101
|
Nowak A, Przywara-Chowaniec B, Damasiewicz-Bodzek A, Janoszka B, Szumska M, Waligóra S, Tyrpień-Golder K. Women suffering from systemic lupus erythematosus are characterized by low blood levels of α-dicarbonyl compounds. Arch Med Sci 2024; 20:743-750. [PMID: 39050180 PMCID: PMC11264069 DOI: 10.5114/aoms/176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/13/2023] [Indexed: 07/27/2024] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic, autoimmune disease, often characterised by severe course and unclear etiopathogenesis. The reaction of protein glycoxidation, also known as glycation, may be linked to etiopathogenesis of SLE. Advanced glycation end-products (AGEs) exhibit cytotoxic properties, affect cellular signalling, impair functions of extracellular proteins, and may act as neoepitopes. Glucosone (GS), glyoxal (GO), and methylglyoxal (MGO) are examples of α-dicarbonyl compounds (α-DCs) partaking in glycoxidation. The study aimed to evaluate concentrations of these three compounds in blood serum of SLE patients, and to compare the results with healthy individuals. Material and methods 31 women suffering from SLE and 26 healthy individuals were included in the study. High-performance liquid chromatography with fluorescence detection was applied to evaluate concentrations of α-DCs in their serum samples. Correlations between the results and parameters such as disease duration time, age, glomerular filtration rate (GFR), Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K), and creatinine were analysed. Results The SLE patients exhibited lower concentrations of glucosone, glyoxal, and methylglyoxal than the control group. Analysis of correlations showed a difference between the examined groups. Conclusions In women suffering from SLE the course of α-DCs metabolism is altered. SLE patients are characterised by low serum levels of α-DCs. We hypothesise that either hindered proteasomal degradation or fast consumption of α-DCs in oxidative conditions may cause the observed low concentration of these compounds.
Collapse
Affiliation(s)
- Agnieszka Nowak
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Brygida Przywara-Chowaniec
- 2 Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | | | - Beata Janoszka
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Magdalena Szumska
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Sławomir Waligóra
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krystyna Tyrpień-Golder
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
102
|
Choi JW, Kim TH, Park JS, Lee CH. Association between Relative Thrombocytosis and Microalbuminuria in Adults with Mild Fasting Hyperglycemia. J Pers Med 2024; 14:89. [PMID: 38248790 PMCID: PMC10817638 DOI: 10.3390/jpm14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
An elevated platelet count may contribute to significant thrombotic events and pose a risk for diabetic microvascular complications. Albuminuria, one of the hallmarks of diabetes, is thought to be a risk factor for endothelial dysfunction. In this study, we investigated the association between relative thrombocytosis and an increased urine albumin-to-creatinine ratio in healthy adult participants. Using multivariate analyses on data from the Korea National Health and Nutrition Examination Survey V-VI, 12,525 eligible native Koreans aged ≥ 20 were categorized into platelet count quintiles by sex. The highest platelet count quintile included younger, more obese participants with elevated white blood cell counts, poor lipid profiles, and a better estimated glomerular filtration rate. Restricted cubic spline regression analysis revealed significant associations between platelet count and fasting blood glucose, glycated hemoglobin, and urine albumin-to-creatinine ratio. Adjusted logistic regression models indicated that heightened fasting blood glucose and platelet count were linked to risk of microalbuminuria (fasting blood glucose, odds ratio = 1.026, 95%CI = 1.011-1.042; platelet count, odds ratio = 1.004, 95%CI = 1.002-1.006). Particularly, an increased platelet count was notably associated with microalbuminuria progression in subjects with impaired fasting glucose. These findings suggest that an elevated platelet count, even below diagnostic thrombocytosis levels, independently correlates with an increased risk of vascular endothelial dysfunction in patients with impaired fasting glucose.
Collapse
Affiliation(s)
- Jong Wook Choi
- Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea;
| | - Tae Hoon Kim
- Department of Internal Medicine, CHA Bundang Medical Center, Seongnam 13495, Republic of Korea;
| | - Joon-Sung Park
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| | - Chang Hwa Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea;
| |
Collapse
|
103
|
Brings S, Mier W, Beijer B, Kliemank E, Herzig S, Szendroedi J, Nawroth PP, Fleming T. Non-cross-linking advanced glycation end products affect prohormone processing. Biochem J 2024; 481:33-44. [PMID: 38112318 DOI: 10.1042/bcj20230321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Advanced glycation end products (AGEs) are non-enzymatic post-translational modifications of amino acids and are associated with diabetic complications. One proposed pathomechanism is the impaired processing of AGE-modified proteins or peptides including prohormones. Two approaches were applied to investigate whether substrate modification with AGEs affects the processing of substrates like prohormones to the active hormones. First, we employed solid-phase peptide synthesis to generate unmodified as well as AGE-modified protease substrates. Activity of proteases towards these substrates was quantified. Second, we tested the effect of AGE-modified proinsulin on the processing to insulin. Proteases showed the expected activity towards the unmodified peptide substrates containing arginine or lysine at the C-terminal cleavage site. Indeed, modification with Nε-carboxymethyllysine (CML) or methylglyoxal-hydroimidazolone 1 (MG-H1) affected all proteases tested. Cysteine cathepsins displayed a reduction in activity by ∼50% towards CML and MG-H1 modified substrates. The specific proteases trypsin, proprotein convertases subtilisin-kexins (PCSKs) type proteases, and carboxypeptidase E (CPE) were completely inactive towards modified substrates. Proinsulin incubation with methylglyoxal at physiological concentrations for 24 h resulted in the formation of MG-modified proinsulin. The formation of insulin was reduced by up to 80% in a concentration-dependent manner. Here, we demonstrate the inhibitory effect of substrate-AGE modifications on proteases. The finding that PCSKs and CPE, which are essential for prohormone processing, are inactive towards modified substrates could point to a yet unrecognized pathomechanism resulting from AGE modification relevant for the etiopathogenesis of diabetes and the development of obesity.
Collapse
Affiliation(s)
- Sebastian Brings
- Department of Endocrinology, Metabolism and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbro Beijer
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeth Kliemank
- Department of Endocrinology, Metabolism and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Herzig
- German Centre of Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Metabolism and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Centre of Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
- Center for Molecular Biology Heidelberg (ZMBH), Heidelberg, Germany
- Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter P Nawroth
- Department of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Endocrinology, Metabolism and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Centre of Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Munich, Germany
- Center for Molecular Biology Heidelberg (ZMBH), Heidelberg, Germany
- Joint Division Molecular Metabolic Control, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
104
|
Zhang WY, Zhao CM, Wang CS, Xie X, Li YQ, Chen BB, Feng L, Jiang P. Methylglyoxal accumulation contributes to accelerated brain aging in spontaneously hypertensive rats. Free Radic Biol Med 2024; 210:108-119. [PMID: 37984752 DOI: 10.1016/j.freeradbiomed.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
While it is well-acknowledged that neurovascular dysfunction in hypertension is tightly associated with accelerated brain aging, we contend that the deleterious effects of hypertension may extend beyond affecting only the arteries. Methylglyoxal (MG) derived from glycolysis, is involved in the accumulation of advanced glycated end products (AGEs), which are the hallmarks of neurodegenerative disorders. Therefore, the present study aims to firstly investigate the role of MG metabolism in the hypertension-accelerated brain aging process. The results of our study indicate that the levels of MG increase with age in both the plasma and hippocampus of SHRs at 12, 16, and 30 weeks old. AGE methylglyoxal-hydro imidazoline-1 (MG-H1) is primarily localized in astrocytes, while its presence was not observed in neurons and microglia within the hypertensive hippocampus. Our observations also suggest that angiotensin II (Ang II) enhances glucose uptake and glycolysis while reducing the expression of Glo1 in cultured astrocytes. N-acetylcysteine (NAC) was found to counteract the increase in escape latency and inhibit the activation of the AGEs-RAGE axis in 30-week-old SHRs. NAC decreased Iba-1 immunofluorescence intensity, inhibited the levels of pro-inflammatory markers, and enhanced the abundance of anti-inflammatory markers in the hippocampus of SHRs. Moreover, NAC reduced the immunofluorescence signal of 4HNE and increased the content of GSH and SOD in SHRs. Finally, NAC was observed to inhibit apoptosis in the hippocampus of SHRs. Collectively, we firstly showed the enhanced accumulation of MG in the hypertensive brain, whereas the clearance of MG by NAC treatment mitigated the aging process and attenuated AGEs generation, neuroinflammation, and oxidative damage.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528403, China; School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 510006, China
| | - Cui-Mei Zhao
- Department of Pharmacy, Zhongshan City People's Hospital, Zhongshan, 528403, China; School of Pharmaceutical Sciences, Zunyi Medical University, Zunyi, 510006, China
| | - Chang-Shui Wang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Xin Xie
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Yu-Qi Li
- Department of cardiology, Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Bei-Bei Chen
- ADFA School of Science, University of New South Wales, Canberra, Australia
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China.
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China; Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China.
| |
Collapse
|
105
|
Spallone V. Diabetic neuropathy: Current issues in diagnosis and prevention. CHRONIC COMPLICATIONS OF DIABETES MELLITUS 2024:117-163. [DOI: 10.1016/b978-0-323-88426-6.00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
106
|
Oliveira AL, Medeiros ML, Gomes EDT, Mello GC, Costa SKP, Mónica FZ, Antunes E. TRPA1 channel mediates methylglyoxal-induced mouse bladder dysfunction. Front Physiol 2023; 14:1308077. [PMID: 38143915 PMCID: PMC10739337 DOI: 10.3389/fphys.2023.1308077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction: The transient receptor potential ankyrin 1 channel (TRPA1) is expressed in urothelial cells and bladder nerve endings. Hyperglycemia in diabetic individuals induces accumulation of the highly reactive dicarbonyl compound methylglyoxal (MGO), which modulates TRPA1 activity. Long-term oral intake of MGO causes mouse bladder dysfunction. We hypothesized that TRPA1 takes part in the machinery that leads to MGO-induced bladder dysfunction. Therefore, we evaluated TRPA1 expression in the bladder and the effects of 1 h-intravesical infusion of the selective TRPA1 blocker HC-030031 (1 nmol/min) on MGO-induced cystometric alterations. Methods: Five-week-old female C57BL/6 mice received 0.5% MGO in their drinking water for 12 weeks, whereas control mice received tap water alone. Results: Compared to the control group, the protein levels and immunostaining for the MGO-derived hydroimidazolone isomer MG-H1 was increased in bladders of the MGO group, as observed in urothelium and detrusor smooth muscle. TRPA1 protein expression was significantly higher in bladder tissues of MGO compared to control group with TRPA1 immunostaining both lamina propria and urothelium, but not the detrusor smooth muscle. Void spot assays in conscious mice revealed an overactive bladder phenotype in MGO-treated mice characterized by increased number of voids and reduced volume per void. Filling cystometry in anaesthetized animals revealed an increased voiding frequency, reduced bladder capacity, and reduced voided volume in MGO compared to vehicle group, which were all reversed by HC-030031 infusion. Conclusion: TRPA1 activation is implicated in MGO-induced mouse overactive bladder. TRPA1 blockers may be useful to treat diabetic bladder dysfunction in individuals with high MGO levels.
