101
|
BA-12 Inhibits Angiogenesis via Glutathione Metabolism Activation. Int J Mol Sci 2019; 20:ijms20164062. [PMID: 31434286 PMCID: PMC6720627 DOI: 10.3390/ijms20164062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 01/09/2023] Open
Abstract
There is a need for an efficient and low-cost leading compound discovery mode. However, drug development remains slow, expensive, and risky. Here, this manuscript proposes a leading compound discovery strategy based on a combination of traditional Chinese medicine (TCM) formulae and pharmacochemistry, using a ligustrazine-betulinic acid derivative (BA-12) in the treatment of angiogenesis as an example. Blocking angiogenesis to inhibit the growth and metastasis of solid tumors is currently one recognized therapy for cancer in the clinic. Firstly, based on a traditional Prunella vulgaris plaster, BA-12 was synthesized according to our previous study, as it exhibited better antitumor activities than other derivatives on human bladder carcinoma cells (T24); it was then uploaded for target prediction. Secondly, the efficacy and biotoxicity of BA-12 on angiogenesis were evaluated using human umbilical vein endothelial cells (HUVECs), a quail chick chorioallantoic membrane, and Caenorhabditis elegans. According to the prediction results, the main mechanisms of BA-12 were metabolic pathways. Thus, multiple metabolomics approaches were applied to reveal the mechanisms of BA-12. Finally, the predictive mechanisms of BA-12 on glutathione metabolism and glycerophospholipid metabolism activation were validated using targeted metabolomics and pharmacological assays. This strategy may provide a reference for highly efficient drug discovery, with the aim of sharing TCM wisdom for unmet clinical needs.
Collapse
|
102
|
Ginger ( Zingiber officinale Roscoe) in the Prevention of Ageing and Degenerative Diseases: Review of Current Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5054395. [PMID: 31531114 PMCID: PMC6721508 DOI: 10.1155/2019/5054395] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
Currently, the age of the population is increasing as a result of increased life expectancy. Ageing is defined as the progressive loss of physiological integrity, which can be characterized by functional impairment and high vulnerability to various types of diseases, such as diabetes, hypertension, Alzheimer's disease (AD), Parkinson's disease (PD), and atherosclerosis. Numerous studies have reported that the presence of oxidative stress and inflammation contributes to the development of these diseases. In general, oxidative stress could induce proinflammatory cytokines and reduce cellular antioxidant capacity. Increased oxidative stress levels beyond the production of antioxidant agents cause oxidative damage to biological molecules, including DNA, protein, and carbohydrates, which affects normal cell signalling, cell growth, differentiation, and apoptosis and leads to disease pathogenesis. Since oxidative stress and inflammation contribute to these diseases, ginger (Zingiber officinale Roscoe) is one of the potential herbs that can be used to reduce the level of oxidative stress and inflammation. Ginger consists of two major active components, 6-gingerol and 6-shogaol, which are essential for preventing oxidative stress and inflammation. Thus, this paper will review the effects of ginger on ageing and degenerative diseases, including AD, PD, type 2 diabetes mellitus (DM), hypertension, and osteoarthritis.
Collapse
|
103
|
Determination of the Molecular Mechanism of Torularhodin against Hepatic Oxidative Damage by Transcriptome Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7417263. [PMID: 31396306 PMCID: PMC6664691 DOI: 10.1155/2019/7417263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/17/2023]
Abstract
Torularhodin, extracted from Sporidiobolus pararoseus, is a significant carotenoid that is similar to lycopene in structure. Some studies have indicated torularhodin as having antioxidative activities. However, it has not been thoroughly studied with respect to its antioxidative activity and molecular mechanisms in liver injury. Therefore, the aim of this study was to elucidate the antioxidative activity of torularhodin against hydrogen peroxide- (H2O2-) induced damage and the mechanism involved through transcriptome analysis and to explore its antioxidant potential. BRL cells were first subjected to H2O2 damage and then treated with torularhodin. The results showed that at 10−5 g/ml, torularhodin had significant protective effects against H2O2-induced oxidative damage. Morphological and immunofluorescence staining showed that torularhodin could maintain cell integrity and enhance the activity of antioxidant enzymes in the cells. According to transcriptome analysis, 2808 genes were significantly differentially expressed (1334 upregulated and 1474 downregulated) after torularhodin treatment. These genes were involved in three major Gene Ontology categories (biological process, cellular component, and molecular function). Moreover, torularhodin was involved in some cellular pathways, such as cancer inhibition, antioxidation, and aging delay. Our data highlighted the importance of multiple pathways in the antioxidative damage of liver treated with torularhodin and will contribute to get the molecular mechanisms of torularhodin inhibition of hepatic oxidative damage.
Collapse
|
104
|
Time course study of oxidative stress in sulfur mustard analog 2‑chloroethyl ethyl sulfide-induced toxicity. Int Immunopharmacol 2019; 73:81-93. [DOI: 10.1016/j.intimp.2019.04.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
|
105
|
Fan Z, Xu H. Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive Polymers. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1641515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhiyuan Fan
- Department of Chemistry, Tsinghua University, Key Lab of Organic Optoelectronics and Molecular Engineering, Beijing, P. R. China
| | - Huaping Xu
- Department of Chemistry, Tsinghua University, Key Lab of Organic Optoelectronics and Molecular Engineering, Beijing, P. R. China
| |
Collapse
|
106
|
Mercader J, Sabater AG, Le Gonidec S, Decaunes P, Chaplin A, Gómez-Zorita S, Milagro FI, Carpéné C. Oral Phenelzine Treatment Mitigates Metabolic Disturbances in Mice Fed a High-Fat Diet. J Pharmacol Exp Ther 2019; 371:555-566. [PMID: 31270215 DOI: 10.1124/jpet.119.259895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Novel mechanisms and health benefits have been recently suggested for the antidepressant drug phenelzine (PHE), known as a nonselective monoamine oxidase inhibitor. They include an antilipogenic action that could have an impact on excessive fat accumulation and obesity-related metabolic alterations. We evaluated the metabolic effects of an oral PHE treatment on mice fed a high-fat diet (HFD). Eleven-week-old male C57BL/6 mice were fed a HFD and either a 0.028% PHE solution (HFD + PHE) or water to drink for 11 weeks. PHE attenuated the increase in body weight and adiposity without affecting food consumption. Energy efficiency was lower in HFD + PHE mice. Lipid content was reduced in subcutaneous fat pads, liver, and skeletal muscle. In white adipose tissue (WAT), PHE reduced sterol regulatory element-binding protein-1c and phosphoenolpyruvate carboxykinase mRNA levels, inhibited amine-induced lipogenesis, and did not increase lipolysis. Moreover, HFD + PHE mice presented diminished levels of hydrogen peroxide release in subcutaneous WAT and reduced expression of leukocyte transmigration markers and proinflammatory cytokines in visceral WAT and liver. PHE reduced the circulating levels of glycerol, triacylglycerols, high-density lipoprotein cholesterol, and insulin. Insulin resistance was reduced, without affecting glucose levels and glucose tolerance. In contrast, PHE increased rectal temperature and slightly increased energy expenditure. The mitigation of HFD-induced metabolic disturbances points toward a promising role for PHE in obesity treatment and encourages further research on its mechanisms of action. SIGNIFICANCE STATEMENT: Phenelzine reduces body fat, markers of oxidative stress, inflammation, and insulin resistance in high-fat diet mice. Semicarbazide-sensitive amine oxidase, monoamine oxidase, phosphoenolpyruvate carboxykinase, and sterol regulatory element-binding protein-1c are involved in the metabolic effects of phenelzine. Phenelzine could be potentially used for the treatment of obesity-related complications.
Collapse
Affiliation(s)
- Josep Mercader
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Agustín G Sabater
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Sophie Le Gonidec
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Pauline Decaunes
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Alice Chaplin
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Saioa Gómez-Zorita
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Fermín I Milagro
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| | - Christian Carpéné
- Balearic Islands Health Research Institute, Palma de Mallorca, Spain (J.M.); Department of Fundamental Biology and Health Sciences, University of Balearic Islands (UIB), Palma de Mallorca, Spain (J.M.); Alimentómica, S.L., Spin-off from UIB, Palma de Mallorca, Spain (A.G.S.); Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Teams 1 & 3, Toulouse, France (C.C., S.L.G., P.D.); I2MC, University of Toulouse, UMR1048, Paul Sabatier University, Toulouse Cedex 4, France (C.C., S.L.G., P.D.); Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, Ohio (A.C.); Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country and Lucio Lascaray Research Institute, Vitoria, Spain (S.G.-Z.); CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain (S.G.-Z., F.I.M.); Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain (F.I.M.); and Centre for Nutrition Research, University of Navarra, Pamplona, Spain (F.I.M.)
