101
|
Tiong SYX, Oka Y, Sasaki T, Taniguchi M, Doi M, Akiyama H, Sato M. Kcnab1 Is Expressed in Subplate Neurons With Unilateral Long-Range Inter-Areal Projections. Front Neuroanat 2019; 13:39. [PMID: 31130851 PMCID: PMC6509479 DOI: 10.3389/fnana.2019.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Subplate (SP) neurons are among the earliest-born neurons in the cerebral cortex and heterogeneous in terms of gene expression. SP neurons consist mainly of projection neurons, which begin to extend their axons to specific target areas very early during development. However, the relationships between axon projection and gene expression patterns of the SP neurons, and their remnant layer 6b (L6b) neurons, are largely unknown. In this study, we analyzed the corticocortical projections of L6b/SP neurons in the mouse cortex and searched for a marker gene expressed in L6b/SP neurons that have ipsilateral inter-areal projections. Retrograde tracing experiments demonstrated that L6b/SP neurons in the primary somatosensory cortex (S1) projected to the primary motor cortex (M1) within the same cortical hemisphere at postnatal day (PD) 2 but did not show any callosal projection. This unilateral projection pattern persisted into adulthood. Our microarray analysis identified the gene encoding a β subunit of voltage-gated potassium channel (Kcnab1) as being expressed in L6b/SP. Double labeling with retrograde tracing and in situ hybridization demonstrated that Kcnab1 was expressed in the unilaterally-projecting neurons in L6b/SP. Embryonic expression was specifically detected in the SP as early as embryonic day (E) 14.5, shortly after the emergence of SP. Double immunostaining experiments revealed different degrees of co-expression of the protein product Kvβ1 with L6b/SP markers Ctgf (88%), Cplx3 (79%), and Nurr1 (58%), suggesting molecular subdivision of unilaterally-projecting L6b/SP neurons. In addition to expression in L6b/SP, scattered expression of Kcnab1 was observed during postnatal stages without layer specificity. Among splicing variants with three alternative first exons, the variant 1.1 explained all the cortical expression mentioned in this study. Together, our data suggest that L6b/SP neurons have corticocortical projections and Kcnab1 expression defines a subpopulation of L6b/SP neurons with a unilateral inter-areal projection.
Collapse
Affiliation(s)
- Sheena Yin Xin Tiong
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Tatsuya Sasaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Miyuki Doi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisanori Akiyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| |
Collapse
|
102
|
Kanold PO, Deng R, Meng X. The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction. Front Neuroanat 2019; 13:41. [PMID: 31040772 PMCID: PMC6476909 DOI: 10.3389/fnana.2019.00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The thalamocortical circuit is of central importance in relaying information to the cortex. In development, subplate neurons (SPNs) form an integral part of the thalamocortical pathway. These early born cortical neurons are the first neurons to receive thalamic inputs and excite neurons in the cortical plate. This feed-forward circuit topology of SPNs supports the role of SPNs in shaping the formation and plasticity of thalamocortical connections. Recently it has been shown that SPNs also receive inputs from the developing cortical plate and project to the thalamus. The cortical inputs to SPNs in early ages are mediated by N-methyl-D-aspartate (NMDA)-receptor only containing synapses while at later ages α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors are present. Thus, SPNs perform a changing integrative function over development. NMDA-receptor only synapses are crucially influenced by the resting potential and thus insults to the developing brain that causes depolarizations, e.g., hypoxia, can influence the integrative function of SPNs. Since such insults in humans cause symptoms of neurodevelopmental disorders, NMDA-receptor only synapses on SPNs might provide a crucial link between early injuries and later circuit dysfunction. We thus here review subplate associated circuits, their changing functions, and discuss possible roles in development and disease.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | | |
Collapse
|
103
|
Hedderich DM, Bäuml JG, Berndt MT, Menegaux A, Scheef L, Daamen M, Zimmer C, Bartmann P, Boecker H, Wolke D, Gaser C, Sorg C. Aberrant gyrification contributes to the link between gestational age and adult IQ after premature birth. Brain 2019; 142:1255-1269. [DOI: 10.1093/brain/awz071] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Dennis M Hedderich
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maria T Berndt
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Aurore Menegaux
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Gaser
- Department of Psychiatry and Neurology, University Hospital Jena, Jena, Germany
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
104
|
Clinical signs and electroencephalographic patterns of emergence from sevoflurane anaesthesia in children: An observational study. Eur J Anaesthesiol 2019; 35:49-59. [PMID: 29120939 PMCID: PMC5728588 DOI: 10.1097/eja.0000000000000739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Few studies have systematically described relationships between clinical-behavioural signs, electroencephalographic (EEG) patterns and age during emergence from anaesthesia in young children. OBJECTIVE To identify the relationships between end-tidal sevoflurane (ETsevoflurane) concentration, age and frontal EEG spectral properties in predicting recovery of clinical-behavioural signs during emergence from sevoflurane in children 0 to 3 years of age, with and without exposure to nitrous oxide. The hypothesis was that clinical signs occur sequentially during emergence, and that for infants aged more than 3 months, changes in alpha EEG power are correlated with clinical-behavioural signs. DESIGN An observational study. SETTING A tertiary paediatric teaching hospital from December 2012 to August 2016. PATIENTS Ninety-five children aged 0 to 3 years who required surgery below the neck. OUTCOME MEASURES Time-course of, and ETsevoflurane concentrations at first gross body movement, first cough, first grimace, dysconjugate eye gaze, frontal (F7/F8) alpha EEG power (8 to 12 Hz), frontal beta EEG power (13 to 30 Hz), surgery-end. RESULTS Clinical signs of emergence followed an orderly sequence of events across all ages. Clinical signs occurred over a narrow ETsevoflurane, independent of age [movement: 0.4% (95% confidence interval (CI), 0.3 to 0.4), cough 0.3% (95% CI, 0.3 to 0.4), grimace 0.2% (95% CI, 0 to 0.3); P > 0.5 for age vs. ETsevoflurane]. Dysconjugate eye gaze was observed between ETsevoflurane 1 to 0%. In children more than 3 months old, frontal alpha EEG oscillations were present at ETsevoflurane 2.0% and disappeared at 0.5%. Movement occurred within 5 min of alpha oscillation disappearance in 99% of patients. Nitrous oxide had no effect on the time course or ETsevoflurane at which children showed body movement, grimace or cough. CONCLUSION Several clinical signs occur sequentially during emergence, and are independent of exposure to nitrous oxide. Eye position is poorly correlated with other clinical signs or ETsevoflurane. EEG spectral characteristics may aid prediction of clinical-behavioural signs in children more than 3 months.
Collapse
|
105
|
Kast RJ, Levitt P. Precision in the development of neocortical architecture: From progenitors to cortical networks. Prog Neurobiol 2019; 175:77-95. [PMID: 30677429 PMCID: PMC6402587 DOI: 10.1016/j.pneurobio.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
Of all brain regions, the 6-layered neocortex has undergone the most dramatic changes in size and complexity during mammalian brain evolution. These changes, occurring in the context of a conserved set of organizational features that emerge through stereotypical developmental processes, are considered responsible for the cognitive capacities and sensory specializations represented within the mammalian clade. The modern experimental era of developmental neurobiology, spanning 6 decades, has deciphered a number of mechanisms responsible for producing the diversity of cortical neuron types, their precise connectivity and the role of gene by environment interactions. Here, experiments providing insight into the development of cortical projection neuron differentiation and connectivity are reviewed. This current perspective integrates discussion of classic studies and new findings, based on recent technical advances, to highlight an improved understanding of the neuronal complexity and precise connectivity of cortical circuitry. These descriptive advances bring new opportunities for studies related to the developmental origins of cortical circuits that will, in turn, improve the prospects of identifying pathogenic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan J Kast
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| |
Collapse
|
106
|
Serati M, Delvecchio G, Orsenigo G, Mandolini GM, Lazzaretti M, Scola E, Triulzi F, Brambilla P. The Role of the Subplate in Schizophrenia and Autism: A Systematic Review. Neuroscience 2019; 408:58-67. [PMID: 30930130 DOI: 10.1016/j.neuroscience.2019.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
The subplate (SP) represents a transitory cytoarchitectural fetal compartment containing most subcortical and cortico-cortical afferents, and has a fundamental role in the structural development of the healthy adult brain. There is evidence that schizophrenia and autism may be determined by developmental defects in the cortex or cortical circuitry during the earliest stages of pregnancy. This article provides an overview on fetal SP development, considering its role in schizophrenia and autism, as supported by a systematic review of the main databases. The SP has been described as a cortical amplifier with a role in the coordination of cortical activity, and sensitive growth and migration windows have crucial consequences with respect to cognitive functioning. Although there are not enough studies to draw final conclusions, improved knowledge of the SP's role in schizophrenia and autism spectrum disorders may help to elucidate and possibly prevent the onset of these two severe disorders.
