101
|
Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 2022; 27:402-441. [PMID: 36543175 DOI: 10.1123/mc.2022-0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.
Collapse
|
102
|
Cofer S, Chen TN, Yang J, Follmer S. Detecting Touch and Grasp Gestures Using a Wrist-Worn Optical and Inertial Sensing Network. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3191173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Savannah Cofer
- Dept. of Mechanical Engineering, Stanford University, Stanford, USA
| | - Tyler N. Chen
- Dept. of Bioengineering, Stanford University, Stanford, USA
| | - Jackie Yang
- Dept. of Computer Science, Stanford University, Stanford, USA
| | - Sean Follmer
- Dept. of Mechanical Engineering, Stanford University, Stanford, USA
| |
Collapse
|
103
|
Lulic-Kuryllo T, Negro F, Jiang N, Dickerson CR. Differential regional pectoralis major activation indicates functional diversity in healthy females. J Biomech 2022; 133:110966. [DOI: 10.1016/j.jbiomech.2022.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
|
104
|
Jenkins JR, Salmon OF, Hill EC, Boyle JB, Smith CM. Neuromuscular responses at acute moderate and severe hypoxic exposure during fatiguing exercise of the biceps brachii. Curr Res Physiol 2021; 4:209-215. [PMID: 34746840 PMCID: PMC8562136 DOI: 10.1016/j.crphys.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose The present study examined acute normobaric hypoxic exposure on the number of repetitions to failure, electromyographic (EMG) repetition duration (Time), EMG root mean square (RMS) and EMG mean power frequency (MPF) during biceps brachii (BB) dynamic constant external resistance (DCER) exercise. Methods Thirteen subjects performed two sets of fatiguing DCER arm curl repetitions to failure at 70% of their one repetition maximum under normoxic (NH), moderate hypoxia FiO2 = 15% (MH) and severe hypoxia FiO2 = 13% (SH). Electromyography of the BB was analyzed for EMG Time, EMG RMS, and EMG MPF. Repetitions were selected as 25%, 50%, 75%, and 100% of total repetitions (%Fail) completed. Pulse oximetry (SpO2) was measured pre-and post-fatigue. Results There was no significant three-way (Condition x Set x %Fail) or two-way (Condition x Set) interaction for any variable. The number of repetitions to failure significantly decreased from (mean ± SEM) 18.2 ± 1.4 to 9.5 ± 1.0 with each Set. In addition, EMG Time increased (25% < 50%<75% < 100%), EMG RMS decreased (50% > 75%>100%), and EMG MPF decreased (75% > 100%) as a result of fatiguing exercise. SpO2 was lower during MH (Δ5.3%) and SH (Δ9.2%) compared to NH and as a result of fatiguing exercise increased only in MH (Δ2.1%) and SH (Δ5.7%). Conclusion The changes in BB EMG variables indicated exercise caused myoelectric manifestations of fatigue, however, acute moderate or severe hypoxia had no additional influence on the rate of fatigue development or neuromuscular parameters. Acute MH (FiO2 15%) and SH (FiO2 14%) did not alter the muscle contractile process. Arm curl repetitions to failure decreased MU recruitment and conduction velocity. EMG fatigue analysis, hypoxia and arm curls to failure, EMG RMS, EMG MPF and Time. SpO2 was lower at MH and SH which increased following fatiguing exercise.
Collapse
Affiliation(s)
- Jasmin R Jenkins
- Interdisciplinary Health Sciences PhD Program, The University of Texas at El Paso, El Paso, TX, USA
| | - Owen F Salmon
- Interdisciplinary Health Sciences PhD Program, The University of Texas at El Paso, El Paso, TX, USA
| | - Ethan C Hill
- School of Kinesiology & Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Jason B Boyle
- Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, USA
| | - Cory M Smith
- Interdisciplinary Health Sciences PhD Program, The University of Texas at El Paso, El Paso, TX, USA.,Department of Kinesiology, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
105
|
Yeon SH, Herr HM. Rejecting Impulse Artifacts from Surface EMG Signals using Real-time Cumulative Histogram Filtering. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6235-6241. [PMID: 34892539 DOI: 10.1109/embc46164.2021.9631052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper presents a cumulative histogram filtering (CHF) algorithm to filter impulsive artifacts within surface electromyograhy (sEMG) signal for time-domain signal feature extraction. The proposed CHF algorithm filters sEMG signals by extracting a continuous subset of amplitude-sorted values within a real-time window of measured samples using information about the probabilistic distribution of sEMG amplitude. For real-time deployment of the proposed CHF algorithm on an embedded computing platform, we also present an efficient, iterative implementation of the proposed algorithm. The proposed CHF algorithm was evaluated on synthetic impulse artifacts superimposed upon undisturbed sEMG recorded from a subject with transtibial amputation. Results suggest that the CHF algorithm effectively suppresses the simulated impulse artifacts while preserving a minimum signal-to-noise ratio of 95% and an average Pearson correlation of 0.99 compared to the undisturbed sEMG recordings.
Collapse
|
106
|
Casolo A, Del Vecchio A, Balshaw TG, Maeo S, Lanza MB, Felici F, Folland JP, Farina D. Behavior of motor units during submaximal isometric contractions in chronically strength-trained individuals. J Appl Physiol (1985) 2021; 131:1584-1598. [PMID: 34617822 DOI: 10.1152/japplphysiol.00192.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural and morphological adaptations combine to underpin the enhanced muscle strength following prolonged exposure to strength training, although their relative importance remains unclear. We investigated the contribution of motor unit (MU) behavior and muscle size to submaximal force production in chronically strength-trained athletes (ST) versus untrained controls (UT). Sixteen ST (age: 22.9 ± 3.5 yr; training experience: 5.9 ± 3.5 yr) and 14 UT (age: 20.4 ± 2.3 yr) performed maximal voluntary isometric force (MViF) and ramp contractions (at 15%, 35%, 50%, and 70% MViF) with elbow flexors, whilst high-density surface electromyography (HDsEMG) was recorded from the biceps brachii (BB). Recruitment thresholds (RTs) and discharge rates (DRs) of MUs identified from the submaximal contractions were assessed. The neural drive-to-muscle gain was estimated from the relation between changes in force (ΔFORCE, i.e. muscle output) relative to changes in MU DR (ΔDR, i.e. neural input). BB maximum anatomical cross-sectional area (ACSAMAX) was also assessed by MRI. MViF (+64.8% vs. UT, P < 0.001) and BB ACSAMAX (+71.9%, P < 0.001) were higher in ST. Absolute MU RT was higher in ST (+62.6%, P < 0.001), but occurred at similar normalized forces. MU DR did not differ between groups at the same normalized forces. The absolute slope of the ΔFORCE - ΔDR relationship was higher in ST (+66.9%, P = 0.002), whereas it did not differ for normalized values. We observed similar MU behavior between ST athletes and UT controls. The greater absolute force-generating capacity of ST for the same neural input demonstrates that morphological, rather than neural, factors are the predominant mechanism for their enhanced force generation during submaximal efforts.NEW & NOTEWORTHY In this study, we observed that recruitment strategies and discharge characteristics of large populations of motor units identified from biceps brachii of strength-trained athletes were similar to those observed in untrained individuals during submaximal force tasks. We also found that for the same neural input, strength-trained athletes are able to produce greater absolute muscle forces (i.e., neural drive-to-muscle gain). This demonstrates that morphological factors are the predominant mechanism for the enhanced force generation during submaximal efforts.
Collapse
Affiliation(s)
- Andrea Casolo
- Department of Bioengineering, Imperial College London, London, United Kingdom.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas G Balshaw
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Sumiaki Maeo
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,College of Sport and Health Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Marcel Bahia Lanza
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, Maryland
| | - Francesco Felici
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.,Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Leicestershire, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
107
|
Yeon SH, Song H, Herr HM. Spatiotemporally Synchronized Surface EMG and Ultrasonography Measurement Using a Flexible and Low-Profile EMG Electrode. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6242-6246. [PMID: 34892540 DOI: 10.1109/embc46164.2021.9629789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The temporally synchronized recording of muscle activity and fascicle dynamics is essential in understanding the neurophysiology of human motor control which could promote developments of effective rehabilitation strategies and assistive technologies. Surface electromyography (sEMG) and ultrasonography provide easy-to-use, low-cost, and noninvasive modalities to assess muscle activity and fascicle dynamics, and have been widely used in both clinical and lab settings. However, due to size of these sensors and limited skin surface area, it is extremely challenging to collect data from a muscle of interest in a spatially as well as temporally synchronized manner. Here, we introduce a low-cost, noninvasive flexible electrode that provides high quality sEMG recording, while also enabling spatiotemporally synchronized ultrasonography recordings. The proposed method was verified by comparing ultrasonography of a phantom and a tibialis anterior (TA) muscle during dorsiflexion and plantarflexion with and without the electrode acutely placed under an ultrasound probe. Our results show no significant artifact in ultrasonography from both the phantom and TA fascicle strains due to the presence of the electrode, demonstrating the capability of spatiotemporally synchronized sEMG and ultrasonography recording.
Collapse
|
108
|
Promsri A. Modulation of bilateral lower-limb muscle coordination when performing increasingly challenging balance exercises. Neurosci Lett 2021; 767:136299. [PMID: 34699944 DOI: 10.1016/j.neulet.2021.136299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022]
Abstract
Balance exercises have proven effective in enhancing and regaining neuromuscular control. However, how the bilateral homonymous muscles are coordinated to achieve bipedal equilibrium remains unclear. In terms of increasingly difficult balance tasks, the current study focused on two levels of muscle coordination: individual homonymous muscles and groups of homonymous muscles. In 25 physically active young adults, a cross-correlation between the bilateral electromyographic (EMG) signals of both legs (i.e., bilateral EMG-EMG correlation) was conducted on seven muscles measured when performing bipedal balancing on three different support surface instabilities. Then, the patterns of bilateral EMG-EMG cross-correlation coefficients were determined through a principal component analysis (PCA). It was hypothesized that modulations of bilateral lower-limb muscle coordination should be observed in the specific relevant muscles or in the patterns of bilateral muscle coordination. The results showed that only the first hypothesis was supported as changes in the strength of bilateral EMG-EMG correlation (p ≤ 0.005) and in the time delays (p < 0.001) were mostly restricted in the lower-leg muscles. The dorsiflexor and plantar flexor muscles showed opposite coordination behaviors. Larger bilateral EMG-EMG correlation and shorter time delays appeared only in the tibialis anterior muscle, suggesting that bilateral dorsiflexor muscle coordination is needed for exercising on multiaxial-unstable platforms.