Collapse
Affiliation(s)
- Akila L. Oliveira
- Department of Pharmacology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Matheus L. Medeiros
- Department of Pharmacology, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fabíola Z. Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
107
|
Liu J, Pan S, Wang X, Liu Z, Zhang Y. Role of advanced glycation end products in diabetic vascular injury: molecular mechanisms and therapeutic perspectives. Eur J Med Res 2023; 28:553. [PMID: 38042909 PMCID: PMC10693038 DOI: 10.1186/s40001-023-01431-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/04/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND In diabetic metabolic disorders, advanced glycation end products (AGEs) contribute significantly to the development of cardiovascular diseases (CVD). AIMS This comprehensive review aims to elucidate the molecular mechanisms underlying AGE-mediated vascular injury. CONCLUSIONS We discuss the formation and accumulation of AGEs, their interactions with cellular receptors, and the subsequent activation of signaling pathways leading to oxidative stress, inflammation, endothelial dysfunction, smooth muscle cell proliferation, extracellular matrix remodeling, and impaired angiogenesis. Moreover, we explore potential therapeutic strategies targeting AGEs and related pathways for CVD prevention and treatment in diabetic metabolic disorders. Finally, we address current challenges and future directions in the field, emphasizing the importance of understanding the molecular links between AGEs and vascular injury to improve patient outcomes.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Shuo Pan
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China.
- Affiliated Shaanxi Provincial People's Hospital, Medical Research Institute, Northwestern Polytechnical University, Xi'an, China.
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, 256 Youyi Xi Rd, Xi'an, 710068, China.
| |
Collapse
|
108
|
Coccini T, Schicchi A, Locatelli CA, Caloni F, Negri S, Grignani E, De Simone U. Methylglyoxal-induced neurotoxic effects in primary neuronal-like cells transdifferentiated from human mesenchymal stem cells: Impact of low concentrations. J Appl Toxicol 2023; 43:1819-1839. [PMID: 37431083 DOI: 10.1002/jat.4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
In the last decades, advanced glycation end-products (AGEs) have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes including various neurological disorders and cognitive decline age related. Methylglyoxal (MG) is one of the reactive dicarbonyl precursors of AGEs, mainly generated as a by-product of glycolysis, whose accumulation induces neurotoxicity. In our study, MG cytotoxicity was evaluated employing a human stem cell-derived model, namely, neuron-like cells (hNLCs) transdifferentiated from mesenchymal stem/stromal cells, which served as a source of human based species-specific "healthy" cells. MG increased ROS production and induced the first characteristic apoptotic hallmarks already at low concentrations (≥10 μM), decreased the cell growth (≥5-10 μM) and viability (≥25 μM), altered Glo-1 and Glo-2 enzymes (≥25 μM), and markedly affected the neuronal markers MAP-2 and NSE causing their loss at low MG concentrations (≥10 μM). Morphological alterations started at 100 μM, followed by even more marked effects and cell death after few hours (5 h) from 200 μM MG addition. Substantially, most effects occurred as low as 10 μM, concentration much lower than that reported from previous observations using different in vitro cell-based models (e.g., human neuroblastoma cell lines, primary animal cells, and human iPSCs). Remarkably, this low effective concentration approaches the level range measured in biological samples of pathological subjects. The use of a suitable cellular model, that is, human primary neurons, can provide an additional valuable tool, mimicking better the physiological and biochemical properties of brain cells, in order to evaluate the mechanistic basis of molecular and cellular alterations in CNS.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Azzurra Schicchi
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali (ESP), Università degli Studi di Milano, Milan, Italy
| | - Sara Negri
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
109
|
Liu TT, Xu HH, Liu ZJ, Zhang HP, Zhou HT, Zhu ZX, Wang ZQ, Xue JY, Li Q, Ma Y, You HJ, Luo DL. Downregulated calmodulin expression contributes to endothelial cell impairment in diabetes. Acta Pharmacol Sin 2023; 44:2492-2503. [PMID: 37468692 PMCID: PMC10692162 DOI: 10.1038/s41401-023-01127-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023] Open
Abstract
Endothelial dysfunction, a central hallmark of cardiovascular pathogenesis in diabetes mellitus, is characterized by impaired endothelial nitric oxide synthase (eNOS) and NO bioavailability. However, the underlying mechanisms remain unclear. Here in this study, we aimed to identify the role of calmodulin (CaM) in diabetic eNOS dysfunction. Human umbilical vein endothelial cells and murine endothelial progenitor cells (EPCs) treated with high glucose (HG) exhibited downregulated CaM mRNA/protein and vascular endothelial growth factor (VEGF) expression with impeded eNOS phosphorylation and cell migration/tube formation. These perturbations were reduplicated in CALM1-knockdown cells but prevented in CALM1-overexpressing cells. EPCs from type 2 diabetes animals behaved similarly to HG-treated normal EPCs, which could be rescued by CALM1-gene transduction. Consistently, diabetic animals displayed impaired eNOS phosphorylation, endothelium-dependent dilation, and CaM expression in the aorta, as well as deficient physical interaction of CaM and eNOS in the gastrocnemius. Local CALM1 gene delivery into a diabetic mouse ischemic hindlimb improved the blunted limb blood perfusion and gastrocnemius angiogenesis, and foot injuries. Diabetic patients showed insufficient foot microvascular autoregulation, eNOS phosphorylation, and NO production with downregulated CaM expression in the arterial endothelium, and abnormal CALM1 transcription in genome-wide sequencing analysis. Therefore, our findings demonstrated that downregulated CaM expression is responsible for endothelium dysfunction and angiogenesis impairment in diabetes, and provided a novel mechanism and target to protect against diabetic endothelial injury.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China
| | - Huan-Huan Xu
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China
| | - Ze-Juan Liu
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China
| | - He-Ping Zhang
- Beijing Friendship Hospital, The Affiliated Hospital of Capital Medical University, Beijing, 100065, China
| | - Hai-Tao Zhou
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, and Peaking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Zhi-Xiang Zhu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, and Peaking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Zhi-Qiang Wang
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China
| | - Jing-Yi Xue
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China
| | - Qiang Li
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China
| | - Yi Ma
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China
| | - Hong-Jie You
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China
| | - Da-Li Luo
- Department of Pharmacology, Beijing Key Laboratory of Cardiovascular Diseases Related to Metabolic Disturbance, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
110
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
111
|
Kaliaperumal K, Zhang L, Gao L, Xiong Q, Liang Y, Jiang Y, Zhang J. Insight into the Inhibitory Mechanisms of Hesperidin on α-Glucosidase through Kinetics, Fluorescence Quenching, and Molecular Docking Studies. Foods 2023; 12:4142. [PMID: 38002199 PMCID: PMC10670601 DOI: 10.3390/foods12224142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The α-glucosidase inhibitor is of interest to researchers due to its association with type-II diabetes treatment by suppressing postprandial hyperglycemia. Hesperidin is a major flavonoid in orange fruit with diverse biological properties. This paper evaluates the effects of hesperidin on α-glucosidase through inhibitory kinetics, fluorescence quenching, and molecular docking methods for the first time. The inhibition kinetic analysis shows that hesperidin reversibly inhibited the α-glucosidase activity with an IC50 value of 18.52 μM and the inhibition was performed in an uncompetitive type. The fluorescence quenching studies indicate that the intrinsic fluorescence of α-glucosidase was quenched via a static quenching process and only one binding site was present between the hesperidin and α-glucosidase. The interaction between them was spontaneous and mainly driven by hydrogen bonds, as well as hydrophobic forces. Furthermore, the molecular docking results suggest that hesperidin might bond to the entrance or outlet part of the active site of α-glucosidase through a network of five hydrogen bonds formed between hesperidin and the four amino acid residues (Trp709, Arg422, Asn424, and Arg467) of α-glucosidase and the hydrophobic effects. These results provide new insight into the inhibitory mechanisms of hesperidin on α-glucosidase, supporting the potential application of a hesperidin-rich orange product as a hypoglycemic functional food.
Collapse
Affiliation(s)
- Kumaravel Kaliaperumal
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 602105, India
| | - Linyan Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| | - Liangliang Gao
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| | - Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| | - Yueming Jiang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341003, China; (K.K.); (L.Z.); (L.G.); (Q.X.); (Y.L.); (Y.J.)
| |
Collapse
|
112
|
Mauricio D, Gratacòs M, Franch-Nadal J. Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovasc Diabetol 2023; 22:314. [PMID: 37968679 PMCID: PMC10652502 DOI: 10.1186/s12933-023-02056-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Diabetes microangiopathy, a hallmark complication of diabetes, is characterised by structural and functional abnormalities within the intricate network of microvessels beyond well-known and documented target organs, i.e., the retina, kidney, and peripheral nerves. Indeed, an intact microvascular bed is crucial for preserving each organ's specific functions and achieving physiological balance to meet their respective metabolic demands. Therefore, diabetes-related microvascular dysfunction leads to widespread multiorgan consequences in still-overlooked non-traditional target organs such as the brain, the lung, the bone tissue, the skin, the arterial wall, the heart, or the musculoskeletal system. All these organs are vulnerable to the physiopathological mechanisms that cause microvascular damage in diabetes (i.e., hyperglycaemia-induced oxidative stress, inflammation, and endothelial dysfunction) and collectively contribute to abnormalities in the microvessels' structure and function, compromising blood flow and tissue perfusion. However, the microcirculatory networks differ between organs due to variations in haemodynamic, vascular architecture, and affected cells, resulting in a spectrum of clinical presentations. The aim of this review is to focus on the multifaceted nature of microvascular impairment in diabetes through available evidence of specific consequences in often overlooked organs. A better understanding of diabetes microangiopathy in non-target organs provides a broader perspective on the systemic nature of the disease, underscoring the importance of recognising the comprehensive range of complications beyond the classic target sites.
Collapse
Affiliation(s)
- Dídac Mauricio
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR Sant Pau, Barcelona, Spain.
- Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain.
| | - Mònica Gratacòs
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Josep Franch-Nadal
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
113
|
Zeng Q, Yang T, Wei W, Zou D, Wei Y, Han F, He J, Huang J, Guo R. Association between GLO1 variants and gestational diabetes mellitus susceptibility in a Chinese population: a preliminary study. Front Endocrinol (Lausanne) 2023; 14:1235581. [PMID: 38027126 PMCID: PMC10656739 DOI: 10.3389/fendo.2023.1235581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Glyoxalase 1 (GLO1) plays a crucial role in defending against glycation. Single nucleotide polymorphism (SNP) variants in the GLO1 gene may affect gene expression and alter enzyme activity. However, there have been limited studies evaluating the association between GLO1 and diabetes, especially gestational diabetes mellitus (GDM). Therefore, this study is the first to explore the association of GLO1 SNPs and GDM risk. Methods The study included a total of 500 GDM patients and 502 control subjects. The SNPscan™ genotyping assay was used to genotype rs1781735, rs4746 and rs1130534. To assess the disparities in genotype, allele, and haplotype distributions and their correlation with GDM risk, the independent sample t-test, logistic regression, and chi-square test were employed during the data processing phase. Furthermore, one-way ANOVA was conducted to determine the differences in genotype and blood glucose and methylglyoxal(MG) levels. Results Significant differences were observed in prepregnancy body mass index (pre-BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP), and parity between GDM and healthy subjects (P < 0.05). After adjusting for these factors, GLO1 rs1130534 TA remained associated with an increased risk of GDM (TA vs. TT + AA: OR = 1.320; 95% CI: 1.008-1.728; P = 0.044), especially in the pre-BMI ≥ 24 subgroup (TA vs. TT + AA: OR = 2.424; 95% CI: 1.048-5.607; P = 0.039), with fasting glucose levels being significantly elevated in the TA genotype compared to the TT genotype (P < 0.05). Conversely, the GLO1 rs4746 TG was associated with a decreased risk of GDM (TG vs. TT: OR = 0.740; 95% CI: 0.548-0.999; P = 0.049; TG vs. TT + GG: OR = 0.740; 95% CI: 0.548-0.998; P = 0.048). Additionally, the haplotype T-G-T of rs1781735, rs4746 and rs1130534 was associated with a decreased risk of GDM among individuals with a pre-BMI ≥ 24 (OR = 0.423; 95% CI: 0.188-0.955; P = 0.038). Furthermore, the rs1781735 GG genotype was found to be more closely related to maternal MG accumulation and neonatal weight gain (P < 0.05). Conclusion Our findings suggested that GLO1 rs1130534 was associated with an increased susceptibility to GDM and higher blood glucose levels, but GLO1 rs4746 was associated with a decreased risk of GDM. The rs1781735 has been associated with the accumulation of maternal MG and subsequent weight gain in neonates.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Maternal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Taili Yang
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
| | - Wenfeng Wei
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Dehua Zou
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, Macao SAR, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, Guangdong, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Fengqiong Han
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jieyun He
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jinzhi Huang
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Department of Gynecology, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Maternal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
114
|
Sutkowska E, Fecka I, Marciniak D, Bednarska K, Sutkowska M, Hap K. Analysis of Methylglyoxal Concentration in a Group of Patients with Newly Diagnosed Prediabetes. Biomedicines 2023; 11:2968. [PMID: 38001968 PMCID: PMC10669086 DOI: 10.3390/biomedicines11112968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The abnormal serum concentration of methylglyoxal (MGO) has been presented as an indicator of chronic complications in diabetes (DM). Because such complications are also found in pre-DM, we decided to assess the concentration of this compound in individuals with pre-DM, without cardio-vascular diseases. METHODS Frozen samples from individuals newly diagnosed with pre-DM (N = 31) and healthy subjects (N = 11) were prepared and MGO concentration was determined using UHPLC-ESI-QqTOF-MS. RESULTS Statistical significance was established when the groups were compared for body weight, BMI, fasting glucose level, fatty liver and use of statins but not for the other descriptive parameters. The positive linear correlation showed that the higher HbA1c, the higher MGO concentration (p = 0.01). The values of MGO were within the normal range in both groups (mean value for pre-DM: 135.44 nM (±SD = 32.67) and for the control group: 143.25 nM (±SD = 17.93); p = 0.46 (±95% CI)), with no statistical significance between the groups. CONCLUSIONS We did not confirm the elevated MGO levels in the group of patients with pre-DM. The available data suggests a possible effect of statin intake on MGO levels. This thesis requires confirmation on a larger number of patients with an assessment of MGO levels before and after the introduction of statins.