Collapse
Affiliation(s)
- Marta Serati
- Department of Mental Health, ASST Rhodense, Rho, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Orsenigo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Matteo Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA
| |
Collapse
|
107
|
Homer1a Is Required for Establishment of Contralateral Bias and Maintenance of Ocular Dominance in Mouse Visual Cortex. J Neurosci 2019; 39:3897-3905. [PMID: 30867257 DOI: 10.1523/jneurosci.3188-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/21/2022] Open
Abstract
It is well established across many species that neurons in the primary visual cortex (V1) display preference for visual input from one eye or the other, which is termed ocular dominance (OD). In rodents, V1 neurons exhibit a strong bias toward the contralateral eye. Molecular mechanisms of how OD is established and later maintained by plastic changes are largely unknown. Here we report a novel role of an activity-dependent immediate early gene Homer1a (H1a) in these processes. Using both sexes of H1a knock-out (KO) mice, we found that there is basal reduction in the OD index of V1 neurons measured using intrinsic signal imaging. This was because of a reduction in the strength of inputs from the contralateral eye, which is normally dominant in mice. The abnormal basal OD index was not dependent on visual experience and is driven by postnatal expression of H1a. Despite this, H1a KOs still exhibited normal shifts in OD index following a short-term (2-3 d) monocular deprivation (MD) of the contralateral eye with lid suture. However, unlike wild-type counterparts, H1a KOs continued to shift OD index with a longer duration (5-6 d) of MD. The same phenotype was recapitulated in a mouse model that has reduced Homer1 binding to metabotropic glutamate receptor 5 (mGluR5). Our results suggest a novel role of H1a and its interaction with mGluR5 in strengthening contralateral eye inputs during postnatal development to establish normal contralateral bias in mouse V1 without much impact on OD shift with brief MD.SIGNIFICANCE STATEMENT Visual cortical neurons display varying degree of responsiveness to visual stimuli through each eye, which determines their ocular dominance (OD). Molecular mechanisms responsible for establishing normal OD are largely unknown. Development of OD has been shown to be largely independent of visual experience, but guided by molecular cues and spontaneous activity. We found that activity-dependent immediate early gene H1a is critical for establishing normal OD in V1 of mice, which show contralateral eye dominance. Despite the weaker contralateral bias, H1aKOs undergo largely normal OD plasticity. The basic phenotype of H1aKO was recapitulated by mGluR5 mutation that severely reduces H1a interaction. Our results suggest a novel role of mGluR5-H1a interaction in strengthening contralateral eye inputs to V1 during postnatal development.
Collapse
|
108
|
Leonetti C, Back SA, Gallo V, Ishibashi N. Cortical Dysmaturation in Congenital Heart Disease. Trends Neurosci 2019; 42:192-204. [PMID: 30616953 PMCID: PMC6397700 DOI: 10.1016/j.tins.2018.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/28/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023]
Abstract
Congenital heart disease (CHD) is among the most common birth defects. Children with CHD frequently display long-term intellectual and behavioral disability. Emerging evidence indicates that cardiac anomalies lead to a reduction in cerebral oxygenation, which appears to profoundly impact on the maturation of cerebral regions responsible for higher-order cognitive functions. In this review we focus on the potential mechanisms by which dysregulation of cortical neuronal development during early life may lead to the significant cognitive impairments that commonly occur in children with CHD. Further understanding of the mechanisms underlying cortical dysmaturation due to CHD will be necessary to identify strategies for neonatal neuroprotection and for mitigating developmental delays in this patient population.
Collapse
Affiliation(s)
- Camille Leonetti
- Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA; Children's National Heart Institute, Children's National Health System, Washington, DC 20010, USA
| | - Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA; Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA.
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA; Children's National Heart Institute, Children's National Health System, Washington, DC 20010, USA.
| |
Collapse
|
109
|
Yu IS, Chang HC, Chen KC, Lu YL, Shy HT, Chen CY, Lee KY, Lee LJ. Genetic Elimination of Connective Tissue Growth Factor in the Forebrain Affects Subplate Neurons in the Cortex and Oligodendrocytes in the Underlying White Matter. Front Neuroanat 2019; 13:16. [PMID: 30842729 PMCID: PMC6391576 DOI: 10.3389/fnana.2019.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
Connective tissue growth factor (CTGF) is a secreted extracellular matrix-associated protein, which play a role in regulating various cellular functions. Although the expression of CTGF has been reported in the cortical subplate, its function is still not clear. Thus, to explore the significance of CTGF in the brain, we created a forebrain-specific Ctgf knockout (FbCtgf KO) mouse model. By crossing Ctgffl/fl mice with Emx1-Cre transgenic mice, in which the expression of Cre is prenatally initiated, the full length Ctgf is removed in the forebrain structures. In young adult (2–3 months old) FbCtgf KO mice, subplate markers such as Nurr1 and Cplx3 are still expressed in the cortical layer VIb; however, the density of the subplate neurons is increased. Interestingly, in these mutants, we found a reduced structural complexity in the subplate neurons. The distribution patterns of neurons and glial cells, examined by immunohistochemistry, are comparable between genotypes in the somatosensory cortex. However, increased densities of mature oligodendrocytes, but not immature ones, were noticed in the external capsule underneath the cortical layer VIb in young adult FbCtgf KO mice. The features of myelinated axons in the external capsule were then examined using electron microscopy. Unexpectedly, the thickness of the myelin sheath was reduced in middle-aged (>12 months old), but not young adult FbCtgf KO mice. Our results suggest a secretory function of the subplate neurons, through the release of CTGF, which regulates the density and dendritic branching of subplate neurons as well as the maturation and function of nearby oligodendrocytes in the white matter.
Collapse
Affiliation(s)
- I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Chien Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Lu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
110
|
Functional imaging of visual cortical layers and subplate in awake mice with optimized three-photon microscopy. Nat Commun 2019; 10:177. [PMID: 30635577 PMCID: PMC6329792 DOI: 10.1038/s41467-018-08179-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 12/13/2018] [Indexed: 01/02/2023] Open
Abstract
Two-photon microscopy is used to image neuronal activity, but has severe limitations for studying deeper cortical layers. Here, we developed a custom three-photon microscope optimized to image a vertical column of the cerebral cortex > 1 mm in depth in awake mice with low (<20 mW) average laser power. Our measurements of physiological responses and tissue-damage thresholds define pulse parameters and safety limits for damage-free three-photon imaging. We image functional visual responses of neurons expressing GCaMP6s across all layers of the primary visual cortex (V1) and in the subplate. These recordings reveal diverse visual selectivity in deep layers: layer 5 neurons are more broadly tuned to visual stimuli, whereas mean orientation selectivity of layer 6 neurons is slightly sharper, compared to neurons in other layers. Subplate neurons, located in the white matter below cortical layer 6 and characterized here for the first time, show low visual responsivity and broad orientation selectivity. Two-photon microscopy is a powerful tool for studying neuronal activity but cannot easily image deeper cortical layers. Here, the authors design a custom microscope for three-photon microscopy and use it to reveal response properties of layer 5, 6, and subplate visual cortical neurons.
Collapse
|
111
|
Abstract
EEG changes during the perinatal period, infancy, childhood, and adolescence are concomitant with brain growth, myelination, expanding connectivity, and overall maturation, which are particularly fast during the first year of life. EEG aspects of early brain development are accessible in preterm during the third trimester of gestational age, and they evolve to full-term, infancy, and childhood EEG patterns. Each of these age periods shares specific EEG features that reach gross adult outlines in the first year. Interpreting EEG needs therefore a deep knowledge of pathological and normal EEG patterns with their variants belonging to each age range. Recording EEG during these periods also requires adapting the recording techniques to the specific age in order to obtain interpretable records. This chapter describes normal EEG features and variants, characteristic patterns of development, and some patterns that are unusual for age, from the neonatal period to adolescence.
Collapse
Affiliation(s)
- A Kaminska
- Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, APHP, Paris, France.
| | - M Eisermann
- Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - P Plouin
- Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, APHP, Paris, France
| |
Collapse
|
112
|
Kostović I, Sedmak G, Judaš M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage 2018; 188:743-773. [PMID: 30594683 DOI: 10.1016/j.neuroimage.2018.12.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023] Open
Abstract
The human brain develops slowly and over a long period of time which lasts for almost three decades. This enables good spatio-temporal resolution of histogenetic and neurogenetic events as well as an appropriate and clinically relevant timing of these events. In order to successfully apply in vivo neuroimaging data, in analyzing both the normal brain development and the neurodevelopmental origin of major neurological and mental disorders, it is important to correlate these neuroimaging data with the existing data on morphogenetic, histogenetic and neurogenetic events. Furthermore, when performing such correlation, the genetic, genomic, and molecular biology data on phenotypic specification of developing brain regions, areas and neurons should also be included. In this review, we focus on early developmental periods (form 8 postconceptional weeks to the second postnatal year) and describe the microstructural organization and neural circuitry elements of the fetal and early postnatal human cerebrum.