| |
Collapse
|
107
|
Omidi G, Karimi SA, Rezvani-Kamran A, Monsef A, Shahidi S, Komaki A. Effect of coenzyme Q10 supplementation on diabetes induced memory deficits in rats. Metab Brain Dis 2019; 34:833-840. [PMID: 30848472 DOI: 10.1007/s11011-019-00402-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
Abstract
The main objective of current work was to determine the effects of low and high dose supplementation with coenzyme Q10 (CoQ10) on spatial learning and memory in rats with streptozotocin (STZ)-induced diabetes. Male Wistar rats (weighing 220 ± 10) were randomly divided into six groups: (i) Control (Con, n = 8); (ii) Control+ Low dose of CoQ10 (100 mg/kg) (CLD, n = 10); (iii) Control+ high dose of CoQ10 (600 mg/kg) (CHD, n = 10); (iv) Diabetic (D, n = 10); (v) Diabetic + Low dose of CoQ10 (100 mg/kg) (DLD, n = 10); (vi) Diabetic + high dose of CoQ10 (600 mg/kg) (DHD, n = 10). Diabetes was induced by a single intraperitoneal injection of 50 mg/kg STZ. CoQ10 was administered intragastrically by gavage once a day for 90 days. After 90 days, Morris water maze (MWM) task was used to evaluate the spatial learning and memory in rats. Diabetic animals showed a slower rate of acquisition with respect to the control animals [F (1, 51) = 92.81, P < 0.0001, two-way ANOVA]. High dose (but no low dose) supplementation with CoQ10 could attenuate deteriorative effect of diabetes on memory acquisition. Diabetic animals which received CoQ10 (600 mg/kg) show a considerable decrease in escape latency and traveled distance compared to diabetic animals (p < 0.05, two-way ANOVA,). The present study has shown that low dose supplementation with CoQ10 in diabetic rats failed to improve deficits in cognitive function but high dose supplementation with CoQ10 reversed diabetes-related declines in spatial learning.
Collapse
Affiliation(s)
- Ghazaleh Omidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arezoo Rezvani-Kamran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amirreza Monsef
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Neuroscience, School of Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran.
| |
Collapse
|
108
|
Mitochondrial Entry of Cytotoxic Proteases: A New Insight into the Granzyme B Cell Death Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9165214. [PMID: 31249651 PMCID: PMC6556269 DOI: 10.1155/2019/9165214] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/08/2019] [Indexed: 02/03/2023]
Abstract
The mitochondria represent an integration and amplification hub for various death pathways including that mediated by granzyme B (GB), a granule enzyme expressed by cytotoxic lymphocytes. GB activates the proapoptotic B cell CLL/lymphoma 2 (Bcl-2) family member BH3-interacting domain death agonist (BID) to switch on the intrinsic mitochondrial death pathway, leading to Bcl-2-associated X protein (Bax)/Bcl-2 homologous antagonist/killer- (Bak-) dependent mitochondrial outer membrane permeabilization (MOMP), the dissipation of mitochondrial transmembrane potential (ΔΨm), and the production of reactive oxygen species (ROS). GB can also induce mitochondrial damage in the absence of BID, Bax, and Bak, critical for MOMP, indicating that GB targets the mitochondria in other ways. Interestingly, granzyme A (GA), GB, and caspase 3 can all directly target the mitochondrial respiratory chain complex I for ROS-dependent cell death. Studies of ROS biogenesis have revealed that GB must enter the mitochondria for ROS production, making the mitochondrial entry of cytotoxic proteases (MECP) an unexpected critical step in the granzyme death pathway. MECP requires an intact ΔΨm and is mediated though Sam50 and Tim22 channels in a mtHSP70-dependent manner. Preventing MECP severely compromises GB cytotoxicity. In this review, we provide a brief overview of the canonical mitochondrial death pathway in order to put into perspective this new insight into the GB action on the mitochondria to trigger ROS-dependent cell death.
Collapse
|
109
|
Colomo N, López-Siguero JP, Leiva I, Fuentes N, Rubio-Martín E, Omiste A, Guerrero M, Tapia MJ, Martín-Tejedor B, Ruiz de Adana MS, Olveira G. Relationship between glucose control, glycemic variability, and oxidative stress in children with type 1 diabetes. ACTA ACUST UNITED AC 2019; 66:540-549. [PMID: 30853269 DOI: 10.1016/j.endinu.2018.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Few studies assessing the relationship between oxidative stress and glycemic variability in children with type 1 diabetes mellitus (T1DM) are available, and most of them reported no significant results. OBJECTIVE To assess the relationship between glucose control, glycemic variability, and oxidative stress as measured by urinary excretion of 8-iso-prostanglandin F2-alpha (8-iso-PGF2α) in children with T1DM. MATERIALS AND METHODS A cross-sectional study including 25 children with T1DM. Participants were evaluated during five days in two different situations: 1st phase during a summer camp, and 2nd phase in their everyday life at home. The following data were collected in each study phase:. - Six capillary blood glucose measurements per day. Mean blood glucose (MBG) levels and glucose variability parameters, including standard deviation, coefficient of variation, and mean amplitude of glycemic excursions (MAGE), were calculated. - Capillary HbA1c level. - 24-h urine sample to measure 8-iso-PGF2α. RESULTS There were no statistically significant differences in urinary 8-iso-PGF2α levels (142±37 vs. 172±61pg/mg creatinine) and glucose control and glycemic variability parameters between both phases. In the 2nd phase, statistically significant correlations were found between urinary 8-iso-PGF2α and HbA1c levels (r=0.53), MBG (r=0.72), standard deviation (r=0.49), and MAGE (r=0.42). No significant correlations between glucose control, glycemic variability and urinary 8-iso-PGF2α excretion were found in the 1st phase. CONCLUSIONS A significant correlation was found between glycemic variability and HbA1c level and urinary 8-iso-PGF2α excretion in a group of children with T1DM during their daily lives. Additional studies are needed to confirm this finding and to explore its long-term impact on health.
Collapse
Affiliation(s)
- Natalia Colomo
- Servicio de Endocrinología y Nutrición, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Plaza del Hospital Civil sn, 29009 Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, C/Sinesio Delgado 4, 28029 Madrid, Spain.
| | - Juan Pedro López-Siguero
- Servicio de Endocrinología Pediátrica, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Avenida Arroyo de los Ángeles sn, 29011 Málaga, Spain
| | - Isabel Leiva
- Servicio de Endocrinología Pediátrica, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Avenida Arroyo de los Ángeles sn, 29011 Málaga, Spain
| | - Noemí Fuentes
- Servicio de Endocrinología Pediátrica, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Avenida Arroyo de los Ángeles sn, 29011 Málaga, Spain
| | - Elehazara Rubio-Martín
- Servicio de Endocrinología y Nutrición, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Plaza del Hospital Civil sn, 29009 Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, C/Sinesio Delgado 4, 28029 Madrid, Spain
| | - Antonio Omiste
- Servicio de Endocrinología y Nutrición, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Plaza del Hospital Civil sn, 29009 Málaga, Spain
| | - Mercedes Guerrero
- Servicio de Endocrinología y Nutrición, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Plaza del Hospital Civil sn, 29009 Málaga, Spain
| | - María José Tapia
- Servicio de Endocrinología y Nutrición, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Plaza del Hospital Civil sn, 29009 Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, C/Sinesio Delgado 4, 28029 Madrid, Spain
| | - Beatriz Martín-Tejedor
- Servicio de Endocrinología Pediátrica, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Avenida Arroyo de los Ángeles sn, 29011 Málaga, Spain
| | - María Soledad Ruiz de Adana
- Servicio de Endocrinología y Nutrición, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Plaza del Hospital Civil sn, 29009 Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, C/Sinesio Delgado 4, 28029 Madrid, Spain
| | - Gabriel Olveira
- Servicio de Endocrinología y Nutrición, Hospital Regional de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Plaza del Hospital Civil sn, 29009 Málaga, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, C/Sinesio Delgado 4, 28029 Madrid, Spain
| |
Collapse
|
110
|
Developmental programming: Changes in mediators of insulin sensitivity in prenatal bisphenol A-treated female sheep. Reprod Toxicol 2019; 85:110-122. [PMID: 30853570 DOI: 10.1016/j.reprotox.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Developmental exposure to endocrine disruptor bisphenol A (BPA) is associated with metabolic defects during adulthood. In sheep, prenatal BPA treatment causes insulin resistance (IR) and adipocyte hypertrophy in the female offspring. To determine if changes in insulin sensitivity mediators (increase in inflammation, oxidative stress, and lipotoxicity and/or decrease in adiponectin) and the intracrine steroidal milieu contributes to these metabolic perturbations, metabolic tissues collected from 21-month-old female offspring born to mothers treated with 0, 0.05, 0.5, or 5 mg/kg/day of BPA were studied. Findings showed prenatal BPA in non-monotonic manner (1) increased oxidative stress; (2) induced lipotoxicity in liver and muscle; and (3) increased aromatase and estrogen receptor expression in visceral adipose tissues. These changes are generally associated with the development of peripheral and tissue level IR and may explain the IR status and adipocyte hypertrophy observed in prenatal BPA-treated female sheep.