Collapse
Affiliation(s)
- Edyta Sutkowska
- University Rehabilitation Centre, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.F.); (K.B.)
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, pl. Defilad 1, 00-901 Warszawa, Poland
| | - Dominik Marciniak
- Department of Drugs Form Technology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (I.F.); (K.B.)
| | - Magdalena Sutkowska
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże Ludwika Pasteura 1, 50-367 Wroclaw, Poland;
| | - Katarzyna Hap
- University Rehabilitation Centre, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
115
|
Lu KJ, Yang CH, Sheu JR, Chung CL, Jayakumar T, Chen CM, Hsieh CY. Overexpressing glyoxalase 1 attenuates acute hyperglycemia-exacerbated neurological deficits of ischemic stroke in mice. Transl Res 2023; 261:57-68. [PMID: 37419278 DOI: 10.1016/j.trsl.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Stress-induced hyperglycemia (SIH) is associated with poor functional recovery and high mortality in patients with acute ischemic stroke (AIS). However, intensive controlling of blood glucose by using insulin was not beneficial in patients with AIS and acute hyperglycemia. This study investigated the therapeutic effects of the overexpression of glyoxalase I (GLO1), a detoxifying enzyme of glycotoxins, on acute hyperglycemia-aggravated ischemic brain injury. In the present study, adeno-associated viral (AAV)-mediated GLO1 overexpression reduced infarct volume and edema level but did not improve neurofunctional recovery in the mice with middle cerebral artery occlusion (MCAO). AAV-GLO1 infection significantly enhanced neurofunctional recovery in the MCAO mice with acute hyperglycemia but not in the mice with normoglycemia. Methylglyoxal (MG)-modified proteins expression significantly increased in the ipsilateral cortex of the MCAO mice with acute hyperglycemia. AAV-GLO1 infection attenuated the induction of MG-modified proteins, ER stress formation, and caspase 3/7 activation in MG-treated Neuro-2A cells, and reductions in synaptic plasticity and microglial activation were mitigated in the injured cortex of the MCAO mice with acute hyperglycemia. Treatment with ketotifen, a potent GLO1 stimulator, after surgery, alleviated neurofunctional deficits and ischemic brain damage in the MCAO mice with acute hyperglycemia. Altogether, our data substantiate that, in ischemic brain injury, GLO1 overexpression can alleviate pathologic alterations caused by acute hyperglycemia. Upregulation of GLO1 may be a therapeutic strategy for alleviating SIH-aggravated poor functional outcomes in patients with AIS.
Collapse
Affiliation(s)
- Kuan-Jung Lu
- College of Medicine, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Joen-Rong Sheu
- College of Medicine, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tanasekar Jayakumar
- Department of Ecology & Environmental Sciences, School of Life Science, Pondicherry University, Kalapet, Puducherry, India
| | - Chieh-Min Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
116
|
Legaard GE, Lyngbaek MPP, Almdal TP, Durrer CG, Nystrup U, Larsen EL, Poulsen HE, Karstoft K, Pedersen BK, Ried-Larsen M. Effects of different doses of exercise in adjunct to diet-induced weight loss on the AGE-RAGE axis in patients with short standing type 2 diabetes: Secondary analysis of the DOSE-EX multi-arm, parallel-group, randomised trial. Free Radic Biol Med 2023; 208:52-61. [PMID: 37532066 DOI: 10.1016/j.freeradbiomed.2023.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
AIMS/HYPOTHESIS These secondary analyses aimed to investigate the effects of different volumes of exercise in adjunct to diet-induced weight loss and standard care on advanced glycation end-products (AGEs) and receptor for AGE (RAGE). We hypothesized that exercise in adjunct to a diet-induced weight loss would dose-dependently increase the soluble decoy receptor for AGE (sRAGE) more than diet-induced weight loss and standard care alone. Secondarily, we expected changes in sRAGE to be associated with improved glycaemic control and inversely associated with low-grade inflammation. METHODS The DOSE-EX study was a 16-week parallel-group, 4-arm, single-centre, assessor-blinded, randomised, controlled trial (NCT03769883). We included persons living with T2D, duration ≤7 years, BMI >27 kg/m2 and <40 kg/m2, without severe diabetic complications. Participants were randomised (1:1:1:1) to either 1) standard care as control (CON), 2) standard care + diet (DCON), 3) standard care + diet + moderate exercise dose (MED) or 4) standard care + diet + high exercise dose (HED). Standard care included algorithm-guided pharmacological treatment. The diet intervention aimed at 25% reduced energy intake. The supervised exercise sessions included two aerobic sessions + one combined (aerobic and resistance training) session per week for the MED group, and four aerobic sessions + two combined sessions per week for the HED group. Primary outcome was the change in sRAGE from baseline to 16-week follow-up. Secondary outcomes encompassed changes in advanced glycation endproducts (AGE), glycaemic control and markers of low-grade inflammation. RESULTS A total of 80 participants (CON: n = 20, DCON: n = 19, MED: n = 20, HED: n = 21) were included in this secondary analysis. The mean age was 58.3 years (SD 9.9), 53% males, and median T2D duration was 4.1 years (IQR 2.0-5.5). No change in sRAGE was observed in any of the groups from baseline to follow-up (p > 0.05). CONCLUSION/INTERPRETATION A 16-week intervention with either three or six exercise sessions per week in adjunct to diet-induced weight loss did not change the levels of sRAGE in persons living with well-regulated, short standing T2D.
Collapse
Affiliation(s)
- Grit Elster Legaard
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | | | - Thomas Peter Almdal
- Department of Endocrinology PE, Rigshospitalet, University of Copenhagen, Denmark; Department of Immunology & Microbiology, University of Copenhagen, Denmark
| | - Cody Garett Durrer
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ulrikke Nystrup
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Emil List Larsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Cardiology, Copenhagen University Hospital - North Zealand, Hillerød, Denmark; Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kristian Karstoft
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mathias Ried-Larsen
- Centre for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
117
|
Qi X, Li Z, Han J, Liu W, Xia P, Cai X, Liu X, Liu X, Zhang J, Yu P. Multifaceted roles of T cells in obesity and obesity-related complications: A narrative review. Obes Rev 2023; 24:e13621. [PMID: 37583087 DOI: 10.1111/obr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Obesity is characterized by chronic low-grade inflammatory responses in the adipose tissue, accompanied by pronounced insulin resistance and metabolic anomalies. It affects almost all body organs and eventually leads to diseases such as fatty liver disease, type 2 diabetes mellitus, and atherosclerosis. Recently, T cells have emerged as interesting therapeutic targets because the dysfunction of T cells and their cytokines in the adipose tissue is implicated in obesity-induced inflammation and their complicated onset. Although several recent narrative reviews have provided a brief overview of related evidence in this area, they have mainly focused on either obesity-associated T cell metabolism or modulation of T cell activation in obesity. Moreover, at present, no published review has reported on the multifaceted roles of T cells in obesity and obesity-related complications, even though there has been a significant increase in studies on this topic since 2019. Therefore, this narrative review aims to comprehensively summarize current advances in the mechanistic roles of T cells in the development of obesity and its related complications. Further, we aim to discuss relevant drugs for weight loss as well as the contradictory role of T cells in the same disease so as to highlight key findings regarding this topic and provide a valid basis for future treatment strategies.
Collapse
Affiliation(s)
- Xinrui Qi
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiashu Han
- MD Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenqing Liu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
118
|
Berends E, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity. Fluids Barriers CNS 2023; 20:75. [PMID: 37875994 PMCID: PMC10594715 DOI: 10.1186/s12987-023-00477-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The brain is a highly metabolically active organ requiring a large amount of glucose. Methylglyoxal (MGO), a by-product of glucose metabolism, is known to be involved in microvascular dysfunction and is associated with reduced cognitive function. Maintenance of the blood-brain barrier (BBB) is essential to maintain optimal brain function and a large amount of evidence indicates negative effects of MGO on BBB integrity. In this review, we summarized the current literature on the effect of MGO on the different cell types forming the BBB. BBB damage by MGO most likely occurs in brain endothelial cells and mural cells, while astrocytes are most resistant to MGO. Microglia on the other hand appear to be not directly influenced by MGO but rather produce MGO upon activation. Although there is clear evidence that MGO affects components of the BBB, the impact of MGO on the BBB as a multicellular system warrants further investigation. Diminishing MGO stress can potentially form the basis for new treatment strategies for maintaining optimal brain function.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
| | - Robert J van Oostenbrugge
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Maastricht University, Universiteitssingel 50 6229ER, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
| |
Collapse
|
119
|
Albrecht M, Sticht C, Wagner T, Hettler SA, De La Torre C, Qiu J, Gretz N, Albrecht T, Yard B, Sleeman JP, Garvalov BK. The crosstalk between glomerular endothelial cells and podocytes controls their responses to metabolic stimuli in diabetic nephropathy. Sci Rep 2023; 13:17985. [PMID: 37863933 PMCID: PMC10589299 DOI: 10.1038/s41598-023-45139-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
In diabetic nephropathy (DN), glomerular endothelial cells (GECs) and podocytes undergo pathological alterations, which are influenced by metabolic changes characteristic of diabetes, including hyperglycaemia (HG) and elevated methylglyoxal (MGO) levels. However, it remains insufficiently understood what effects these metabolic factors have on GEC and podocytes and to what extent the interactions between the two cell types can modulate these effects. To address these questions, we established a co-culture system in which GECs and podocytes were grown together in close proximity, and assessed transcriptional changes in each cell type after exposure to HG and MGO. We found that HG and MGO had distinct effects on gene expression and that the effect of each treatment was markedly different between GECs and podocytes. HG treatment led to upregulation of "immediate early response" genes, particularly those of the EGR family, as well as genes involved in inflammatory responses (in GECs) or DNA replication/cell cycle (in podocytes). Interestingly, both HG and MGO led to downregulation of genes related to extracellular matrix organisation in podocytes. Crucially, the transcriptional responses of GECs and podocytes were dependent on their interaction with each other, as many of the prominently regulated genes in co-culture of the two cell types were not significantly changed when monocultures of the cells were exposed to the same stimuli. Finally, the changes in the expression of selected genes were validated in BTBR ob/ob mice, an established model of DN. This work highlights the molecular alterations in GECs and podocytes in response to the key diabetic metabolic triggers HG and MGO, as well as the central role of GEC-podocyte crosstalk in governing these responses.