Collapse
Affiliation(s)
- I Kostović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - G Sedmak
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - M Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
113
|
Kostović I, Išasegi IŽ, Krsnik Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat 2018; 235:481-506. [PMID: 30549027 DOI: 10.1111/joa.12920] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of this paper was to collect normative data essential for analyzing the subplate (SP) role in pathogenesis of developmental disorders, characterized by abnormal circuitry, such as hypoxic-ischemic lesions, autism and schizophrenia. The main cytological features of the SP, such as low cell density, early differentiation of neurons and glia, plexiform arrangement of axons and dendrites, presence of synapses and a large amount of extracellular matrix (ECM) distinguish this compartment from the cell-dense cortical plate (CP; towards pia) and large fiber bundles of external axonal strata of fetal white matter (towards ventricle). For SP delineation from these adjacent layers based on combined cytological criteria, we analyzed the sublaminar distribution of different microstructural elements and the associated maturational gradients throughout development, using immunocytochemical and histological techniques on postmortem brain material (Zagreb Neuroembryological Collection). The analysis revealed that the SP compartment of the lateral neocortex shows changes in laminar organization throughout fetal development: the monolayer in the early fetal period (presubplate) undergoes dramatic bilaminar transformation between 13 and 15 postconceptional weeks (PCW), followed by subtle sublamination in three 'floors' (deep, intermediate, superficial) of midgestation (15-21 PCW). During the stationary phase (22-28 PCW), SP persists as a trilaminar compartment, gradually losing its sublaminar organization towards the end of gestation and remains as a single layer of SP remnant in the newborn brain. Based on these sublaminar transformations, we have documented developmental changes in the distribution, maturational gradients and expression of molecular markers in SP synapses, transitional forms of astroglia, neurons and ECM, which occur concomitantly with the ingrowth of thalamo-cortical, basal forebrain and cortico-cortical axons in a deep to superficial fashion. The deep SP is the zone of ingrowing axons - 'entrance (ingrowth) zone'. The process of axonal ingrowth begins with thalamo-cortical fibers and basal forebrain afferents, indicating an oblique geometry. During the later fetal period, deep SP receives long cortico-cortical axons exhibiting a tangential geometry. Intermediate SP ('proper') is the navigation and 'nexus' sublamina consisting of a plexiform arrangement of cellular elements providing guidance and substrate for axonal growth, and also containing transient connectivity of dendrites and axons in a tangential plane without radial boundaries immersed in an ECM-rich continuum. Superficial SP is the axonal accumulation ('waiting compartment') and target selection zone, indicating a dense distribution of synaptic markers, accumulation of thalamo-cortical axons (around 20 PCW), overlapping with dendrites from layer VI neurons. In the late preterm brain period, superficial SP contains a chondroitin sulfate non-immunoreactive band. The developmental dynamics for the distribution of neuronal, glial and ECM markers comply with sequential ingrowth of afferents in three levels of SP: ECM and synaptic markers shift from deep to superficial SP, with transient forms of glia following this arrangement, and calretinin neurons are concentrated in the SP during the formation phase. These results indicate developmental and morphogenetic roles in the SP cellular (transient glia, neurons and synapses) and ECM framework, enabling the spatial accommodation, navigation and establishment of numerous connections of cortical pathways in the expanded human brain. The original findings of early developmental dynamics of transitional subtypes of astroglia, calretinin neurons, ECM and synaptic markers presented in the SP are interesting in the light of recent concepts concerning its functional and morphogenetic role and an increasing interest in SP as a prospective substrate of abnormalities in cortical circuitry, leading to a cognitive deficit in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
114
|
Simi A, Studer M. Developmental genetic programs and activity-dependent mechanisms instruct neocortical area mapping. Curr Opin Neurobiol 2018; 53:96-102. [DOI: 10.1016/j.conb.2018.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
|
115
|
Luhmann HJ, Kirischuk S, Kilb W. The Superior Function of the Subplate in Early Neocortical Development. Front Neuroanat 2018; 12:97. [PMID: 30487739 PMCID: PMC6246655 DOI: 10.3389/fnana.2018.00097] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
During early development the structure and function of the cerebral cortex is critically organized by subplate neurons (SPNs), a mostly transient population of glutamatergic and GABAergic neurons located below the cortical plate. At the molecular and morphological level SPNs represent a rather diverse population of cells expressing a variety of genetic markers and revealing different axonal-dendritic morphologies. Electrophysiologically SPNs are characterized by their rather mature intrinsic membrane properties and firing patterns. They are connected via electrical and chemical synapses to local and remote neurons, e.g., thalamic relay neurons forming the first thalamocortical input to the cerebral cortex. Therefore SPNs are robustly activated at pre- and perinatal stages by the sensory periphery. Although SPNs play pivotal roles in early neocortical activity, development and plasticity, they mostly disappear by programmed cell death during further maturation. On the one hand, SPNs may be selectively vulnerable to hypoxia-ischemia contributing to brain damage, on the other hand there is some evidence that enhanced survival rates or alterations in SPN distribution may contribute to the etiology of neurological or psychiatric disorders. This review aims to give a comprehensive and up-to-date overview on the many functions of SPNs during early physiological and pathophysiological development of the cerebral cortex.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
116
|
Swiegers J, Bhagwandin A, Sherwood CC, Bertelsen MF, Maseko BC, Hemingway J, Rockland KS, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a lar gibbon (Hylobates lar) brain. J Comp Neurol 2018; 527:1633-1653. [PMID: 30378128 DOI: 10.1002/cne.24545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), in the brain of a lesser ape, the lar gibbon. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed a global estimate of ~67.5 million WMICs within the infracortical white matter of the gibbon brain, indicating that the WMICs are a numerically significant population, ~2.5% of the total cortical gray matter neurons that would be estimated for a primate brain the mass of that of the lar gibbon. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, ~7 million in number, with both small and large soma volumes), calretinin (~8.6 million in number, all of similar soma volume), very few WMICs containing parvalbumin, and no calbindin-immunopositive neurons. These nNOS, calretinin, and parvalbumin immunopositive WMICs, presumably all inhibitory neurons, represent ~23.1% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.
Collapse
Affiliation(s)
- Jordan Swiegers
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Busisiwe C Maseko
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Jason Hemingway
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, Massachusetts
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
117
|
Kilb W. Putative Role of Taurine as Neurotransmitter During Perinatal Cortical Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:281-292. [PMID: 28849463 DOI: 10.1007/978-94-024-1079-2_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurotransmitters and neuronal activity affect neurodevelopmental events like neurogenesis, neuronal migration, apoptosis and differentiation. Beside glutamate and gamma-amino butyric acid, the aminosulfonic acid taurine has been considered as possible neurotransmitter that influences early neuronal development. In this article I review recent studies of our group which demonstrate that taurine can affect a variety of identified neuronal populations in the immature neocortex and directly modulates neuronal activity. These experiments revealed that taurine evoke dose-dependent membrane responses in a variety of neocortical neuron populations, including Cajal-Retzius cells, subplate neurons and GABAergic interneurons. Taurine responses persist in the presence of GABA(A) receptor antagonists and are reduced by the addition of strychnine, suggesting that glycine receptors are involved in taurine-mediated membrane responses. Gramicidin-perforated patch-clamp and cell-attached recordings demonstrated that taurine evokes depolarizing and mainly excitatory membrane responses, in accordance with the high intracellular Cl- concentration in immature neurons. In addition, taurine increases the frequency of postsynaptic GABAergic currents (PSCs) in a considerable fraction of immature pyramidal neurons, indicating a specific activation of presynaptic GABAergic networks projecting toward and exciting pyramidal neurons. In summary, these results suggest that taurine may be critically involved in the regulation of network excitability in the immature neocortex and hippocampus via interactions with glycine receptors.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
118
|
Chang M, Kawai HD. A characterization of laminar architecture in mouse primary auditory cortex. Brain Struct Funct 2018; 223:4187-4209. [PMID: 30187193 DOI: 10.1007/s00429-018-1744-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Laminar architecture of primary auditory cortex (A1) has long been investigated by traditional histochemical techniques such as Nissl staining, retrograde and anterograde tracings. Uncertainty still remains, however, about laminar boundaries in mice. Here we investigated the cortical lamina structure by combining neuronal tracing and immunofluorochemistry for laminar specific markers. Most retrogradely labeled corticothalamic neurons expressed Forkhead box protein P2 (Foxp2) and distributed within the laminar band of Foxp2-expressing cells, identifying layer 6. Cut-like homeobox 1 (Cux1) expression in layer 2-4 neurons divided the upper layers into low expression layers 2/3 and high expression layers 3/4, which overlapped with the dense terminals of vesicular glutamate transporter 2 (vGluT2) and anterogradely labeled lemniscal thalamocortical axons. In layer 5, between Cux1-expressing layers 2-4 and Foxp2-defined layer 6, retrogradely labeled corticocollicular projection neurons mostly expressed COUP-TF interacting protein 2 (Ctip2). Ctip2-expressing neurons formed a laminar band in the middle of layer 5 distant from layer 6, creating a laminar gap between the two laminas. This gap contained a high population of commissural neurons projecting to contralateral A1 compared to other layers and received vGluT2-immunopositive, presumptive thalamocortical axon collateral inputs. Our study shows that layer 5 is much wider than layer 6, and layer 5 can be divided into at least three sublayers. The thalamorecipient layers 3/4 may be separated from layers 2/3 using Cux1 and can be also divided into layer 4 and layer 3 based on the neuronal soma size. These data provide a new insight for the laminar structure of mouse A1.