Collapse
Affiliation(s)
- Arunee Promsri
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, 19 Moo 2, Maeka, Muang, Phayao 56000, Thailand; Department of Sport Science, University of Innsbruck, Fürstenweg 185, 6020 Innsbruck, Austria; Unit of Excellence in Well-Being and Health Innovation, School of Allied Health Sciences, University of Phayao, 19 Moo 2, Maeka, Muang, Phayao 56000, Thailand.
| |
Collapse
|
109
|
Reece TM, Arnold CE, Herda TJ. An examination of motor unit firing rates during steady torque of maximal efforts with either an explosive or slower rate of torque development. Exp Physiol 2021; 106:2517-2530. [PMID: 34676609 DOI: 10.1113/ep089808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to explore agonist and antagonist motor unit firing rates during maximal efforts performed with either an explosive or a slower rate of torque development. What is the main finding and its importance? The antagonist muscle presented a motor unit firing rate relationship similar to the agonist muscle. Additionally, the motor units of both muscles exhibited higher firing rates during explosive maximal contractions than during maximal contractions performed at a slower rate of torque development. These results could prove useful to future research analysing the effects of age, disease, resistance training and/or fatigue-related alterations to motor unit firing rates. ABSTRACT The primary purpose of the present study was to examine motor unit (MU) firing rates in agonist and antagonist muscles during periods of steady, maximal efforts using explosive and slower rates of torque development. A secondary purpose was to analyse the MU firing rate versus action potential amplitude relationships of the agonist and antagonist muscles during maximal efforts. Thirteen subjects (mean ± SD; age, 21.2 ± 3.6 years; mass 81.1 ± 21.3 kg; and stature, 177.1±9.9 cm) performed two maximal isometric trapezoid muscle actions of the elbow flexors that included either an explosive or a slower, linearly increasing rate (ramp) of torque development. Surface EMG signals of the biceps brachii (BB) and triceps brachii (TB) muscles were collected and decomposed into their constituent MU action potential trains. The MU firing rate versus action potential amplitude relationships of the BB (agonist) and TB (antagonist) muscles were analysed. Moderate to strong relationships (|r| ≥ 0.65) were present for the explosive and ramp contractions in the agonist and antagonist muscles. Firing rates of smaller and larger MUs were higher during the explosive [mean ± SD; agonist = 18.1 ± 6.9 pulses per second (pps), antagonist = 22.0±3.9 pps] than the ramp (agonist = 14.0 ± 5.1 pps, antagonist = 18.3 ± 4.4 pps) contractions for the agonist (P = 0.013) and antagonist muscles (P = 0.007). The antagonist muscle exhibits a similar MU firing rate versus action potential amplitude relationship to the agonist muscle at maximal efforts. Future research should investigate the effects of short-term resistance training on antagonist firing rates and the involvement of peripheral feedback on firing rates during maximal efforts performed at various rates of torque development.
Collapse
Affiliation(s)
- Tanner M Reece
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Catherine E Arnold
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
110
|
Fietsam AC, Deters JR, Workman CD, Ponto LLB, Rudroff T. Alterations in Leg Muscle Glucose Uptake and Inter-Limb Asymmetry after a Single Session of tDCS in Four People with Multiple Sclerosis. Brain Sci 2021; 11:brainsci11101363. [PMID: 34679427 PMCID: PMC8533729 DOI: 10.3390/brainsci11101363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
Asymmetrical lower limb weakness is an early symptom and significant contributor to the progressive worsening of walking ability in people with multiple sclerosis (PwMS). Transcranial direct current stimulation (tDCS) may effectively increase neural drive to the more-affected lower limb and, therefore, increase symmetrical activation. Four PwMS (1 female, age range: 27–57) underwent one session each of 3 mA or SHAM tDCS over the motor cortex corresponding to their more-affected limb followed by 20 min of treadmill walking at a self-selected speed. Two min into the treadmill task, the subjects were injected with the glucose analog [18F]fluorodeoxyglucose (FDG). Immediately after treadmill walking, the subjects underwent whole-body positron emission tomography (PET) imaging. Glucose uptake (GU) values were compared between the legs, the spatial distribution of FDG was assessed to estimate glucose uptake heterogeneity (GUh), and GU asymmetry indices (AIs) were calculated. After tDCS, GU was altered, and GUh was decreased in various muscle groups in each subject. Additionally, AIs went from asymmetric to symmetric after tDCS in the subjects that demonstrated asymmetrical glucose uptake during SHAM. These results indicate that tDCS improved GU asymmetries, potentially from an increased neural drive and a more efficient muscle activation strategy of the lower limb in PwMS.
Collapse
Affiliation(s)
- Alexandra C. Fietsam
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Justin R. Deters
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Laura L. Boles Ponto
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-467-0363
| |
Collapse
|
111
|
Lam SK, Vujaklija I. Joint Torque Prediction via Hybrid Neuromusculoskeletal Modelling during Gait Using Statistical Ground Reaction Estimates: An Exploratory Study. SENSORS 2021; 21:s21196597. [PMID: 34640917 PMCID: PMC8512679 DOI: 10.3390/s21196597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
Joint torques of lower extremity are important clinical indicators of gait capability. This parameter can be quantified via hybrid neuromusculoskeletal modelling that combines electromyography-driven modelling and static optimisation. The simulations rely on kinematics and external force measurements, for example, ground reaction forces (GRF) and the corresponding centres of pressure (COP), which are conventionally acquired using force plates. This bulky equipment, however, hinders gait analysis in real-world environments. While this portability issue could potentially be solved by estimating the parameters through machine learning, the effect of the estimation errors on joint torque prediction with biomechanical models remains to be investigated. This study first estimated GRF and COP through feedforward artificial neural networks, and then leveraged them to predict lower-limb sagittal joint torques via (i) inverse dynamics and (ii) hybrid modelling. The approach was evaluated on five healthy subjects, individually. The predicted torques were validated with the measured torques, showing that hip was the most sensitive whereas ankle was the most resistive to the GRF/COP estimates for both models, with average metrics values being 0.70 < R2 < 0.97 and 0.069 < RMSE < 0.15 (Nm/kg). This study demonstrated the feasibility of torque prediction based on personalised (neuro)musculoskeletal modelling using statistical ground reaction estimates, thus providing insights into potential real-world mobile joint torque quantification.
Collapse
|
112
|
A Muscle Fatigue Classification Model Based on LSTM and Improved Wavelet Packet Threshold. SENSORS 2021; 21:s21196369. [PMID: 34640689 PMCID: PMC8512101 DOI: 10.3390/s21196369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
Previous studies have used the anaerobic threshold (AT) to non-invasively predict muscle fatigue. This study proposes a novel method for the automatic classification of muscle fatigue based on surface electromyography (sEMG). The sEMG data were acquired from 20 participants during an incremental test on a cycle ergometer using sEMG sensors placed on the vastus rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), and gastrocnemius (GA) muscles of the left leg. The ventilation volume (VE), oxygen uptake (VO2), and carbon dioxide production (VCO2) data of each participant were collected during the test. Then, we extracted the time-domain and frequency-domain features of the sEMG signal denoised by the improved wavelet packet threshold denoising algorithm. In this study, we propose a new muscle fatigue recognition model based on the long short-term memory (LSTM) network. The LSTM network was trained to classify muscle fatigue using sEMG signal features. The results showed that the improved wavelet packet threshold function has better performance in denoising sEMG signals than hard threshold and soft threshold functions. The classification performance of the muscle fatigue recognition model proposed in this paper is better than that of CNN (convolutional neural network), SVM (support vector machine), and the classification models proposed by other scholars. The best performance of the LSTM network was achieved with 70% training, 10% validation, and 20% testing rates. Generally, the proposed model can be used to monitor muscle fatigue.
Collapse
|
113
|
Is the Power Spectrum of Electromyography Signal a Feasible Tool to Estimate Muscle Fiber Composition in Patients with COPD? J Clin Med 2021; 10:jcm10173815. [PMID: 34501263 PMCID: PMC8432104 DOI: 10.3390/jcm10173815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
A greater proportion of glycolytic muscle fibers is a manifestation of skeletal muscle dysfunction in Chronic Obstructive Pulmonary Disease (COPD). Here, we propose to use the spectral analysis of the electromyographic signal as a non-invasive approach to investigate the fiber muscle composition in COPD. We recorded the electromyographic activity of Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM) and Biceps Femoris (BF) muscles, in ten patients and ten healthy individuals, during non-fatiguing, flexion–extension leg movements. The mean (MNF) and median frequencies (MDF) were calculated, and the most common profiles of electromyographic power spectrum were characterized by using the principal component analysis. Frequency parameters showed higher values in patients with COPD than in the control group for the RF (+25% for MNF; +21% for MNF), VL (+16% for MNF; 16% for MNF) and VM (+22% for MNF; 22% for MNF) muscles during the extension movements and for the BF (+26% for MNF; 34% for MNF) muscle during flexion movements. Spectrum profiles of the COPD patients shifted towards the higher frequencies, and the changes in frequency parameters were correlated with the level of disease severity. This shift of frequencies may indicate an increase in glycolytic muscle fibers in patients with COPD. These results, along with the non-fatigable nature of the motor task and the adoption of a non-invasive method, encourage to use electromyographic spectral analysis for estimating muscle fiber composition in patients with COPD.
Collapse
|
114
|
Tarazona-Motes M, Albaladejo-Belmonte M, Nohales-Alfonso FJ, De-Arriba M, Garcia-Casado J, Alberola-Rubio J. Treatment of Dyspareunia with Botulinum Neurotoxin Type A: Clinical Improvement and Influence of Patients' Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8783. [PMID: 34444532 PMCID: PMC8393724 DOI: 10.3390/ijerph18168783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022]
Abstract
The treatment of chronic pelvic pain (CPP) with botulinum neurotoxin type A (BoNT/A) has increased lately, but more studies assessing its effect are needed. This study aimed to evaluate the evolution of patients after BoNT/A infiltration and identify potential responders to treatment. Twenty-four women with CPP associated with dyspareunia were treated with 90 units of BoNT/A injected into their pelvic floor muscle (PFM). Clinical status and PFM activity were monitored in a previous visit (PV) and 12 and 24 weeks after the infiltration (W12, W24) by validated clinical questionnaires and surface electromyography (sEMG). The influence of patients' characteristics on the reduction in pain at W12 and W24 was also assessed. After treatment, pain scores and the impact of symptoms on quality of life dropped significantly, sexual function improved and sEMG signal amplitude decreased on both sides of the PFM with no adverse events. Headaches and bilateral pelvic pain were risk factors for a smaller pain improvement at W24, while lower back pain was a protective factor. Apart from reporting a significant clinical improvement of patients with CPP associated with dyspareunia after BoNT/A infiltration, this study shows that clinical characteristics should be analyzed in detail to identify potential responders to treatment.
Collapse
Affiliation(s)
- Marta Tarazona-Motes
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Monica Albaladejo-Belmonte
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Edif. 8B, Camino de Vera SN, 46022 Valencia, Spain; (M.A.-B.); (J.G.-C.)
| | - Francisco J. Nohales-Alfonso
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Maria De-Arriba
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Edif. 8B, Camino de Vera SN, 46022 Valencia, Spain; (M.A.-B.); (J.G.-C.)
| | - Jose Alberola-Rubio
- Unidad de Bioelectrónica, Procesamiento de señales y Algoritmia, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| |
Collapse
|
115
|
Wang H, Rajotte KJ, Wang H, Dai C, Zhu Z, Huang X, Clancy EA. Simplified Optimal Estimation of Time-Varying Electromyogram Standard Deviation (EMGσ): Evaluation on Two Datasets. SENSORS (BASEL, SWITZERLAND) 2021; 21:5165. [PMID: 34372403 PMCID: PMC8348299 DOI: 10.3390/s21155165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
To facilitate the broader use of EMG signal whitening, we studied four whitening procedures of various complexities, as well as the roles of sampling rate and noise correction. We separately analyzed force-varying and constant-force contractions from 64 subjects who completed constant-posture tasks about the elbow over a range of forces from 0% to 50% maximum voluntary contraction (MVC). From the constant-force tasks, we found that noise correction via the root difference of squares (RDS) method consistently reduced EMG recording noise, often by a factor of 5-10. All other primary results were from the force-varying contractions. Sampling at 4096 Hz provided small and statistically significant improvements over sampling at 2048 Hz (~3%), which, in turn, provided small improvements over sampling at 1024 Hz (~4%). In comparing equivalent processing variants at a sampling rate of 4096 Hz, whitening filters calibrated to the EMG spectrum of each subject generally performed best (4.74% MVC EMG-force error), followed by one universal whitening filter for all subjects (4.83% MVC error), followed by a high-pass filter whitening method (4.89% MVC error) and then a first difference whitening filter (4.91% MVC error)-but none of these statistically differed. Each did significantly improve from EMG-force error without whitening (5.55% MVC). The first difference is an excellent whitening option over this range of contraction forces since no calibration or algorithm decisions are required.
