have been shown to reduce adverse clinical outcomes and improve prognosis. Moreover, several key mutations in the SARS-CoV-2 genome sequence result in an enhanced binding affinity to the host cell receptor, or produce immune escape, leading to either increased virus transmissibility or virulence of variants that carry these mutations. This review characterizes the structural features of SARS-CoV-2, its variants, and their interaction with the immune system, emphasizing the role of dysfunctional immune responses and cytokine storm in disease progression. Additionally, potential therapeutic options are reviewed, providing critical insights into disease management, exploring effective approaches to deal with the public health crises caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Xi Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
121
|
Mulka KR, Queen SE, Mangus LM, Beck SE, Knight AC, McCarron ME, Solis CV, Wizzard AJ, Jayaram J, Colantuoni C, Mankowski JL. A Switch from Glial to Neuronal Gene Expression Alterations in the Spinal Cord of SIV-infected Macaques on Antiretroviral Therapy. J Neuroimmune Pharmacol 2024; 19:28. [PMID: 38862787 DOI: 10.1007/s11481-024-10130-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Despite antiretroviral therapy (ART), HIV-associated peripheral neuropathy remains one of the most prevalent neurologic manifestations of HIV infection. The spinal cord is an essential component of sensory pathways, but spinal cord sampling and evaluation in people with HIV has been very limited, especially in those on ART. The SIV/macaque model allows for assessment of the spinal cord at key time points throughout infection with and without ART. In this study, RNA was isolated from the spinal cord of uninfected, SIV+, and SIV + ART animals to track alterations in gene expression using global RNA-seq. Next, the SeqSeek platform was used to map changes in gene expression to specific cell types. Pathway analysis of differentially expressed genes demonstrated that highly upregulated genes in SIV-infected spinal cord aligned with interferon and viral response pathways. Additionally, this upregulated gene set significantly overlapped with those expressed in myeloid-derived cells including microglia. Downregulated genes were involved in cholesterol and collagen biosynthesis, and TGF-b regulation of extracellular matrix. In contrast, enriched pathways identified in SIV + ART animals included neurotransmitter receptors and post synaptic signaling regulators, and transmission across chemical synapses. SeqSeek analysis showed that upregulated genes were primarily expressed by neurons rather than glia. These findings indicate that pathways activated in the spinal cord of SIV + ART macaques are predominantly involved in neuronal signaling rather than proinflammatory pathways. This study provides the basis for further evaluation of mechanisms of SIV infection + ART within the spinal cord with a focus on therapeutic interventions to maintain synaptodendritic homeostasis.
Collapse
Affiliation(s)
- Kathleen R Mulka
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Audrey C Knight
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Megan E McCarron
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Clarisse V Solis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Arlon J Wizzard
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jyotsna Jayaram
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carlo Colantuoni
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
122
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
123
|
Luo B, Zhang S, Yu X, Tan D, Wang Y, Wang M. Gasdermin E benefits CD8 +T cell mediated anti-immunity through mitochondrial damage to activate cGAS-STING-interferonβ axis in colorectal cancer. Biomark Res 2024; 12:59. [PMID: 38853246 PMCID: PMC11163757 DOI: 10.1186/s40364-024-00606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Pyroptosis belongs to a unique type of programmed cell death among which GSDME is reported to exert anti-tumor immunity. However, the underlying mechanisms of how to boost tumor-infiltrating lymphocytes and whether it could benefit the efficacy of ICIs are still unknown. METHODS CRC samples were used to analyze its relationship with CD8+T cells. GSDME in mouse CRC cell lines CT26/MC38 was overexpressed. The infiltration of CD8+T cells in grafted tumors was determined by multiplex flow cytometric analysis and immunohistochemistry. Transcriptomic analysis was performed in cell lines to define key signatures related to its overexpression. The mechanism of how mtDNA was released by GSDME-induced mitochondrial damage and activated cGAS-STING pathway was observed. Whether GSDME benefited ICIs and the relationships with the genotypes of CRC patients were investigated. RESULTS It had favorable prognostic value in CRC and was positively associated with increased number and functionality of CD8+T cells both in human samples and animal models. This was due to mitochondrial damage and activation of cGAS-STING-IFNβ pathway for the recruitment of CD8+T cells. Mechanically, GSDME overexpression enhanced N-GSDME level, leading to the mitochondrial damage and mtDNA was released into cytosol. Finally, GSDME benefited with ICIs and exhibited positive relationships with MSI in CRC patients. CONCLUSION We presented the mechanism of GSDME in anti-tumor immunity through activating cGAS-STING-IFNβ axis mediated by mitochondrial damage, leading to more infiltration of CD8+T cells with synergistic efficacy with ICIs.
Collapse
Affiliation(s)
- Bixian Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shun Zhang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinbo Yu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Tan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Mingliang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
124
|
González Aparicio LJ, López CB. Selection of nonstandard viral genomes during the evolution of RNA viruses: A virus survival strategy or a pesky inconvenience? Adv Virus Res 2024; 119:39-61. [PMID: 38897708 DOI: 10.1016/bs.aivir.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
RNA viruses are some of the most successful biological entities due their ability to adapt and evolve. Despite their small genome and parasitic nature, RNA viruses have evolved many mechanisms to ensure their survival and maintenance in the host population. We propose that one of these mechanisms of survival is the generation of nonstandard viral genomes (nsVGs) that accumulate during viral replication. NsVGs are often considered to be accidental defective byproducts of the RNA virus replication, but their ubiquity and the plethora of roles they have during infection indicate that they are an integral part of the virus life cycle. Here we review the different types of nsVGs and discuss how their multiple roles during infection could be beneficial for RNA viruses to be maintained in nature. By shifting our perspectives on what makes a virus successful, we posit that nsVG generation is a conserved phenomenon that arose during RNA virus evolution as an essential component of a healthy virus community.