Collapse
Affiliation(s)
- Minzi Chang
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | - Hideki Derek Kawai
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan. .,Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
119
|
Ernst L, Darschnik S, Roos J, González-Gómez M, Beemelmans C, Beemelmans C, Engelhardt M, Meyer G, Wahle P. Fast prenatal development of the NPY neuron system in the neocortex of the European wild boar, Sus scrofa. Brain Struct Funct 2018; 223:3855-3873. [PMID: 30094604 DOI: 10.1007/s00429-018-1725-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/26/2018] [Indexed: 11/25/2022]
Abstract
Knowledge on cortical development is based mainly on small rodents besides primates and carnivores, all being altricial nestlings. Ungulates are precocial and born with nearly mature sensory and motor systems. Almost no information is available on ungulate brain development. Here, we analyzed European wild boar cortex development, focusing on the neuropeptide Y immunoreactive (NPY-ir) neuron system in dorsoparietal cortex from E35 to P30. Transient NPY-ir neuron types including archaic cells of the cortical plate and axonal loop cells of the subplate which appear by E60 concurrent with the establishment of the ungulate brain basic sulcal pattern. From E70, NPY-ir axons have an axon initial segment which elongates and shifts closer towards the axon's point of origin until P30. From E85 onwards (birth at E114), NPY-ir neurons in cortical layers form basket cell-like local and Martinotti cell-like ascending axonal projections. The mature NPY-ir pattern is recognizable at E110. Together, morphologies are conserved across species, but timing is not: in pig, the adult pattern largely forms prenatally.
Collapse
Affiliation(s)
- Laura Ernst
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Simon Darschnik
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Johannes Roos
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Heidelberg, Germany
| | - Miriam González-Gómez
- Unit of Histology, Anatomy and Histology, Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Christa Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Christoph Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Heidelberg, Germany
| | - Gundela Meyer
- Unit of Histology, Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44870, Bochum, Germany.
| |
Collapse
|
120
|
Hadders-Algra M. Early human brain development: Starring the subplate. Neurosci Biobehav Rev 2018; 92:276-290. [PMID: 29935204 DOI: 10.1016/j.neubiorev.2018.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
This review summarizes early human brain development on the basis of neuroanatomical data and functional connectomics. It indicates that the most significant changes in the brain occur during the second half of gestation and the first three months post-term, in particular in the cortical subplate and cerebellum. As the transient subplate pairs a high rate of intricate developmental changes and interactions with clear functional activity, two phases of development are distinguished: a) the transient cortical subplate phase, ending at 3 months post-term when the permanent circuitries in the primary motor, somatosensory and visual cortices have replaced the subplate; and subsequently, b) the phase in which the permanent circuitries dominate. In the association areas the subplate dissolves in the remainder of the first postnatal year. During both phases developmental changes are paralleled by continuous reconfigurations in network activity. The reviewed literature also suggests that disruption of subplate development may play a pivotal role in developmental disorders, such as cerebral palsy, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
121
|
López-Bendito G. Development of the Thalamocortical Interactions: Past, Present and Future. Neuroscience 2018; 385:67-74. [PMID: 29932982 DOI: 10.1016/j.neuroscience.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023]
Abstract
For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved. With the recent advances in technical tools to specifically label subsets of projecting neurons, knock-down genes individually and/or modify their activity, the field has gained further understanding on the rules operating in thalamocortical circuit formation and plasticity. In this review, I will summarize the most relevant discoveries that have been made in this field, from development to early plasticity processes covering three major aspects: axon guidance, thalamic influence on sensory cortical specification, and the role of spontaneous thalamic activity. I will emphasize how the implementation of new tools has helped the field to progress and what I consider to be open questions and the perspective for the future.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
122
|
Viswanathan S, Sheikh A, Looger LL, Kanold PO. Molecularly Defined Subplate Neurons Project Both to Thalamocortical Recipient Layers and Thalamus. Cereb Cortex 2018; 27:4759-4768. [PMID: 27655928 DOI: 10.1093/cercor/bhw271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
In mammals, subplate neurons (SPNs) are among the first generated cortical neurons. While most SPNs exist only transiently during development, a number of SPNs persist among adult Layer 6b (L6b). During development, SPNs receive thalamic and intra-cortical input, and primarily project to Layer 4 (L4). SPNs are critical for the anatomical and functional development of thalamocortical connections and also pioneer corticothalamic projections. Since SPNs are heterogeneous, SPN subpopulations might serve different roles. Here, we investigate the connectivity of one subpopulation, complexin-3 (Cplx3)-positive SPNs (Cplx3-SPNs), in mouse whisker somatosensory (barrel) cortex (S1). We find that many Cplx3-SPNs survive into adulthood and become a subpopulation of L6b. Cplx3-SPNs axons project to thalamorecipient layers, that is, L4, 5a, and 1. The L4 projections are biased towards the septal regions between barrels in the second postnatal week. Thus, S1 Cplx3-SPN targets co-localize with the eventual projections of the medial posterior thalamic nucleus (POm). In addition to their cortical targets, Cplx3-SPNs also extend long-range axons to several thalamic nuclei, including POm. Thus, Cplx3-SPN/L6b neurons are associated with paralemniscal pathways and can potentially directly link thalamocortical and corticothalamic circuits. This suggests an additional key role for SPNs in the establishment and maintenance of thalamocortical processing.
Collapse
Affiliation(s)
- Sarada Viswanathan
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
123
|
Yang JW, Kilb W, Kirischuk S, Unichenko P, Stüttgen MC, Luhmann HJ. Development of the whisker-to-barrel cortex system. Curr Opin Neurobiol 2018; 53:29-34. [PMID: 29738998 DOI: 10.1016/j.conb.2018.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 01/30/2023]
Abstract
This review provides an overview on the development of the rodent whisker-to-barrel cortex system from late embryonic stage to the end of the first postnatal month. During this period the system shows a remarkable transition from a mostly genetic-molecular driven generation of crude connectivity, providing the template for activity-dependent structural and functional maturation and plasticity, to the manifestation of a complex behavioral repertoire including social interactions. Spontaneous and sensory-evoked activity is present in neonatal barrel cortex and control the generation of the cortical architecture. Half a century after its first description by Woolsey and van der Loos the whisker-to-barrel cortex system with its unique and clear topographic organization still offers the exceptional opportunity to study sensory processing and complex behavior.
Collapse
Affiliation(s)
- Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Petr Unichenko
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
124
|
Colonnese MT, Phillips MA. Thalamocortical function in developing sensory circuits. Curr Opin Neurobiol 2018; 52:72-79. [PMID: 29715588 DOI: 10.1016/j.conb.2018.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
Thalamocortical activity patterns, both spontaneous and evoked, undergo a dramatic shift in preparation for the onset of rich sensory experience (e.g. birth in humans; eye-opening in rodents). This change is the result of a switch from thalamocortical circuits tuned for transmission of spontaneous bursting in sense organs, to circuits capable of high resolution, active sensory processing. Early 'pre-sensory' tuning uses amplification generated by corticothalamic excitatory feedback and early-born subplate neurons to ensure transmission of bursts, at the expense of stimulus discrimination. The switch to sensory circuits is due, at least in part, to the coordinated remodeling of inhibitory circuits in thalamus and cortex. Appreciation of the distinct rules that govern early circuit function can, and should, inform translational studies of genetic and acquired developmental dysfunction.
Collapse
Affiliation(s)
- Matthew T Colonnese
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University, United States.
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University, United States
| |
Collapse
|
125
|
Antón-Bolaños N, Espinosa A, López-Bendito G. Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr Opin Neurobiol 2018; 52:33-41. [PMID: 29704748 DOI: 10.1016/j.conb.2018.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Abstract
The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks. Here, we review recent advances in our understanding of how mutual collaborations between both brain regions define area patterning and cell differentiation in the thalamus and cortex.