Collapse
|
111
|
Chinese Medicine FTZ Recipe Protects against High-Glucose-Induced Beta Cell Injury through Alleviating Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6378786. [PMID: 30941199 PMCID: PMC6421024 DOI: 10.1155/2019/6378786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
Abstract
Objective To investigate the effect of FTZ on high-glucose-induced oxidative stress and underlying mechanisms. Methods We used a β cell dysfunction and diabetes model that was induced in rats fed a high-fat high-sugar diet (HFHSD) for 6 weeks and injected once with 35 mg/kg streptozocin (STZ). Then, 3 and 6 g/kg of FTZ were administered by gavage for 8 weeks. In addition, an ex vivo model of oxidative stress was induced by stimulating INS-1 cells with 25 mmol/L glucose for 48 h. Result The levels of fasting blood glucose (FBG) in diabetic model rats were obviously higher than those in the normal group; furthermore with reduced levels of β cells, catalase (CAT), superoxide dismutase (SOD), and Bcl-2 increased lipid peroxide malondialdehyde (MDA) and caspase-3 in the pancreatic tissue of the diabetic model rats. Afterward, the cells were incubated with FTZ-containing serum and edaravone. The 25 mmol/L glucose-induced SOD reduction increased MDA and intracellular ROS. The protein expression level of Mn-SOD and CAT in the model group decreased significantly compared with that in the control group. Conclusion FTZ treatment significantly improved the alteration in the level of SOD, CAT, Bcl-2, caspase-3, and MDA coupled with β cell dysfunction in diabetic rats. Oxidative stress in INS-1 cells was closely associated with a higher rate of apoptosis, increased production of ROS and MDA, enhanced Bax expression, and caspase-3, -9 activities and markedly decreased protein expression of Mn-SOD and CAT. FTZ-containing serum incubation notably reversed the high-glucose-evoked increase in cell apoptosis, production of ROS and MDA, and Bax protein levels. Furthermore, FTZ stimulation upregulated the expression levels of several genes, including Mn-SOD, CAT, and Bcl-2/Bcl-xl. In addition, FTZ decreased the intracellular activity of caspase-3, -9 in INS-1 cells. FTZ protected β-cells from oxidative stress induced by high glucose in vivo and in vitro. The beneficial effect of FTZ was closely associated with a decrease in the activity of caspase-3, -9 and intracellular production of ROS, MDA, and Bax coupled with an increase in the expression of Mn-SOD, CAT, and Bcl-2/Bcl-xl.
Collapse
|
112
|
Dar MA, Khan AM, Raina R, Verma PK, Wani NM. Effect of bifenthrin on oxidative stress parameters in the liver, kidneys, and lungs of rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9365-9370. [PMID: 30721431 DOI: 10.1007/s11356-019-04362-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Oxidative stress inducing potential of bifenthrin was evaluated in the liver, kidney, and lung of rats following its repeated oral administration for 20 and 30 days. Bifenthrin-treated rats showed a significant lipid peroxidation in all three tissues. By 20th day of treatment, there was a significant decrease in superoxide dismutase activity of the liver, catalase and glutathione peroxidase activity of the liver and lung, and glutathione S-transferase activity of the kidney and lung. By 30th day of exposure, the activities of these enzymes were significantly decreased in all three tissues. The highest oxidative stress, indicated by lipid peroxidation and alteration in antioxidant enzymes, is produced in the liver followed by the kidney and lung. In conclusion, bifenthrin has a potential to induce severe oxidative stress in the liver, kidney, and lung. The extent of oxidative stress is increased with the duration of exposure.
Collapse
Affiliation(s)
- Muneer Ahmad Dar
- Department of Veterinary Pharmacology and Toxicology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Adil Mehraj Khan
- Department of Veterinary Pharmacology and Toxicology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India.
- Division of Veterinary Pharmacology and Toxicology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India.
| | - Rajinder Raina
- Department of Veterinary Pharmacology and Toxicology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Pawan Kumar Verma
- Department of Veterinary Pharmacology and Toxicology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Nasir Manzoor Wani
- Department of Veterinary Pharmacology and Toxicology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| |
Collapse
|
113
|
Wakamatsu J, Stark TD, Hofmann T. Antioxidative Maillard Reaction Products Generated in Processed Aged Garlic Extract. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2190-2200. [PMID: 30715866 DOI: 10.1021/acs.jafc.8b06907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A powder formulation of aged garlic extract was heated at 100 °C for 1 day to obtain higher antioxidant activity determined with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging (ARS) and oxygen radical absorbance capacity (ORAC) assays. Activity-guided fractionation afforded 12 new in vitro antioxidative Maillard-type products, α-[(2-formyl-5-hydroxymethyl)pyrrol-1-yl]arginine (3), 4-[7-hydroxy-6-(hydroxymethyl)-7,8-dihydro-6 H-pyrano[2,3- b] pyrazine-3-yl]butane-1,2,3-triol (4), 4-[6-(1,2-dihydroxyethyl)-6,7-dihydro-furo[2,3- b]pyrazin-3-yl]-butane-1,2,3-triol (5), α-[(2-formyl-5-hydroxymethyl)-pyrrol-1-yl] aspartic acid (12), 1-[5-(1,2-dihydroxyethyl)-2-oxotetrahydrofuran-3-yl]-5-(hydroxymethyl)-1 H-pyrrole-2-carbaldehyde (14), 4-(6-ethyl-2-pyrazinyl)-1,2,3-butanetriol (17), α-[(2-formyl-5-hydroxymethyl)pyrrol-1-yl] glutamic acid (19), ( S)-1-[(5-hydroxymethyl)furan-2-yl]methyl]-5-oxopyrrolidine-2-carboxylic acid (20), 3-hydroxy-1 H-[{5-(hydroxymethyl)furan-2-yl}methyl]-2,5-dioxo-3-pyrrolidine acetic acid (21), ( E)-4-(5-methylpyrazin-2-yl)but-3-ene-7,2-diol (23), 4-acetyl-6-(hydroxymethyl)picolinic acid (24), ( E)-4-(6-methylpyrazin-2-yl)but-3-ene-1,2-diol (26) and 14 known compounds, 1, 2, 6-11, 13, 15, 16, 18, 22 and 25, which were characterized via 1D/2D-NMR, CD spectroscopy, and mass spectrometry. ARS and ORAC activities of these antioxidants ranged from 0.01 to 0.49 μmol TE/μmol and from 0.01 to 3.50 μmol TE/μmol, respectively. Additionally, plausible formation pathways for the new organic acid-type products (15, 20, and 21) were proposed based on proving their generation in model reactions detected via liquid chromatography-mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
- Junichiro Wakamatsu
- Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| | - Timo D Stark
- Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| | - Thomas Hofmann
- Food Chemistry and Molecular Sensory Science , Technische Universität München , Lise-Meitner-Straße 34 , 85354 Freising , Germany
| |
Collapse
|
114
|
Guimera AM, Shanley DP, Proctor CJ. Modelling the role of redox-related mechanisms in musculoskeletal ageing. Free Radic Biol Med 2019; 132:11-18. [PMID: 30219703 DOI: 10.1016/j.freeradbiomed.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
The decline in the musculoskeletal system with age is driven at the cellular level by random molecular damage. Cells possess mechanisms to repair or remove damage and many of the pathways involved in this response are regulated by redox signals. However, with ageing there is an increase in oxidative stress which can lead to chronic inflammation and disruption of redox signalling pathways. The complexity of the processes involved has led to the use of computational modelling to help increase our understanding of the system, test hypotheses and make testable predictions. This paper will give a brief background of the biological systems that have been modelled, an introduction to computational modelling, a review of models that involve redox-related mechanisms that are applicable to musculoskeletal ageing, and finally a discussion of the future potential for modelling in this field.
Collapse
Affiliation(s)
- Alvaro Martinez Guimera
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daryl P Shanley
- Institute for Cell and Molecular Biosciences, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Carole J Proctor
- Institute of Cellular Medicine, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
115
|
Nie L, Gao C, Shen T, Jing J, Zhang S, Zhang X. Dual-Site Fluorescent Probe to Monitor Intracellular Nitroxyl and GSH-GSSG Oscillations. Anal Chem 2019; 91:4451-4456. [DOI: 10.1021/acs.analchem.8b05098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Longxue Nie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Congcong Gao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Tianjiao Shen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
116
|
Teodoro JS, Nunes S, Rolo AP, Reis F, Palmeira CM. Therapeutic Options Targeting Oxidative Stress, Mitochondrial Dysfunction and Inflammation to Hinder the Progression of Vascular Complications of Diabetes. Front Physiol 2019; 9:1857. [PMID: 30705633 PMCID: PMC6344610 DOI: 10.3389/fphys.2018.01857] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus is a leading cause of morbidity and mortality worldwide, given its serious associated complications. Despite constant efforts and intensive research, an effective, ubiquitous treatment still eludes the scientific community. As such, the identification of novel avenues of research is key to the potential discovery of this evasive "silver bullet." We focus on this review on the matter of diabetic injury to endothelial tissue and some of the pivotal underlying mechanisms, including hyperglycemia and hyperlipidemia evoked oxidative stress and inflammation. In this sense, we revisited the most promising therapeutic interventions (both non-pharmacological and antidiabetic drugs) targeting oxidative stress and inflammation to hinder progression of vascular complications of diabetes. This review article gives particular attention to the relevance of mitochondrial function, an often ignored and understudied organelle in the vascular endothelium. We highlight the importance of mitochondrial function and number homeostasis in diabetic conditions and discuss the work conducted to address the aforementioned issue by the use of various therapeutic strategies. We explore here the functional, biochemical and bioenergetic alterations provoked by hyperglycemia in the endothelium, from elevated oxidative stress to inflammation and cell death, as well as loss of tissue function. Furthermore, we synthetize the literature regarding the current and promising approaches into dealing with these alterations. We discuss how known agents and therapeutic behaviors (as, for example, metformin, dietary restriction or antioxidants) can restore normality to mitochondrial and endothelial function, preserving the tissue's function and averting the aforementioned complications.