Collapse
Affiliation(s)
- Lavinia J González Aparicio
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Carolina B López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
125
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
126
|
Hoang PM, Torre D, Jaynes P, Ho J, Mohammed K, Alvstad E, Lam WY, Khanchandani V, Lee JM, Toh CMC, Lee RX, Anbuselvan A, Lee S, Sebra RP, Martin J Walsh, Marazzi I, Kappei D, Guccione E, Jeyasekharan AD. A PRMT5-ZNF326 axis mediates innate immune activation upon replication stress. SCIENCE ADVANCES 2024; 10:eadm9589. [PMID: 38838142 DOI: 10.1126/sciadv.adm9589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.
Collapse
Affiliation(s)
- Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Denis Torre
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jessica Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erik Alvstad
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wan Yee Lam
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie Min Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Min Clarissa Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Xue Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Robert P Sebra
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin J Walsh
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
127
|
Sularea VM, Sharma R, Hay DC, O’Farrelly C. Early interferon lambda production is induced by double-stranded RNA in iPS-derived hepatocyte-like cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae004. [PMID: 39193476 PMCID: PMC11219478 DOI: 10.1093/oxfimm/iqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatotropic viruses are amongst the most ubiquitous pathogens worldwide, causing significant morbidity and mortality. As hepatocytes are among the primary targets of these viruses, their ability to mount early effective innate defence responses is of major research interest. Interferon lambda (IFNL) is produced early in response to viral stimulation in other cell types, but hepatocyte production of this interferon is little investigated. Due to the difficulty and significant costs in obtaining and culturing human primary hepatocytes, surrogate systems are widely sought. Here we used induced pluripotent stem (iPS)-derived hepatocyte-like cells (HLCs) to investigate hepatic IFNL expression in response to viral-like ligands. We demonstrate that hepatocytes rely on cytoplasmic pattern recognition receptors (PRRs) such as Protein Kinase RNA-dependent (PKR) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLR) for the detection of double stranded RNA. Stimulation of HLCs by viral-like RNA ligands activating cytosolic RNA sensors resulted in thousand fold increase of type III interferon gene expression. These results are in contrast with type I IFN expression, which was induced to a lower extent. Concomitant induction of interferon stimulated genes, such as interferon-stimulated gene 15 (ISG15) and CXCL10, indicated the ability of HLCs to activate interferon-dependent activity. These results demonstrate that HLCs mount an innate antiviral response upon stimulation with viral-like RNA characterized by the induction of type III IFN.
Collapse
Affiliation(s)
- Vasile Mihai Sularea
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
| | - Ruchi Sharma
- Stemnovate LTD, Cambridge, Maia Building 270, Babraham Research Campus, Cambridge, CB223AT, United Kingdom
| | - David C Hay
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, United Kingdom
| | - Cliona O’Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
- School of Medicine, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02R590, Ireland
| |
Collapse
|
128
|
Wu TTH, Travaglini KJ, Rustagi A, Xu D, Zhang Y, Andronov L, Jang S, Gillich A, Dehghannasiri R, Martínez-Colón GJ, Beck A, Liu DD, Wilk AJ, Morri M, Trope WL, Bierman R, Weissman IL, Shrager JB, Quake SR, Kuo CS, Salzman J, Moerner WE, Kim PS, Blish CA, Krasnow MA. Interstitial macrophages are a focus of viral takeover and inflammation in COVID-19 initiation in human lung. J Exp Med 2024; 221:e20232192. [PMID: 38597954 PMCID: PMC11009983 DOI: 10.1084/jem.20232192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Early stages of deadly respiratory diseases including COVID-19 are challenging to elucidate in humans. Here, we define cellular tropism and transcriptomic effects of SARS-CoV-2 virus by productively infecting healthy human lung tissue and using scRNA-seq to reconstruct the transcriptional program in "infection pseudotime" for individual lung cell types. SARS-CoV-2 predominantly infected activated interstitial macrophages (IMs), which can accumulate thousands of viral RNA molecules, taking over 60% of the cell transcriptome and forming dense viral RNA bodies while inducing host profibrotic (TGFB1, SPP1) and inflammatory (early interferon response, CCL2/7/8/13, CXCL10, and IL6/10) programs and destroying host cell architecture. Infected alveolar macrophages (AMs) showed none of these extreme responses. Spike-dependent viral entry into AMs used ACE2 and Sialoadhesin/CD169, whereas IM entry used DC-SIGN/CD209. These results identify activated IMs as a prominent site of viral takeover, the focus of inflammation and fibrosis, and suggest targeting CD209 to prevent early pathology in COVID-19 pneumonia. This approach can be generalized to any human lung infection and to evaluate therapeutics.