Collapse
Affiliation(s)
- Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Ana Espinosa
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
126
|
Schinder AF, Lanuza GM. Whispering neurons fuel cortical highways. Science 2018; 360:265-266. [PMID: 29674579 DOI: 10.1126/science.aat4587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Alejandro F Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y, Técnicas (CONICET), Avenida Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | - Guillermo M Lanuza
- Laboratorio de Genética del Desarrollo Neural, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Avenida Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| |
Collapse
|
127
|
Khazipov R, Milh M. Early patterns of activity in the developing cortex: Focus on the sensorimotor system. Semin Cell Dev Biol 2018; 76:120-129. [DOI: 10.1016/j.semcdb.2017.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023]
|
128
|
Henschke JU, Oelschlegel AM, Angenstein F, Ohl FW, Goldschmidt J, Kanold PO, Budinger E. Early sensory experience influences the development of multisensory thalamocortical and intracortical connections of primary sensory cortices. Brain Struct Funct 2018; 223:1165-1190. [PMID: 29094306 PMCID: PMC5871574 DOI: 10.1007/s00429-017-1549-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
The nervous system integrates information from multiple senses. This multisensory integration already occurs in primary sensory cortices via direct thalamocortical and corticocortical connections across modalities. In humans, sensory loss from birth results in functional recruitment of the deprived cortical territory by the spared senses but the underlying circuit changes are not well known. Using tracer injections into primary auditory, somatosensory, and visual cortex within the first postnatal month of life in a rodent model (Mongolian gerbil) we show that multisensory thalamocortical connections emerge before corticocortical connections but mostly disappear during development. Early auditory, somatosensory, or visual deprivation increases multisensory connections via axonal reorganization processes mediated by non-lemniscal thalamic nuclei and the primary areas themselves. Functional single-photon emission computed tomography of regional cerebral blood flow reveals altered stimulus-induced activity and higher functional connectivity specifically between primary areas in deprived animals. Together, we show that intracortical multisensory connections are formed as a consequence of sensory-driven multisensory thalamocortical activity and that spared senses functionally recruit deprived cortical areas by an altered development of sensory thalamocortical and corticocortical connections. The functional-anatomical changes after early sensory deprivation have translational implications for the therapy of developmental hearing loss, blindness, and sensory paralysis and might also underlie developmental synesthesia.
Collapse
Affiliation(s)
- Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases Within the Helmholtz Association, Leipziger Str. 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Anja M Oelschlegel
- Research Group Neuropharmacology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Institute of Anatomy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, German Center for Neurodegenerative Diseases Within the Helmholtz Association, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Universitätsplatz 2, 39120, Magdeburg, Germany.
| |
Collapse
|
129
|
Marx M, Qi G, Hanganu-Opatz IL, Kilb W, Luhmann HJ, Feldmeyer D. Neocortical Layer 6B as a Remnant of the Subplate - A Morphological Comparison. Cereb Cortex 2018; 27:1011-1026. [PMID: 26637449 DOI: 10.1093/cercor/bhv279] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fate of the subplate (SP) is still a matter of debate. The SP and layer 6 (which is ontogenetically the oldest and innermost neocortical lamina) develop coincidentally. Yet, the function of sublamina 6B is largely unknown. It has been suggested that it consists partly of neurons from the transient SP, however, experimental evidence for this hypothesis is still missing. To obtain first insights into the neuronal complement of layer 6B in the somatosensory rat barrel cortex, we used biocytin stainings of SP neurons (aged 0-4 postnatal days, PND) and layer 6B neurons (PND 11-35) obtained during in vitro whole-cell patch-clamp recordings. Neurons were reconstructed for a quantitative characterization of their axonal and dendritic morphology. An unsupervised cluster analysis revealed that the SP and layer 6B consist of heterogeneous but comparable neuronal cell populations. Both contain 5 distinct spine-bearing cell types whose relative fractions change with increasing age. Pyramidal cells were more prominent in layer 6B, whereas non-pyramidal neurons were less frequent. Because of the high morphological similarity of SP and layer 6B neurons, we suggest that layer 6B consists of persistent non-pyramidal neurons from the SP and cortical L6B pyramidal neurons.
Collapse
Affiliation(s)
- Manuel Marx
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52428 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany
| | - Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52428 Jülich, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, Centre for Molecular Neurobiology Hamburg (ZMNH), D-20251 Hamburg, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Centre of the Johannes Gutenberg-University Mainz, D-55128 Mainz, Germany
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, D-52428 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52074 Aachen, Germany.,Jülich Aachen Research Alliance, Translational Brain Medicine (JARA Brain), D-52074 Aachen, Germany
| |
Collapse
|
130
|
Distinct Translaminar Glutamatergic Circuits to GABAergic Interneurons in the Neonatal Auditory Cortex. Cell Rep 2018; 19:1141-1150. [PMID: 28494864 DOI: 10.1016/j.celrep.2017.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 02/09/2017] [Accepted: 04/16/2017] [Indexed: 11/23/2022] Open
Abstract
GABAergic activity is important in neocortical development and plasticity. Because the maturation of GABAergic interneurons is regulated by neural activity, the source of excitatory inputs to GABAergic interneurons plays a key role in development. We show, by laser-scanning photostimulation, that layer 4 and layer 5 GABAergic interneurons in the auditory cortex in neonatal mice (<P7) receive extensive translaminar glutamatergic input via NMDAR-only synapses. Extensive translaminar AMPAR-mediated input developed during the second postnatal week, whereas NMDAR-only presynaptic connections decreased. GABAergic interneurons showed two spatial patterns of translaminar connection: inputs originating predominantly from supragranular or from supragranular and infragranular layers, including the subplate, which relays early thalamocortical activity. Sensory deprivation altered the development of translaminar inputs. Thus, distinct translaminar circuits to GABAergic interneurons exist throughout development, and the maturation of excitatory synapses is input-specific. Glutamatergic signaling from subplate and intracortical sources likely plays a role in the maturation of GABAergic interneurons.
Collapse
|
131
|
Linke AC, Jao Keehn RJ, Pueschel EB, Fishman I, Müller RA. Children with ASD show links between aberrant sound processing, social symptoms, and atypical auditory interhemispheric and thalamocortical functional connectivity. Dev Cogn Neurosci 2018; 29:117-126. [PMID: 28223033 PMCID: PMC5664206 DOI: 10.1016/j.dcn.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 01/31/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex and prevalent neurodevelopmental disorder characterized by social and communicative deficits, as well as repetitive behaviors and atypical sensitivity to sensory stimulation. Alterations in network connectivity are widely recognized, but their interplay with social and sensory symptoms remains largely unclear. Here, functional magnetic resonance imaging and diagnostic and behavioral assessments were used in a cohort of children and adolescents with ASD (n=40) and matched typically developing (TD, n=38) controls to examine the relation between auditory processing, interhemispheric and thalamocortical network connectivity, and social-behavioral symptom severity. We found that atypical processing of sounds was related to social, cognitive, and communicative impairments. Additionally, severity of sensory processing deficits and lower verbal IQ were related to reduced interhemispheric connectivity of auditory cortices in ASD. Increased connectivity between the thalamus and auditory cortex in ASD, however, was associated with reduced cognitive and behavioral symptomatology, suggesting that thalamocortical overconnectivity might reflect a compensatory mechanism in ASD. These findings provide novel evidence for links between auditory sensory deficits and impairments in social interaction and communication.
Collapse
Affiliation(s)
- Annika C Linke
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA.
| | - R Joanne Jao Keehn
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA.
| | - Ellyn B Pueschel
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA
| | - Inna Fishman
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, 6363 Alvarado CT, Suite #200, San Diego, CA, 92120, USA
| |
Collapse
|
132
|
Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury. Exp Neurol 2017; 302:1-13. [PMID: 29288070 DOI: 10.1016/j.expneurol.2017.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
Children who are born preterm are at risk for encephalopathy of prematurity, a leading cause of cerebral palsy, cognitive delay and behavioral disorders. Current interventions are limited and none have been shown to reverse cognitive and behavioral impairments, a primary determinant of poor quality of life for these children. Moreover, the mechanisms of perinatal brain injury that result in functional deficits and imaging abnormalities in the mature brain are poorly defined, limiting the potential to target interventions to those who may benefit most. To determine whether impairments are reversible after a prenatal insult, we investigated a spectrum of functional deficits and diffusion tensor imaging (DTI) abnormalities in young adult animals. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) would induce multiple functional deficits concomitant with reduced microstructural white and gray matter integrity, and tested whether these abnormalities could be ameliorated using postnatal erythropoietin (EPO), an emerging neurorestorative intervention. On embryonic day 18 uterine arteries were transiently occluded for 60min via laparotomy. Shams underwent anesthesia and laparotomy for 60min. Pups were born and TSHI pups were randomized to receive EPO or vehicle via intraperitoneal injection on postnatal days 1 to 5. Gait, social interaction, olfaction and open field testing was performed from postnatal day 25-35 before brains underwent ex vivo DTI to measure fractional anisotropy, axial diffusivity and radial diffusivity. Prenatal TSHI injury causes hyperactivity, impaired gait and poor social interaction in young adult rats that mimic the spectrum of deficits observed in children born preterm. Collectively, these data show for the first time in a model of encephalopathy of prematurity that postnatal EPO treatment mitigates impairments in social interaction, in addition to gait deficits. EPO also normalizes TSHI-induced microstructural abnormalities in fractional anisotropy and radial diffusivity in multiple regions, consistent with improved structural integrity and recovery of myelination. Taken together, these results show behavioral and memory deficits from perinatal brain injury are reversible. Furthermore, resolution of DTI abnormalities may predict responsiveness to emerging interventions, and serve as a biomarker of CNS injury and recovery.