Collapse
Affiliation(s)
- Michael Albrecht
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tabea Wagner
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Steffen A Hettler
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Carolina De La Torre
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jiedong Qiu
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Benito Yard
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology Campus North, Building 319, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
120
|
Trujillo MN, Jennings EQ, Hoffman EA, Zhang H, Phoebe AM, Mastin GE, Kitamura N, Reisz JA, Megill E, Kantner D, Marcinkiewicz MM, Twardy SM, Lebario F, Chapman E, McCullough RL, D'Alessandro A, Snyder NW, Cusanovich DA, Galligan JJ. Lactoylglutathione promotes inflammatory signaling in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561739. [PMID: 37873172 PMCID: PMC10592727 DOI: 10.1101/2023.10.10.561739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH, while demonstrating a potentiated inflammatory response when exposed to lipopolysaccharides, corresponding with a rise in histone lactoylation. Interestingly, our data demonstrate that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state, however, upon stimulation, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is a primary contributing factor facilitating the inflammatory response.
Collapse
|
121
|
Apte M, Khan MS, Bangar N, Gvalani A, Naz H, Tupe RS. Crosstalk between Aldosterone and Glycation through Rac-1 Induces Diabetic Nephropathy. ACS OMEGA 2023; 8:37264-37273. [PMID: 37841153 PMCID: PMC10568578 DOI: 10.1021/acsomega.3c05085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Background: Advanced glycation end products (AGEs) interaction with its receptor (RAGE) and aldosterone (Aldo) through the mineralocorticoid receptor (MR) activates Rac-1 and NF-κB independently in diabetic nephropathy (DN). However, the crosstalk of Aldo with AGEs-RAGE is still unresolved. Our study examined the impact of the AGEs-Aldo complex on renal cells and its effect on the RAGE-MR interaction. Methods and results: Glycation of human serum albumin (HSA) (40 mg/mL) with methylglyoxal (10 mM) in the presence of Aldo (100 nM) and aminoguanidine (AG) (100 nM) was performed. Glycation markers such as fructosamine and carbonyl groups and fluorescence of AGEs, pentosidine, and tryptophan followed by protein modification were measured. Renal (HEK-293T) cells were treated with the glycated HSA-Aldo (200 μg/mL) along with FPS-ZM1 and spironolactone antagonists for RAGE and Aldo, respectively, for 24 h. Glycation markers and esRAGE levels were measured. Protein and mRNA levels of RAGE, MR, Rac-1, and NF-κB were estimated. Glycation markers were enhanced with Aldo when albumin was only 14-16% glycated. AGEs-Aldo complex upregulated RAGE, MR, Rac-1 and NF-κB expressions. However, FPS-ZM1 action might have activated the RAGE-independent pathway, further elevating MR, Rac-1, and NF-κB levels. Conclusion: Our study concluded that the presence of Aldo has a significant impact on glycation. In the presence of AGEs-Aldo, RAGE-MR crosstalk exerts inflammatory responses through Rac-1 in DN. Insights into this molecular interplay are crucial for developing novel therapeutic strategies to alleviate DN in the future.
Collapse
Affiliation(s)
- Mayura Apte
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Mohd Shahnawaz Khan
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nilima Bangar
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Armaan Gvalani
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| | - Huma Naz
- Department
of Internal Medicine, University of Missouri, Mizzou, Columbia, Missouri65211, United States
| | - Rashmi S. Tupe
- Symbiosis
School of Biological Sciences, Symbiosis
International (Deemed University) (SIU), Lavale, Pune, Maharashtra State 412115, India
| |
Collapse
|
122
|
Yang F, Liu HH, Zhang L, Zhang XL, Zhang J, Li F, Zhao N, Zhang ZY, Kong Q, Liu XY, Wu Y, Yu ZM, Qian LL, Wang RX. Advanced Glycation End Products Downregulate Connexin 43 and Connexin 40 in Diabetic Atrial Myocytes via the AMPK Pathway. Diabetes Metab Syndr Obes 2023; 16:3045-3056. [PMID: 37810573 PMCID: PMC10557968 DOI: 10.2147/dmso.s419189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Diabetes mellitus is an independent risk factor for atrial fibrillation (AF), which may be related to accumulation of advanced glycation end products (AGEs). However, the mechanisms involved are not completely clear. Abnormality of gap junction proteins, especially connexin 43 (Cx43) and connexin 40 (Cx40) in atrial myocytes, is an important cause of increased susceptibility of AF. The aim of our work is to investigate the mechanism of dysregulated Cx43 and Cx40 in atrial myocytes of diabetic rats. Methods We established a type 1 diabetic rat model by intraperitoneal injection of streptozotocin. HL-1 cells and primary rat atrial myocytes were treated with AGEs in vitro. Using Western blotting, immunofluorescence staining, immunohistochemistry, and lucifer yellow diffusion measurements, we investigated dysregulation of Cx43 and Cx40 and its mechanism in atrial myocytes of diabetic rats. Results Accumulation of AGEs was found in diabetic rats. The expression of Cx43 and Cx40 was reduced in the atrium of diabetic rats, accompanied by the decrease of phosphorylated Adenosine 5'-monophosphate-activated protein kinase (p-AMPK). Similar results were found in cultured HL-1 cells and primary rat atrial myocytes, suggesting a role of AGEs on gap junction proteins. An AMPK agonist, 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), reversed the down-regulated Cx43 expression induced by AGEs stimulation. More importantly, lucifer yellow diffusion assay showed that AGEs significantly affected gap junctional function, and these changes were reversed by AICAR. Conclusion Thus, we conclude that AGEs cause dysregulation of Cx43 and Cx40 in diabetic atria via the AMPK pathway, thereby leading to gap junction dysfunction, which may contribute to the increased AF susceptibility in diabetes.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Lei Zhang
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Xiao-Lu Zhang
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Jie Zhang
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Feng Li
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Ning Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| | - Zhi-Yuan Zhang
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Qi Kong
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Xiao-Yu Liu
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Ying Wu
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Zhi-Ming Yu
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Ling-Ling Qian
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
| | - Ru-Xing Wang
- Department of Cardiology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, 214023, People’s Republic of China
- Wuxi School of Medicine, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
123
|
Atawia RT, Batori R, Jordan CR, Kennard S, Antonova G, Bruder-Nascimento T, Mehta V, Saeed MI, Patel VS, Fukai T, Ushio-Fukai M, Huo Y, Fulton DJR, de Chantemèle EJB. Type 1 Diabetes Impairs Endothelium-Dependent Relaxation Via Increasing Endothelial Cell Glycolysis Through Advanced Glycation End Products, PFKFB3, and Nox1-Mediated Mechanisms. Hypertension 2023; 80:2059-2071. [PMID: 37729634 PMCID: PMC10514399 DOI: 10.1161/hypertensionaha.123.21341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a major cause of endothelial dysfunction. Although cellular bioenergetics has been identified as a new regulator of vascular function, whether glycolysis, the primary bioenergetic pathway in endothelial cells (EC), regulates vascular tone and contributes to impaired endothelium-dependent relaxation (EDR) in T1D remains unknown. METHODS Experiments were conducted in Akita mice with intact or selective deficiency in EC PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), the main regulator of glycolysis. Seahorse analyzer and myography were employed to measure glycolysis and mitochondrial respiration, and EDR, respectively, in aortic explants. EC PFKFB3 (Ad-PFKFB3) and glycolysis (Ad-GlycoHi) were increased in situ via adenoviral transduction. RESULTS T1D increased EC glycolysis and elevated EC expression of PFKFB3 and NADPH oxidase Nox1 (NADPH oxidase homolog 1). Functionally, pharmacological and genetic inhibition of PFKFB3 restored EDR in T1D, while in situ aorta EC transduction with Ad-PFKFB3 or Ad-GlycoHi reproduced the impaired EDR associated with T1D. Nox1 inhibition restored EDR in aortic rings from Akita mice, as well as in Ad-PFKFB3-transduced aorta EC and lactate-treated wild-type aortas. T1D increased the expression of the advanced glycation end product precursor methylglyoxal in the aortas. Exposure of the aortas to methylglyoxal impaired EDR, which was prevented by PFKFB3 inhibition. T1D and exposure to methylglyoxal increased EC expression of HIF1α (hypoxia-inducible factor 1α), whose inhibition blunted methylglyoxal-mediated EC PFKFB3 upregulation. CONCLUSIONS EC bioenergetics, namely glycolysis, is a new regulator of vasomotion and excess glycolysis, a novel mechanism of endothelial dysfunction in T1D. We introduce excess methylglyoxal, HIF1α, and PFKFB3 as major effectors in T1D-mediated increased EC glycolysis.
Collapse
Affiliation(s)
- Reem T. Atawia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Robert Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Coleton R. Jordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Galina Antonova
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Vinay Mehta
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Muhammad I. Saeed
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vijay S Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David JR Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | |
Collapse
|
124
|
Alyahyawi AR, Khan MY, Alouffi S, Maarfi F, Akasha R, Khan S, Rafi Z, Alharazi T, Shahab U, Ahmad S. Identification of Glycoxidative Lesion in Isolated Low-Density Lipoproteins from Diabetes Mellitus Subjects. Life (Basel) 2023; 13:1986. [PMID: 37895368 PMCID: PMC10608319 DOI: 10.3390/life13101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Methylglyoxal (MG) is a precursor for advanced glycation end-products (AGEs), which have a significant role in diabetes. The present study is designed to probe the immunological response of native and glycated low-density lipoprotein (LDL) in experimental animals. The second part of this study is to probe glycoxidative lesion detection in low-density lipoproteins (LDL) in diabetes subjects with varying disease duration. The neo-epitopes attributed to glycation-induced glycoxidative lesion of LDL in DM patients' plasma were, analyzed by binding of native and MG-modified LDL immunized animal sera antibodies using an immunochemical assay. The plasma purified human LDL glycation with MG, which instigated modification in LDL. Further, the NewZealand-White rabbits were infused with unmodified natural LDL (N-LDL) and MG-glycatedLDL to probe its immunogenicity. The glycoxidative lesion detection in LDL of DM with disease duration (D.D.) of 5-15 years and D.D. > 15 years was found to be significantly higher as compared to normal healthy subjects (NHS) LDL. The findings support the notion that prolonged duration of diabetes can cause structural alteration in LDL protein molecules, rendering them highly immunogenic in nature. The presence of LDL lesions specific to MG-associated glycoxidation would further help in assessing the progression of diabetes mellitus.
Collapse
Affiliation(s)
- Amjad R. Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha’il 2440, Saudi Arabia;
- Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH, UK
| | - Mohd Yasir Khan
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun 248011, India;
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha’il 2440, Saudi Arabia; (S.A.); (R.A.); (T.A.)
| | - Farah Maarfi
- Department of Biotechnology, SALS, Uttaranchal University, Dehradun 248011, India;
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha’il 2440, Saudi Arabia; (S.A.); (R.A.); (T.A.)