Collapse
Affiliation(s)
- João S Teodoro
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sara Nunes
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Anabela P Rolo
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, Coimbra, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences and Cell Biology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
117
|
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26:6991-7034. [DOI: 10.2174/0929867326666181220094721] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
:
Cardiovascular Disease (CVD) is the major cause of death worldwide, especially in Western
society. Flavonoids are a large group of polyphenolic compounds widely distributed in plants, present
in a considerable amount in fruit and vegetable. Several epidemiological studies found an inverse association
between flavonoids intake and mortality by CVD. The antioxidant effect of flavonoids was
considered the main mechanism of action of flavonoids and other polyphenols. In recent years, the role
of modulation of signaling pathways by direct interaction of flavonoids with multiple protein targets,
namely kinases, has been increasingly recognized and involved in their cardiovascular protective effect.
There are strong evidence, in in vitro and animal experimental models, that some flavonoids induce
vasodilator effects, improve endothelial dysfunction and insulin resistance, exert platelet antiaggregant
and atheroprotective effects, and reduce blood pressure. Despite interacting with multiple targets, flavonoids
are surprisingly safe. This article reviews the recent evidence about cardiovascular effects that
support a beneficial role of flavonoids on CVD and the potential molecular targets involved.
Collapse
Affiliation(s)
- Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
118
|
Famuyiwa SO, Sanusi K, Faloye KO, Yilmaz Y, Ceylan Ü. Antidiabetic and antioxidant activities: Is there any link between them? NEW J CHEM 2019. [DOI: 10.1039/c9nj01251f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An empirical relationship between antidiabetic and antioxidant properties of molecules using protocatechuic acid (PcA) as a test compound has been found.
Collapse
Affiliation(s)
| | - Kayode Sanusi
- Department of Chemistry
- Obafemi Awolowo University
- Ile-Ife
- Nigeria
| | | | - Yusuf Yilmaz
- NT Vocational School
- Gaziantep University
- 27310 Gaziantep
- Turkey
| | - Ümit Ceylan
- Department of Medical Services and Techniques
- Vocational High School Health Services
- Giresun University
- 28100 Giresun
- Turkey
| |
Collapse
|
119
|
Gong YJ, Lv MK, Zhang ML, Kong ZZ, Mao GJ. A novel two-photon fluorescent probe with long-wavelength emission for monitoring HClO in living cells and tissues. Talanta 2019; 192:128-134. [DOI: 10.1016/j.talanta.2018.08.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023]
|
120
|
Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 2018; 196:117-134. [PMID: 30521881 DOI: 10.1016/j.pharmthera.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.
Collapse
Affiliation(s)
- Renata Gorjao
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | | | | | | | | | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Fábio Takeo Sato
- Institute of Biology, State University of Campinas, Campinas, Brazil; School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | | | - Rui Curi
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
121
|
Kurauti MA, Ferreira SM, Soares GM, Vettorazzi JF, Carneiro EM, Boschero AC, Costa‐Júnior JM. Hyperinsulinemia is associated with increasing insulin secretion but not with decreasing insulin clearance in an age‐related metabolic dysfunction mice model. J Cell Physiol 2018; 234:9802-9809. [DOI: 10.1002/jcp.27667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mirian A. Kurauti
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Sandra M. Ferreira
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Gabriela M. Soares
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Jean F. Vettorazzi
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Everardo M. Carneiro
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - Antonio C. Boschero
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| | - José M. Costa‐Júnior
- Obesity and Comorbidities Research Center Institute of Biology, University of Campinas (UNICAMP) Campinas Sao Paulo Brazil
| |
Collapse
|
122
|
Ilkan Z, Akar FG. The Mitochondrial Translocator Protein and the Emerging Link Between Oxidative Stress and Arrhythmias in the Diabetic Heart. Front Physiol 2018; 9:1518. [PMID: 30416455 PMCID: PMC6212558 DOI: 10.3389/fphys.2018.01518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial translocator protein (TSPO) is a key outer mitochondrial membrane protein that regulates the activity of energy-dissipating mitochondrial channels in response to oxidative stress. In this article, we provide an overview of the role of TSPO in the systematic amplification of reactive oxygen species (ROS) through an autocatalytic process known as ROS-induced ROS-release (RIRR). We describe how this TSPO-driven process destabilizes the mitochondrial membrane potential leading to electrical instability at the cellular and whole heart levels. Finally, we provide our perspective on the role of TSPO in the pathophysiology of diabetes, in general and diabetes-related arrhythmias, in particular.
Collapse
Affiliation(s)
- Zeki Ilkan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
123
|
Issa N, Lachance G, Bellmann K, Laplante M, Stadler K, Marette A. Cytokines promote lipolysis in 3T3-L1 adipocytes through induction of NADPH oxidase 3 expression and superoxide production. J Lipid Res 2018; 59:2321-2328. [PMID: 30317185 DOI: 10.1194/jlr.m086504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/12/2018] [Indexed: 01/14/2023] Open
Abstract
NADPH oxidase (NOX) enzymes are one of the major superoxide-generating systems in cells. NOX-generated superoxide has been suggested to promote insulin resistance in the liver. However, the role of NOX enzymes in mediating metabolic dysfunction in other insulin target tissues remains unclear. Here, we show that NOX3 expression is induced in differentiated 3T3-L1 adipocytes upon treatment with proinflammatory cytokines. Superoxide production increased concurrently with NOX3 protein expression in cytokine-treated adipocytes, which was inhibited by the NOX inhibitor diphenyleneiodonium (DPI). Treatment of adipocytes with cytokines increased lipolysis and decreased PPARγ activity. Interestingly, treatment with DPI blunted lipolysis activation by cytokines but failed to restore PPARγ activity. siRNA-mediated NOX3 downregulation also prevented cytokine-induced superoxide generation and lipolysis. In line with increasing lipolysis, cytokines increased the phosphorylation of hormone-sensitive lipase (HSL), which was reversed by treatment with DPI and silencing of NOX3 expression. We conclude that NOX3 is a cytokine-inducible superoxide-generating enzyme in adipocytes, which promotes lipolysis through increasing phosphorylation of HSL. This suggests a key role for NOX3-mediated superoxide production in the increased adipocyte lipolysis in inflammatory settings.
Collapse
Affiliation(s)
- Nahla Issa
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada
| | - Gabriel Lachance
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada
| | - Kerstin Bellmann
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada
| | - Mathieu Laplante
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada.,Cancer Research Center (CRC), Laval University, Quebec, QC, Canada
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - André Marette
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada
| |
Collapse
|
124
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1460] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
125
|
Hamdiken M, Bouhalit S, Kechrid Z. Effect of Ruta chalepensis on Zinc, Lipid Profile and Antioxidant Levels in the Blood and Tissue of Streptozotocin-Induced Diabetes in Rats Fed Zinc-Deficient Diets. Can J Diabetes 2018; 42:356-364. [DOI: 10.1016/j.jcjd.2017.08.239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022]
|
126
|
Wang F, Yu S, Xu Z, Li L, Dang Y, Xu X, Luo Y, Cheng Z, Yu H, Zhang W, Zhang A, Ding C. Acid-Promoted D-A-D Type Far-Red Fluorescent Probe with High Photostability for Lysosomal Nitric Oxide Imaging. Anal Chem 2018; 90:7953-7962. [DOI: 10.1021/acs.analchem.8b00612] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fengyang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shujuan Yu
- CAS Key Laboratory of Receptor Research, Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Lingling Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaowei Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Stanford University, Stanford, California 94305-5344, United States
| | - Haijun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research, Synthetic Organic and Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
127
|
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13:757-772. [PMID: 29731617 PMCID: PMC5927356 DOI: 10.2147/cia.s158513] [Citation(s) in RCA: 2091] [Impact Index Per Article: 348.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer), including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of several diseases, but further investigation is needed to evaluate the real efficacy of these therapeutic interventions. The purpose of this paper is to provide a review of literature on this complex topic of ever increasing interest.