Collapse
|
133
|
Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Front Cell Neurosci 2017; 11:379. [PMID: 29238291 PMCID: PMC5712676 DOI: 10.3389/fncel.2017.00379] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
134
|
Subplate neurons are the first cortical neurons to respond to sensory stimuli. Proc Natl Acad Sci U S A 2017; 114:12602-12607. [PMID: 29114043 DOI: 10.1073/pnas.1710793114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In utero experience, such as maternal speech in humans, can shape later perception, although the underlying cortical substrate is unknown. In adult mammals, ascending thalamocortical projections target layer 4, and the onset of sensory responses in the cortex is thought to be dependent on the onset of thalamocortical transmission to layer 4 as well as the ear and eye opening. In developing animals, thalamic fibers do not target layer 4 but instead target subplate neurons deep in the developing white matter. We investigated if subplate neurons respond to sensory stimuli. Using electrophysiological recordings in young ferrets, we show that auditory cortex neurons respond to sound at very young ages, even before the opening of the ears. Single unit recordings showed that auditory responses emerged first in cortical subplate neurons. Subsequently, responses appeared in the future thalamocortical input layer 4, and sound-evoked spike latencies were longer in layer 4 than in subplate, consistent with the known relay of thalamic information to layer 4 by subplate neurons. Electrode array recordings show that early auditory responses demonstrate a nascent topographic organization, suggesting that topographic maps emerge before the onset of spiking responses in layer 4. Together our results show that sound-evoked activity and topographic organization of the cortex emerge earlier and in a different layer than previously thought. Thus, early sound experience can activate and potentially sculpt subplate circuits before permanent thalamocortical circuits to layer 4 are present, and disruption of this early sensory activity could be utilized for early diagnosis of developmental disorders.
Collapse
|
135
|
Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Exp Neurol 2017; 301:110-119. [PMID: 29117499 DOI: 10.1016/j.expneurol.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
In the United States, perinatal brain injury (PBI) is a major cause of infant mortality and childhood disability. For a large proportion of infants with PBI, central nervous system (CNS) injury begins in utero with inflammation (chorioamnionitis/CHORIO) and/or hypoxia-ischemia. While studies show CHORIO contributes to preterm CNS injury and is also a common independent risk factor for brain injury in term infants, the molecular mechanisms mediating inflammation in the placental-fetal-brain axis that result in PBI remain a gap in knowledge. The chemokine (C-X-C motif) ligand 1 (CXCL1), and its cognate receptor, CXCR2, have been clinically implicated in CHORIO and in mature CNS injury, although their specific role in PBI pathophysiology is poorly defined. Given CXCL1/CXCR2 signaling is essential to neural cell development and neutrophil recruitment, a key pathological hallmark of CHORIO, we hypothesized CHORIO would upregulate CXCL1/CXCR2 expression in the placenta and fetal circulation, concomitant with increased CXCL1/CXCR2 signaling in the developing brain, immune cell activation, neutrophilia, and microstructural PBI. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague Dawley rats to induce CHORIO. Specifically, uterine arteries were occluded for 60min to induce placental transient systemic hypoxia-ischemia (TSHI), followed by intra-amniotic injection of lipopolysaccharide (LPS). Pups were born at E22. Placentae, serum and brain were collected along an extended time course from E19 to postnatal day (P)15 and analyzed using multiplex electrochemiluminescence (MECI), Western blot, qPCR, flow cytometry (FC) and diffusion tensor imaging (DTI). Results demonstrate that compared to sham, CHORIO increases placental CXCL1 and CXCR2 mRNA levels, concomitant with increased CXCR2+ neutrophils. Interestingly, pup serum CXCL1 expression in CHORIO parallels this increase, with sustained elevation through P15. Analyses of CHORIO brains reveal similarly increased CXCL1/CXCR2 expression through P7, together with increased neutrophilia, microgliosis and peripheral macrophages. Similar to the placenta, cerebral neutrophilia was defined by increased CXCR2 surface expression and elevated myeloperoxidase expression (MPO), consistent with immune cell activation. Evaluation of microstructural brain injury at P15 with DTI reveals aberrant microstructural integrity in the callosal and capsular white matter, with reduced fractional anisotropy in superficial and deep layers of overlying cortex. In summary, using an established model of CHORIO that exhibits mature CNS deficits mimicking those of preterm survivors, we show CHORIO induces injury throughout the placental-fetal-brain axis with a CXCL1/CXCR2 inflammatory signature, neutrophilia, and microstructural abnormalities. These data are concomitant with abnormal cerebral CXCL1/CXCR2 expression, and support temporal aberrations in CXCL1/CXCR2 and neutrophil dynamics in the placental-fetal-brain axis following CHORIO. These investigations define novel targets for directed therapies for infants at high risk for PBI.
Collapse
|
136
|
Transient Hypoxemia Chronically Disrupts Maturation of Preterm Fetal Ovine Subplate Neuron Arborization and Activity. J Neurosci 2017; 37:11912-11929. [PMID: 29089437 DOI: 10.1523/jneurosci.2396-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 01/19/2023] Open
Abstract
Preterm infants are at risk for a broad spectrum of neurobehavioral disabilities associated with diffuse disturbances in cortical growth and development. During brain development, subplate neurons (SPNs) are a largely transient population that serves a critical role to establish functional cortical circuits. By dynamically integrating into developing cortical circuits, they assist in consolidation of intracortical and extracortical circuits. Although SPNs reside in close proximity to cerebral white matter, which is particularly vulnerable to oxidative stress, the susceptibility of SPNs remains controversial. We determined SPN responses to two common insults to the preterm brain: hypoxia-ischemia and hypoxia. We used a preterm fetal sheep model using both sexes that reproduces the spectrum of human cerebral injury and abnormal cortical growth. Unlike oligodendrocyte progenitors, SPNs displayed pronounced resistance to early or delayed cell death from hypoxia or hypoxia-ischemia. We thus explored an alternative hypothesis that these insults alter the maturational trajectory of SPNs. We used DiOlistic labeling to visualize the dendrites of SPNs selectively labeled for complexin-3. SPNs displayed reduced basal dendritic arbor complexity that was accompanied by chronic disturbances in SPN excitability and synaptic activity. SPN dysmaturation was significantly associated with the level of fetal hypoxemia and metabolic stress. Hence, despite the resistance of SPNs to insults that trigger white matter injury, transient hypoxemia disrupted SPN arborization and functional maturation during a critical window in cortical development. Strategies directed at limiting the duration or severity of hypoxemia during brain development may mitigate disturbances in cerebral growth and maturation related to SPN dysmaturation.SIGNIFICANCE STATEMENT The human preterm brain commonly sustains blood flow and oxygenation disturbances that impair cerebral cortex growth and cause life-long cognitive and learning disabilities. We investigated the fate of subplate neurons (SPNs), which are a master regulator of brain development that plays critical roles in establishing cortical connections to other brain regions. We used a preterm fetal sheep model that reproduces key features of brain injury in human preterm survivors. We analyzed the responses of fetal SPNs to transient disturbances in fetal oxygenation. We discovered that SPNs are surprisingly resistant to cell death from low oxygen states but acquire chronic structural and functional changes that suggest new strategies to prevent learning problems in children and adults that survive preterm birth.