Collapse
Affiliation(s)
- Timothy Ting-Hsuan Wu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute , San Francisco, CA, USA
| | - Kyle J Travaglini
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute , San Francisco, CA, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University , Stanford, CA, USA
| | - Yue Zhang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute , San Francisco, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Leonid Andronov
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - SoRi Jang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute , San Francisco, CA, USA
| | - Astrid Gillich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute , San Francisco, CA, USA
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanny J Martínez-Colón
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aimee Beck
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, CA, USA
| | - Aaron J Wilk
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Winston L Trope
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Rob Bierman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B Shrager
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System , Palo Alto, CA, USA
| | - Stephen R Quake
- Chan Zuckerberg Biohub , San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christin S Kuo
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Peter S Kim
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub , San Francisco, CA, USA
- Sarafan ChEM-H, Stanford University , Stanford, CA, USA
| | - Catherine A Blish
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub , San Francisco, CA, USA
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine , Stanford, CA, USA
- Howard Hughes Medical Institute , San Francisco, CA, USA
| |
Collapse
|
129
|
Ravi Sundar Jose Geetha A, Fischer K, Babadei O, Smesnik G, Vogt A, Platanitis E, Müller M, Farlik M, Decker T. Dynamic control of gene expression by ISGF3 and IRF1 during IFNβ and IFNγ signaling. EMBO J 2024; 43:2233-2263. [PMID: 38658796 PMCID: PMC11148166 DOI: 10.1038/s44318-024-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Type I interferons (IFN-I, including IFNβ) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.
Collapse
Affiliation(s)
- Aarathy Ravi Sundar Jose Geetha
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Georg Smesnik
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | | | - Ekaterini Platanitis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria.
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria.
| |
Collapse
|
130
|
Hu SB, Li JB. RNA editing and immune control: from mechanism to therapy. Curr Opin Genet Dev 2024; 86:102195. [PMID: 38643591 PMCID: PMC11162905 DOI: 10.1016/j.gde.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Adenosine-to-inosine RNA editing, catalyzed by the enzymes ADAR1 and ADAR2, stands as a pervasive RNA modification. A primary function of ADAR1-mediated RNA editing lies in labeling endogenous double-stranded RNAs (dsRNAs) as 'self', thereby averting their potential to activate innate immune responses. Recent findings have highlighted additional roles of ADAR1, independent of RNA editing, that are crucial for immune control. Here, we focus on recent progress in understanding ADAR1's RNA editing-dependent and -independent roles in immune control. We describe how ADAR1 regulates various dsRNA innate immune receptors through distinct mechanisms. Furthermore, we discuss the implications of ADAR1 and RNA editing in diseases, including autoimmune diseases and cancers.
Collapse
Affiliation(s)
- Shi-Bin Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
131
|
Liu R, Meng F, Liu T, Yang G, Shan S. RING finger protein 122-like (RNF122L) negatively regulates antiviral immune response by targeting STING in common carp (Cyprinus carpio L.). Int J Biol Macromol 2024; 269:132104. [PMID: 38719016 DOI: 10.1016/j.ijbiomac.2024.132104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan 250014, China
| | - Fei Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan 250014, China
| | - Tingting Liu
- Shandong Industrial Technician College, No.6789 West Ring Road, Weifang 261000, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan 250014, China.
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan 250014, China.
| |
Collapse
|
132
|
Wang J, Xie F, Jia X, Wang X, Kong L, Li Y, Liang X, Zhang M, He Y, Feng W, Luo T, Wang Y, Xu A. Fangchinoline induces antiviral response by suppressing STING degradation. J Pharm Anal 2024; 14:100972. [PMID: 39027910 PMCID: PMC11255895 DOI: 10.1016/j.jpha.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 07/20/2024] Open
Abstract
The stimulator of interferon genes (STING), an integral adaptor protein in the DNA-sensing pathway, plays a pivotal role in the innate immune response against infections. Additionally, it presents a valuable therapeutic target for infectious diseases and cancer. We observed that fangchinoline (Fan), a bis-benzylisoquinoline alkaloid (BBA), effectively impedes the replication of vesicular stomatitis virus (VSV), encephalomyocarditis virus (EMCV), influenza A virus (H1N1), and herpes simplex virus-1 (HSV-1) in vitro. Fan treatment significantly reduced the viral load, attenuated tissue inflammation, and improved survival in a viral sepsis mouse model. Mechanistically, Fan activates the antiviral response in a STING-dependent manner, leading to increased expression of interferon (IFN) and interferon-stimulated genes (ISGs) for potent antiviral effects in vivo and in vitro. Notably, Fan interacts with STING, preventing its degradation and thereby extending the activation of IFN-based antiviral responses. Collectively, our findings highlight the potential of Fan, which elicits antiviral immunity by suppressing STING degradation, as a promising candidate for antiviral therapy.