Collapse
Affiliation(s)
- Ilaria Liguori
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gennaro Russo
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesco Curcio
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giulia Bulli
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Luisa Aran
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,San Raffaele Roma Open University, Rome, Italy
| | - Gaetano Gargiulo
- Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy
| | - Gianluca Testa
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Francesco Cacciatore
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.,Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
128
|
la Peña Sol D, Isela SR, Zendy OV, Mónica NM, Irene XR, Omar AH. Changes in trophoblasts gene expression in response to perchlorate exposition. Toxicol In Vitro 2018; 50:328-335. [PMID: 29673971 DOI: 10.1016/j.tiv.2018.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
Contaminated water with chlorates is a public health problem associated with iodine deficiency. Epidemiological evidence shows that iodine deficiency is a risk factor for preeclampsia (PE). In this study we use human BeWo trophoblast cells exposed to perchlorate (KClO4) and changes in gene expression were analyzed by microarrays, quantitative RT-PCR (qRT-PCR) and immunoblot. The microarray analysis identified 48 transcripts up-regulated and 112 down-regulated in comparison with non-exposed trophoblast. The qRT-PCR analysis confirmed changes in GAS7, PKP2, Emilin, Dynatic 3, protocadherins 11, 15, gamma A12, EGFR, SAFB1, ACE2, ANXA2, Apoliprotein E, SREBF1, and C/EBP-β. KClO4 exposition decreased the mRNA and protein of C/EBP-β and GPX4. Also, we observed a nuclear translocation of HIF1α protein, and increase in both Snail and ACE2 protein by immunoblot. These effects were accompanied by an increases in ROS and nitric oxide. In conclusion, our results show that exposure to KClO4 alters genes involved in migration, adhesion, differentiation, and correlate with the increase of oxidative stress and nitric oxide production in trophoblast cells. It is possible that iodine deficiency is associated with these processes. However, further studies are required to corroborate the role of iodine in trophoblast cells.
Collapse
Affiliation(s)
- De la Peña Sol
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Ciudad Universitaria Sur, col. La Haciendita, Chilpancingo, Guerrero ZC 39087, Mexico
| | - Santiago-Roque Isela
- Facultad de Bioanálisis, Universidad Veracruzana. Odontólogos W/N, U.H. del Bosque, Xalapa, Veracruz, Mexico
| | - Olivo-Vidal Zendy
- Ecology and Health Laboratory, Public Health Institute, Universidad Veracruzana, Av. Luís Castelazo Ayala W/N, Col. Industrial Animas, Xalapa, Veracruz ZC 41190, Mexico
| | - Navarro-Meza Mónica
- Centro Universitario del Sur., Av. Enrique Arreola Silva no. 883, Col. Centro, Ciudad Guzmán, Jalisco ZC 49000, Mexico
| | - Xochihua-Rosas Irene
- Facultad de Idiomas, Universidad Veracruzana, Francisco Moreno esq. E. Alatriste S/N, col. Ferrer Guardia, Xalapa, Veracruz ZC91020, Mexico
| | - Arroyo-Helguera Omar
- Ecology and Health Laboratory, Public Health Institute, Universidad Veracruzana, Av. Luís Castelazo Ayala W/N, Col. Industrial Animas, Xalapa, Veracruz ZC 41190, Mexico.
| |
Collapse
|
129
|
Samanta T, Sharma P, Kukri D, Kar S. Decoding the regulatory mechanism of glucose and insulin induced phosphatidylinositol 3,4,5-trisphosphate dynamics in β-cells. MOLECULAR BIOSYSTEMS 2018. [PMID: 28636047 DOI: 10.1039/c7mb00227k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In MIN6 pancreatic β-cells, glucose and insulin act in a synergistic manner to regulate the dynamics of Phosphatidylinositol (3,4,5)-trisphosphate (PIP3). However, the precise regulatory mechanism behind such an experimentally observed synergy is poorly understood. In this article, we propose a phenomenological mathematical model for studying the glucose and insulin driven PIP3 activation dynamics under various stimulatory conditions to unfold the mechanism responsible for the observed synergy. The modeling study reveals that the experimentally observed oscillation in PIP3 dynamics with disparate time scales for different external glucose doses is mainly orchestrated by the complex dynamic regulation of cytosolic Ca2+ in β-cells. The model accounts for the dose-dependent activation of PIP3 as a function of externally added insulin, and further shows that even in the absence of Ca2+ signaling, externally added glucose can still maintain a basal level of endogenous insulin secretion via the fatty acid metabolism pathway. Importantly, the model analysis suggests that the glucose mediated ROS (reactive oxygen species) activation often contributes considerably to the synergistic activation of PIP3 by glucose and insulin in a context dependent manner. Under the physiological conditions that keep β-cells in an insulin responsive state, the effect of glucose induced ROS signaling plays a moderate role in PIP3 activation. As β-cells approach an insulin resistant state, the glucose induced ROS signaling significantly affects the PIP3 dynamics. Our findings provide a plausible mechanistic insight into the experimentally observed synergy, and can lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Tagari Samanta
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Peeyush Sharma
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Dwijendra Kukri
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
130
|
The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7580707. [PMID: 29849912 PMCID: PMC5907490 DOI: 10.1155/2018/7580707] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/10/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential element that is involved in the synthesis and activation of many enzymes and in the regulation of the metabolism of glucose and lipids in humans. In addition, Mn is one of the required components for Mn superoxide dismutase (MnSOD) that is mainly responsible for scavenging reactive oxygen species (ROS) in mitochondrial oxidative stress. Both Mn deficiency and intoxication are associated with adverse metabolic and neuropsychiatric effects. Over the past few decades, the prevalence of metabolic diseases, including type 2 diabetes mellitus (T2MD), obesity, insulin resistance, atherosclerosis, hyperlipidemia, nonalcoholic fatty liver disease (NAFLD), and hepatic steatosis, has increased dramatically. Previous studies have found that ROS generation, oxidative stress, and inflammation are critical for the pathogenesis of metabolic diseases. In addition, deficiency in dietary Mn as well as excessive Mn exposure could increase ROS generation and result in further oxidative stress. However, the relationship between Mn and metabolic diseases is not clear. In this review, we provide insights into the role Mn plays in the prevention and development of metabolic diseases.
Collapse
|
131
|
Kanuri BN, Rebello SC, Pathak P, Agarwal H, Kanshana JS, Awasthi D, Gupta AP, Gayen JR, Jagavelu K, Dikshit M. Glucose and lipid metabolism alterations in liver and adipose tissue pre-dispose p47 phox knockout mice to systemic insulin resistance. Free Radic Res 2018; 52:568-582. [PMID: 29544378 DOI: 10.1080/10715762.2018.1453136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress due to enhanced production or reduced scavenging of reactive oxygen species (ROS) has been associated with diet (dyslipidemia) induced obesity and insulin resistance (IR). The present study was undertaken to assess the role of p47phox in IR using wild type (WT) and p47phox-/- mice, fed with different diets (HFD, LFD or Chow). Augmented body weight, glucose intolerance and reduced insulin sensitivity were observed in p47phox-/- mice fed with 45% HFD and 10% LFD. Further, body fat and circulating lipids were increased significantly with 5 weeks LFD feeding in p47phox-/- mice, while parameters of energy homeostasis were reduced as compared with WT mice. LFD fed knockout (KO) mice showed an enhanced hepatic glycogenolysis, and reduced insulin signalling in liver and adipose tissue, while skeletal muscle tissue remained unaffected. A significant increase in hepatic lipids, adiposity, as well as expression of genes regulating lipid synthesis, breakdown and efflux were observed in LFD fed p47phox-/- mice after 5 weeks. On the other hand, mice lacking p47phox demonstrated altered glucose tolerance and tissue insulin sensitivity after 5 weeks chow feeding, while changes in body weight, respiratory exchange ratio (RER) and heat production are non-significant. Our data demonstrate that lack of p47phox is sufficient to induce IR through altered glucose and lipid utilization by the liver and adipose tissue.
Collapse
Affiliation(s)
- Babu Nageswararao Kanuri
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India.,b Academy of Scientific and Innovative Research , New Delhi , India
| | - Sanjay C Rebello
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Priya Pathak
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Hobby Agarwal
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Jitendra S Kanshana
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Deepika Awasthi
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Anand P Gupta
- c Division of Pharmacokinetics and Metabolism , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Jiaur R Gayen
- c Division of Pharmacokinetics and Metabolism , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Kumaravelu Jagavelu
- a Division of Pharmacology , Central Drug Research Institute, Council of Scientific and Industrial Research , Lucknow , India
| | - Madhu Dikshit
- d Bioscience and Bioengineering , Indian Institute of Technology Jodhpur , Jodhpur , India
| |
Collapse
|
132
|
Gao Y, Arfat Y, Wang H, Goswami N. Muscle Atrophy Induced by Mechanical Unloading: Mechanisms and Potential Countermeasures. Front Physiol 2018; 9:235. [PMID: 29615929 PMCID: PMC5869217 DOI: 10.3389/fphys.2018.00235] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/02/2018] [Indexed: 12/23/2022] Open
Abstract
Prolonged periods of skeletal muscle inactivity or mechanical unloading (bed rest, hindlimb unloading, immobilization, spaceflight and reduced step) can result in a significant loss of musculoskeletal mass, size and strength which ultimately lead to muscle atrophy. With advancement in understanding of the molecular and cellular mechanisms involved in disuse skeletal muscle atrophy, several different signaling pathways have been studied to understand their regulatory role in this process. However, substantial gaps exist in our understanding of the regulatory mechanisms involved, as well as their functional significance. This review aims to update the current state of knowledge and the underlying cellular mechanisms related to skeletal muscle loss during a variety of unloading conditions, both in humans and animals. Recent advancements in understanding of cellular and molecular mechanisms, including IGF1-Akt-mTOR, MuRF1/MAFbx, FOXO, and potential triggers of disuse atrophy, such as calcium overload and ROS overproduction, as well as their role in skeletal muscle protein adaptation to disuse is emphasized. We have also elaborated potential therapeutic countermeasures that have shown promising results in preventing and restoring disuse-induced muscle loss. Finally, identified are the key challenges in this field as well as some future prospectives.