Collapse
|
137
|
Sánchez-Ramón S, Faure F. The Thymus/Neocortex Hypothesis of the Brain: A Cell Basis for Recognition and Instruction of Self. Front Cell Neurosci 2017; 11:340. [PMID: 29163052 PMCID: PMC5663735 DOI: 10.3389/fncel.2017.00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
The recognition of internal and external sources of stimuli, the self from non-self, seems to be an intrinsic property to the adequate functioning of the immune system and the nervous system, both complex network systems that have evolved to safeguard the self biological identity of the organism. The mammalian brain development relies on dynamic and adaptive processes that are now well described. However, the rules dictating this highly constrained developmental process remain elusive. Here we hypothesize that there is a cellular basis for brain selfhood, based on the analogy of the global mechanisms that drive the self/non-self recognition and instruction by the immune system. In utero education within the thymus by multi-step selection processes discard overly low and high affinity T-lymphocytes to self stimuli, thus avoiding expendable or autoreactive responses that might lead to harmful autoimmunity. We argue that the self principle is one of the chief determinants of neocortical brain neurogenesis. According to our hypothesis, early-life education on self at the subcortical plate of the neocortex by selection processes might participate in the striking specificity of neuronal repertoire and assure efficiency and self tolerance. Potential implications of this hypothesis in self-reactive neurological pathologies are discussed, particularly involving consciousness-associated pathophysiological conditions, i.e., epilepsy and schizophrenia, for which we coined the term autophrenity.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Microbiology I, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Florence Faure
- PSL Research University, INSERM U932, Institut Curie, Paris, France
| |
Collapse
|
138
|
Kilb W, Fukuda A. Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Front Cell Neurosci 2017; 11:328. [PMID: 29123472 PMCID: PMC5662885 DOI: 10.3389/fncel.2017.00328] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurodevelopmental events and the regulation of neuronal activity during early developmental epochs. The current knowledge is that taurine lacks a synaptic release mechanism but is released by volume-sensitive organic anion channels and/or a reversal of the taurine transporter. Extracellular taurine affects neurons and neuronal progenitor cells mainly via glycine, GABA(A), and GABA(B) receptors with considerable receptor and subtype-specific affinities. Taurine has been shown to directly influence neurogenesis in vitro as well as neuronal migration in vitro and in vivo. It provides a depolarizing signal for a variety of neuronal population in the immature central nervous system, thereby directly influencing neuronal activity. While in the neocortex, taurine probably enhance neuronal activity, in the immature hippocampus, a tonic taurinergic tone might be necessary to attenuate activity. In summary, taurine must be considered as an essential modulator of neurodevelopmental events, and possible adverse consequences on fetal and/or early postnatal development should be evaluated for pharmacological therapies affecting taurinergic functions.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
139
|
Richter LMA, Gjorgjieva J. Understanding neural circuit development through theory and models. Curr Opin Neurobiol 2017; 46:39-47. [DOI: 10.1016/j.conb.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022]
|
140
|
Colonnese MT, Shen J, Murata Y. Uncorrelated Neural Firing in Mouse Visual Cortex during Spontaneous Retinal Waves. Front Cell Neurosci 2017; 11:289. [PMID: 28979189 PMCID: PMC5611364 DOI: 10.3389/fncel.2017.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Synchronous firing among the elements of forming circuits is critical for stabilization of synapses. Understanding the nature of these local network interactions during development can inform models of circuit formation. Within cortex, spontaneous activity changes throughout development. Unlike the adult, early spontaneous activity occurs in discontinuous population bursts separated by long silent periods, suggesting a high degree of local synchrony. However, whether the micro-patterning of activity within early bursts is unique to this early age and specifically tuned for early development is poorly understood, particularly within the column. To study this we used single-shank multi-electrode array recordings of spontaneous activity in the visual cortex of non-anesthetized neonatal mice to quantify single-unit firing rates, and applied multiple measures of network interaction and synchrony throughout the period of map formation and immediately after eye-opening. We find that despite co-modulation of firing rates on a slow time scale (hundreds of ms), the number of coactive neurons, as well as pair-wise neural spike-rate correlations, are both lower before eye-opening. In fact, on post-natal days (P)6–9 correlated activity was lower than expected by chance, suggesting active decorrelation of activity during early bursts. Neurons in lateral geniculate nucleus developed in an opposite manner, becoming less correlated after eye-opening. Population coupling, a measure of integration in the local network, revealed a population of neurons with particularly strong local coupling present at P6–11, but also an adult-like diversity of coupling at all ages, suggesting that a neuron’s identity as locally or distally coupled is determined early. The occurrence probabilities of unique neuronal “words” were largely similar at all ages suggesting that retinal waves drive adult-like patterns of co-activation. These findings suggest that the bursts of spontaneous activity during early visual development do not drive hyper-synchronous activity within columns. Rather, retinal waves provide windows of potential activation during which neurons are active but poorly correlated, adult-like patterns of correlation are achieved soon after eye-opening.
Collapse
Affiliation(s)
- Matthew T Colonnese
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| | - Jing Shen
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| | - Yasunobu Murata
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| |
Collapse
|
141
|
Blanquie O, Yang JW, Kilb W, Sharopov S, Sinning A, Luhmann HJ. Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex. eLife 2017; 6:27696. [PMID: 28826501 PMCID: PMC5582867 DOI: 10.7554/elife.27696] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptosis and sensory deprivation leads to exacerbated amounts of apoptotic neurons in the corresponding functional area of the neocortex. Thus, our data demonstrate that spontaneous and periphery-driven activity patterns are important for the structural and functional maturation of the neocortex by refining the final number of cortical neurons in a region-dependent manner.
Collapse
Affiliation(s)
- Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Salim Sharopov
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
142
|
Development of Activity in the Mouse Visual Cortex. J Neurosci 2017; 36:12259-12275. [PMID: 27903733 DOI: 10.1523/jneurosci.1903-16.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/24/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
A comprehensive developmental timeline of activity in the mouse cortex in vivo is lacking. Understanding the activity changes that accompany synapse and circuit formation is important to understand the mechanisms by which activity molds circuits and would help to identify critical checkpoints for normal development. To identify key principles of cortical activity maturation, we systematically tracked spontaneous and sensory-evoked activity with extracellular recordings of primary visual cortex (V1) in nonanesthetized mice. During the first postnatal week (postnatal days P4-P7), V1 was not visually responsive and exhibited long (>10 s) periods of network silence. Activation consisted exclusively of "slow-activity transients," 2-10 s periods of 6-10 Hz "spindle-burst' oscillations; the response to spontaneous retinal waves. By tracking daily changes in this activity, two key components of spontaneous activity maturation were revealed: (1) spindle-burst frequency acceleration (eventually becoming the 20-50 Hz broadband activity caused by the asynchronous state) and (2) "filling-in" of silent periods with low-frequency (2-4 Hz) activity (beginning on P10 and complete by P13). These two changes are sufficient to create the adult-like pattern of continuous activity, alternation between fast-asynchronous and slow-synchronous activity, by eye opening. Visual responses emerged on P8 as evoked spindle-bursts and neuronal firing with a signal-to-noise ratio higher than adult. Both were eliminated by eye opening, leaving only the mature, short-latency response. These results identify the developmental origins of mature cortical activity and implicate the period before eye opening as a critical checkpoint. By providing a systematic description of electrical activity development, we establish the murine visual cortex as a model for the electroencephalographic development of fetal humans. SIGNIFICANCE STATEMENT Cortical activity is an important indicator of long-term health and survival in preterm infants and molds circuit formation, but gaps remain in our understanding of the origin and normal progression of this activity in the developing cortex. We aimed to rectify this by monitoring daily changes in cortical activity in the nonanesthetized mouse, an important preclinical model of disease and development. At ages approximately equivalent to normal human term birth, mouse cortex exhibits primarily network silence, with spontaneous "spindle bursts" as the only form of activity. In contrast, mature cortex is noisy, alternating between asynchronous/discontinuous and synchronous/continuous states. This work identifies the key processes that produce this maturation and provides a normative reference for murine-based studies of cortical circuit development.
Collapse
|
143
|
The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex. J Neurosci 2017; 36:9922-32. [PMID: 27656029 DOI: 10.1523/jneurosci.1781-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. This early sensory input may involve: (1) stimulation arising from passive interactions with the mother and littermates and (2) sensory feedback arising from spontaneous infant movements. The relative contributions of these mechanisms under natural conditions remain largely unknown, however. Here, we show that, in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity. Both tactile signals arising from the littermate's movements under conditions simulating the littermates' position in the litter, and spontaneous whisker movements efficiently triggered bursts of activity in barrel cortex. Yet, whisker movements with touch were more efficient than free movements. Comparison of the various experimental conditions mimicking the natural environment showed that tactile signals arising from the whisker movements with touch and stimulation by the littermates, support: (1) a twofold higher level of cortical activity than in the isolated animal, and (2) a threefold higher level of activity than in the deafferented animal after the infraorbital nerve cut. Together, these results indicate that endogenous (self-generated movements) and exogenous (stimulation by the littermates) mechanisms cooperate in driving cortical activity in newborn rats and point to the importance of the environment in shaping cortical activity during the neonatal period. SIGNIFICANCE STATEMENT Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. However, the origins of sensory input to the neonatal somatosensory cortex in the natural environment remain largely unknown. Here, we show that in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity during the critical developmental period.