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Ha’il 2440, Saudi Arabia;
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow 226026, India;
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha’il 2440, Saudi Arabia; (S.A.); (R.A.); (T.A.)
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow 226026, India;
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha’il 2440, Saudi Arabia; (S.A.); (R.A.); (T.A.)
| |
Collapse
|
125
|
Xie JB, Xie P, Guo M, Li FF, Xiao MY, Qi YS, Pei WJ, Luo HT, Gu YL, Piao XL. Protective effect of heat-processed Gynostemma pentaphyllum on high fat diet-induced glucose metabolic disorders mice. Front Pharmacol 2023; 14:1215150. [PMID: 37822878 PMCID: PMC10563512 DOI: 10.3389/fphar.2023.1215150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Glucose metabolic disorders (GMD) can promote insulin resistance (IR) and diabetes, and damage liver and kidney. Gynostemma pentaphyllum is commonly used in the clinical treatment of diabetes, but the research on its main active constituents and GMD has not been reported yet. This study explores the therapeutic potential of gypenosides of heat-processed Gynostemma pentaphyllum (HGyp) on high-fat diet-induced GMD in mice. HGyp was administered at different doses for 12 weeks. The investigation encompassed an array of parameters, including body weight, blood lipids, blood glucose, and liver tissue components. Metabolomic and network analyses were conducted to uncover potential targets and pathways associated with HGyp treatment. The results revealed that HGyp alleviated GMD by reducing body weight, blood glucose, and improving blood lipids levels, while increasing liver glycogen and antioxidant enzyme levels. Additionally, HGyp exhibited protective effects on liver and kidney health by reducing tissue damage. Fourteen blood components were detected by LC-MS. Metabolomic and network analyses indicated the potential engagement of the AGE-RAGE signaling pathway in the therapeutic effects of HGyp.Furthermore, Western blot and ELISA assays confirmed that HGyp upregulated GLO1 and GLUT4 while down-regulating AGEs and RAGE expression in liver tissue. In light of these findings, HGyp demonstrates promise as a potential therapeutic candidate for combating GMD, warranting further exploration in the development of therapeutic strategies or functional products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
126
|
Abstract
Advanced glycation end products (AGEs), by-products of glucose metabolism, have been linked to the emergence of cardiovascular disorders (CVD). AGEs can cause tissue damage in four different ways: (1) by altering protein function, (2) by crosslinking proteins, which makes tissue stiffer, (3) by causing the generation of free radicals, and (4) by activating an inflammatory response after binding particular AGE receptors, such as the receptor for advanced glycation end products (RAGE). It is suggested that the soluble form of RAGE (sRAGE) blocks ligand-mediated pro-inflammatory and oxidant activities by serving as a decoy. Therefore, several studies have investigated the possible anti-inflammatory and anti-oxidant characteristics of sRAGE, which may help lower the risk of CVD. According to the results of various studies, the relationship between circulating sRAGE, cRAGE, and esRAGE and CVD is inconsistent. To establish the potential function of sRAGE as a therapeutic target in the treatment of cardiovascular illnesses, additional studies are required to better understand the relationship between sRAGE and CVD. In this review, we explored the potential function of sRAGE in different CVD, highlighting unanswered concerns and outlining the possibilities for further investigation.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| |
Collapse
|
127
|
Scrimieri R, Locatelli L, Cazzaniga A, Cazzola R, Malucelli E, Sorrentino A, Iotti S, Maier JA. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose. Sci Rep 2023; 13:15133. [PMID: 37704683 PMCID: PMC10499809 DOI: 10.1038/s41598-023-42333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
High glucose-induced endothelial dysfunction is the early event that initiates diabetes-induced vascular disease. Here we employed Cryo Soft X-ray Tomography to obtain three-dimensional maps of high D-glucose-treated endothelial cells and their controls at nanometric spatial resolution. We then correlated ultrastructural differences with metabolic rewiring. While the total mitochondrial mass does not change, high D-glucose promotes mitochondrial fragmentation, as confirmed by the modulation of fission-fusion markers, and dysfunction, as demonstrated by the drop of membrane potential, the decreased oxygen consumption and the increased production of reactive oxygen species. The 3D ultrastructural analysis also indicates the accumulation of lipid droplets in cells cultured in high D-glucose. Indeed, because of the decrease of fatty acid β-oxidation induced by high D-glucose concentration, triglycerides are esterified into fatty acids and then stored into lipid droplets. We propose that the increase of lipid droplets represents an adaptive mechanism to cope with the overload of glucose and associated oxidative stress and metabolic dysregulation.
Collapse
Affiliation(s)
- Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| | - Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
| | - Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale Delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| |
Collapse
|
128
|
Jeevanandam J, Burra VLSP, Saraswathi NT. Conformational variation of site specific glycated albumin: A Molecular dynamics approach. Comput Biol Med 2023; 164:107276. [PMID: 37481949 DOI: 10.1016/j.compbiomed.2023.107276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/23/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Human serum albumin (HSA) is a major cargo protein, which undergoes glycation in hyperglycaemic conditions and results in impaired function. In physiological conditions, HSA plays a crucial role in pharmacological activities such as drug transport or delivery through its binding capacity and also by its enzymatic activity, which enables the translation of pro-drugs into active drugs. In this study, the impact of the methylglyoxal-mediated glycation on dynamic behaviour of inter-domain motion, Cys34 reactivity, binding site residual interaction and secondary structure transition were investigated through molecular dynamics simulation. The alteration in inter-domain motion reflects the effect of glycation-mediated changes on the structural conformation of albumin. The binding site residue interactions and volume analysis revealed the impact of glycation on the geometry of the binding site. We also found the correlation of Cys34 reactivity with increase of turns in the region between Ia-h4 and Ia-h5. The rise in turn formation in that region keeps Tyr84 farther away from Cys34 which could lead to higher Cys34 reactivity. In parallel, significant alterations in alpha helical content of helices in the binding sites were observed. These structural and conformational changes in glycated albumin could be the causative agents for functional impairment which leads to diabetic complications.
Collapse
Affiliation(s)
- Jayanth Jeevanandam
- Molecular Biophysics lab, School of Chemical and Biotechnology, SASTRA Deemed to- be University, Thanjavur, 613401, Tamilnadu, India
| | - V L S Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed To Be) University, Vaddeswaram, Andhra Pradesh, 522 502, India
| | - N T Saraswathi
- Molecular Biophysics lab, School of Chemical and Biotechnology, SASTRA Deemed to- be University, Thanjavur, 613401, Tamilnadu, India.
| |
Collapse
|
129
|
Hong SM, Lee EY, Park J, Kim J, Kim SY. Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity. Biomol Ther (Seoul) 2023; 31:573-582. [PMID: 37562979 PMCID: PMC10468420 DOI: 10.4062/biomolther.2023.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Seong-Min Hong
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Eun Yoo Lee
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jinho Park
- Department of Exercise Rehabilitation, Gachon University, Incheon 21936, Republic of Korea
| | - Jiyoun Kim
- Department of Exercise Rehabilitation, Gachon University, Incheon 21936, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
130
|
Kim D, Oh E, Kim H, Baek SM, Cho J, Kim EH, Choi S, Bian Y, Kim W, Bae ON. Mono-(2-ethylhexyl)-phthalate potentiates methylglyoxal-induced blood-brain barrier damage via mitochondria-derived oxidative stress and bioenergetic perturbation. Food Chem Toxicol 2023; 179:113985. [PMID: 37572985 DOI: 10.1016/j.fct.2023.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/30/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Phthalates in contaminated foods and personal care products are one of the most frequently exposed chemicals with a public health concern. Phthalate exposure is related to cardiovascular diseases, including diabetic vascular complications and cerebrovascular diseases, yet the mechanism is still unclear. The blood-brain barrier (BBB) integrity disruption is strongly associated with cardiovascular and neurological disease exacerbation. We investigated BBB damage by di-(2-ethylhexyl) phthalate (DEHP) or its metabolite mono-(2-ethylhexyl) phthalate (MEHP) using brain endothelial cells and rat models. BBB damage by the subthreshold level of MEHP, but not a DEHP, significantly increased by the presence of methylglyoxal (MG), a reactive dicarbonyl compound whose levels increase in the blood in hyperglycemic conditions in diabetic patients. Significant potentiation in apoptosis and autophagy activation, mitochondria-derived reactive oxygen species (ROS) production, and mitochondrial metabolic disturbance were observed in brain ECs by co-exposure to MG and MEHP. N-acetyl cysteine (NAC) restored autophagy activation as well as tight junction protein impairment induced by co-exposure to MG and MEHP. Intraperitoneal administration of MG and MEHP significantly altered mitochondrial membrane potential and tight junction integrity in rat brain endothelium. This study may provide novel insights into enhancing phthalate toxicity in susceptible populations, such as diabetic patients.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Eujin Oh
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Haram Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Seung Mi Baek
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Junho Cho
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang, 110122, China
| | - Wondong Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
131
|
Syed NA, Bhatti A, John P. Molecular Link between Glo-1 Expression and Markers of Hyperglycemia and Oxidative Stress in Vascular Complications of Type 2 Diabetes Mellitus. Antioxidants (Basel) 2023; 12:1663. [PMID: 37759966 PMCID: PMC10525326 DOI: 10.3390/antiox12091663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic hyperglycemia and oxidative stress in Type 2 Diabetes Mellitus trigger cellular dysfunction via the formation of Advanced Glycation End Products (AGEs), resulting in dicarbonyl stress. Glyoxalase-1 (Glo-1) is the main defense against dicarbonyl stress. The aim of this study was to explore any cross-talk between Glo-1 and markers of hyperglycemia and oxidative stress. The siRNA-mediated downregulation of Glo-1 was performed in human microvascular endothelial cell line (HMEC-1). A Glo-1 transgenic rat model was developed. Glo-1 activity, as determined spectrophotometrically, and methylglyoxal were quantified using UPLC-MS/MS and the expression of representative markers of hyperglycemia and oxidative stress was performed using quantitative real-time PCR. A significant increase in the expression of Vascular Cell Adhesion Molecule-1 (VCAM-1) was observed in the case of the siRNA-mediated downregulation of Glo-1 in the microvasculature model under hyperglycemic conditions (p-value < 0.001), as well the as overexpression of Glo-1 in the macrovasculature (p-value = 0.0125). The expression of thioredoxin interacting protein (TXNIP) was found to be significantly upregulated in wildtype diabetic conditions vs. Glo-1 transgenic control conditions (p-value = 0.008), whereas the downregulation of Glo-1 had no impact on TXNIP expression. These findings substantiate the role of VCAM as an important marker of dicarbonyl stress (represented by Glo-1 downregulation), as well as of hyperglycemia, in diabetic vascular complications. Our findings also suggest a potential feedback loop that may exist between Glo-1 and TXNIP, as the highest expression of TXNIP is observed in cases of wildtype diabetic conditions, and the lowest expression of TXNIP is observed when Glo-1 transgene is being expressed in absence of dicarbonyl stress.
Collapse
Affiliation(s)
- Nida Ali Syed
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (N.A.S.); (P.J.)