Collapse
Affiliation(s)
- He Wang
- Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.W.); (K.J.R.); (H.W.); (Z.Z.); (X.H.)
| | - Kiriaki J. Rajotte
- Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.W.); (K.J.R.); (H.W.); (Z.Z.); (X.H.)
| | - Haopeng Wang
- Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.W.); (K.J.R.); (H.W.); (Z.Z.); (X.H.)
| | - Chenyun Dai
- Center for Biomedical Engineering, Fudan University, Shanghai 200433, China;
| | - Ziling Zhu
- Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.W.); (K.J.R.); (H.W.); (Z.Z.); (X.H.)
| | - Xinming Huang
- Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.W.); (K.J.R.); (H.W.); (Z.Z.); (X.H.)
| | - Edward A. Clancy
- Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.W.); (K.J.R.); (H.W.); (Z.Z.); (X.H.)
| |
Collapse
|
116
|
Fietsam AC, Deters JR, Workman CD, Rudroff T. Personal Protective Equipment Alters Leg Muscle Fatigability Independent of Transcranial Direct Current Stimulation: A Comparison with Pre-COVID-19 Pandemic Results. Brain Sci 2021; 11:brainsci11080962. [PMID: 34439581 PMCID: PMC8392507 DOI: 10.3390/brainsci11080962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
In response to the COVID-19 pandemic, the use of personal protective equipment (PPE; e.g., face mask) has increased. Mandating subjects to wear PPE during vigorous exercise might affect the fatigue outcomes of transcranial direct current stimulation (tDCS) studies. The purpose of this study was to investigate whether the use of PPE affected the performance of a tDCS-influenced fatigue task in healthy adults. A total of 16 young and healthy subjects were recruited and wore PPE during an isokinetic fatigue task in conjunction with sham, 2 mA, and 4 mA tDCS conditions. Subjects were matched to subjects who did not wear PPE during our previous pre-pandemic study in which right knee extensor fatigability increased under these same conditions. The results show that right knee extensor fatigability, derived from torque and work (FI-T and FI-W, respectively), was higher in the PPE study compared to the No PPE study in the sham condition. Additionally, there were no differences in knee extensor fatigability or muscle activity between sham, 2 mA, and 4 mA tDCS in the present study, which contrasts with our previous results. Thus, PPE worn by subjects and researchers might have a detrimental effect on fatigue outcomes in tDCS studies irrespective of the stimulation intervention.
Collapse
Affiliation(s)
- Alexandra C. Fietsam
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Justin R. Deters
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA; (A.C.F.); (J.R.D.); (C.D.W.)
- Department of Neurology, University of Iowa Health Clinics, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-467-0363
| |
Collapse
|
117
|
Li S, Luo X, Zhang S, Tang Y, Sun J, Meng Q, Yu H, Sun C. Evaluation of Multilevel Surgeries in Children With Spastic Cerebral Palsy Based on Surface Electromyography. Front Neurosci 2021; 15:680645. [PMID: 34335161 PMCID: PMC8319621 DOI: 10.3389/fnins.2021.680645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
The root mean square (RMS) of the surface electromyography (sEMG) signal can respond to neuromuscular function, which displays a positive correlation with muscle force and muscle tension under positive and passive conditions, respectively. The purpose of this study was to investigate the changes in muscle force and tension after multilevel surgical treatments, functional selective posterior rhizotomy (FSPR) and tibial anterior muscle transfer surgery, and evaluate their clinical effect in children with spastic cerebral palsy (SCP) during walking. Children with diplegia (n = 13) and hemiplegia (n = 3) with ages from 4 to 18 years participated in this study. They were requested to walk barefoot at a self-selected speed on a 15-m-long lane. The patient's joints' range of motion (ROM) and sEMG signal of six major muscles were assessed before and after the multilevel surgeries. The gait cycle was divided into seven phases, and muscle activation state can be divided into positive and passive conditions during gait cycle. For each phase, the RMS of the sEMG signal amplitude was calculated and also normalized by a linear envelope (10-ms running RMS window). The muscle tension of the gastrocnemius decreased significantly during the loading response, initial swing, and terminal swing (p < 0.05), which helped the knee joint to get the maximum extension when the heel is on the ground and made the heel land smoothly. The muscle force of the gastrocnemius increased significantly (p < 0.05) during the mid-stance, terminal stance, and pre-swing, which could generate the driving force for the human body to move forward. The muscle tension of the biceps femoris and semitendinosus decreased significantly (p < 0.05) during the terminal stance, pre-swing, and initial swing. The decreased muscle tension could relieve the burden of the knee flexion when the knee joint was passively flexed. At the terminal swing, the muscle force of the tibial anterior increased significantly (p < 0.05), which could improve the ankle dorsiflexion ability and prevent foot drop and push forward. Thus, the neuromuscular function of cerebral palsy during walking can be evaluated by the muscle activation state and the RMS of the sEMG signal, which showed that multilevel surgical treatments are feasible and effective to treat SCP.
Collapse
Affiliation(s)
- Sujiao Li
- Institute of Rehabilitation Engineering and Technology, School of Medical Device and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, University of Shanghai for Science and Technology, Shanghai, China
| | - Xueqin Luo
- Institute of Rehabilitation Engineering and Technology, School of Medical Device and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, University of Shanghai for Science and Technology, Shanghai, China
| | - Song Zhang
- Department of Functional Neurosurgery, Shanghai Punan Hospital, Shanghai Eber Medical Group, Shanghai, China.,Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuanmin Tang
- Institute of Rehabilitation Engineering and Technology, School of Medical Device and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiming Sun
- Department of Functional Neurosurgery, Shanghai Punan Hospital, Shanghai Eber Medical Group, Shanghai, China
| | - Qingyun Meng
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, School of Medical Device and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Engineering Research Center of Assistive Devices, University of Shanghai for Science and Technology, Shanghai, China
| | - Chengyan Sun
- Department of Functional Neurosurgery, Shanghai Punan Hospital, Shanghai Eber Medical Group, Shanghai, China
| |
Collapse
|
118
|
Maximal muscular power: lessons from sprint cycling. SPORTS MEDICINE-OPEN 2021; 7:48. [PMID: 34268627 PMCID: PMC8282832 DOI: 10.1186/s40798-021-00341-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Maximal muscular power production is of fundamental importance to human functional capacity and feats of performance. Here, we present a synthesis of literature pertaining to physiological systems that limit maximal muscular power during cyclic actions characteristic of locomotor behaviours, and how they adapt to training. Maximal, cyclic muscular power is known to be the main determinant of sprint cycling performance, and therefore we present this synthesis in the context of sprint cycling. Cyclical power is interactively constrained by force-velocity properties (i.e. maximum force and maximum shortening velocity), activation-relaxation kinetics and muscle coordination across the continuum of cycle frequencies, with the relative influence of each factor being frequency dependent. Muscle cross-sectional area and fibre composition appear to be the most prominent properties influencing maximal muscular power and the power-frequency relationship. Due to the role of muscle fibre composition in determining maximum shortening velocity and activation-relaxation kinetics, it remains unclear how improvable these properties are with training. Increases in maximal muscular power may therefore arise primarily from improvements in maximum force production and neuromuscular coordination via appropriate training. Because maximal efforts may need to be sustained for ~15-60 s within sprint cycling competition, the ability to attenuate fatigue-related power loss is also critical to performance. Within this context, the fatigued state is characterised by impairments in force-velocity properties and activation-relaxation kinetics. A suppression and leftward shift of the power-frequency relationship is subsequently observed. It is not clear if rates of power loss can be improved with training, even in the presence adaptations associated with fatigue-resistance. Increasing maximum power may be most efficacious for improving sustained power during brief maximal efforts, although the inclusion of sprint interval training likely remains beneficial. Therefore, evidence from sprint cycling indicates that brief maximal muscular power production under cyclical conditions can be readily improved via appropriate training, with direct implications for sprint cycling as well as other athletic and health-related pursuits.
Collapse
|
119
|
Germer CM, Farina D, Elias LA, Nuccio S, Hug F, Del Vecchio A. Surface EMG cross talk quantified at the motor unit population level for muscles of the hand, thigh, and calf. J Appl Physiol (1985) 2021; 131:808-820. [PMID: 34236246 DOI: 10.1152/japplphysiol.01041.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross talk is an important source of error in interpreting surface electromyography (EMG) signals. Here, we aimed at characterizing cross talk for three groups of synergistic muscles by the identification of individual motor unit action potentials. Moreover, we explored whether spatial filtering (single and double differential) of the EMG signals influences the level of cross talk. Three experiments were conducted. Participants (total 25) performed isometric contractions at 10% of the maximal voluntary contraction (MVC) with digit muscles and knee extensors and at 30% MVC with plantar flexors. High-density surface EMG signals were recorded and decomposed into motor unit spike trains. For each muscle, we quantified the cross talk induced to neighboring muscles and the level of contamination by the nearby muscle activity. We also estimated the influence of cross talk on the EMG power spectrum and intermuscular correlation. Most motor units (80%) generated significant cross-talk signals to neighboring muscle EMG in monopolar recording mode, but this proportion decreased with spatial filtering (50% and 42% for single and double differential, respectively). Cross talk induced overestimations of intermuscular correlation and has a small effect on the EMG power spectrum, which indicates that cross talk is not reduced with high-pass temporal filtering. Conversely, spatial filtering reduced the cross-talk magnitude and the overestimations of intermuscular correlation, confirming to be an effective and simple technique to reduce cross talk. This paper presents a new method for the identification and quantification of cross talk at the motor unit level and clarifies the influence of cross talk on EMG interpretation for muscles with different anatomy.NEW & NOTEWORTHY We proposed a new method for the identification and quantification of cross talk at the motor unit level. We show that surface EMG cross talk can lead to physiological misinterpretations of EMG signals such as overestimations in the muscle activity and intermuscular correlation. Cross talk had little influence on the EMG power spectrum, which indicates that conventional temporal filtering cannot minimize cross talk. Spatial filter (single and double differential) effectively reduces but not abolish cross talk.