Collapse
|
144
|
Mortazavi F, Romano SE, Rosene DL, Rockland KS. A Survey of White Matter Neurons at the Gyral Crowns and Sulcal Depths in the Rhesus Monkey. Front Neuroanat 2017; 11:69. [PMID: 28860975 PMCID: PMC5559435 DOI: 10.3389/fnana.2017.00069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Gyrencephalic brains exhibit deformations of the six neocortical laminae at gyral crowns and sulcal depths, where the deeper layers are, respectively, expanded and compressed. The present study addresses: (1) the degree to which the underlying white matter neurons (WMNs) observe the same changes at gyral crowns and sulcal depths; and (2) whether these changes are consistent or variable across different cortical regions. WMNs were visualized by immunohistochemistry using the pan-neuronal label NeuN, and their density was quantified in eight rhesus monkey brains for four regions; namely, frontal (FR), superior frontal gyrus (SFG), parietal (Par) and temporal (TE). In all four regions, there were about 50% fewer WMNs in the sulcal depth, but there was also distinct variability from region to region. For the gyral crown, we observed an average density per 0.21 mm2 of 82 WMNs for the FR, 51 WMNs for SFG, 80 WMNs for Par and 93 WMNs for TE regions. By contrast, for the sulcal depth, the average number of WMNs per 0.21 mm2 was 41 for FR, 31 for cingulate sulcus (underlying the SFG), 54 for Par and 63 for TE cortical regions. Since at least some WMNs participate in cortical circuitry, these results raise the possibility of their differential influence on cortical circuitry in the overlying gyral and sulcal locations. The results also point to a possible role of WMNs in the differential vulnerability of gyral vs. sulcal regions in disease processes, and reinforce the increasing awareness of the WMNs as part of a complex, heterogeneous and structured microenvironment.
Collapse
Affiliation(s)
- Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University School of MedicineBoston, MA, United States
| | - Samantha E. Romano
- Department of Anatomy and Neurobiology, Boston University School of MedicineBoston, MA, United States
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of MedicineBoston, MA, United States
| | - Kathleen S. Rockland
- Department of Anatomy and Neurobiology, Boston University School of MedicineBoston, MA, United States
| |
Collapse
|
145
|
Palomero-Gallagher N, Zilles K. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage 2017; 197:716-741. [PMID: 28811255 DOI: 10.1016/j.neuroimage.2017.08.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Abstract
Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| |
Collapse
|
146
|
Kaminska A, Delattre V, Laschet J, Dubois J, Labidurie M, Duval A, Manresa A, Magny JF, Hovhannisyan S, Mokhtari M, Ouss L, Boissel A, Hertz-Pannier L, Sintsov M, Minlebaev M, Khazipov R, Chiron C. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses. Cereb Cortex 2017; 28:3429-3444. [DOI: 10.1093/cercor/bhx206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- A Kaminska
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Department of Clinical Neurophysiology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - V Delattre
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - J Laschet
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - J Dubois
- INSERM U992, CEA/DRF/I2BM/Neurospin/UNICOG, Gif-sur-Yvette, France
- Paris Saclay University, Paris-Sud University, Gif-sur-Yvette, France
| | - M Labidurie
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - A Duval
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - A Manresa
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - J -F Magny
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - S Hovhannisyan
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - M Mokhtari
- Neonatal Intensive Care Unit, AP-HP, Bicetre Hospital, Kremlin-Bicetre, France
| | - L Ouss
- Department of Pediatric Neurology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - A Boissel
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - L Hertz-Pannier
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - M Sintsov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - M Minlebaev
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - R Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - C Chiron
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| |
Collapse
|
147
|
Luhmann HJ. Review of imaging network activities in developing rodent cerebral cortex in vivo. NEUROPHOTONICS 2017; 4:031202. [PMID: 27921066 PMCID: PMC5120148 DOI: 10.1117/1.nph.4.3.031202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
The combination of voltage-sensitive dye imaging (VSDI) with multielectrode array (MEA) recordings in the rodent cerebral cortex in vivo allows the simultaneous analysis of large-scale network interactions and electrophysiological single-unit recordings. Using this approach, distinct patterns of spontaneous and sensory-evoked activity can be recorded in the primary somatosensory (S1) and motor cortex (M1) of newborn rats. Already at the day of birth, gamma oscillations and spindle bursts in the barrel cortex synchronize the activity of a local columnar ensemble, thereby generating an early topographic representation of the sensory periphery. During the first postnatal week, both cortical activity patterns undergo developmental changes in their spatiotemporal properties and spread into neighboring cortical columns. Simultaneous VSDI and MEA recordings in S1 and M1 demonstrate that the immature motor cortex receives information from the somatosensory system and that M1 may trigger movements of the periphery, which subsequently evoke gamma oscillations and spindle bursts in S1. These early activity patterns not only play an important role in the development of the cortical columnar architecture, they also control the ratio of surviving versus dying neurons in an activity-dependent manner, making these processes most vulnerable to pathophysiological disturbances during early developmental stages.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
148
|
Fracasso A, Koenraads Y, Porro GL, Dumoulin SO. Bilateral population receptive fields in congenital hemihydranencephaly. Ophthalmic Physiol Opt 2017; 36:324-34. [PMID: 27112226 DOI: 10.1111/opo.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Congenital hemihydranencephaly (HH) is a very rare disorder characterised by prenatal near-complete unilateral loss of the cerebral cortex. We investigated a patient affected by congenital right HH whose visual field extended significantly into the both visual hemifields, suggesting a reorganisation of the remaining left visual hemisphere. We examined the early visual cortex reorganisation using functional MRI (7T) and population receptive field (pRF) modelling. METHODS Data were acquired by means of a 7T MRI while the patient affected by HH viewed conventional population receptive field mapping stimuli. Two possible pRF reorganisation schemes were evaluated: where every cortical location processed information from either (i) a single region of the visual field or (ii) from two bilateral regions of the visual field. RESULTS In the patient affected by HH, bilateral pRFs in single cortical locations of the remaining hemisphere were found. In addition, using this specific pRF reorganisation scheme, the biologically known relationship between pRF size and eccentricity was found. CONCLUSIONS Bilateral pRFs were found in the remaining left hemisphere of the patient affected by HH, indicating reorganisation of intra-cortical wiring of the early visual cortex and confirming brain plasticity and reorganisation after an early cerebral damage in humans.
Collapse
Affiliation(s)
- Alessio Fracasso
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.,Department of Radiology, Imaging Division, University Medical Centre, Utrecht, The Netherlands.,Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Yvonne Koenraads
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Giorgio L Porro
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.,Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| |
Collapse
|
149
|
Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex. Neuroscience 2017; 358:190-200. [PMID: 28663094 DOI: 10.1016/j.neuroscience.2017.06.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022]
Abstract
An intriguing feature of nervous system development in most animal species is that the initial number of generated neurons is higher than the number of neurons incorporated into mature circuits. A substantial portion of neurons is indeed eliminated via apoptosis during a short time window - in rodents the first two postnatal weeks. While it is well established that neurotrophic factors play a central role in controlling neuronal survival and apoptosis in the peripheral nervous system (PNS), the situation is less clear in the central nervous system (CNS). In postnatal rodent neocortex, the peak of apoptosis coincides with the occurrence of spontaneous, synchronous activity patterns. In this article, we review recent results that demonstrate the important role of electrical activity for neuronal survival in the neocortex, describe the role of Ca2+ and neurotrophic factors in translating electrical activity into pro-survival signals, and finally discuss the clinical impact of the tight relation between electrical activity and neuronal survival versus apoptosis.
Collapse
|
150
|
Luhmann HJ, Khazipov R. Neuronal activity patterns in the developing barrel cortex. Neuroscience 2017; 368:256-267. [PMID: 28528963 DOI: 10.1016/j.neuroscience.2017.05.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
The developing barrel cortex reveals a rich repertoire of neuronal activity patterns, which have been also found in other sensory neocortical areas and in other species including the somatosensory cortex of preterm human infants. The earliest stage is characterized by asynchronous, sparse single-cell firing at low frequencies. During the second stage neurons show correlated firing, which is initially mediated by electrical synapses and subsequently transforms into network bursts depending on chemical synapses. Activity patterns during this second stage are synchronous plateau assemblies, delta waves, spindle bursts and early gamma oscillations (EGOs). In newborn rodents spindle bursts and EGOs occur spontaneously or can be elicited by sensory stimulation and synchronize the activity in a barrel-related columnar network with topographic organization at the day of birth. Interfering with this early activity causes a disturbance in the development of the cortical architecture, indicating that spindle bursts and EGOs influence the formation of cortical columns. Early neuronal activity also controls the rate of programed cell death in the developing barrel cortex, suggesting that spindle bursts and EGOs are physiological activity patterns particularly suited to suppress apoptosis. It remains to be studied in more detail how these different neocortical activity patterns control early developmental processes such as formation of synapses, microcircuits, topographic maps and large-scale networks.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| | - Rustem Khazipov
- INMED - INSERM, Aix-Marseille University, Marseille 13273, France; Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| |
Collapse
|