Collapse
Affiliation(s)
- Jinyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang Xie
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingdong Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiying Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Liang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meiqi Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuting He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wandi Feng
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tong Luo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Anlong Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
133
|
Gu T, Qu S, Zhang J, Ying Q, Zhang X, Lv Y, Liu R, Feng Y, Wang F, Wu X. Guanylate-binding protein 1 inhibits Hantaan virus infection by restricting virus entry. J Med Virol 2024; 96:e29730. [PMID: 38860570 DOI: 10.1002/jmv.29730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Hantaan virus (HTNV) infection can cause hemorrhagic fever with renal syndrome (HFRS) in humans, and currently, there are no long-standing protective vaccines or specific antivirals available. Guanylate-binding protein 1 (GBP1) is an interferon-stimulated gene that defends against various pathogen infections. However, the function of GBP1 in HTNV infection remains unknown. Here, we describe how GBP1 prevents HTNV infection by obstructing virus entry. We found that HTNV infection induced GBP1 expression and that overexpression of GBP1 inhibited HTNV infection, while knockout of GBP1 had the opposite effect. Interestingly, GBP1 did not affect interferon (IFN) signaling during HTNV infection. Instead, GBP1 prevented HTNV from entering cells through clathrin-mediated endocytosis (CME). We also discovered that GBP1 specifically interacted with actin but not dynamin 2 (DNM2) and made it difficult for DNM2 to be recruited by actin, which may account for the suppression of CME during HTNV infection. These findings establish an antiviral role for GBP1 in inhibiting HTNV infection and help us better understand how GBP1 regulates HTNV entry and could potentially aid in developing treatments for this virus.
Collapse
Affiliation(s)
- Tianle Gu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Sirui Qu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Junmei Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Xi'an, China
| | - Yunhua Lv
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yunan Feng
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
134
|
Ren T, He J, Zhang T, Niu A, Yuan Y, Zuo Y, Miao Y, Zhang H, Zang L, Qiao C, Cao X, Yang X, Zheng Z, Xu Y, Wu D, Zheng H. Exercise activates interferon response of the liver via Gpld1 to enhance antiviral innate immunity. SCIENCE ADVANCES 2024; 10:eadk5011. [PMID: 38809975 DOI: 10.1126/sciadv.adk5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Healthy behavioral patterns could modulate organ functions to enhance the body's immunity. However, how exercise regulates antiviral innate immunity remains elusive. Here, we found that exercise promotes type I interferon (IFN-I) production in the liver and enhances IFN-I immune activity of the body. Despite the possibility that many exercise-induced factors could affect IFN-I production, we identified Gpld1 as a crucial molecule, and the liver as the major organ to promote IFN-I production after exercise. Exercise largely loses the efficiency to induce IFN-I in Gpld1-/- mice. Further studies demonstrated that exercise-produced 3-hydroxybutanoic acid (3-HB) critically induces Gpld1 expression in the liver. Gpld1 blocks the PP2A-IRF3 interaction, thus enhancing IRF3 activation and IFN-I production, and eventually improving the body's antiviral ability. This study reveals that exercise improves antiviral innate immunity by linking the liver metabolism to systemic IFN-I activity and uncovers an unknown function of liver cells in innate immunity.
Collapse
Affiliation(s)
- Tengfei Ren
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- Department/Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiuyi He
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingting Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Anxing Niu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yukang Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yibo Zuo
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Miao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hongguang Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Caixia Qiao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinhua Cao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyu Yang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhijin Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 215123 Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yang Xu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hui Zheng
- Department/Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Disease and Immunology of Ministry of Education of China, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
135
|
Chen J, Hui Q, Titanji BK, So-Armah K, Freiberg M, Justice AC, Xu K, Zhu X, Gwinn M, Marconi VC, Sun YV. A multi-trait epigenome-wide association study identified DNA methylation signature of inflammation among people with HIV. RESEARCH SQUARE 2024:rs.3.rs-4419840. [PMID: 38854093 PMCID: PMC11160930 DOI: 10.21203/rs.3.rs-4419840/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inflammation underlies many conditions causing excess morbidity and mortality among people with HIV (PWH). A handful of single-trait epigenome-wide association studies (EWAS) have suggested that inflammation is associated with DNA methylation (DNAm) among PWH. Multi-trait EWAS may further improve statistical power and reveal pathways in common between different inflammatory markers. We conducted single-trait EWAS of three inflammatory markers (soluble CD14, D-dimers, and interleukin 6) in the Veteran Aging Cohort Study (n = 920). The study population was all male PWH with an average age of 51 years, and 82.3% self-reported as Black. We then applied two multi-trait EWAS methods-CPASSOC and OmniTest-to combine single-trait EWAS results. CPASSOC and OmniTest identified 189 and 157 inflammation-associated DNAm sites respectively, of which 112 overlapped. Among the identified sites, 56% were not significant in any single-trait EWAS. Top sites were mapped to inflammation-related genes including IFITM1, PARP9 and STAT1. These genes were significantly enriched in pathways such as "type I interferon signaling" and "immune response to virus". We demonstrate that multi-trait EWAS can improve the discovery of inflammation-associated DNAm sites, genes, and pathways. These DNAm sites suggest molecular mechanisms in response to inflammation associated with HIV and might hold the key to addressing persistent inflammation in PWH.