Collapse
Affiliation(s)
- Carina M Germer
- Neural Engineering Research Laboratory, Center for Biomedical Engineering, University of Campinas, Campinas, Brazil.,Department of Bioengineering, Federal University of Pernambuco, Recife, Brazil
| | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Leonardo A Elias
- Neural Engineering Research Laboratory, Center for Biomedical Engineering, University of Campinas, Campinas, Brazil.,Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | - Stefano Nuccio
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - François Hug
- Laboratory "Movement, Interactions, Performance," Nantes University, Nantes, France.,Institut Universitaire de France, Paris, France.,School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| |
Collapse
|
120
|
Albaladejo-Belmonte M, Nohales-Alfonso FJ, Tarazona-Motes M, De-Arriba M, Alberola-Rubio J, Garcia-Casado J. Effect of BoNT/A in the Surface Electromyographic Characteristics of the Pelvic Floor Muscles for the Treatment of Chronic Pelvic Pain. SENSORS 2021; 21:s21144668. [PMID: 34300408 PMCID: PMC8309649 DOI: 10.3390/s21144668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Chronic pelvic pain (CPP) is a complex condition with a high economic and social burden. Although it is usually treated with botulinum neurotoxin type A (BoNT/A) injected into the pelvic floor muscles (PFM), its effect on their electrophysiological condition is unknown. In this study, 24 CPP patients were treated with BoNT/A. Surface electromyographic signals (sEMG) were recorded at Weeks 0 (infiltration), 8, 12 and 24 from the infiltrated, non-infiltrated, upper and lower PFM. The sEMG of 24 healthy women was also recorded for comparison. Four parameters were computed: root mean square (RMS), median frequency (MDF), Dimitrov’s index (DI) and sample entropy (SampEn). An index of pelvic electrophysiological impairment (IPEI) was also defined with respect to the healthy condition. Before treatment, the CPP and healthy parameters of almost all PFM sides were significantly different. Post-treatment, there was a significant reduction in power (<RMS), a shift towards higher frequencies (>MDF), lower fatigue index (<DI) and increased information complexity (>SampEn) in all sites in patients, mainly during PFM contractions, which brought their electrophysiological condition closer to that of healthy women (<IPEI). sEMG can be used to assess the PFM electrophysiological condition of CPP patients and the effects of therapies such as BoNT/A infiltration.
Collapse
Affiliation(s)
- Monica Albaladejo-Belmonte
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Francisco J. Nohales-Alfonso
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (F.J.N.-A.); (M.T.-M.); (M.D.-A.)
| | - Marta Tarazona-Motes
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (F.J.N.-A.); (M.T.-M.); (M.D.-A.)
| | - Maria De-Arriba
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (F.J.N.-A.); (M.T.-M.); (M.D.-A.)
| | - Jose Alberola-Rubio
- Unidad de Bioelectrónica, Procesamiento de señales y Algoritmia, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain;
- Correspondence:
| |
Collapse
|
121
|
Liu X, Zhou M, Geng Y, Meng L, Wan H, Ren H, Zhang X, Dai C, Chen W, Ye X. Changes in synchronization of the motor unit in muscle fatigue condition during the dynamic and isometric contraction in the Biceps Brachii muscle. Neurosci Lett 2021; 761:136101. [PMID: 34237415 DOI: 10.1016/j.neulet.2021.136101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
The fatigue-induced neuromuscular mechanism remains to be fully elucidated. So far, the macroscopic mechanism using global surface electromyogram (sEMG) has been widely investigated. However, the microscopic mechanism using high-level neural information based on motor unit (MU) spike train from the spinal cord lacks attention, especially for the conditions under dynamic contraction task. The synchronization of the MU spike train is generally assumed to be an excellent indicator to represent the activities of spinal nerves. Accordingly, this study employed synchronization of MU spike train decomposed from high-density sEMG (HD-sEMG) to investigate the fatigue condition in muscular contractions within the Biceps Brachii muscle under both isometric and dynamic contraction tasks, giving a complete picture of the microscopic fatigue mechanism. We compared the synchronization of MU in Delta (1-4 Hz), alpha (8-12 Hz), Beta (15-30 Hz), and Gamma (30-60 Hz) frequency bands during the fatigue condition induced by different contractions. Our results showed that MU synchronization increased significantly (p<0.05) in all frequency bands across the two contraction tasks. The results indicate that the microscopic fatigue mechanism of Biceps Brachii muscle does not vary due to different contraction tasks.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Art Design and Media, East China University of Science and Technology, Shanghai, China.
| | - Meiyu Zhou
- School of Art Design and Media, East China University of Science and Technology, Shanghai, China.
| | - Yanjuan Geng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.
| | - Long Meng
- School of Information and Technology, Fudan University, Shanghai, China.
| | - Huiying Wan
- School of Information and Technology, Fudan University, Shanghai, China.
| | - Haoran Ren
- School of Information and Technology, Fudan University, Shanghai, China.
| | - Xinyue Zhang
- School of Education, Hangzhou Normal University, Hangzhou Zhejiang, China.
| | - Chenyun Dai
- School of Information and Technology, Fudan University, Shanghai, China.
| | - Wei Chen
- School of Information and Technology, Fudan University, Shanghai, China.
| | - Xinming Ye
- School of Sports Science and Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
122
|
S. EJ, K. DB, P.A. K, S. R. Muscle fatigue analysis in isometric contractions using geometric features of surface electromyography signals. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
123
|
Maintenance of standing posture during multi-directional leaning demands the recruitment of task-specific motor units in the ankle plantarflexors. Exp Brain Res 2021; 239:2569-2581. [PMID: 34191118 DOI: 10.1007/s00221-021-06154-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study is to investigate whether regional modulation of the ankle plantarflexors during standing was related to the recruitment of motor units associated with force direction. Fourteen participants performed a multi-directional leaning task in standing. Participants stood on a force platform and maintained their center of pressure in five different target directions. Motor unit firings were extracted by decomposition of high-density surface electromyograms recorded from the ankle plantarflexor muscles. The motor unit barycentre, defined as the weighted mean of the maximal average rectified values across columns and rows, was used to evaluate the medio-lateral and proximo-distal changes in the surface representation of single motor units across different leaning target directions. Using a motor unit tracking analysis, groups of motor units were identified as being common or unique across the target directions. The leaning directions had an effect on the spatial representations of motor units in the medial gastrocnemius and soleus (p < 0.05), but not in the lateral gastrocnemius (p > 0.05). Motor unit action potentials were represented in the medial and proximal aspects of the muscles during forward vs. lateral leans. Further analysis determined that the common motor units were found in similar spatial locations across the target directions, whereas newly recruited unique motor units were found in different spatial locations according to target direction (p < 0.05). The central nervous system may possess the ability to activate different groups of motor units according to task demands to meet the force-direction requirements of the leaning task.
Collapse
|
124
|
Beretta-Piccoli M, Negro M, Calanni L, Berardinelli A, Siciliano G, Tupler R, Soldini E, Cescon C, D’Antona G. Muscle Fiber Conduction Velocity Correlates With the Age at Onset in Mild FSHD Cases. Front Physiol 2021; 12:686176. [PMID: 34220550 PMCID: PMC8247588 DOI: 10.3389/fphys.2021.686176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
A majority of patients with facioscapulohumeral muscular dystrophy (FSHD) report severe fatigue. The aim of this study was to explore whether fatigability during a performance task is related to the main clinical features of the disease in mildly affected patients. A total of 19 individuals with a molecular genetic-based diagnosis of FSHD (median D4Z4 deletion length of 27 kb) performed two isometric flexions of the dominant biceps brachii at 20% of their maximal voluntary contraction (MVC) for 2 min, and then at 60% MVC until exhaustion. Fatigability indices (average rectified value, mean frequency, conduction velocity, and fractal dimension) were extracted from the surface electromyogram (sEMG) signal, and their correlations with age, age at onset, disease duration, D4Z4 contraction length, perceived fatigability, and clinical disability score were analyzed. The conduction velocity during the low level contraction showed a significant negative correlation with the age at onset (p < 0.05). This finding suggest the assessment of conduction velocity at low isometric contraction intensities, as a potential useful tool to highlight differences in muscle involvement in FSHD patients.
Collapse
Affiliation(s)
- Matteo Beretta-Piccoli
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Massimo Negro
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | - Luca Calanni
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
| | | | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rossella Tupler
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emiliano Soldini
- Research Methodology Competence Centre, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe D’Antona
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
125
|
Lulic-Kuryllo T, Thompson CK, Jiang N, Negro F, Dickerson CR. Neural control of the healthy pectoralis major from low-to-moderate isometric contractions. J Neurophysiol 2021; 126:213-226. [PMID: 34107220 DOI: 10.1152/jn.00046.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pectoralis major critically enables arm movement in several directions. However, its neural control remains unknown. High-density electromyography (HD-sEMG) was acquired from the pectoralis major in two sets of experiments in healthy young adults. Participants performed ramp-and-hold isometric contractions in: adduction, internal rotation, flexion, and horizontal adduction at three force levels: 15%, 25%, and 50% scaled to task-specific maximal voluntary force (MVF). HD-sEMG signals were decomposed into motor unit spike trains using a convolutive blind source separation algorithm and matched across force levels using a motor unit matching algorithm. The mean discharge rate and coefficient of variation were quantified across the hold and compared between 15% and 25% MVF across all tasks, whereas comparisons between 25% and 50% MVF were made where available. Mean motor unit discharge rate was not significantly different between 15% and 25% MVF (all P > 0.05) across all tasks or between 25% and 50% MVF in horizontal adduction (P = 0.11), indicating an apparent saturation across force levels and the absence of rate coding. These findings suggest that the pectoralis major likely relies on motor unit recruitment to increase force, providing first-line evidence of motor unit recruitment in this muscle and paving the way for more deliberate investigations of the pectoralis major involvement in shoulder function.NEW & NOTEWORTHY This work is the first to investigate the relative contribution of rate coding and motor unit recruitment in the pectoralis major muscle in several functionally relevant tasks and across varying force levels in healthy adults. Our results demonstrate the absence of motor unit rate coding with an increase in EMG amplitude with increases in force level in all tasks examined, indicating that the pectoralis major relies on motor unit recruitment to increase force.
Collapse
Affiliation(s)
- Tea Lulic-Kuryllo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, Pennsylvania
| | - Ning Jiang
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Clark R Dickerson
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
126
|
Rahimian E, Zabihi S, Asif A, Farina D, Atashzar SF, Mohammadi A. FS-HGR: Few-Shot Learning for Hand Gesture Recognition via Electromyography. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1004-1015. [PMID: 33945480 DOI: 10.1109/tnsre.2021.3077413] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work is motivated by the recent advances in Deep Neural Networks (DNNs) and their widespread applications in human-machine interfaces. DNNs have been recently used for detecting the intended hand gesture through the processing of surface electromyogram (sEMG) signals. Objective: Although DNNs have shown superior accuracy compared to conventional methods when large amounts of data are available for training, their performance substantially decreases when data are limited. Collecting large datasets for training may be feasible in research laboratories, but it is not a practical approach for real-life applications. The main objective of this work is to design a modern DNN-based gesture detection model that relies on minimal training data while providing high accuracy. Methods: We propose the novel Few-Shot learning- Hand Gesture Recognition (FS-HGR) architecture. Few-shot learning is a variant of domain adaptation with the goal of inferring the required output based on just one or a few training observations. The proposed FS-HGR generalizes after seeing very few observations from each class by combining temporal convolutions with attention mechanisms. This allows the meta-learner to aggregate contextual information from experience and to pinpoint specific pieces of information within its available set of inputs. Data Source & Summary of Results: The performance of FS-HGR was tested on the second and fifth Ninapro databases, referred to as the DB2 and DB5, respectively. The DB2 consists of 50 gestures (rest included) from 40 healthy subjects. The Ninapro DB5 contains data from 10 healthy participants performing a total of 53 different gestures (rest included). The proposed approach for the Ninapro DB2 led to 85.94% classification accuracy on new repetitions with few-shot observation (5-way 5-shot), 81.29% accuracy on new subjects with few-shot observation (5-way 5-shot), and 73.36% accuracy on new gestures with few-shot observation (5-way 5-shot). Moreover, the proposed approach for the Ninapro DB5 led to 64.65% classification accuracy on new subjects with few-shot observation (5-way 5-shot).