Collapse
Affiliation(s)
- Yunfang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Huiping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Nandu Goswami
- Physiology Unit, Otto Loewi Center of Research for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
133
|
Soulage CO, Sardón Puig L, Soulère L, Zarrouki B, Guichardant M, Lagarde M, Pillon NJ. Skeletal muscle insulin resistance is induced by 4-hydroxy-2-hexenal, a by-product of n-3 fatty acid peroxidation. Diabetologia 2018; 61:688-699. [PMID: 29299636 PMCID: PMC6448972 DOI: 10.1007/s00125-017-4528-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/17/2017] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS Oxidative stress is involved in the pathophysiology of insulin resistance and its progression towards type 2 diabetes. The peroxidation of n-3 polyunsaturated fatty acids produces 4-hydroxy-2-hexenal (4-HHE), a lipid aldehyde with potent electrophilic properties able to interfere with many pathophysiological processes. The aim of the present study was to investigate the role of 4-HHE in the development of insulin resistance. METHODS 4-HHE concentration was measured in plasma from humans and rats by GC-MS. Insulin resistance was estimated in healthy rats after administration of 4-HHE using hyperinsulinaemic-euglycaemic clamps. In muscle cells, glucose uptake was measured using 2-deoxy-D-glucose and signalling pathways were investigated by western blotting. Intracellular glutathione was measured using a fluorimetric assay kit and boosted using 1,2-dithiole-3-thione (D3T). RESULTS Circulating levels of 4-HHE in type 2 diabetic humans and a rat model of diabetes (obese Zucker diabetic fatty rats), were twice those in their non-diabetic counterparts (33 vs 14 nmol/l, p < 0.001), and positively correlated with blood glucose levels. During hyperinsulinaemic-euglycaemic clamps in rats, acute intravenous injection of 4-HHE significantly altered whole-body insulin sensitivity and decreased glucose infusion rate (24.2 vs 9.9 mg kg-1 min-1, p < 0.001). In vitro, 4-HHE impaired insulin-stimulated glucose uptake and signalling (protein kinase B/Akt and IRS1) in L6 muscle cells. Insulin-induced glucose uptake was reduced from 186 to 141.9 pmol mg-1 min-1 (p < 0.05). 4-HHE induced carbonylation of cell proteins and reduced glutathione concentration from 6.3 to 4.5 nmol/mg protein. Increasing intracellular glutathione pools using D3T prevented 4-HHE-induced carbonyl stress and insulin resistance. CONCLUSIONS/INTERPRETATION 4-HHE is produced in type 2 diabetic humans and Zucker diabetic fatty rats and blunts insulin action in skeletal muscle. 4-HHE therefore plays a causal role in the pathophysiology of type 2 diabetes and might constitute a potential therapeutic target to taper oxidative stress-induced insulin resistance.
Collapse
Affiliation(s)
- Christophe O Soulage
- Univ Lyon, CarMeN, INSA-Lyon, Inserm UMR 1060, INRA UMR 1397, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laura Sardón Puig
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Soulère
- Univ Lyon, INSA-Lyon, CPE Lyon, Université de Lyon 1, UMR 5246, CNRS, ICBMS, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, Chimie Organique et Bioorganique (COB), Villeurbanne, France
| | - Bader Zarrouki
- Bioscience Diabetes, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Michel Guichardant
- Univ Lyon, CarMeN, INSA-Lyon, Inserm UMR 1060, INRA UMR 1397, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Michel Lagarde
- Univ Lyon, CarMeN, INSA-Lyon, Inserm UMR 1060, INRA UMR 1397, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 4a, IV, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
134
|
Glycine Increases Insulin Sensitivity and Glutathione Biosynthesis and Protects against Oxidative Stress in a Model of Sucrose-Induced Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2101562. [PMID: 29675131 PMCID: PMC5841105 DOI: 10.1155/2018/2101562] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/05/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Oxidative stress and redox status play a central role in the link between insulin resistance (IR) and lipotoxicity in metabolic syndrome. This mechanistic link may involve alterations in the glutathione redox state. We examined the effect of glycine supplementation to diet on glutathione biosynthesis, oxidative stress, IR, and insulin cell signaling in liver from sucrose-fed (SF) rats characterized by IR and oxidative stress. Our hypothesis is that the correction of glutathione levels by glycine treatment leads to reduced oxidative stress, a mechanism associated with improved insulin signaling and IR. Glycine treatment decreases the levels of oxidative stress markers in liver from SF rats and increases the concentrations of glutathione (GSH) and γ-glutamylcysteine and the amount of γ-glutamylcysteine synthetase (γ-GCS), a key enzyme of GSH biosynthesis in liver from SF rats. In liver from SF rats, glycine also decreases the insulin-induced phosphorylation of insulin receptor substrate-1 (ISR-1) in serine residue and increases the phosphorylation of insulin receptor β-subunit (IR-β) in tyrosine residue. Thus, supplementing diets with glycine to correct GSH deficiency and to reduce oxidative stress provides significant metabolic benefits to SF rats by improving insulin sensitivity.
Collapse
|
135
|
Lu X, Zhao M, Chen P, Fan Q, Wang W, Huang W. Enhancing hydrophilicity of photoacoustic probes for effective ratiometric imaging of hydrogen peroxide. J Mater Chem B 2018; 6:4531-4538. [DOI: 10.1039/c8tb01158c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen peroxide (H2O2) plays a significant role in regulating the redox balance in the living body.
Collapse
Affiliation(s)
- Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Meng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Pengfei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
| | - Wenjun Wang
- Key Lab of Optical Communication Science and Technology of Shandong Province & School of Physics Science and Information Engineering
- Liaocheng University
- Liaocheng 252059
- China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE)
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
| |
Collapse
|
136
|
Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2063179. [PMID: 29785242 PMCID: PMC5896211 DOI: 10.1155/2018/2063179] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.