Collapse
Affiliation(s)
| | | | | | - Kaku So-Armah
- Boston University Chobanian and Avedisian School of Medicine
| | - Matthew Freiberg
- Vanderbilt University School of Medicine and Tennessee Valley Healthcare System
| | | | - Ke Xu
- Connecticut Veteran Health System
| | | | | | | | | |
Collapse
|
136
|
Felipe Fumero E, Walter C, Frenz JM, Seifert F, Alla V, Hennig T, Angenendt L, Hartmann W, Wolf S, Serve H, Oellerich T, Lenz G, Müller-Tidow C, Schliemann C, Huber O, Dugas M, Mann M, Jayavelu AK, Mikesch JH, Arteaga MF. Epigenetic control over the cell-intrinsic immune response antagonizes self-renewal in acute myeloid leukemia. Blood 2024; 143:2284-2299. [PMID: 38457355 PMCID: PMC11181352 DOI: 10.1182/blood.2023021640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Epigenetic modulation of the cell-intrinsic immune response holds promise as a therapeutic approach for leukemia. However, current strategies designed for transcriptional activation of endogenous transposons and subsequent interferon type-I (IFN-I) response, show limited clinical efficacy. Histone lysine methylation is an epigenetic signature in IFN-I response associated with suppression of IFN-I and IFN-stimulated genes, suggesting histone demethylation as key mechanism of reactivation. In this study, we unveil the histone demethylase PHF8 as a direct initiator and regulator of cell-intrinsic immune response in acute myeloid leukemia (AML). Site-specific phosphorylation of PHF8 orchestrates epigenetic changes that upregulate cytosolic RNA sensors, particularly the TRIM25-RIG-I-IFIT5 axis, thereby triggering the cellular IFN-I response-differentiation-apoptosis network. This signaling cascade largely counteracts differentiation block and growth of human AML cells across various disease subtypes in vitro and in vivo. Through proteome analysis of over 200 primary AML bone marrow samples, we identify a distinct PHF8/IFN-I signature in half of the patient population, without significant associations with known clinically or genetically defined AML subgroups. This profile was absent in healthy CD34+ hematopoietic progenitor cells, suggesting therapeutic applicability in a large fraction of patients with AML. Pharmacological support of PHF8 phosphorylation significantly impairs the growth in samples from patients with primary AML. These findings provide novel opportunities for harnessing the cell-intrinsic immune response in the development of immunotherapeutic strategies against AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Epigenesis, Genetic
- Animals
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Mice
- Interferon Type I/metabolism
- Cell Self Renewal
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
| | - Carolin Walter
- Institute of Medical Informatics, Gerhard-Domagk-Institute for Pathology, University Hospital Muenster, Muenster, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Franca Seifert
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Vijay Alla
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Linus Angenendt
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute for Pathology, University Hospital Muenster, Muenster, Germany
| | - Sebastian Wolf
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Hubert Serve
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Oellerich
- Department of Hematology/Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Georg Lenz
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | | | | | - Otmar Huber
- Department of Biochemistry II, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, German Cancer Research Center, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children’s Cancer Center, University of Heidelberg, Heidelberg, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | | |
Collapse
|
137
|
Schäfer A, Marzi A, Furuyama W, Catanzaro NJ, Nguyen C, Haddock E, Feldmann F, Meade-White K, Thomas T, Hubbard ML, Gully KL, Leist SR, Hock P, Bell TA, De la Cruz GE, Midkiff BR, Martinez DR, Shaw GD, Miller DR, Vernon MJ, Graham RL, Cowley DO, Montgomery SA, Schughart K, de Villena FPM, Wilkerson GK, Ferris MT, Feldmann H, Baric RS. Mapping of susceptibility loci for Ebola virus pathogenesis in mice. Cell Rep 2024; 43:114127. [PMID: 38652660 PMCID: PMC11348656 DOI: 10.1016/j.celrep.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Wakako Furuyama
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gabriela E De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bentley R Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Darla R Miller
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael J Vernon
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dale O Cowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Animal Models Core Facility, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Institute of Virology, University of Muenster, 48149 Muenster, Germany
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gregory K Wilkerson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
138
|
Matsumoto K, Namai F, Miyazaki A, Imamura Y, Fukuyama K, Ikeda-Ohtsubo W, Nishiyama K, Villena J, Miyazawa K, Kitazawa H. Development of an intestinal epithelial cell line and organoids derived from the same swine and characterization of their antiviral responses. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:342-351. [PMID: 39364127 PMCID: PMC11444855 DOI: 10.12938/bmfh.2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 10/05/2024]
Abstract
Intestinal homeostasis and integrity are important factors for maintaining host health. This study established intestinal epithelial cell lines and organoids from the same swine jejunal crypts to develop seamless swine intestinal in vitro evaluation systems. The study evaluated the proliferative capacity and tight junction formation of the epithelial cell line and characterized the cell differentiation potential of the intestinal organoids. The evaluation systems were subsequently exposed to the Toll-like receptor 3 (TLR3) agonist poly(I:C) to simulate viral infections and assess the antiviral responses. The results demonstrated no differences in the response to type I interferons. There were, however, significant differences in the expression of interferon-stimulated genes. This study collectively introduced a flexible evaluation system using cell lines and organoids and revealed notable differences in the expression of interferon-stimulated genes, highlighting the complexity of the immune responses in these in vitro systems and the importance of intestinal heterogeneity in assessing viral responses.
Collapse
Affiliation(s)
- Kaho Matsumoto
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Ayako Miyazaki
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshiya Imamura
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Wakako Ikeda-Ohtsubo
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Keita Nishiyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Julio Villena
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | - Kohtaro Miyazawa
- Division of Infectious Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidoriamamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
139
|
Schiefer S, Hale BG. Proximal protein landscapes of the type I interferon signaling cascade reveal negative regulation by PJA2. Nat Commun 2024; 15:4484. [PMID: 38802340 PMCID: PMC11130243 DOI: 10.1038/s41467-024-48800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.