Collapse
|
127
|
Effect of elbow joint angles on electromyographic activity versus force relationships of synergistic muscles of the triceps brachii. PLoS One 2021; 16:e0252644. [PMID: 34081721 PMCID: PMC8174684 DOI: 10.1371/journal.pone.0252644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
The electromyographic (EMG) activity and force relationship, i.e. EMG-force relationship, is a valuable indicator of the degree of the neuromuscular activation during isometric force production. However, there is minimal information available regarding the EMG-force relationship of individual triceps brachii (TB) muscles at different elbow joint angles. This study aimed to compare the EMG-force relationships of the medial (TB-Med), lateral (TB-Lat), and long heads (TB-Long) of the TB. 7 men and 10 women performed force matching isometric tasks at 20%, 40%, 60%, and 80%maximum voluntary contraction (MVC) at 60°, 90°, and 120° of extension. During the submaximal force matching tasks, the surface EMG signals of the TB-Med, TB-Lat, and TB-Long were recorded and calculated the root mean square (RMS). RMS of each force level were then normalized by RMS at 100%MVC. For the TB-Med, ultrasonography was used to determine the superficial region of the muscle that faced the skin surface to minimize cross-talk. The joint angle was monitored using an electrogoniometer. The elbow extension force, elbow joint angle, and surface EMG signals were simultaneously sampled at 2 kHz and stored on a personal computer. The RMS did not significantly differ between the three muscles, except between the TB-Med and TB-Lat during 20%MVC at 60°. The RMS during force levels of ≥ 60%MVC at 120° was significantly lower than that at 60° or 90° for each muscle. The sum of difference, which represents the difference in RMS from the identical line, did not significantly differ in any of the assessed muscles in the present study. This suggests that a relatively smaller neuromuscular activation could be required when the elbow joint angle was extended. However, neuromuscular activation levels and relative force levels were matched in all three TB synergists when the elbow joint angle was at 90° or a more flexed position.
Collapse
|
128
|
The Effects of Nicotine on Cortical Excitability After Exercise: A Double-Blind Randomized, Placebo-controlled, Crossover Study. J Clin Psychopharmacol 2021; 40:495-498. [PMID: 32701900 DOI: 10.1097/jcp.0000000000001246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The use of smokeless tobacco/nicotine products is common among athletes, but clear evidence for their positive or negative effect on sports performance is lacking. Nicotine is a psychoactive substance involved in numerous neuronal processes including cortical excitability. The aim of this study was to evaluate its effect on cortical excitability associated with aerobic exercise in nicotine-naive healthy volunteers. METHODS Ten nicotine-naive healthy volunteers were recruited for this double-blind, randomized, crossover study to compare the effect of snus (8 mg nicotine), an oral, smokeless tobacco product, to placebo on cortical excitability before and after aerobic exercise. Transcranial magnetic stimulation (TMS) was used to measure changes in corticomotor excitability (motor-evoked potentials, MEPs) and electromyography of leg muscles during maximal voluntary contractions (MVC) to assess changes in muscle contractions. Before and after aerobic exercise and with or without nicotine treatment, MEPs and MVCs were measured. RESULTS Analysis of TMS data showed lower motor cortex activation (lower MEP amplitude) after snus administration compared with placebo, whereas electromyography data showed no difference in muscle contraction between snus and placebo treatment. CONCLUSIONS These findings suggest a general reduction in cortical excitability, without no relevant effect on physical performance.
Collapse
|
129
|
Gouraud E, Connes P, Gauthier-Vasserot A, Faes C, Merazga S, Poutrel S, Renoux C, Boisson C, Joly P, Bertrand Y, Hot A, Cannas G, Hautier C. Impact of a submaximal mono-articular exercise on the skeletal muscle function of patients with sickle cell disease. Eur J Appl Physiol 2021; 121:2459-2470. [PMID: 34023973 DOI: 10.1007/s00421-021-04716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Sickle cell disease (SCD) patients exhibit a limited exercise tolerance commonly attributed to anaemia, as well as hemorheological and cardio-respiratory abnormalities, but the functional status of skeletal muscle at exercise is unknown. Moreover, the effect of SCD genotype on exercise tolerance and skeletal muscle function has been poorly investigated. The aim of this study was to investigate skeletal muscle function and fatigue during a submaximal exercise in SCD patients. METHODS Nineteen healthy individuals (AA), 28 patients with sickle cell anaemia (SS) and 18 with sickle cell-haemoglobin C disease (SC) performed repeated knee extensions exercise (FAT). Maximal isometric torque (Tmax) was measured before and after the FAT to quantify muscle fatigability. Electromyographic activity and oxygenation by near-infrared spectroscopy of the Vastus Lateralis were recorded. RESULTS FAT caused a reduction in Tmax in SS (- 17.0 ± 12.1%, p < 0.001) and SC (- 21.5 ± 14.5%, p < 0.05) but not in AA (+ 0.58 ± 29.9%). Root-mean-squared value of EMG signal (RMS) decreased only in SS after FAT, while the median power frequency (MPF) was unchanged in all groups. Oxygenation kinetics were determined in SS and AA and were not different. CONCLUSION These results show skeletal muscle dysfunction during exercise in SCD patients, and suggest different fatigue aetiology between SS and SC. The changes in EMG signal and oxygenation kinetics during exercise suggest that the greater skeletal muscle fatigue occurring in SCD patients would be rather due to intramuscular alterations modifications than decreased tissue oxygenation. Moreover, SS patients exhibit greater muscle fatigability than SC.
Collapse
Affiliation(s)
- Etienne Gouraud
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Philippe Connes
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Institute of Universities of France, Paris, France
| | - Alexandra Gauthier-Vasserot
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Hematology and Oncology Pediatric Unit, University Hospital of Lyon, Lyon, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Camille Faes
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Salima Merazga
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Solène Poutrel
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Céline Renoux
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Laboratory of Biochemistry of Erythrocyte Pathologies, Biology Centre East, Bron, France
| | - Camille Boisson
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France
| | - Philippe Joly
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Laboratory of Biochemistry of Erythrocyte Pathologies, Biology Centre East, Bron, France
| | - Yves Bertrand
- Hematology and Oncology Pediatric Unit, University Hospital of Lyon, Lyon, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Hot
- Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Giovanna Cannas
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France.,Laboratory of Excellence "GR-Ex", Paris, France.,Reference Centre in Sickle Cell Disease, Thalassemia and Rare Red Blood Cell and Erythropoiesis Diseases, Hospices Civils de Lyon, Lyon, France.,Internal Medicine Department, Edouard-Herriot Hospital, Lyon, France
| | - Christophe Hautier
- Inter-University Laboratory of Human Movement Sciences (LIBM) EA7424, Team "Vascular Biology and Red Blood Cell", University Claude Bernard Lyon 1, Villeurbanne, France. .,Laboratory of Excellence "GR-Ex", Paris, France.
| |
Collapse
|
130
|
Mendonca GV, Vila-Chã C, Teodósio C, Goncalves AD, Freitas SR, Mil-Homens P, Pezarat-Correia P. Contralateral training effects of low-intensity blood-flow restricted and high-intensity unilateral resistance training. Eur J Appl Physiol 2021; 121:2305-2321. [PMID: 33982187 DOI: 10.1007/s00421-021-04708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Determine whether unilateral low-intensity blood-flow restricted (LIBFR) exercise is as effective as high-intensity (HI) resistance training for improving contralateral muscle strength. METHODS Thirty healthy adults (20-30 years) were randomly allocated to the following dynamic plantar-flexion training interventions: HI [75% of one-repetition maximum (1RM), 4 sets, 10 reps] and LIBFR [20% of 1RM, 4 sets, 30 + 15 + 15 + 15 reps]. Evoked V-wave and H-reflex recruitment curves, as well as maximal voluntary contraction (MVC) and panoramic ultrasound assessments of the trained and untrained soleus muscles were obtained pre-training, post-4 weeks of training and post-4 weeks of detraining. RESULTS Both interventions failed to increase contralateral MVC and muscle cross-sectional area (CSA). Yet, contralateral rate of torque development (RTD) was enhanced by both regimens (12-26%) and this was accompanied by heightened soleus EMG within the first milliseconds of the rising torque-time curve (14-22%; p < 0.05). These improvements were dissipated after detraining. Contralateral adaptations were not accompanied by changes in V-wave or H-reflex excitability. Conversely, LIBFR and HI elicited a similar magnitude of ipsilateral increase in MVC, RTD and CSA post-training (10-18%). Improvements in V-wave amplitude and soleus EMG were limited to the trained leg assigned to LIBFR training (p < 0.05). While gains in strength and CSA remained preserved post-4 weeks of detraining, this did not occur with RTD. CONCLUSION Since gains in RTD were similar between interventions, our findings indicate that both training regimens can be used interchangeably for improving contralateral rapid torque production. Ultimately, this may be beneficial in circumstances of limb immobilization after injury or surgery.
Collapse
Affiliation(s)
- Goncalo V Mendonca
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal. .,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal.
| | - Carolina Vila-Chã
- Polytechnic Institute of Guarda, Av. Dr. Francisco Sá Carneiro, n. 50, 6300-559, Guarda, Portugal.,Research Center in Sports Sciences, Health and Human Development (CIDESD), Vila-Real, Portugal
| | - Carolina Teodósio
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal
| | - André D Goncalves
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal
| | - Sandro R Freitas
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| | - Pedro Mil-Homens
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| |
Collapse
|
131
|
Oliveira AS, Negro F. Neural control of matched motor units during muscle shortening and lengthening at increasing velocities. J Appl Physiol (1985) 2021; 130:1798-1813. [PMID: 33955258 DOI: 10.1152/japplphysiol.00043.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modulation of movement velocity is necessary during daily life tasks, work, and sports activities. However, assessing motor unit behavior during muscle shortening and lengthening at different velocities is challenging. High-density surface electromyography (HD-sEMG) is an established method to identify and track motor unit behavior in isometric contractions. Therefore, we used this methodology to unravel the behavior of the same motor units in dynamic contractions at low contraction velocities. Velocity-related changes in tibialis anterior motor unit behavior during concentric and eccentric contractions at 10% and 25% maximum voluntary isometric contraction were assessed by decomposing HD-sEMG signals recorded from the tibialis anterior muscle of eleven healthy participants at 5°/s, 10°/s, and 20°/s. Motor units extracted from the dynamic contractions were tracked across different velocities at the same load levels. On average, 14 motor units/participant were matched across different velocities, showing specific changes in discharge rate modulation. Specifically, increased velocity led to an increased rate of change in discharge rate (e.g., discharge rate slope, P = 0.025), recruitment and derecruitment discharge rates (P = 0.003 and P = 0.001), and decreased recruitment angles (P = 0.0001). Surprisingly, the application of the motor unit extraction filters calculated from 20°/s onto the recordings at 5°/s and 10°/s revealed that >92% of motor units recruited at the highest velocity were active on both lower velocities, indicating no additional recruitment of motor units. Our results suggest that motor unit rate coding rather than recruitment is responsible for controlling muscle shortening and lengthening contractions at increasing velocities against a constant load.NEW & NOTEWORTHY The control of movement velocity is accomplished by the modulation of the neural drive to muscle and its variation over time. In this study, we tracked motor units decomposed from HD-sEMG across shortening and lengthening contractions at increasing velocities in two submaximal load levels. We demonstrate that concentric and eccentric contractions of the tibialis anterior muscle at slow velocities are achieved by specific motor unit rate coding strategies rather than distinct recruitment schemes.