- Department of Internal Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Attya Bhatti
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (N.A.S.); (P.J.)
| | - Peter John
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan; (N.A.S.); (P.J.)
| |
Collapse
|
132
|
Enríquez-Flores S, De la Mora-De la Mora I, García-Torres I, Flores-López LA, Martínez-Pérez Y, López-Velázquez G. Human Triosephosphate Isomerase Is a Potential Target in Cancer Due to Commonly Occurring Post-Translational Modifications. Molecules 2023; 28:6163. [PMID: 37630415 PMCID: PMC10459230 DOI: 10.3390/molecules28166163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer involves a series of diseases where cellular growth is not controlled. Cancer is a leading cause of death worldwide, and the burden of cancer incidence and mortality is rapidly growing, mainly in developing countries. Many drugs are currently used, from chemotherapeutic agents to immunotherapy, among others, along with organ transplantation. Treatments can cause severe side effects, including remission and progression of the disease with serious consequences. Increased glycolytic activity is characteristic of cancer cells. Triosephosphate isomerase is essential for net ATP production in the glycolytic pathway. Notably, some post-translational events have been described that occur in human triosephosphate isomerase in which functional and structural alterations are provoked. This is considered a window of opportunity, given the differences that may exist between cancer cells and their counterpart in normal cells concerning the glycolytic enzymes. Here, we provide elements that bring out the potential of triosephosphate isomerase, under post-translational modifications, to be considered an efficacious target for treating cancer.
Collapse
Affiliation(s)
- Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Ignacio De la Mora-De la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| | - Luis A. Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, CONAHCYT-Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Yoalli Martínez-Pérez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Mexico City 14380, Mexico;
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.D.l.M.-D.l.M.); (I.G.-T.)
| |
Collapse
|
133
|
Williams A, Bissinger R, Shamaa H, Patel S, Bourne L, Artunc F, Qadri SM. Pathophysiology of Red Blood Cell Dysfunction in Diabetes and Its Complications. PATHOPHYSIOLOGY 2023; 30:327-345. [PMID: 37606388 PMCID: PMC10443300 DOI: 10.3390/pathophysiology30030026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Diabetes Mellitus (DM) is a complex metabolic disorder associated with multiple microvascular complications leading to nephropathy, retinopathy, and neuropathy. Mounting evidence suggests that red blood cell (RBC) alterations are both a cause and consequence of disturbances related to DM-associated complications. Importantly, a significant proportion of DM patients develop varying degrees of anemia of confounding etiology, leading to increased morbidity. In chronic hyperglycemia, RBCs display morphological, enzymatic, and biophysical changes, which in turn prime them for swift phagocytic clearance from circulation. A multitude of endogenous factors, such as oxidative and dicarbonyl stress, uremic toxins, extracellular hypertonicity, sorbitol accumulation, and deranged nitric oxide metabolism, have been implicated in pathological RBC changes in DM. This review collates clinical laboratory findings of changes in hematology indices in DM patients and discusses recent reports on the putative mechanisms underpinning shortened RBC survival and disturbed cell membrane architecture within the diabetic milieu. Specifically, RBC cell death signaling, RBC metabolism, procoagulant RBC phenotype, RBC-triggered endothelial cell dysfunction, and changes in RBC deformability and aggregation in the context of DM are discussed. Understanding the mechanisms of RBC alterations in DM provides valuable insights into the clinical significance of the crosstalk between RBCs and microangiopathy in DM.
Collapse
Affiliation(s)
- Alyssa Williams
- Faculty of Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Rosi Bissinger
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Hala Shamaa
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Shivani Patel
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Lavern Bourne
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research at the University of Tübingen, 72076 Tübingen, Germany
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
134
|
Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: Shared Genetic, Metabolic, and Pharmacologic Mechanism. Curr Cardiol Rep 2023; 25:863-878. [PMID: 37493874 PMCID: PMC10403418 DOI: 10.1007/s11886-023-01906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW The article aims to investigate the complex relationship between cancer and cardiovascular disease (CVD), with a focus on the effects of cancer treatment on cardiac health. RECENT FINDINGS Advances in cancer treatment have improved long-term survival rates, but CVD has emerged as a leading cause of morbidity and mortality in cancer patients. The interplay between cancer itself, treatment methods, homeostatic changes, and lifestyle modifications contributes to this comorbidity. Recent research in the field of cardio-oncology has revealed common genetic mutations, risk factors, and metabolic features associated with the co-occurrence of cancer and CVD. This article provides a comprehensive review of the latest research in cardio-oncology, including common genetic mutations, risk factors, and metabolic features, and explores the interactions between cancer treatment and CVD drugs, proposing novel approaches for the management of cancer and CVD.
Collapse
Affiliation(s)
- Yiqi Zhao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| | - Tao An
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, 100037 Beijing, China
| |
Collapse
|
135
|
Rhein S, Inderhees J, Herrmann O, Othman A, Begemann K, Fleming T, Nawroth PP, Klika KD, Isa R, König IR, Royl G, Schwaninger M. Glyoxal in hyperglycaemic ischemic stroke - a cohort study. Cardiovasc Diabetol 2023; 22:173. [PMID: 37438755 DOI: 10.1186/s12933-023-01892-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hyperglycaemia is frequent in acute ischemic stroke and denotes a bad prognosis, even in the absence of pre-existing diabetes. However, in clinical trials treatment of elevated glucose levels with insulin did not improve stroke outcome, suggesting that collateral effects rather than hyperglycaemia itself aggravate ischemic brain damage. As reactive glucose metabolites, glyoxal and methylglyoxal are candidates for mediating the deleterious effects of hyperglycaemia in acute stroke. METHODS In 135 patients with acute stroke, we used liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to measure glyoxal, methylglyoxal and several of their glycated amino acid derivatives in serum. Results were verified in a second cohort of 61 stroke patients. The association of serum concentrations with standard stroke outcome scales (NIHSS, mRS) was tested. RESULTS Glucose, glyoxal, methylglyoxal, and the glyoxal-derived glycated amino acid Nδ-(5-hydro-4-imidazolon-2-yl)ornithine (G-H1) were positively correlated with a bad stroke outcome at 3 months as measured by mRS90, at least in one of the two cohorts. However, the glycated amino acids Nε-carboxyethyllysine (CEL) and in one cohort pyrraline showed an inverse correlation with stroke outcome probably reflecting lower food intake in severe stroke. Patients with a poor outcome had higher serum concentrations of glyoxal and methylglyoxal. CONCLUSIONS The glucose-derived α-dicarbonyl glyoxal and glycated amino acids arising from a reaction with glyoxal are associated with a poor outcome in ischemic stroke. Thus, lowering α-dicarbonyls or counteracting their action could be a therapeutic strategy for hyperglycaemic stroke.
Collapse
Affiliation(s)
- Sina Rhein
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver Herrmann
- Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Alaa Othman
- Bioanalytic Core Facility, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kimberly Begemann
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Thomas Fleming
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
- German Research Centre for Diabetes Research, Düsseldorf, Germany
| | - Peter P Nawroth
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rakad Isa
- Department of Neurology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Inke R König
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Georg Royl
- Department of Neurology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
- German Centre for Cardiovascular Research, (DZHK), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
136
|
Artasensi A, Salina E, Fumagalli L, Regazzoni L. A Novel Chromatographic Method to Assess the Binding Ability towards Dicarbonyls. Molecules 2023; 28:5341. [PMID: 37513213 PMCID: PMC10384793 DOI: 10.3390/molecules28145341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Human exposure to dicarbonyls occurs via ingestion (e.g., food), inhalation (e.g., electronic cigarettes) and dysregulation of endogenous metabolic pathways (e.g., glycolysis). Dicarbonyls are electrophiles able to induce carbonylation of endogenous substrate. They have been associated with the onset and progression of several human diseases. Several studies have advocated the use of dicarbonyl binders as food preservatives or as drugs aimed at mitigating carbonylation. This study presents the setup of an easy and cheap assay for the screening of selective and potent dicarbonyl binders. The method is based on the incubation of the candidate molecules with a molecular probe. The activity is then determined by measuring the residual concentration of the molecular probe over time by liquid chromatography (LC). However, the naturally occurring dicarbonyls (e.g., glyoxal, methylglyoxal) are not appealing as probes since they are hard to separate and detect using the most popular LC variants. Benzylglyoxal (BGO) was therefore synthesized and tested, proving to be a convenient probe that allows a direct quantification of residual dicarbonyls by reversed phase LC without derivatization. The method was qualified by assessing the binding ability of some molecules known as binders of natural occurring dicarbonyls, obtaining results consistent with literature.
Collapse
Affiliation(s)
- Angelica Artasensi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Emanuele Salina
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Laura Fumagalli
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
137
|
Li P, Qin D, Chen T, Hou W, Song X, Yin S, Song M, Fernando WCHA, Chen X, Sun Y, Wang J. Dysregulated Rbfox2 produces aberrant splicing of Ca V1.2 calcium channel in diabetes-induced cardiac hypertrophy. Cardiovasc Diabetol 2023; 22:168. [PMID: 37415128 PMCID: PMC10324275 DOI: 10.1186/s12933-023-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND L-type Ca2+ channel CaV1.2 is essential for cardiomyocyte excitation, contraction and gene transcription in the heart, and abnormal functions of cardiac CaV1.2 channels are presented in diabetic cardiomyopathy. However, the underlying mechanisms are largely unclear. The functions of CaV1.2 channels are subtly modulated by splicing factor-mediated alternative splicing (AS), but whether and how CaV1.2 channels are alternatively spliced in diabetic heart remains unknown. METHODS Diabetic rat models were established by using high-fat diet in combination with low dose streptozotocin. Cardiac function and morphology were assessed by echocardiography and HE staining, respectively. Isolated neonatal rat ventricular myocytes (NRVMs) were used as a cell-based model. Cardiac CaV1.2 channel functions were measured by whole-cell patch clamp, and intracellular Ca2+ concentration was monitored by using Fluo-4 AM. RESULTS We find that diabetic rats develop diastolic dysfunction and cardiac hypertrophy accompanied by an increased CaV1.2 channel with alternative exon 9* (CaV1.2E9*), but unchanged that with alternative exon 8/8a or exon 33. The splicing factor Rbfox2 expression is also increased in diabetic heart, presumably because of dominate-negative (DN) isoform. Unexpectedly, high glucose cannot induce the aberrant expressions of CaV1.2 exon 9* and Rbfox2. But glycated serum (GS), the mimic of advanced glycation end-products (AGEs), upregulates CaV1.2E9* channels proportion and downregulates Rbfox2 expression in NRVMs. By whole-cell patch clamp, we find GS application hyperpolarizes the current-voltage curve and window currents of cardiac CaV1.2 channels. Moreover, GS treatment raises K+-triggered intracellular Ca2+ concentration ([Ca2+]i), enlarges cell surface area of NRVMs and induces hypertrophic genes transcription. Consistently, siRNA-mediated knockdown of Rbfox2 in NRVMs upregulates CaV1.2E9* channel, shifts CaV1.2 window currents to hyperpolarization, increases [Ca2+]i and induces cardiomyocyte hypertrophy. CONCLUSIONS AGEs, not glucose, dysregulates Rbfox2 which thereby increases CaV1.2E9* channels and hyperpolarizes channel window currents. These make the channels open at greater negative potentials and lead to increased [Ca2+]i in cardiomyocytes, and finally induce cardiomyocyte hypertrophy in diabetes. Our work elucidates the underlying mechanisms for CaV1.2 channel regulation in diabetic heart, and targeting Rbfox2 to reset the aberrantly spliced CaV1.2 channel might be a promising therapeutic approach in diabetes-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Pengpeng Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dongxia Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Tiange Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wei Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xinyu Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shumin Yin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Miaomiao Song
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - W C Hewith A Fernando
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaojie Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Juejin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
138
|
Huang Q, Liu Z, Yang Y, Yang Y, Huang T, Hong Y, Zhang J, Chen Q, Zhao T, Xiao Z, Gong X, Jiang Y, Peng J, Nan Y, Ai K. Selenium Nanodots (SENDs) as Antioxidants and Antioxidant-Prodrugs to Rescue Islet β Cells in Type 2 Diabetes Mellitus by Restoring Mitophagy and Alleviating Endoplasmic Reticulum Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300880. [PMID: 37408520 DOI: 10.1002/advs.202300880] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Indexed: 07/07/2023]
Abstract