Collapse
Affiliation(s)
- Samira Schiefer
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH and University of Zurich, 8057, Zurich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
140
|
Huang Y, Chen J, Chen S, Huang C, Li B, Li J, Jin Z, Zhang Q, Pan P, Du W, Liu L, Liu Z. Molecular characterization of SARS-CoV-2 nucleocapsid protein. Front Cell Infect Microbiol 2024; 14:1415885. [PMID: 38846351 PMCID: PMC11153676 DOI: 10.3389/fcimb.2024.1415885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a highly prevalent and potent infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Until now, the world is still endeavoring to develop new ways to diagnose and treat COVID-19. At present, the clinical prevention and treatment of COVID-19 mainly targets the spike protein on the surface of SRAS-CoV-2. However, with the continuous emergence of SARS-CoV-2 Variants of concern (VOC), targeting the spike protein therapy shows a high degree of limitation. The Nucleocapsid Protein (N protein) of SARS-CoV-2 is highly conserved in virus evolution and is involved in the key process of viral infection and assembly. It is the most expressed viral structural protein after SARS-CoV-2 infection in humans and has high immunogenicity. Therefore, N protein as the key factor of virus infection and replication in basic research and clinical application has great potential research value. This article reviews the research progress on the structure and biological function of SARS-CoV-2 N protein, the diagnosis and drug research of targeting N protein, in order to promote researchers' further understanding of SARS-CoV-2 N protein, and lay a theoretical foundation for the possible outbreak of new and sudden coronavirus infectious diseases in the future.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Junkai Chen
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Siwei Chen
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Bei Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zhixiong Jin
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Zhang
- Central Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Weixing Du
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Long Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Department of Infectious Diseases, Renmin Hospital, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
141
|
Sumner RP, Blest H, Lin M, Maluquer de Motes C, Towers GJ. HIV-1 with gag processing defects activates cGAS sensing. Retrovirology 2024; 21:10. [PMID: 38778414 PMCID: PMC11112816 DOI: 10.1186/s12977-024-00643-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.
Collapse
Affiliation(s)
- Rebecca P Sumner
- Division of Infection and Immunity, University College London, 90 Gower Street, London, WC1E 6BT, UK.
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | - Henry Blest
- Division of Infection and Immunity, University College London, 90 Gower Street, London, WC1E 6BT, UK
| | - Meiyin Lin
- Division of Infection and Immunity, University College London, 90 Gower Street, London, WC1E 6BT, UK
| | | | - Greg J Towers
- Division of Infection and Immunity, University College London, 90 Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
142
|
Yang Y, Gao Y, Sun H, Bai J, Zhang J, Zhang L, Liu X, Sun Y, Jiang P. Ursonic acid from medicinal herbs inhibits PRRSV replication through activation of the innate immune response by targeting the phosphatase PTPN1. Vet Res 2024; 55:67. [PMID: 38783392 PMCID: PMC11118551 DOI: 10.1186/s13567-024-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), has caused substantial economic losses to the global swine industry due to the lack of effective commercial vaccines and drugs. There is an urgent need to develop alternative strategies for PRRS prevention and control, such as antiviral drugs. In this study, we identified ursonic acid (UNA), a natural pentacyclic triterpenoid from medicinal herbs, as a novel drug with anti-PRRSV activity in vitro. Mechanistically, a time-of-addition assay revealed that UNA inhibited PRRSV replication when it was added before, at the same time as, and after PRRSV infection was induced. Compound target prediction and molecular docking analysis suggested that UNA interacts with the active pocket of PTPN1, which was further confirmed by a target protein interference assay and phosphatase activity assay. Furthermore, UNA inhibited PRRSV replication by targeting PTPN1, which inhibited IFN-β production. In addition, UNA displayed antiviral activity against porcine epidemic diarrhoea virus (PEDV) and Seneca virus A (SVA) replication in vitro. These findings will be helpful for developing novel prophylactic and therapeutic agents against PRRS and other swine virus infections.
Collapse
Affiliation(s)
- Yuanqi Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
143
|
Gómez-Bañuelos E, Goldman DW, Andrade V, Darrah E, Petri M, Andrade F. Uncoupling interferons and the interferon signature explains clinical and transcriptional subsets in SLE. Cell Rep Med 2024; 5:101569. [PMID: 38744279 PMCID: PMC11148857 DOI: 10.1016/j.xcrm.2024.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Systemic lupus erythematosus (SLE) displays a hallmark interferon (IFN) signature. Yet, clinical trials targeting type I IFN (IFN-I) have shown variable efficacy, and blocking IFN-II failed to treat SLE. Here, we show that IFN type levels in SLE vary significantly across clinical and transcriptional endotypes. Whereas skin involvement correlated with IFN-I alone, systemic features like nephritis associated with co-elevation of IFN-I, IFN-II, and IFN-III, indicating additive IFN effects in severe SLE. Notably, while high IFN-II/-III levels without IFN-I had a limited effect on disease activity, IFN-II was linked to IFN-I-independent transcriptional profiles (e.g., OXPHOS and CD8+GZMH+ cells), and IFN-III enhanced IFN-induced gene expression when co-elevated with IFN-I. Moreover, dysregulated IFNs do not explain the IFN signature in 64% of patients or clinical manifestations including cytopenia, serositis, and anti-phospholipid syndrome, implying IFN-independent endotypes in SLE. This study sheds light on mechanisms underlying SLE heterogeneity and the variable response to IFN-targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | - Daniel W Goldman
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Victoria Andrade
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Michelle Petri
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins School of Medicine, Baltimore, MD 21224.