Collapse
Affiliation(s)
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
132
|
Li W, Shi P, Yu H. Gesture Recognition Using Surface Electromyography and Deep Learning for Prostheses Hand: State-of-the-Art, Challenges, and Future. Front Neurosci 2021; 15:621885. [PMID: 33981195 PMCID: PMC8107289 DOI: 10.3389/fnins.2021.621885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/23/2021] [Indexed: 01/09/2023] Open
Abstract
Amputation of the upper limb brings heavy burden to amputees, reduces their quality of life, and limits their performance in activities of daily life. The realization of natural control for prosthetic hands is crucial to improving the quality of life of amputees. Surface electromyography (sEMG) signal is one of the most widely used biological signals for the prediction of upper limb motor intention, which is an essential element of the control systems of prosthetic hands. The conversion of sEMG signals into effective control signals often requires a lot of computational power and complex process. Existing commercial prosthetic hands can only provide natural control for very few active degrees of freedom. Deep learning (DL) has performed surprisingly well in the development of intelligent systems in recent years. The significant improvement of hardware equipment and the continuous emergence of large data sets of sEMG have also boosted the DL research in sEMG signal processing. DL can effectively improve the accuracy of sEMG pattern recognition and reduce the influence of interference factors. This paper analyzes the applicability and efficiency of DL in sEMG-based gesture recognition and reviews the key techniques of DL-based sEMG pattern recognition for the prosthetic hand, including signal acquisition, signal preprocessing, feature extraction, classification of patterns, post-processing, and performance evaluation. Finally, the current challenges and future prospects in clinical application of these techniques are outlined and discussed.
Collapse
Affiliation(s)
- Wei Li
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
133
|
Promsri A, Mohr M, Federolf P. Principal postural acceleration and myoelectric activity: Interrelationship and relevance for characterizing neuromuscular function in postural control. Hum Mov Sci 2021; 77:102792. [PMID: 33862279 DOI: 10.1016/j.humov.2021.102792] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/15/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
One approach to investigating sensorimotor control is to assess the accelerations that produce changes in the kinematic state of the system. When assessing complex whole-body movements, structuring the multi-segmental accelerations is important. A useful structuring can be achieved through a principal component analysis (PCA) performed on segment positions followed by double-differentiation to obtain "principal accelerations" (PAs). In past research PAs have proven sensitive to altered motor control strategies, however, the interrelationship between PAs and muscle activation (surface electromyography, sEMG) have never been determined. The purpose of the current study was therefore to assess the relationship between PAs and sEMG signals recorded from muscles controlling the ankle joint during one-leg standing trials. It was hypothesized that medium correlation should be observed when accounting for neurophysiologic latencies (electro-mechanical delay). Unipedal balancing on a level-rigid ground was performed by 25 volunteers. sEMG activities were recorded from the tibialis anterior, peroneus longus, gastrocnemius medialis, and soleus muscles of the stance leg. The first eight PA-time series were determined from kinematic marker data. Then, a cross-correlation analysis was performed between sEMG and PA time series. We found that peak correlation coefficients for many participants aligned at time delays between 0.116 and 0.362 s and were typically in the range small to medium (|r| = 0.1 to 0.6). Thus, the current study confirmed a direct association between many principal accelerations PA(t) and muscle activation signals recorded from four muscles crossing the ankle joint complex. The combined analysis of PA and sEMG signals allowed exploring the neuromuscular function of each muscle in different postural movement components.
Collapse
Affiliation(s)
- Arunee Promsri
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, A-6020 Innsbruck, Austria; Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, 19 Moo 2 Maeka, Muang, Phayao 56000, Thailand; Unit of Excellence in Well-Being and Health Innovation, School of Allied Health Sciences, University of Phayao, 19 Moo2 Maeka, Muang, Phayao 56000, Thailand.
| | - Maurice Mohr
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, A-6020 Innsbruck, Austria.
| | - Peter Federolf
- Department of Sport Science, University of Innsbruck, Fürstenweg 185, A-6020 Innsbruck, Austria.
| |
Collapse
|
134
|
Skals S, Bláfoss R, Andersen MS, de Zee M, Andersen LL. Manual material handling in the supermarket sector. Part 1: Joint angles and muscle activity of trapezius descendens and erector spinae longissimus. APPLIED ERGONOMICS 2021; 92:103340. [PMID: 33340719 DOI: 10.1016/j.apergo.2020.103340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Work-related musculoskeletal disorders are highly prevalent in the supermarket sector with manual material handling being one of the most commonly identified occupational risk factors. This cross-sectional study applied inertial motion capture and electromyography (EMG) to measure full-body kinematics and muscle activity of trapezius descendens and erector spinae longissimus during 50 manual material handling tasks performed by 17 workers in two supermarkets. The handling of bread and cucumbers to high shelf heights showed the highest trapezius muscle activity (from 47% to 59% peak normalized EMG), while the handling of bananas as well as lifting milk, bread and cucumbers from low to high positions showed the highest erector spinae activity (from 59% to 71%). Twenty-two tasks involved flexing the shoulders and trunk more than 90° and 50°, respectively. Based on these results, several manual handling practices in supermarkets should be reconsidered to reduce the physical work demands.
Collapse
Affiliation(s)
- Sebastian Skals
- Musculoskeletal Disorders and Physical Workload, National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen East, Denmark; Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D2, 9220, Aalborg East, Denmark.
| | - Rúni Bláfoss
- Musculoskeletal Disorders and Physical Workload, National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen East, Denmark; Research Unit for Muscle Physiology and Biomechanics, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Michael Skipper Andersen
- Department of Materials and Production, Aalborg University, Fibigerstræde 16, 9220, Aalborg, Denmark.
| | - Mark de Zee
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D2, 9220, Aalborg East, Denmark.
| | - Lars Louis Andersen
- Musculoskeletal Disorders and Physical Workload, National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen East, Denmark; Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D2, 9220, Aalborg East, Denmark.
| |
Collapse
|
135
|
Albaladejo-Belmonte M, Tarazona-Motes M, Nohales-Alfonso FJ, De-Arriba M, Alberola-Rubio J, Garcia-Casado J. Characterization of Pelvic Floor Activity in Healthy Subjects and with Chronic Pelvic Pain: Diagnostic Potential of Surface Electromyography. SENSORS 2021; 21:s21062225. [PMID: 33806717 PMCID: PMC8004809 DOI: 10.3390/s21062225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Chronic pelvic pain (CPP) is a highly disabling disorder in women usually associated with hypertonic dysfunction of the pelvic floor musculature (PFM). The literature on the subject is not conclusive about the diagnostic potential of surface electromyography (sEMG), which could be due to poor signal characterization. In this study, we characterized the PFM activity of three groups of 24 subjects each: CPP patients with deep dyspareunia associated with a myofascial syndrome (CPP group), healthy women over 35 and/or parous (>35/P group, i.e., CPP counterparts) and under 35 and nulliparous (<35&NP). sEMG signals of the right and left PFM were recorded during contractions and relaxations. The signals were characterized by their root mean square (RMS), median frequency (MDF), Dimitrov index (DI), sample entropy (SampEn), and cross-correlation (CC). The PFM activity showed a higher power (>RMS), a predominance of low-frequency components (<MDF, >DI), greater complexity (>SampEn) and lower synchronization on the same side (<CC) in CPP patients, with more significant differences in the >35/P group. The same trend in differences was found between healthy women (<35&NP vs. >35/P) associated with aging and parity. These results show that sEMG can reveal alterations in PFM electrophysiology and provide clinicians with objective information for CPP diagnosis.
Collapse
Affiliation(s)
- Monica Albaladejo-Belmonte
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.A.-B.); (J.G.-C.)
| | - Marta Tarazona-Motes
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Francisco J. Nohales-Alfonso
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Maria De-Arriba
- Servicio de Ginecología y Obstetricia, Hospital Politècnic i Universitari La Fe, 46026 Valencia, Spain; (M.T.-M.); (F.J.N.-A.); (M.D.-A.)
| | - Jose Alberola-Rubio
- Unidad de Bioelectrónica, Procesamiento de señales y Algoritmia, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Correspondence:
| | - Javier Garcia-Casado
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.A.-B.); (J.G.-C.)
| |
Collapse
|
136
|
Pouliquen C, Nicolas G, Bideau B, Bideau N. Impact of Power Output on Muscle Activation and 3D Kinematics During an Incremental Test to Exhaustion in Professional Cyclists. Front Sports Act Living 2021; 2:516911. [PMID: 33778484 PMCID: PMC7988189 DOI: 10.3389/fspor.2020.516911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
This study aimed to quantify the influence of an increase in power output (PO) on joint kinematics and electromyographic (EMG) activity during an incremental test to exhaustion for a population of professional cyclists. The hip flexion/extension and internal/external rotation as well as knee abduction/adduction ranges of motion were significantly decreased at 100% of the maximal aerobic power (MAP). EMG analysis revealed a significant increase in the root mean square (RMS) for all muscles from 70% of the MAP. Gastrocnemius muscles [lateralis gastrocnemius (GasL) and medialis gastrocnemius (GasM)] were the less affected by the increase of PO. Cross-correlation method showed a significant increase in the lag angle values for VM in the last stage compared to the first stage, meaning that the onset of the activation started earlier during the pedaling cycle. Statistical Parametric Mapping (SPM) demonstrated that from 70% MAP, biceps femoris (BF), tibialis anterior (TA), gluteus maximus (GM), and rectus femoris (RF) yielded larger ranges of the crank cycle on which the level of recruitment was significantly increased. This study revealed specific muscular and kinematic coordination for professional cyclists in response to PO increase.
Collapse
Affiliation(s)
- Camille Pouliquen
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Guillaume Nicolas
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Benoit Bideau
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Nicolas Bideau
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| |
Collapse
|
137
|
Andersen V, Pedersen H, Fimland MS, Shaw M, Solstad TEJ, Stien N, Cumming KT, Saeterbakken AH. Comparison of Muscle Activity in Three Single-Joint, Hip Extension Exercises in Resistance-Trained Women. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:181-187. [PMID: 33948095 DOI: 10.52082/jssm.2021.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 11/24/2022]
Abstract
The aim of the study was to compare neuromuscular activation in the gluteus maximus, the biceps femoris and the erector spinae from the Romanian deadlift, the 45-degree Roman chair back extension and the seated machine back extension. Fifteen resistance-trained females performed three repetitions with 6-RM loading in all exercises in a randomized and counterbalanced order. The activation in the whole movement as well as its lower and upper parts were analyzed. The results showed that the Romanian deadlift and the Roman chair back extension activated the gluteus maximus more than the seated machine back extension (94-140%, p < 0.01). For the biceps femoris the Roman chair elicited higher activation compared to both the Romanian deadlift and the seated machine back extension (71-174%). Further, the Romanian deadlift activated the biceps femoris more compared to the seated machine back extension (61%, p < 0.01). The analyses of the different parts of the movement showed that the Roman chair produced higher levels of activation in the upper part for both the gluteus maximus and the biceps femoris, compared to the other exercises. There were no differences in activation of the erector spinae between the three exercises (p = 1.00). In conclusion, both the Roman deadlift and the Roman chair back extension would be preferable to the seated machine back extension in regards to gluteus maximus activation. The Roman chair was superior in activating the biceps femoris compared to the two other exercises. All three exercises are appropriate selections for activating the lower back muscles. For overall lower limb activation, the Roman chair was the best exercise.