Collapse
Affiliation(s)
- Johanna Ábrigo
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A. Elorza
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
- 3Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia A. Riedel
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Cristian Vilos
- 4Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, and Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
- 5Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Daniel Cabrera
- 6Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- 7Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Lisbell Estrada
- 8Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Claudio Cabello-Verrugio
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
137
|
|
138
|
Zhu X, Chen Y, Chen Q, Yang H, Xie X. Astaxanthin Promotes Nrf2/ARE Signaling to Alleviate Renal Fibronectin and Collagen IV Accumulation in Diabetic Rats. J Diabetes Res 2018; 2018:6730315. [PMID: 29744366 PMCID: PMC5884145 DOI: 10.1155/2018/6730315] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 02/19/2018] [Indexed: 12/24/2022] Open
Abstract
Astaxanthin (AST), a natural keto-carotenoid classified as a xanthophyll, is well known for its antioxidant properties. AST can ameliorate the pathological characteristics of diabetic nephropathy (DN). However, the underlying mechanisms remain to be explored. This study was aimed at exploring whether AST exerts a protective effect on DN via activating nuclear factor erythroid 2-related factor 2- (Nrf2-) antioxidative response element (ARE) signaling. Streptozotocin-induced diabetic rats were treated with AST for 12 weeks. We found that AST treatment ameliorated renal morphological injury. Reduced fibronectin and collagen IV protein expression were found in the kidneys of diabetic rats. Furthermore, AST promoted the nuclear translocation of Nrf2 and increased its downstream protein heme oxygenase-1 and superoxide dismutase 1 expression. AST also increased the activity of SOD and decreased malondialdehyde generation in the serum of diabetic rats. These results suggest that the renoprotective effect of AST on DN partly depends on Nrf2-ARE signaling. The antioxidative stress effect of AST is responsible for the activation of Nrf2-ARE signaling in DN.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, China
| | - Yongjun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- College of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Qing Chen
- School of Life Science, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Huiyuan Yang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, Hainan, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
139
|
Sarhan NR. The Ameliorating Effect of Sodium Selenite on the Histological Changes and Expression of Caspase-3 in the Testis of Monosodium Glutamate-Treated Rats: Light and Electron Microscopic Study. J Microsc Ultrastruct 2018; 6:105-115. [PMID: 30221135 PMCID: PMC6130250 DOI: 10.4103/jmau.jmau_2_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Monosodium glutamate (MSG) is a commonly used flavor enhancer that may contribute to male infertility. Sodium selenite is inorganic chemical form of selenium (Se). Se is best known as an antioxidant. This study was designed to investigate the possible ameliorating role of sodium selenite against MSG-induced testicular toxicity and histological changes. Forty male albino rats were allocated into four groups. Control group received distilled water, SE group received sodium selenite (0.25 mg/kg/day) dissolved in distilled water orally, MSG group received MSG (6 mg/g/day) dissolved in distilled water orally, and MSG + SE group received both MSG and sodium selenite for 45 days. Testicular samples were prepared for biochemical, light, and electron microscopic studies. Immunohistochemical staining for caspase-3 was done. MSG group demonstrated a significant increase in malondialdehyde level, marked damage of seminiferous tubules with a significant reduction in diameter and height of the lining epithelium. Spermatogenic cells showed disorganization, dark nuclei, reduction in number, and maturation arrest. Vacuolations of interstitial tissue and Leydig cells were also observed. Percent area of fibrosis and caspase-3 immunoexpression was significantly increased. Ultrastructurally, irregular tubular basement membrane and damaged germ cells were found. The spermatogenic, Sertoli, and Leydig cells showed irregular shrunken nuclei, cytoplasmic vacuolations, and swollen mitochondria. MSG + SE group showed much better histological and ultrastructural picture and improvement of the measured biochemical and morphometric parameters. Percent area of caspase-3 immunoexpression was significantly decreased. In conclusion, sodium selenite ameliorated the testicular damaging effect of MSG through reduction of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Nahla Reda Sarhan
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
140
|
Barquissau V, Capel F, Dardevet D, Feillet-Coudray C, Gallinier A, Chauvin MA, Rieusset J, Morio B. Reactive oxygen species enhance mitochondrial function, insulin sensitivity and glucose uptake in skeletal muscle of senescence accelerated prone mice SAMP8. Free Radic Biol Med 2017; 113:267-279. [PMID: 29024807 DOI: 10.1016/j.freeradbiomed.2017.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/12/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
Whereas reactive oxygen species (ROS) can have opposite impacts on insulin signaling, they have mainly been associated with mitochondrial dysfunction in skeletal muscle. We analyzed the relationship between these three features in skeletal muscle of senescence accelerated mice (SAM) prone (P8), which are characterized by enhanced oxidative stress compared to SAM resistant (R1). Oxidative stress, ROS production, antioxidant system, mitochondrial content and functioning, as well as in vitro and in vivo insulin signaling were investigated in gastrocnemius and quadriceps muscles. In SAMP8 compared to SAMR1, muscle content in carbonylated proteins was two-fold (p < 0.01) and ROS production by xanthine oxidase 70% (p < 0.05) higher. Furthermore, insulin-induced Akt phosphorylation measured in vivo and ex vivo as well as muscle glucose uptake measured ex vivo were significantly higher (p < 0.05). Mitochondrial respiration evidenced uncoupling and higher respiration rates with substrates of complexes II and IV, in agreement with higher maximal activity of complexes II and IV (+ 18% and 62%, respectively, p < 0.05). By contrast, maximal activity of complex I was 22% lower (p < 0.05). All strain differences were corrected after 6 months of N-acetylcysteine (NAC) treatment, thus supporting the involvement of high ROS production in these differences. In conclusion in muscle of SAMP8 compared to SAMR1, high ROS production is associated to higher insulin sensitivity and glucose uptake but to lower mitochondrial complex I activity. These conflicting adaptations, with regards to the resulting imbalance between NADH production and use, were associated with intrinsic adjustments in the mitochondrial respiration chain (mitochondrial uncoupling, enhanced complexes II and IV activity). We propose that these bioenergetics adaptations may help at preserving muscle metabolic flexibility of SAMP8.
Collapse
Affiliation(s)
- Valentin Barquissau
- INRA UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand Cedex 1, France
| | - Frédéric Capel
- INRA UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand Cedex 1, France
| | - Dominique Dardevet
- INRA UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand Cedex 1, France
| | | | - Anne Gallinier
- 4STROMALab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | - Marie-Agnès Chauvin
- INRA UMR1397, Laboratoire CarMeN, Inserm UMR1060, Université Lyon 1, INSA de Lyon, Faculté de Médecine Lyon Sud, BP 12, 165 Chemin du Grand Revoyet, 69921 Oullins Cedex, France
| | - Jennifer Rieusset
- INRA UMR1397, Laboratoire CarMeN, Inserm UMR1060, Université Lyon 1, INSA de Lyon, Faculté de Médecine Lyon Sud, BP 12, 165 Chemin du Grand Revoyet, 69921 Oullins Cedex, France
| | - Béatrice Morio
- INRA UMR1019 Nutrition Humaine, Laboratoire de Nutrition Humaine, Université d'Auvergne, CRNH, 58 rue Montalembert BP321, 63009 Clermont Ferrand Cedex 1, France; INRA UMR1397, Laboratoire CarMeN, Inserm UMR1060, Université Lyon 1, INSA de Lyon, Faculté de Médecine Lyon Sud, BP 12, 165 Chemin du Grand Revoyet, 69921 Oullins Cedex, France.
| |
Collapse
|
141
|
Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 2017; 8:1658. [PMID: 29162828 PMCID: PMC5698464 DOI: 10.1038/s41467-017-01863-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/20/2017] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (SeP) functions as a selenium (Se)-supply protein. SeP is identified as a hepatokine, promoting insulin resistance in type 2 diabetes. Thus, the suppression of Se-supply activity of SeP might improve glucose metabolism. Here, we develop an anti-human SeP monoclonal antibody AE2 as with neutralizing activity against SeP. Administration of AE2 to mice significantly improves glucose intolerance and insulin resistance that are induced by human SeP administration. Furthermore, excess SeP administration significantly decreases pancreas insulin levels and high glucose-induced insulin secretion, which are improved by AE2 administration. Epitope mapping reveals that AE2 recognizes a region of human SeP adjacent to the first histidine-rich region (FHR). A polyclonal antibody against the mouse SeP FHR improves glucose intolerance and insulin secretion in a mouse model of diabetes. This report describes a novel molecular strategy for the development of type 2 diabetes therapeutics targeting SeP. Selenoprotein P is secreted by the liver and when present in excess it promotes development of type 2 diabetes. Here the authors develop neutralizing antibodies to target human and mouse selenoprotein P, and show that they improve insulin secretion and glucose tolerance in mouse models.
Collapse
|
142
|
Suganya N, Dornadula S, Chatterjee S, Mohanram RK. Quercetin improves endothelial function in diabetic rats through inhibition of endoplasmic reticulum stress-mediated oxidative stress. Eur J Pharmacol 2017; 819:80-88. [PMID: 29169872 DOI: 10.1016/j.ejphar.2017.11.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum (ER) stress attributes a crucial role in diabetes-induced endothelial dysfunction. The present study investigated the effects of quercetin, a potent antioxidant on the attenuation of ER stress-modulated endothelial dysfunction in streptozotocin (STZ)-induced diabetic rats. Oral administration of quercetin for six weeks to diabetic rats dose-dependently reduced the blood glucose levels and improved insulin secretion. Histopathological examination of pancreatic tissues in diabetic rats showed pathological changes such as shrunken islets, reduction in islet area and distorted β-cells, which were found to be restored by quercetin treatment. In addition, quercetin reduced the pancreatic ER stress-induced endothelial dysfunction as assessed by immunohistochemical analysis of C/ERB homologous protein (CHOP) and endothelin-1 (ET-1). Moreover, quercetin administration progressively increased the expression of vascular endothelial growth factor (VEGF) and its receptor, VEGFR2 in diabetes rats. Quercetin-mediated decrease in the nitric oxide (NO∙) and cyclic 3',5'- guanosine monophosphate (cGMP) levels were also observed in the diabetic rats. Quercetin treatment reduced the lipid peroxidation in the diabetic rats, meanwhile increased the total antioxidant capacity in the pancreas from diabetic rats. Altogether, these results demonstrated the vasoprotective effect of quercetin against STZ-induced ER stress in the pancreas of diabetic rats.
Collapse
Affiliation(s)
- Natarajan Suganya
- Department of Biotechnology, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Sireesh Dornadula
- SRM Research Institute, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chromepet, Chennai 600044, Tamil Nadu, India
| | | |
Collapse
|
143
|
Abstract
PURPOSE OF REVIEW Obesity and obesity-related diseases, largely resulting from urbanization and behavioral changes, are now of global importance. Energy restriction, though, is associated with health improvements and increased longevity. We review some important mechanisms related to calorie limitation aimed at controlling of metabolic diseases, particularly diabetes. RECENT FINDINGS Calorie restriction triggers a complex series of intricate events, including activation of cellular stress response elements, improved autophagy, modification of apoptosis, and alteration in hormonal balance. Intermittent fasting is not only more acceptable to patients, but it also prevents some of the adverse effects of chronic calorie restriction, especially malnutrition. There are many somatic and potentially psychologic benefits of fasting or intermittent calorie restriction. However, some behavioral modifications related to abstinence of binge eating following a fasting period are crucial in maintaining the desired favorable outcomes.