| |
Collapse
|
144
|
Maleki-Fischbach M, Anderson K, Fernández Pérez ER. Transcriptomic Profiling of Peripheral B Cells in Antibody Positive Sjogren's Patients Reveals Interferon Signature. Genes (Basel) 2024; 15:628. [PMID: 38790257 PMCID: PMC11120746 DOI: 10.3390/genes15050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Sjögren's disease (SjD) is a common systemic autoimmune disease that affects mainly women. Key pathologic features include the infiltration of exocrine glands by lymphocytes and the activation of B lymphocytes with the production of autoantibodies. We aimed to analyze the transcriptome of circulating B cells from patients with SJD and healthy controls to decipher the B-cell-specific contribution to SJD. METHODS RNA from peripheral blood B cells of five untreated female patients with SjD and positive ANA, positive anti-SSA (both Ro-52 and Ro-60), positive anti-SSB and positive rheumatoid-factor, and five healthy controls was subjected to whole-transcriptome sequencing. A false discovery rate of < 0.1 was applied to define differentially expressed genes (DEG). RESULTS RNA-sequencing identified 56 up and 23 down DEG. Hierarchal clustering showed a clear separation between the two groups. Ingenuity pathway analysis revealed that these genes may play a role in interferon signaling, chronic mycobacterial infection, and transformation to myeloproliferative disorders. CONCLUSIONS We found upregulated expression of type-I and type-II interferon (IFN)-induced genes, as well as genes that may contribute to other concomitant conditions, including infections and a higher risk of myeloproliferative disorders. This adds insight into the autoimmune process and suggests potential targets for future functional and prognostic studies.
Collapse
Affiliation(s)
| | - Kelsey Anderson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Evans R. Fernández Pérez
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
145
|
Roberts BS, Anderson AG, Partridge EC, Cooper GM, Myers RM. Probabilistic association of differentially expressed genes with cis-regulatory elements. Genome Res 2024; 34:620-632. [PMID: 38631728 PMCID: PMC11146588 DOI: 10.1101/gr.278598.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Differential gene expression in response to perturbations is mediated at least in part by changes in binding of transcription factors (TFs) and other proteins at specific genomic regions. Association of these cis-regulatory elements (CREs) with their target genes is a challenging task that is essential to address many biological and mechanistic questions. Many current approaches rely on chromatin conformation capture techniques or single-cell correlational methods to establish CRE-to-gene associations. These methods can be effective but have limitations, including resolution, gaps in detectable association distances, and cost. As an alternative, we have developed DegCre, a nonparametric method that evaluates correlations between measurements of perturbation-induced differential gene expression and differential regulatory signal at CREs to score possible CRE-to-gene associations. It has several unique features, including the ability to use any type of CRE activity measurement, yield probabilistic scores for CRE-to-gene pairs, and assess CRE-to-gene pairings across a wide range of sequence distances. We apply DegCre to six data sets, each using different perturbations and containing a variety of regulatory signal measurements, including chromatin openness, histone modifications, and TF occupancy. To test their efficacy, we compare DegCre associations to Hi-C loop calls and CRISPR-validated CRE-to-gene associations, establishing good performance by DegCre that is comparable or superior to competing methods. DegCre is a novel approach to the association of CREs to genes from a perturbation-differential perspective, with strengths that are complementary to existing approaches and allow for new insights into gene regulation.
Collapse
Affiliation(s)
- Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Ashlyn G Anderson
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| |
Collapse
|
146
|
Cheemarla NR, Watkins TA, Mihaylova VT, Foxman EF. Viral Interference During Influenza A-SARS-CoV-2 Coinfection of the Human Airway Epithelium and Reversal by Oseltamivir. J Infect Dis 2024; 229:1430-1434. [PMID: 37722683 PMCID: PMC11095529 DOI: 10.1093/infdis/jiad402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
To gain insight into interactions among respiratory viruses, we modeled influenza A virus (IAV)-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coinfections using differentiated human airway epithelial cultures. Replicating IAV induced a more robust interferon response than SARS-CoV-2 and suppressed SARS-CoV-2 replication in both sequential and simultaneous infections, whereas SARS-CoV-2 did not enhance host cell defense during influenza infection or suppress IAV replication. Oseltamivir, an antiviral targeting influenza, reduced IAV replication during coinfection but also reduced the host antiviral response and restored SARS-CoV-2 replication. These results demonstrate how perturbations in one viral infection can impact its effect on a coinfecting virus.
Collapse
Affiliation(s)
- Nagarjuna R Cheemarla
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Timothy A Watkins
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Valia T Mihaylova
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ellen F Foxman
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
147
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single-cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. J Virol 2024; 98:e0019424. [PMID: 38567950 PMCID: PMC11092337 DOI: 10.1128/jvi.00194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
Affiliation(s)
- Kathryn M. Moore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | | | - Stacey Lapp
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Amanda Metz
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Gregory K. Tharp
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Michelle Lee
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Swati Sharma Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Rafick-Pierre Sékaly
- Emory Vaccine Center, Atlanta, Georgia, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
148
|
Mantel N, Piras-Douce F, Chautard E, Marcos-Lopez E, Bodinham CL, Cosma A, Courtois V, Dhooge N, Gautheron S, Kaufmann SHE, Pizzoferro K, Lewis DJM, Martinon F, Pagnon A, Raynal F, Dereuddre-Bosquet N, Le Grand R. Cynomolgus macaques as a translational model of human immune responses to yellow fever 17D vaccination. J Virol 2024; 98:e0151623. [PMID: 38567951 PMCID: PMC11092345 DOI: 10.1128/jvi.01516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 05/15/2024] Open
Abstract
The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.