Collapse
Affiliation(s)
- Vidar Andersen
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Norway
| | - Helene Pedersen
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Norway
| | - Marius Steiro Fimland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Unicare Helsefort Rehabilitation Centre, Rissa, Norway
| | - Matthew Shaw
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Norway
| | - Tom Erik Jorung Solstad
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Norway
| | - Nicolay Stien
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Norway
| | | | - Atle Hole Saeterbakken
- Faculty of Education, Arts and Sports, Western Norway University of Applied Sciences, Norway
| |
Collapse
|
138
|
Proessl F, Beckner ME, Sinnott AM, Eagle SR, LaGoy AD, Conkright WR, Canino MC, Sterczala AJ, Midhe Ramkumar PP, Sciavolino BM, Connaboy C, Ferrarelli F, Germain A, Nindl BC, Flanagan SD. Reliability of corticospinal excitability estimates for the vastus lateralis: Practical considerations for lower limb TMS task selection. Brain Res 2021; 1761:147395. [PMID: 33662340 DOI: 10.1016/j.brainres.2021.147395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly used to examine lower extremity corticospinal excitability (CSE) in clinical and sports research. Because CSE is task-specific, there is growing emphasis on the use of ecological tasks. Nevertheless, the comparative reliability of CSE measurements during established (e.g. knee extensions; KE) and more recent ecological (e.g. squats; SQT) lower extremity tasks has received less attention. The aim of this study was to compare the test-retest reliability of CSE, force, and muscle activity (EMG) during isometric SQT and KE. 19 right-footed men (age: 25 ± 5 yrs) with similar fitness and body composition performed SQT (N = 7) or KE (N = 12) on two consecutive days. Force and EMG were recorded during maximum voluntary isometric contractions (MVC). Corticospinal excitability was determined in the dominant leg during light (15% MVC) contractions based on motor evoked potential (MEP) stimulus-response-curves (SRC). Test-retest reliability, absolute agreement, and consistency were determined for force, EMG, and SRC MEP maximum (MEPMAX) and rising phase midpoint (V50). As a secondary analysis, all outcomes were compared between groups with mixed-methods ANCOVAs (Task × Time, covariate: body-fat-percentage). Compared with SQT, KE displayed better test-retest reliability and agreement for MEPMAX whereas V50, force, and EMG were similarly reliable. Force (p = 0.01) and MEPMAX (p = 0.02) were also greater during KE despite a similar V50 (p = 0.11). Differences in test-retest reliability, absolute agreement, and between-group comparisons highlight the need to carefully select lower limb TMS assessment tasks and encourage future efforts to balance ecological validity with statistical sensitivity.
Collapse
Affiliation(s)
- F Proessl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - M E Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - A M Sinnott
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - S R Eagle
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - A D LaGoy
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - W R Conkright
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - M C Canino
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - A J Sterczala
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - P P Midhe Ramkumar
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - B M Sciavolino
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - C Connaboy
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - F Ferrarelli
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - A Germain
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - B C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - S D Flanagan
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
139
|
Marcel-Millet P, Gimenez P, Groslambert A, Ravier G, Grospretre S. The type of visual biofeedback influences maximal handgrip strength and activation strategies. Eur J Appl Physiol 2021; 121:1607-1616. [PMID: 33649937 DOI: 10.1007/s00421-021-04640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE This study investigated the effects of force and electromyographic (EMG) feedbacks on forearm muscle activations and handgrip maximal isometric voluntary contraction (MIVC). METHODS Sixteen males performed a set of MIVC in four different feedback conditions: (1) NO-FB: no feedback is given to the participant; (2) FORCE-FB: participants received a visual feedback of the produced force; (3) AGO-FB: participants received a visual feedback of the EMG activity of two agonist grip muscles; (4) ANTAGO-FB: participants received a visual feedback of the EMG activity of two hand extensors muscles. Each feedback was displayed by monitoring the signal of either force or electrical activity of the corresponding muscles. RESULTS Compared to NO-FB, FORCE-FB was associated with a higher MIVC force (+ 11%, P < 0.05), a higher EMG activity of agonist and antagonist muscles (+ 8.7% and + 9.2%, respectively, P < 0.05) and a better MIVC/EMG ratio with the agonist muscles (P < 0.05). AGO-FB was associated with a higher EMG activity of agonist muscles (P < 0.05) and ANTAGO-FB was associated with a higher EMG activity of antagonist muscles (P < 0.05). MIVC force was higher in the agonist feedback condition than in the antagonist feedback condition (+ 5.9%, P < 0.05). CONCLUSION Our results showed that the MIVC force can be influenced by different visuals feedback, such as force or EMG feedbacks. Moreover, these results suggested that the type of feedback employed could modify the EMG-to-force relationships. Finally, EMG biofeedback could represent an interesting tool to optimize motor strategies. But in the purpose of performing the highest strength independently of the strategy, the force feedback should be recommended.
Collapse
Affiliation(s)
- Philémon Marcel-Millet
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Philippe Gimenez
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Alain Groslambert
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Gilles Ravier
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Sidney Grospretre
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France.
| |
Collapse
|
140
|
Effects of detection system parameters on cross-correlations between MUAPs generated from parallel and inclined muscle fibres. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to investigate the effects of inter-electrode distance (IED), electrode radius (ER) and electrodes configurations on cross-correlation coefficient (CC) between motor unit action potentials (MUAPs) generated in a motor unit (MU) of parallel fibres and in a MU of inclined fibres with respect to the detection system. The fibres inclination angle (FIA) varied from 0° to 180° by a step of 5°. Six spatial filters (the longitudinal single differential (LSD), longitudinal double differential (LDD), bi-transversal double differential (BiTDD), normal double differential (NDD), an inverse binomial filter of order two (IB2) and maximum kurtosis filter (MKF)), three values of IED and three values of ER were considered.
A cylindrical multilayer volume conductor constituted by bone, muscle, fat and skin layers was used to simulate the MUAPs.
The cross-correlation coefficient analysis showed that with the increase of the FIA, the pairs of MUAPs detected by the IB2 system were more correlated than those detected by the five other systems. For each FIA, the findings also showed that the MUAPs pairs detected by BiTDD, NDD, IB2 and MKF systems were more correlated with smaller IEDs than with larger ones, while inverse results were found with the LSD and LDD systems. In addition, the pairs of MUAPs detected by the LDD, BiTDD, IB2 and MKF systems were more correlated with large ERs than with smaller ones. However, inverse results were found with the LSD and NDD systems.
Collapse
|
141
|
Increased resistance towards fatigability in patients with facioscapulohumeral muscular dystrophy. Eur J Appl Physiol 2021; 121:1617-1629. [PMID: 33646424 PMCID: PMC8144151 DOI: 10.1007/s00421-021-04650-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/19/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE In facioscapulohumeral muscular dystrophy (FSHD) fatigue is a major complaint. We aimed to investigate whether during isometric sustained elbow flexions, performance fatigability indexes differ in patients with FSHD with respect to healthy controls. METHODS Seventeen patients with FSHD and seventeen healthy controls performed two isometric flexions of the dominant biceps brachii at 20% of their maximal voluntary contraction (MVC) for 2 min and then at 60% MVC until exhaustion. Muscle weakness was characterized as a percentage of predicted values. Maximal voluntary strength, endurance time and performance fatigability indices (mean frequency of the power spectrum (MNF), muscle fiber conduction velocity (CV) and fractal dimension (FD)), extracted from the surface electromyogram signal (sEMG) were compared between the two groups. RESULTS In patients with FSHD, maximal voluntary strength was 68.7% of predicted value (p < 0.01). Compared to healthy controls, FSHD patients showed reduced MVC (p < 0.001; r = 0.62) and lower levels of performance fatigability, characterized by reduced rate of changes in MNF (p < 0.01; r = 0.56), CV (p < 0.05; 0.37) and FD (p < 0.001; r = 0.51) and increased endurance time (p < 0.001; r = 0.63), during the isometric contraction at 60% MVC. CONCLUSION A decreased reduction in the slopes of all the considered sEMG parameters during sustained isometric elbow flexions suggests that patients with FSHD experience lower levels of performance fatigability compared to healthy controls.
Collapse
|
142
|
Sun B, Cheng G, Dai Q, Chen T, Liu W, Xu X. Human motion intention recognition based on EMG signal and angle signal. COGNITIVE COMPUTATION AND SYSTEMS 2021. [DOI: 10.1049/ccs2.12002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Baixin Sun
- Beijing Key Laboratory of Information Service Engineering, Beijing Union University Beijing China
| | - Guang Cheng
- Beijing Key Laboratory of Information Service Engineering, Beijing Union University Beijing China
| | - Quanmin Dai
- School of Urban Rail Transit and Logistics, Beijing Union University Beijing China
| | - Tianlin Chen
- Beijing Key Laboratory of Information Service Engineering, Beijing Union University Beijing China
| | - Weifeng Liu
- Beijing Key Laboratory of Information Service Engineering, Beijing Union University Beijing China
| | - Xiaorong Xu
- School of Urban Rail Transit and Logistics, Beijing Union University Beijing China
| |
Collapse
|
143
|
Endurance training alters motor unit activation strategies for the vastus lateralis, yet sex-related differences and relationships with muscle size remain. Eur J Appl Physiol 2021; 121:1367-1377. [PMID: 33604695 DOI: 10.1007/s00421-021-04622-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To examine the effects of 10 weeks of endurance cycling training on mechanomyographic amplitude (MMGRMS)-torque relationships and muscle cross-sectional area (mCSA) of the vastus lateralis (VL) for 10 sedentary males (Age ± SD; 20.2 ± 1.9 years) and 14 sedentary females (21.9 ± 5.3 years). METHODS Participants performed maximal voluntary contractions (MVCs) and an isometric ramp up muscle action to 70% MVC of the knee extensors before (PRE) and after training at the same absolute pre-treatment submaximal torque (POSTABS). MMG was recorded from the VL and b terms were calculated from the natural log-transformed MMGRMS-torque relationships for each subject. mCSA was determined with ultrasonography. RESULTS Cycling decreased MVCs from pre- (168.10 ± 58.49 Nm) to post-training (160.78 ± 58.39 Nm; p = 0.005) without changes in mCSA. The b terms were greater for POSTABS (0.623 ± 0.204) than PRE (0.540 ± 0.226; p = 0.012) and for males (0.717 ± 0.171) than females (0.484 ± 0.168; p = 0.003). mCSA was correlated with the b terms for PRE (p < 0.001, r = 0.674) and POSTABS (p = 0.020, r = 0.471). CONCLUSION The decrease in MVC and increase in MMGRMS (b terms) post-training suggests increased motor unit (MU) recruitment to match pre-training torques. The greater acceleration in the b terms by males may reflect sex-related differences in fiber-type area. MMGRMS-torque relationships during a high-intensity contraction provided insight on MU activation strategies following endurance training and between sexes. Furthermore, the findings suggest a relationship between MMGRMS and muscle size.