Preventing islet β-cells death is crucial for treating type 2 diabetes mellitus (T2DM). Currently, clinical drugs are being developed to improve the quality of T2DM care and self-care, but drugs focused on reducing islets β-cell death are lacking. Given that β-cell death in T2DM is dominated ultimately by excessive reactive oxygen species (ROS), eliminating excessive ROS in β-cells is a highly promising therapeutic strategy. Nevertheless, no antioxidants have been approved for T2DM therapy because most of them cannot meet the long-term and stable elimination of ROS in β-cells without eliciting toxic side-effects. Here, it is proposed to restore the endogenous antioxidant capacity of β-cells to efficiently prevent β-cell death using selenium nanodots (SENDs), a prodrug of the antioxidant enzyme glutathione peroxidase 1 (GPX1). SENDs not only scavenge ROS effectively, but also "send" selenium precisely to β-cells with ROS response to greatly enhance the antioxidant capacity of β-cells by increasing GPX1 expression. Therefore, SENDs greatly rescue β-cells by restoring mitophagy and alleviating endoplasmic reticulum stress (ERS), and demonstrate much stronger efficacy than the first-line drug metformin for T2DM treatment. Overall, this strategy highlights the great clinical application prospects of SENDs, offering a paradigm for an antioxidant enzyme prodrug for T2DM treatment.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zerun Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ting Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ying Hong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xuejun Gong
- Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jiang Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
139
|
Kirsch-Volders M, Fenech M. Towards prevention of aneuploidy-associated cellular senescence and aging: more questions than answers? MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108474. [PMID: 37866738 DOI: 10.1016/j.mrrev.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The aim of this review is to discuss how aneuploidy contributes to the aging process, and to identify plausible strategies for its prevention. After an overview of mechanisms leading to aneuploidy and the major features of cellular senescence, we discuss the link between (i) aneuploidy and cellular senescence; (ii) aneuploidy and aging; and (iii) cellular senescence and aging. We also consider (i) interactions between aneuploidy, micronuclei, cellular senescence and aging, (ii) the potential of nutritional treatments to prevent aneuploidy-associated senescence and aging, and (iii) knowledge and technological gaps. Evidence for a causal link between aneuploidy, senescence and aging is emerging. In vitro, aneuploidy accompanies the entry into cellular senescence and can itself induce senescence. How aneuploidy contributes in vivo to cellular senescence is less clear. Several routes depending on aneuploidy and/or senescence converge towards chronic inflammation, the major driver of unhealthy aging. Aneuploidy can induce the pro-inflammatory Senescence Associated Secretory Phenotype (SASP), either directly or as a result of micronucleus (MN) induction leading to leakage of DNA into the cytoplasm and triggering of the cGAS-STING pathway of innate immune response. A major difficulty in understanding the impact of aneuploidy on senescence and aging in vivo, results from the heterogeneity of cellular senescence in different tissues at the cytological and molecular level. Due to this complexity, there is at the present time no biomarker or biomarker combination characteristic for all types of senescent cells. In conclusion, a deeper understanding of the critical role aneuploidy plays in cellular senescence and aging is essential to devise practical strategies to protect human populations from aneuploidy-associated pathologies. We discuss emerging evidence, based on in vitro and in vivo studies, that adequate amounts of specific micronutrients are essential for prevention of aneuploidy in humans and that precise nutritional intervention may be essential to help avoid the scourge of aneuploidy-driven diseases.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, SA 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| |
Collapse
|
140
|
Sekar P, Hsiao G, Hsu SH, Huang DY, Lin WW, Chan CM. Metformin inhibits methylglyoxal-induced retinal pigment epithelial cell death and retinopathy via AMPK-dependent mechanisms: Reversing mitochondrial dysfunction and upregulating glyoxalase 1. Redox Biol 2023; 64:102786. [PMID: 37348156 PMCID: PMC10363482 DOI: 10.1016/j.redox.2023.102786] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Diabetic retinopathy (DR) is a major cause of blindness in adult, and the accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is a precursor of AGEs. Although the therapeutic potential of metformin for retinopathy disorders has recently been elucidated, possibly through AMPK activation, it remains unknown how metformin directly affects the MGO-induced stress response in retinal pigment epithelial cells. Therefore, in this study, we compared the effects of metformin and the AMPK activator A769662 on MGO-induced DR in mice, as well as evaluated cytotoxicity, mitochondrial dynamic changes and dysfunction in ARPE-19 cells. We found MGO can induce mitochondrial ROS production and mitochondrial membrane potential loss, but reduce cytosolic ROS level in ARPE-19 cells. Although these effects of MGO can be reversed by both metformin and A769662, we demonstrated that reduction of mitochondrial ROS production rather than restoration of cytosolic ROS level contributes to cell protective effects of metformin and A769662. Moreover, MGO inhibits AMPK activity, reduces LC3II accumulation, and suppresses protein and gene expressions of MFN1, PGC-1α and TFAM, leading to mitochondrial fission, inhibition of mitochondrial biogenesis and autophagy. In contrast, these events of MGO were reversed by metformin in an AMPK-dependent manner as evidenced by the effects of compound C and AMPK silencing. In addition, we observed an AMPK-dependent upregulation of glyoxalase 1, a ubiquitous cellular enzyme that participates in the detoxification of MGO. In intravitreal drug-treated mice, we found that AMPK activators can reverse the MGO-induced cotton wool spots, macular edema and retinal damage. Functional, histological and optical coherence tomography analysis support the protective actions of both agents against MGO-elicited retinal damage. Metformin and A769662 via AMPK activation exert a strong protection against MGO-induced retinal pigment epithelial cell death and retinopathy. Therefore, metformin and AMPK activator can be therapeutic agents for DR.
Collapse
Affiliation(s)
- Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Medical Research Center, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
141
|
Shibasaki S, Ueda M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms 2023; 11:1499. [PMID: 37375001 DOI: 10.3390/microorganisms11061499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve sustainable development, alternative resources should replace conventional resources such as fossil fuels. In marine ecosystems, many macroalgae grow faster than terrestrial plants. Macroalgae are roughly classified as green, red, or brown algae based on their photosynthetic pigments. Brown algae are considered to be a source of physiologically active substances such as polyphenols. Furthermore, some macroalgae can capture approximately 10 times more carbon dioxide from the atmosphere than terrestrial plants. Therefore, they have immense potential for use in the environment. Recently, macroalgae have emerged as a biomass feedstock for bioethanol production owing to their low lignin content and applicability to biorefinery processes. Herein, we provided an overview of the bioconversion of macroalgae into bioactive substances and biofuels using microbial biotechnology, including engineered yeast designed using molecular display technology.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Laboratory of Natural Science, Faculty of Economics, Toyo University, Hakusan Bunkyo-ku, Tokyo 112-8606, Japan
| | - Mitsuyoshi Ueda
- Office of Society-Academia Collaboration for Innovation (SACI), Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
142
|
Flam E, Arany Z. Metabolite signaling in the heart. NATURE CARDIOVASCULAR RESEARCH 2023; 2:504-516. [PMID: 39195876 DOI: 10.1038/s44161-023-00270-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 08/29/2024]
Abstract
The heart is the most metabolically active organ in the body, sustaining a continuous and high flux of nutrient catabolism via oxidative phosphorylation. The nature and relative contribution of these fuels have been studied extensively for decades. By contrast, less attention has been placed on how intermediate metabolites generated from this catabolism affect intracellular signaling. Numerous metabolites, including intermediates of glycolysis and the tricarboxylic acid (TCA) cycle, nucleotides, amino acids, fatty acids and ketones, are increasingly appreciated to affect signaling in the heart, via various mechanisms ranging from protein-metabolite interactions to modifying epigenetic marks. We review here the current state of knowledge of intermediate metabolite signaling in the heart.
Collapse
Affiliation(s)
- Emily Flam
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
143
|
Cassier-Chauvat C, Marceau F, Farci S, Ouchane S, Chauvat F. The Glutathione System: A Journey from Cyanobacteria to Higher Eukaryotes. Antioxidants (Basel) 2023; 12:1199. [PMID: 37371929 DOI: 10.3390/antiox12061199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication. This review summarizes what is known concerning the GSH-system (GSH, GSH-derived metabolites and GSH-dependent enzymes) in selected model organisms (Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana and human), emphasizing cyanobacteria for the following reasons. Cyanobacteria are environmentally crucial and biotechnologically important organisms that are regarded as having evolved photosynthesis and the GSH system to protect themselves against the ROS produced by their active photoautotrophic metabolism. Furthermore, cyanobacteria synthesize the GSH-derived metabolites, ergothioneine and phytochelatin, that play crucial roles in cell detoxication in humans and plants, respectively. Cyanobacteria also synthesize the thiol-less GSH homologs ophthalmate and norophthalmate that serve as biomarkers of various diseases in humans. Hence, cyanobacteria are well-suited to thoroughly analyze the role/specificity/redundancy of the players of the GSH-system using a genetic approach (deletion/overproduction) that is hardly feasible with other model organisms (E. coli and S. cerevisiae do not synthesize ergothioneine, while plants and humans acquire it from their soil and their diet, respectively).
Collapse
Affiliation(s)
- Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Fanny Marceau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Sandrine Farci
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Soufian Ouchane
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| |
Collapse
|
144
|
Medeiros ML, Oliveira AL, Mello GC, Antunes E. Metformin Counteracts the Deleterious Effects of Methylglyoxal on Ovalbumin-Induced Airway Eosinophilic Inflammation and Remodeling. Int J Mol Sci 2023; 24:ijms24119549. [PMID: 37298498 DOI: 10.3390/ijms24119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Exposure to methylglyoxal (MGO) increases the levels of receptor for advanced glycation end products (RAGE) and reactive-oxygen species (ROS) in mouse airways, exacerbating the inflammatory responses. Metformin scavenges MGO in plasma of diabetic individuals. We investigated if amelioration by metformin of eosinophilic inflammation reflects its ability to inactivate MGO. Male mice received 0.5% MGO for 12 weeks together or not with 2-week treatment with metformin. Inflammatory and remodeling markers were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissues of ovalbumin (OVA)-challenged mice. MGO intake elevated serum MGO levels and MGO immunostaining in airways, which were reduced by metformin. The infiltration of inflammatory cells and eosinophils and levels of IL-4, IL-5 and eotaxin significantly increased in BALF and/or lung sections of MGO-exposed mice, which were reversed by metformin. The increased mucus production and collagen deposition by MGO exposure were also significantly decreased by metformin. In MGO group, the increases of RAGE and ROS levels were fully counteracted by metformin. Superoxide anion (SOD) expression was enhanced by metformin. In conclusion, metformin counteracts OVA-induced airway eosinophilic inflammation and remodeling, and suppresses the RAGE-ROS activation. Metformin may be an option of adjuvant therapy to improve asthma in individuals with high levels of MGO.
Collapse
Affiliation(s)
- Matheus L Medeiros
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Akila L Oliveira
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Glaucia C Mello
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Alexander Fleming St., Campinas 13083-881, SP, Brazil
| |
Collapse
|
145
|
Crake R, Gasmi I, Dehaye J, Lardinois F, Peiffer R, Maloujahmoum N, Agirman F, Koopmansch B, D'Haene N, Azurmendi Senar O, Arsenijevic T, Lambert F, Peulen O, Van Laethem JL, Bellahcène A. Resistance to Gemcitabine in Pancreatic Cancer Is Connected to Methylglyoxal Stress and Heat Shock Response. Cells 2023; 12:1414. [PMID: 37408249 DOI: 10.3390/cells12101414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with poor prognosis. Gemcitabine is the first-line therapy for PDAC, but gemcitabine resistance is a major impediment to achieving satisfactory clinical outcomes. This study investigated whether methylglyoxal (MG), an oncometabolite spontaneously formed as a by-product of glycolysis, notably favors PDAC resistance to gemcitabine. We observed that human PDAC tumors expressing elevated levels of glycolytic enzymes together with high levels of glyoxalase 1 (GLO1), the major MG-detoxifying enzyme, present with a poor prognosis. Next, we showed that glycolysis and subsequent MG stress are triggered in PDAC cells rendered resistant to gemcitabine when compared with parental cells. In fact, acquired resistance, following short and long-term gemcitabine challenges, correlated with the upregulation of GLUT1, LDHA, GLO1, and the accumulation of MG protein adducts. We showed that MG-mediated activation of heat shock response is, at least in part, the molecular mechanism underlying survival in gemcitabine-treated PDAC cells. This novel adverse effect of gemcitabine, i.e., induction of MG stress and HSR activation, is efficiently reversed using potent MG scavengers such as metformin and aminoguanidine. We propose that the MG blockade could be exploited to resensitize resistant PDAC tumors and to improve patient outcomes using gemcitabine therapy.