Collapse
Affiliation(s)
- Saeid Golbidi
- Faculty of Medicine, Department of Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Andreas Daiber
- Center of Cardiology, Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - M Faadiel Essop
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Faculty of Medicine, Department of Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
144
|
Kim JH, Park SJ, Kim B, Choe YG, Lee DS. Insulin-stimulated lipid accumulation is inhibited by ROS-scavenging chemicals, but not by the Drp1 inhibitor Mdivi-1. PLoS One 2017; 12:e0185764. [PMID: 28968439 PMCID: PMC5624627 DOI: 10.1371/journal.pone.0185764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Adipocyte differentiation is regulated by intracellular reactive oxygen species (ROS) generation and mitochondrial fission and fusion processes. However, the correlation between intracellular ROS generation and mitochondrial remodeling during adipocyte differentiation is still unknown. Here, we investigated the effect on adipocyte differentiation of 3T3-L1 cells of intracellular ROS inhibition using N-acetyl cysteine (Nac) and Mito-TEMPO and of mitochondrial fission inhibition using Mdivi-1. Differentiated 3T3-L1 adipocytes displayed an increase in mitochondrial fission, ROS generation, and the expression of adipogenic and mitochondrial dynamics-related proteins. ROS scavenger (Nac or Mito-TEMPO) treatment inhibited ROS production, lipid accumulation, the expression of adipogenic and mitochondrial dynamics-related proteins, and mitochondrial fission during adipogenesis of 3T3-L1 cells. On the other hand, treatment with the mitochondrial fission inhibitor Mdivi-1 inhibited mitochondrial fission but did not inhibit ROS production, lipid accumulation, or the expression of adipogenic and mitochondrial dynamics-related proteins, with the exception of phosphorylated Drp1 (Ser616), in differentiated 3T3-L1 adipocytes. The inhibition of mitochondrial fission did not affect adipocyte differentiation, while intracellular ROS production decreased in parallel with inhibition of adipocyte differentiation. Therefore, our results indicated that ROS are an essential regulator of adipocyte differentiation in 3T3-L1 cells.
Collapse
Affiliation(s)
- Jung-Hak Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Ji Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Geun Choe
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
145
|
Insulin Resistance, Obesity and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:277-304. [PMID: 28585204 DOI: 10.1007/978-3-319-48382-5_12] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipotoxicity , originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. Lipotoxicity has roles in insulin resistance and pancreatic beta cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling, have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
|
146
|
Protective effects of tea, red wine and cocoa in diabetes. Evidences from human studies. Food Chem Toxicol 2017; 109:302-314. [PMID: 28893620 DOI: 10.1016/j.fct.2017.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Prevention of diabetes through the diet has recently received an increasing interest, and polyphenolic compounds, such as flavanols, have become important potential chemopreventive natural agents due to their proved benefits on health, with low toxicity and cost. Tea, red wine and cocoa are good sources of flavanols and these highly consumed foods might contribute to prevent diabetes. In this regard, there is increasing evidence for a protective effect of tea, red wine and cocoa consumption against this disorder. This review summarizes the available epidemiological and interventional human studies providing evidence for and against this effect. Overall observational data suggest a benefit, but results are still equivocal and likely confounded by lifestyle and background dietary factors. The weight of data indicate favourable effects on diabetes risk factors for tea, red wine and cocoa intake, and a number of plausible mechanisms have been elucidated in human studies. However, despite the growing evidence it remains uncertain whether tea, red wine and cocoa consumption should be recommended to the general population or to patients as a strategy to reduce the risk of diabetes.
Collapse
|
147
|
Boland BB, Rhodes CJ, Grimsby JS. The dynamic plasticity of insulin production in β-cells. Mol Metab 2017; 6:958-973. [PMID: 28951821 PMCID: PMC5605729 DOI: 10.1016/j.molmet.2017.04.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although the insulin-producing pancreatic β-cells are quite capable of adapting to both acute and chronic changes in metabolic demand, persistently high demand for insulin will ultimately lead to their progressive dysfunction and eventual loss. Recent and historical studies highlight the importance of 'resting' the β-cell as a means of preserving functional β-cell mass. SCOPE OF REVIEW We provide experimental evidence to highlight the remarkable plasticity for insulin production and secretion by the pancreatic β-cell alongside some clinical evidence that supports leveraging this unique ability to preserve β-cell function. MAJOR CONCLUSIONS Treatment strategies for type 2 diabetes mellitus (T2DM) targeted towards reducing the systemic metabolic burden, rather than demanding greater insulin production from an already beleaguered β-cell, should be emphasized to maintain endogenous insulin secretory function and delay the progression of T2DM.
Collapse
Key Words
- ATF6, Activating Transcription Factor 6
- CHOP, CCAAT/Enhancer-Binding Homologous Protein
- EPAC, Exchange Factor Directly Activated by cAMP
- EROβ1, ER-resident oxidoreductase β1
- GIP, Gastric Inhibitory Polypeptide
- GLP-1, Glucagon-like Peptide 1
- GLUT2, Glucose Transporter 2
- GSIS, Glucose Stimulated Insulin Secretion
- IREα, Inositol Requiring Enzyme α
- Insulin production
- NEFA, Non-esterified Fatty Acid
- PERK, Protein Kinase RNA-like Endoplasmic Reticulum Kinase
- PKA, Protein Kinase A
- PKC, Protein Kinase C
- PLC, Phospholipase C
- ROS, Reactive Oxygen Species
- SNAP-25, Soluble NSF Attachment Protein 25
- SNARE, Soluble NSF Attachment Protein Receptor
- STZ, Streptozotocin
- T2DM
- T2DM, Type 2 Diabetes Mellitus
- TRP, Transient Receptor Potential
- VAMP-2, Vehicle Associated Membrane Protein 2
- VDCC, Voltage Dependent Calcium Channel
- mTORC1, Mammalian Target of Rapamycin 1
- nH, Hill coefficient
- β-cell rest
Collapse
Affiliation(s)
- Brandon B. Boland
- MedImmune, Cardiovascular and Metabolic Disease Research, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | | | | |
Collapse
|
148
|
Lemos V, de Oliveira RM, Naia L, Szegö É, Ramos E, Pinho S, Magro F, Cavadas C, Rego AC, Costa V, Outeiro TF, Gomes P. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum Mol Genet 2017; 26:4105-4117. [DOI: 10.1093/hmg/ddx298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 01/11/2023] Open
|
149
|
Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress. Antioxidants (Basel) 2017; 6:antiox6030051. [PMID: 28698499 PMCID: PMC5618079 DOI: 10.3390/antiox6030051] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson's disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively), collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) and nitric oxide synthase (NOS). Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA) used routinely in the treatment of Parkinson's disease (not as a free radical scavenger), and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone) that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1). Although they share the targets in reversing the cytotoxic effects of H₂O₂, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein) with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.
Collapse
|
150
|
Wang J, Du H, Nie Y, Wang Y, Dai H, Wang M, Wang D, Xu A. Mitochondria and MAPK cascades modulate endosulfan-induced germline apoptosis in Caenorhabditis elegans. Toxicol Res (Camb) 2017; 6:412-419. [PMID: 30090509 PMCID: PMC6062295 DOI: 10.1039/c7tx00046d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022] Open
Abstract
Endosulfan as a new member of persistent organic pollutants has been shown to induce apoptosis in various animal models. However, the mechanism underlying endosulfan-induced apoptosis has not been well elucidated thus far. Caenorhabditis elegans N2 wild type and mutant strains were used in the present study to clarify the roles of the mitochondria, the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway, and mitogen-activated protein kinase (MAPK) cascades in α-endosulfan-induced apoptosis. Our results demonstrated a dose- and time-dependent increase of apoptosis in the meiotic zone of the gonad of C. elegans exposed to graded concentrations of endosulfan. The expression levels of sod-3, localized in the mitochondrial matrix, increased greatly after endosulfan exposure. A significant increase in germ cell apoptosis was observed in abnormal methyl viologen sensitivity-1 (mev-1(kn-1)) mutants (with abnormal mitochondrial respiratory chain complex II and higher ROS levels) compared to that in N2 at equal endosulfan concentrations. We found that the insulin/IGF-1 signaling pathway and its downstream Ras/ERK/MAPK did not participate in the endosulfan-induced apoptosis. However, the apoptosis in the loss-of-function strains of JNK and p38 MAPK signaling pathways was completely or mildly suppressed under endosulfan stress. The apoptotic effects of endosulfan were blocked in the mutants of jnk-1/JNK-MAPK, sek-1/MAP2K, and pmk-1/p38-MAPK, suggesting that these downstream genes play an essential role in endosulfan-induced germ cell apoptosis. In contrast, the mkk-4/MAP2K and nsy-1/MAP3K were only partially involved in the apoptosis induction. Our data provide evidence that endosulfan increases germ cell apoptosis, which is regulated by mitochondrial function, JNK and p38 MAPK cascades. These findings contribute to the understanding of the signal transduction pathways involved in endosulfan-induced apoptosis.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Environmental Science and Optoelectronic Technology , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Hua Du
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Yaguang Nie
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Yun Wang
- School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , P. R. China
| | - Hui Dai
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Mudi Wang
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - Dayan Wang
- School of Environmental Science and Optoelectronic Technology , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences and Anhui Province , Hefei , Anhui 230031 , P. R. China .
| |
Collapse
|