Collapse
|
144
|
Effect of Knee Joint Angle on Regional Hamstrings Activation During Isometric Knee-Flexion Exercise. J Sport Rehabil 2021; 30:905-910. [PMID: 33571961 DOI: 10.1123/jsr.2020-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT Each hamstring muscle is subdivided into several regions by multiple motor nerve branches, which implies each region has different muscle activation properties. However, little is known about the muscle activation of each region with a change in the knee joint angle. Understanding of regional activation of the hamstrings could be helpful for designing rehabilitation and training programs targeted at strengthening a specific region. OBJECTIVE To investigate the effect of knee joint angle on the activity level of several regions within the individual hamstring muscles during isometric knee-flexion exercise with maximal effort (MVCKF). DESIGN Within-subjects repeated measures. SETTING University laboratory. PARTICIPANTS Sixteen young males with previous participation in sports competition and resistance training experience. INTERVENTION The participants performed 2 MVCKF trials at each knee joint angle of 30°, 60°, and 90°. OUTCOME MEASURES Surface electromyography was used to measure muscle activity in the proximal, middle, and distal regions of the biceps femoris long head (BFlh), semitendinosus, and semimembranosus of hamstrings at 30°, 60°, and 90° of knee flexion during MVCKF. RESULTS Muscle activity levels in the proximal and middle regions of the BFlh were higher at 30° and 60° of knee flexion than at 90° during MVCKF (all: P < .05). Meanwhile, the activity levels in the distal region of the BFlh were not different among all of the evaluated knee joint angles. In semitendinosus and semimembranosus, the activity levels were higher at 30° and 60° than at 90°, regardless of region (all: P < .05). CONCLUSION These findings suggest that the effect of knee joint angle on muscle activity level differs between regions of the BFlh, whereas that is similar among regions of semitendinosus and semimembranosus during MVCKF.
Collapse
|
145
|
Heaton A, Gooding A, Cherner M, Umlauf A, Franklin DR, Rivera Mindt M, Suárez P, Artiola I Fortuni L, Heaton RK, Marquine MJ. Demographically-adjusted norms for the Grooved Pegboard and Finger Tapping tests in Spanish-speaking adults: Results from the Neuropsychological Norms for the U.S.-Mexico Border Region in Spanish (NP-NUMBRS) Project. Clin Neuropsychol 2021; 35:396-418. [PMID: 32077791 PMCID: PMC7438231 DOI: 10.1080/13854046.2020.1713400] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We developed demographically-corrected norms for Spanish-speakers from the U.S.-Mexico border regions of California and Arizona on two tests of motor skills - the Grooved Pegboard Test (Pegboard) and Finger Tapping Test (Tapping) - as part of a larger normative effort. METHOD Participants were native Spanish-speakers from the Neuropsychological Norms for the U.S.-Mexico Border Region in Spanish (NP-NUMBRS) Project (Pegboard: N = 254; Tapping: N = 183; age: 19-60 years; education: 0-20 years; 59% women). We examined the association of demographics (age, education and gender) with raw scores. Raw test scores were then converted to demographically-corrected T-scores via fractional polynomial equations. We also examined rates of impairment (T-score < 40) based on the current norms and on previously published norms for English-speaking non-Hispanic Whites and Blacks. RESULTS Having more years of education was associated with better raw test score performance on both tests (p < .001), and increased age was associated with worse performance on Pegboard (p < .001). Men outperformed women on Tapping, and older age was associated with lower raw scores in men only on the Tapping non-dominant hand trial (p = .02). The normed T-scores were confirmed to be normally distributed and free from demographic influences, and resulted in expected rates of impairment. Applying existing norms for English-speaking non-Hispanic Whites and Blacks to the raw scores of Spanish-speakers generally yielded lower than expected impairment rates (2-13%), with one exception: non-dominant Pegboard, for which non-Hispanic White norms overestimated impairment (23%). CONCLUSIONS Present findings underscore the importance of appropriate, population-specific normative data, even for tests of motor ability.
Collapse
Affiliation(s)
- Anne Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Amanda Gooding
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Anya Umlauf
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Donald R Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Monica Rivera Mindt
- Department of Psychology and Latin American Latino Studies Institute, Fordham University, Bronx, NY, USA
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Suárez
- Hispanic Neuropsychiatric Center of Excellence - Cultural Neuropsychology Program, Semel Institute for NeuroScience & Human Behavior, Department of Psychiatry & Biobehavioral Sciences, University of California Los Angeles, CA, USA
| | | | - Robert K Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - María J Marquine
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
146
|
Aeles J, Horst F, Lapuschkin S, Lacourpaille L, Hug F. Revealing the unique features of each individual's muscle activation signatures. J R Soc Interface 2021; 18:20200770. [PMID: 33435843 DOI: 10.1098/rsif.2020.0770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is growing evidence that each individual has unique movement patterns, or signatures. The exact origin of these movement signatures, however, remains unknown. We developed an approach that can identify individual muscle activation signatures during two locomotor tasks (walking and pedalling). A linear support vector machine was used to classify 78 participants based on their electromyographic (EMG) patterns measured on eight lower limb muscles. To provide insight into decision-making by the machine learning classification model, a layer-wise relevance propagation (LRP) approach was implemented. This enabled the model predictions to be decomposed into relevance scores for each individual input value. In other words, it provided information regarding which features of the time-varying EMG profiles were unique to each individual. Through extensive testing, we have shown that the LRP results, and by extent the activation signatures, are highly consistent between conditions and across days. In addition, they are minimally influenced by the dataset used to train the model. Additionally, we proposed a method for visualizing each individual's muscle activation signature, which has several potential clinical and scientific applications. This is the first study to provide conclusive evidence of the existence of individual muscle activation signatures.
Collapse
Affiliation(s)
- Jeroen Aeles
- Laboratory 'Movement, Interactions, Performance' (EA 4334), University of Nantes, Nantes, France
| | - Fabian Horst
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Sebastian Lapuschkin
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Lilian Lacourpaille
- Laboratory 'Movement, Interactions, Performance' (EA 4334), University of Nantes, Nantes, France
| | - François Hug
- Laboratory 'Movement, Interactions, Performance' (EA 4334), University of Nantes, Nantes, France.,The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Australia.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
147
|
Ma S, Lv B, Lin C, Sheng X, Zhu X. EMG Signal Filtering Based on Variational Mode Decomposition and Sub-Band Thresholding. IEEE J Biomed Health Inform 2021; 25:47-58. [PMID: 32305948 DOI: 10.1109/jbhi.2020.2987528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Surface electromyography (EMG) signals are inevitably contaminated by various noise components, including powerline interference (PLI), baseline wandering (BW), and white Gaussian noise (WGN). These noises directly degrade the efficiency of EMG processing and affect the accuracy and robustness of further applications. Currently, most of the EMG filters only target one category of noise. Here, we propose a novel filter to remove all three types of noise. The noisy EMG signal is first decomposed into an ensemble of band-limited modes using variational mode decomposition (VMD). Each category of noise is located within specific modes and is separately removed in sub-bands. In particular, WGN is suppressed by soft thresholding with a noise level-dependent threshold. The denoising performance was assessed from simulated and experimental signals using three performance metrics: the root mean square error ([Formula: see text]), the improvement in signal-to-noise ratio ([Formula: see text]), and the percentage reduction in the correlation coefficient ( η). Other methods, including traditional infinite impulse response (IIR) filters, empirical mode decomposition (EMD) method, and ensemble empirical mode decomposition (EEMD) method, were examined for comparison. The proposed method achieved the best performance to remove BW or WGN. It also effectively reduced PLI noise when the signal-to-noise ratio (SNR) was low. The SNR was improved by 18.6, 19.2, and 8.0 dB for EMG signals corrupted with PLI, BW, and WGN at -6 dB SNR, respectively. The experimental results illustrated that noise was completely removed from resting states, and obvious spikes were distinguished from action states. For two of the ten subjects, the improved SNR reached 20 dB. This study explores the special characteristics of VMD and demonstrates the feasibility of using the VMD-based filter to denoise EMG signals. The proposed filter is efficient at removing three categories of noise and can be used for any application that requires EMG signal filtering at the preprocessing stage, such as gesture recognition and EMG decomposition.
Collapse
|
148
|
Wong KY, Lau MW, Lee MH, Chan CH, Mak SH, Ng CF, Ying MTC. Study on the effects of arm abduction angle and cushion support during sonographic examination on the stiffness of supraspinatus muscle of sonographers using shear wave elastography. J Occup Health 2021; 63:e12306. [PMID: 34889491 PMCID: PMC8662659 DOI: 10.1002/1348-9585.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The incidence of work-related musculoskeletal disorder remains high in sonography. The aims of this study are to determine the changes in muscle stiffness with different arm abduction angles, and to investigate the effect of cushion support on reducing muscle load in the supraspinatus when sonographers scan with the arm abducted to different angles. METHODS This is a prospective crossover study. Twenty-three healthy female subjects aged between 20 and 23 years were included. Subjects were instructed to simulate performing standardized abdominal ultrasound scans. The changes in muscle stiffness of supraspinatus, measured as shear modulus, at rest and at 30°, 45°, and 60° arm abduction angles with and without cushion support were evaluated using shear-wave elastography. Styrofoam support was used for the cushion support. RESULTS Mean shear moduli of supraspinatus were 27.77 ± 5.84 kPa at rest and 41.63 ± 7.09 kPa, 63.88 ± 14.43 kPa, and 89.76 ± 16.55 kPa for 30°, 45°, and 60° arm abduction respectively, which corresponds to 53%, 116% increase in muscle stiffness when scanning arm abducted from 30° to 45° and 60° (p < .001). After applying cushion support, shear moduli dropped to 24.04 ± 5.60 kPa, 31.98 ± 6.06 kPa, 37.47 ± 5.61 kPa for arm abducted to 30°, 45°, and 60° respectively (p < .001). The muscle stiffnesses between 30° abduction without support and 60° abduction with support had no significant difference (p > .05). CONCLUSIONS Muscle stiffness of supraspinatus increased with increasing arm abduction angle during ultrasound scanning. Utilizing cushion support underneath the arm was effective in reducing muscle stiffness in supraspinatus. Our results provide scientific justification on postural modifications for sonographers.
Collapse
Affiliation(s)
- Ka Y. Wong
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Man W. Lau
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Man H. Lee
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Chi H. Chan
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Siu H. Mak
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Cheuk F. Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongHong Kong
| | - Michael T. C. Ying
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongHong Kong
| |
Collapse
|
149
|
Beretta-Piccoli M, Cescon C, D’Antona G. Evaluation of performance fatigability through surface EMG in health and muscle disease: state of the art. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1080/25765299.2020.1862985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Matteo Beretta-Piccoli
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied, Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Corrado Cescon
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics, Health and Social Care, University of Applied, Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Giuseppe D’Antona
- Criams-Sport Medicine Centre Voghera, University of Pavia, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
150
|
Letter to the Editor-Changes in Muscle Pattern Activity during the Asymmetric Flat Bench Press. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010041. [PMID: 33374638 PMCID: PMC7793510 DOI: 10.3390/ijerph18010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022]
Abstract
In June 2020, the paper "Changes in Muscle Pattern Activity during the Asymmetric Flat Bench Press" was published in the International Journal of Environmental Research and Public Health [...].
Collapse
|