Collapse
Affiliation(s)
- Rebekah Crake
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Imène Gasmi
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Jordan Dehaye
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Fanny Lardinois
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Naïma Maloujahmoum
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Benjamin Koopmansch
- Department of Human Genetics, Liège University Hospital, 4020 Liège, Belgium
| | - Nicky D'Haene
- Department of Pathology, Hôpital Universitaire de Bruxelles Bordet Erasme l Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Universitaire de Bruxelles Bordet Erasme Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Frédéric Lambert
- Department of Human Genetics, Liège University Hospital, 4020 Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Medical Faculty, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Universitaire de Bruxelles Bordet Erasme Hospital, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, GIGA Institute, University of Liège, 4020 Liège, Belgium
| |
Collapse
|
146
|
Zong GW, Wang WY, Zheng J, Zhang W, Luo WM, Fang ZZ, Zhang Q. A Metabolism-Based Interpretable Machine Learning Prediction Model for Diabetic Retinopathy Risk: A Cross-Sectional Study in Chinese Patients with Type 2 Diabetes. J Diabetes Res 2023; 2023:3990035. [PMID: 37229505 PMCID: PMC10205414 DOI: 10.1155/2023/3990035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/19/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
The burden of diabetic retinopathy (DR) is increasing, and the sensitive biomarkers of the disease were not enough. Studies have found that the metabolic profile, such as amino acid (AA) and acylcarnitine (AcylCN), in the early stages of DR patients might have changed, indicating the potential of metabolites to become new biomarkers. We are amid to construct a metabolite-based prediction model for DR risk. This study was conducted on type 2 diabetes (T2D) patients with or without DR. Logistic regression and extreme gradient boosting (XGBoost) prediction models were constructed using the traditional clinical features and the screening features, respectively. Assessing the predictive power of the models in terms of both discrimination and calibration, the optimal model was interpreted using the Shapley Additive exPlanations (SHAP) to quantify the effect of features on prediction. Finally, the XGBoost model incorporating AA and AcylCN variables had the best comprehensive evaluation (ROCAUC = 0.82, PRAUC = 0.44, Brier score = 0.09). C18 : 1OH lower than 0.04 μmol/L, C18 : 1 lower than 0.70 μmol/L, threonine higher than 27.0 μmol/L, and tyrosine lower than 36.0 μmol/L were associated with an increased risk of developing DR. Phenylalanine higher than 52.0 μmol/L was associated with a decreased risk of developing DR. In conclusion, our study mainly used AAs and AcylCNs to construct an interpretable XGBoost model to predict the risk of developing DR in T2D patients which is beneficial in identifying high-risk groups and preventing or delaying the onset of DR. In addition, our study proposed possible risk cut-off values for DR of C18 : 1OH, C18 : 1, threonine, tyrosine, and phenylalanine.
Collapse
Affiliation(s)
- Guo-Wei Zong
- Department of Mathematics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Wan-Ying Wang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jun Zheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Wei Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wei-Ming Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhong-Ze Fang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
147
|
Mestareehi A, Li H, Zhang X, Meda Venkata SP, Jaiswal R, Yu FS, Yi Z, Wang JM. Quantitative Proteomics Reveals Transforming Growth Factor β Receptor Targeted by Resveratrol and Hesperetin Coformulation in Endothelial Cells. ACS OMEGA 2023; 8:16206-16217. [PMID: 37179642 PMCID: PMC10173440 DOI: 10.1021/acsomega.3c00678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
The endothelium is the frontline target of multiple metabolic stressors and pharmacological agents. As a consequence, endothelial cells (ECs) display highly dynamic and diverse proteome profiles. We describe here the culture of human aortic ECs from healthy and type 2 diabetic donors, the treatment with a small molecular coformulation of trans-resveratrol and hesperetin (tRES+HESP), followed by proteomic analysis of whole-cell lysate. A number of 3666 proteins were presented in all of the samples and thus further analyzed. We found that 179 proteins had a significant difference between diabetic ECs vs. healthy ECs, while 81 proteins had a significant change upon the treatment of tRES+HESP in diabetic ECs. Among them, 16 proteins showed a difference between diabetic ECs and healthy ECs and the difference was reversed by the tRES+HESP treatment. Follow-up functional assays identified activin A receptor-like type 1 and transforming growth factor β receptor 2 as the most pronounced targets suppressed by tRES+HESP in protecting angiogenesis in vitro. Our study has revealed the global differences in proteins and biological pathways in ECs from diabetic donors, which are potentially reversible by the tRES+HESP formula. Furthermore, we have identified the TGFβ receptor as a responding mechanism in ECs treated with this formula, shedding light on future studies for deeper molecular characterization.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Eugene Applebaum College of
Pharmacy and Health Sciences, Integrated Biosciences, Ophthalmology, Visual and Anatomical
Sciences, School of Medicine, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, United States
| | - Hainan Li
- Department
of Pharmaceutical Sciences, Eugene Applebaum College of
Pharmacy and Health Sciences, Integrated Biosciences, Ophthalmology, Visual and Anatomical
Sciences, School of Medicine, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, United States
| | - Xiangmin Zhang
- Department
of Pharmaceutical Sciences, Eugene Applebaum College of
Pharmacy and Health Sciences, Integrated Biosciences, Ophthalmology, Visual and Anatomical
Sciences, School of Medicine, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, United States
| | - Sai Pranathi Meda Venkata
- Department
of Pharmaceutical Sciences, Eugene Applebaum College of
Pharmacy and Health Sciences, Integrated Biosciences, Ophthalmology, Visual and Anatomical
Sciences, School of Medicine, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, United States
| | - Ruchi Jaiswal
- Department
of Pharmaceutical Sciences, Eugene Applebaum College of
Pharmacy and Health Sciences, Integrated Biosciences, Ophthalmology, Visual and Anatomical
Sciences, School of Medicine, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, United States
| | - Fu-Shin Yu
- Department
of Pharmaceutical Sciences, Eugene Applebaum College of
Pharmacy and Health Sciences, Integrated Biosciences, Ophthalmology, Visual and Anatomical
Sciences, School of Medicine, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, United States
| | - Zhengping Yi
- Department
of Pharmaceutical Sciences, Eugene Applebaum College of
Pharmacy and Health Sciences, Integrated Biosciences, Ophthalmology, Visual and Anatomical
Sciences, School of Medicine, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, United States
| | - Jie-Mei Wang
- Department
of Pharmaceutical Sciences, Eugene Applebaum College of
Pharmacy and Health Sciences, Integrated Biosciences, Ophthalmology, Visual and Anatomical
Sciences, School of Medicine, and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
148
|
Knörlein A, Xiao Y, David Y. Leveraging histone glycation for cancer diagnostics and therapeutics. Trends Cancer 2023; 9:410-420. [PMID: 36804508 PMCID: PMC10121827 DOI: 10.1016/j.trecan.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Cancer cells undergo metabolic reprogramming to rely mostly on aerobic glycolysis (the Warburg effect). The increased glycolytic intake enhances the intracellular levels of reactive sugars and sugar metabolites. These reactive species can covalently modify macromolecules in a process termed glycation. Histones are particularly susceptible to glycation, resulting in substantial alterations to chromatin structure, function, and transcriptional output. Growing evidence suggests a link between dysregulated metabolism of tumors and cancer proliferation through epigenetic changes. This review discusses recent advances in the understanding of histone glycation, its impact on the epigenetic landscape and cellular fate, and its role in cancer. In addition, we investigate the possibility of using histone glycation as biomarkers and targets for anticancer therapeutics.
Collapse
Affiliation(s)
- Anna Knörlein
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yang Xiao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA; Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
149
|
Schildhauer P, Selke P, Scheller C, Strauss C, Horstkorte R, Leisz S, Scheer M. Glycation Leads to Increased Invasion of Glioblastoma Cells. Cells 2023; 12:cells12091219. [PMID: 37174618 PMCID: PMC10177211 DOI: 10.3390/cells12091219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and invasive brain tumor with a poor prognosis despite extensive treatment. The switch to aerobic glycolysis, known as the Warburg effect, in cancer cells leads to an increased production of methylglyoxal (MGO), a potent glycation agent with pro-tumorigenic characteristics. MGO non-enzymatically reacts with proteins, DNA, and lipids, leading to alterations in the signaling pathways, genomic instability, and cellular dysfunction. In this study, we investigated the impact of MGO on the LN229 and U251 (WHO grade IV, GBM) cell lines and the U343 (WHO grade III) glioma cell line, along with primary human astrocytes (hA). The results showed that increasing concentrations of MGO led to glycation, the accumulation of advanced glycation end-products, and decreasing cell viability in all cell lines. The invasiveness of the GBM cell lines increased under the influence of physiological MGO concentrations (0.3 mmol/L), resulting in a more aggressive phenotype, whereas glycation decreased the invasion potential of hA. In addition, glycation had differential effects on the ECM components that are involved in the invasion progress, upregulating TGFβ, brevican, and tenascin C in the GBM cell lines LN229 and U251. These findings highlight the importance of further studies on the prevention of glycation through MGO scavengers or glyoxalase 1 activators as a potential therapeutic strategy against glioma and GBM.
Collapse
Affiliation(s)
- Paola Schildhauer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Philipp Selke
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, 06114 Halle (Saale), Germany
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Maximilian Scheer
- Department of Neurosurgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
150
|
Yadav N, Palkhede JD, Kim SY. Anti-Glucotoxicity Effect of Phytoconstituents via Inhibiting MGO-AGEs Formation and Breaking MGO-AGEs. Int J Mol Sci 2023; 24:7672. [PMID: 37108833 PMCID: PMC10141761 DOI: 10.3390/ijms24087672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic benefits of phytochemicals in the treatment of various illnesses and disorders are well documented. They show significant promise for the discovery and creation of novel medications for treating a variety of human diseases. Numerous phytoconstituents have shown antibiotic, antioxidant, and wound-healing effects in the conventional system. Traditional medicines based on alkaloids, phenolics, tannins, saponins, terpenes, steroids, flavonoids, glycosides, and phytosterols have been in use for a long time and are crucial as alternative treatments. These phytochemical elements are crucial for scavenging free radicals, capturing reactive carbonyl species, changing protein glycation sites, inactivating carbohydrate hydrolases, fighting pathological conditions, and accelerating the healing of wounds. In this review, 221 research papers have been reviewed. This research sought to provide an update on the types and methods of formation of methylglyoxal-advanced glycation end products (MGO-AGEs) and molecular pathways induced by AGEs during the progression of the chronic complications of diabetes and associated diseases as well as to discuss the role of phytoconstituents in MGO scavenging and AGEs breaking. The development and commercialization of functional foods using these natural compounds can provide potential health benefits.
Collapse
Affiliation(s)
- Neera Yadav
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jyoti Dnyaneshwar Palkhede
- Department of Chemistry, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|