Collapse
Affiliation(s)
| | | | | | - Ernesto Marcos-Lopez
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Caroline L. Bodinham
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - Antonio Cosma
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | | | - Nina Dhooge
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | | | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - Kathleen Pizzoferro
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - David J. M. Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, Surrey, United Kingdom
| | - Frédéric Martinon
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Anke Pagnon
- Research and Development, Sanofi, Marcy L'Etoile, France
| | - Franck Raynal
- Research and Development, Sanofi, Marcy L'Etoile, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay aux Roses, France
| |
Collapse
|
149
|
Chen L, Hu H, Pan Y, Lu Y, Zhao M, Zhao Y, Wang L, Liu K, Yu Z. The role of HPV11 E7 in modulating STING-dependent interferon β response in recurrent respiratory papillomatosis. J Virol 2024; 98:e0192523. [PMID: 38624230 PMCID: PMC11092327 DOI: 10.1128/jvi.01925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Recurrent respiratory papillomatosis (RRP) is a rare benign tumor caused mainly by the infection of the respiratory tract epithelial cells by the human papillomavirus (HPV) type 6/11. However, the specific mechanisms underlying the inhibition of the host's innate immune response by HPV remain unclear. For this purpose, we employed single-cell RNA sequencing to analyze the states of various immune cells in RRP samples post-HPV infection and utilized a cellular model of HPV infection to elucidate the mechanisms by which HPV evades the innate immune system in RRP. The results revealed distinct immune cell heterogeneity in RRP and demonstrated that HPV11 E7 can inhibit the phosphorylation of the stimulator of interferon genes protein, thereby circumventing the body's antiviral response. In vitro co-culture experiments demonstrated that stimulation of macrophages to produce interferon-beta induced the death of HPV-infected epithelial cells, also reducing HPV viral levels. In summary, our study preliminarily identifies the potential mechanisms by which HPV evades the host's antiviral immune response, as well as the latent antiviral functions exhibited by activated macrophages. This research serves as an initial exploration of antiviral immune evasion in RRP, laying a solid foundation for investigating immunotherapeutic approaches for the disease.IMPORTANCESurgical tumor reduction is the most common treatment for recurrent respiratory papillomatosis (RRP). One of the characteristics of RRP is its persistent recurrence, and multiple surgeries are usually required to control the symptoms. Recently, some adjuvant therapies have shown effectiveness, but none of them can completely clear human papillomavirus (HPV) infection, and thus, a localized antiviral immune response is significant for disease control; after all, HPV infection is limited to the epithelium. Inhibition of interferon-beta (IFN-β) secretion by HPV11 E7 viral proteins in epithelial cells by affecting stimulator of interferon genes phosphorylation may account for the persistence of low-risk HPV replication in the RRP. Moreover, suppression of the IFN-I pathway in RRP cell types might provide clues regarding the hyporeactive function of local immune cells. However, activation of macrophage groups to produce IFN-β can still destroy HPV-infected cells.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| | - Huiying Hu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| | - Yufei Pan
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| | - Yuanyuan Lu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| | - Mengyuan Zhao
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| | - Yun Zhao
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| | - Lixin Wang
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| | - Kai Liu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| | - Zhenkun Yu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical Key Laboratory of Laryngopharynx-Head and Neck Oncology, Nanjing, Jiangsu, China
| |
Collapse
|
150
|
Chiariello AM, Abraham A, Bianco S, Esposito A, Fontana A, Vercellone F, Conte M, Nicodemi M. Multiscale modelling of chromatin 4D organization in SARS-CoV-2 infected cells. Nat Commun 2024; 15:4014. [PMID: 38740770 PMCID: PMC11091192 DOI: 10.1038/s41467-024-48370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
SARS-CoV-2 can re-structure chromatin organization and alter the epigenomic landscape of the host genome, but the mechanisms that produce such changes remain unclear. Here, we use polymer physics to investigate how the chromatin of the host genome is re-organized upon infection with SARS-CoV-2. We show that re-structuring of A/B compartments can be explained by a re-modulation of intra-compartment homo-typic affinities, which leads to the weakening of A-A interactions and the enhancement of A-B mixing. At the TAD level, re-arrangements are physically described by a reduction in the loop extrusion activity coupled with an alteration of chromatin phase-separation properties, resulting in more intermingling between different TADs and a spread in space of the TADs themselves. In addition, the architecture of loci relevant to the antiviral interferon response, such as DDX58 or IFIT, becomes more variable within the 3D single-molecule population of the infected model, suggesting that viral infection leads to a loss of chromatin structural specificity. Analysing the time trajectories of pairwise gene-enhancer and higher-order contacts reveals that this variability derives from increased fluctuations in the chromatin dynamics of infected cells. This suggests that SARS-CoV-2 alters gene regulation by impacting the stability of the contact network in time.
Collapse
Affiliation(s)
- Andrea M Chiariello
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
| | - Alex Abraham
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Francesca Vercellone
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione - DIETI, Università degli Studi di Napoli Federico II, and INFN Napoli, Via Claudio 21, 80125, Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università degli Studi di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
- Berlin Institute for Medical Systems Biology at the Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|