101
|
Abstract
The brain is a heterogeneous organ with regionally varied and constantly changing energetic needs. Blood vessels in the brain are equipped with control mechanisms that match oxygen and glucose delivery through blood flow with the local metabolic demands that are imposed by neural activity. However, the cellular bases of this mechanism have remained elusive. A major advance has been the demonstration that astrocytes, cells with extensive contacts with both synapses and cerebral blood vessels, participate in the increases in flow evoked by synaptic activity. Their organization in nonoverlapping spatial domains indicates that they are uniquely positioned to shape the spatial distribution of the vascular responses that are evoked by neural activity. Astrocytic calcium is an important determinant of microvascular function and may regulate flow independently of synaptic activity. The involvement of astrocytes in neurovascular coupling has broad implications for the interpretation of functional imaging signals and for the understanding of brain diseases that are associated with neurovascular dysfunction.
Collapse
|
102
|
Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci U S A 2008; 105:1347-52. [PMID: 18202172 DOI: 10.1073/pnas.0711568105] [Citation(s) in RCA: 266] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alterations in cerebrovascular regulation related to vascular oxidative stress have been implicated in the mechanisms of Alzheimer's disease (AD), but their role in the amyloid deposition and cognitive impairment associated with AD remains unclear. We used mice overexpressing the Swedish mutation of the amyloid precursor protein (Tg2576) as a model of AD to examine the role of reactive oxygen species produced by NADPH oxidase in the cerebrovascular alterations, amyloid deposition, and behavioral deficits observed in these mice. We found that 12- to 15-month-old Tg2576 mice lacking the catalytic subunit Nox2 of NADPH oxidase do not develop oxidative stress, cerebrovascular dysfunction, or behavioral deficits. These improvements occurred without reductions in brain amyloid-beta peptide (Abeta) levels or amyloid plaques. The findings unveil a previously unrecognized role of Nox2-derived radicals in the behavioral deficits of Tg2576 mice and provide a link between the neurovascular dysfunction and cognitive decline associated with amyloid pathology.
Collapse
|
103
|
Shi Y, Liu X, Gebremedhin D, Falck JR, Harder DR, Koehler RC. Interaction of mechanisms involving epoxyeicosatrienoic acids, adenosine receptors, and metabotropic glutamate receptors in neurovascular coupling in rat whisker barrel cortex. J Cereb Blood Flow Metab 2008; 28:111-25. [PMID: 17519974 PMCID: PMC2204069 DOI: 10.1038/sj.jcbfm.9600511] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenosine, astrocyte metabotropic glutamate receptors (mGluRs), and epoxyeicosatrienoic acids (EETs) have been implicated in neurovascular coupling. Although A(2A) and A(2B) receptors mediate cerebral vasodilation to adenosine, the role of each receptor in the cerebral blood flow (CBF) response to neural activation remains to be fully elucidated. In addition, adenosine can amplify astrocyte calcium, which may increase arachidonic acid metabolites such as EETs. The interaction of these pathways was investigated by determining if combined treatment with antagonists exerted an additive inhibitory effect on the CBF response. During whisker stimulation of anesthetized rats, the increase in cortical CBF was reduced by approximately half after individual administration of A(2B), mGluR and EET antagonists and EET synthesis inhibitors. Combining treatment of either a mGluR antagonist, an EET antagonist, or an EET synthesis inhibitor with an A(2B) receptor antagonist did not produce an additional decrement in the CBF response. Likewise, the CBF response also remained reduced by approximately 50% when an EET antagonist was combined with an mGluR antagonist or an mGluR antagonist plus an A(2B) receptor antagonist. In contrast, A(2A) and A(3) receptor antagonists had no effect on the CBF response to whisker stimulation. We conclude that (1) adenosine A(2B) receptors, rather than A(2A) or A(3) receptors, play a significant role in coupling cortical CBF to neuronal activity, and (2) the adenosine A(2B) receptor, mGluR, and EETs signaling pathways are not functionally additive, consistent with the possibility of astrocytic mGluR and adenosine A(2B) receptor linkage to the synthesis and release of vasodilatory EETs.
Collapse
Affiliation(s)
- Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland 21287-4961, USA
| | | | | | | | | | | |
Collapse
|
104
|
Park L, Anrather J, Girouard H, Zhou P, Iadecola C. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 2007; 27:1908-18. [PMID: 17429347 DOI: 10.1038/sj.jcbfm.9600491] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aging is associated with cerebrovascular dysregulation, which may underlie the increased susceptibility to ischemic stroke and vascular cognitive impairment occurring in the elder individuals. Although it has long been known that oxidative stress is responsible for the cerebrovascular dysfunction, the enzymatic system(s) generating the reactive oxygen species (ROS) have not been identified. In this study, we investigated whether the superoxide-producing enzyme NADPH oxidase is involved in alterations of neurovascular regulation induced by aging. Cerebral blood flow (CBF) was recorded by laser-Doppler flowmetry in anesthetized C57BL/6 mice equipped with a cranial window (age=3, 12, and 24 months). In 12-month-old mice, the CBF increases evoked by whisker stimulation or by the endothelium-dependent vasodilators acetylcholine and bradykinin were attenuated by 42, 36, and 53%, respectively (P<0.05). In contrast, responses to the nitric oxide donor S-nitroso-D-penicillamine or adenosine were not attenuated (P>0.05). These cerebrovascular effects were associated with increased production of ROS in neurons and cerebral blood vessels, assessed by hydroethidine microfluorography. The cerebrovascular impairment present in 12-month-old mice was reversed by the ROS scavenger Mn (III) tetrakis (4-benzoic acid) porphyrin chloride or by the NADPH oxidase peptide inhibitor gp91ds-tat, and was not observed in mice lacking the Nox2 subunit of NADPH oxidase. These findings establish Nox2 as a critical source of the neurovascular oxidative stress mediating the deleterious cerebrovascular effects associated with increasing age.
Collapse
Affiliation(s)
- Laibaik Park
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
105
|
Straub SV, Nelson MT. Astrocytic calcium signaling: the information currency coupling neuronal activity to the cerebral microcirculation. Trends Cardiovasc Med 2007; 17:183-90. [PMID: 17662912 PMCID: PMC1987323 DOI: 10.1016/j.tcm.2007.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 01/10/2023]
Abstract
In the brain, increased neuronal synaptic activity is accompanied by an increase in local cerebral blood flow that serves to satisfy neuronal metabolic demands. This linkage between neuronal activity and local blood flow has been appreciated for more than 100 years. Although this process has been exploited clinically in the form of functional imaging techniques to map brain function, the mechanisms by which increased synaptic activity is communicated to the cerebral microcirculation to generate a vasodilatory response are poorly understood. Recent studies, however, have illuminated a central role for astrocytic calcium (Ca(2+)) signals as mediators of this process of neurovascular coupling. This review highlights recent evidence implicating astrocytes in the regulation of intracerebral arteriolar diameter, with particular emphasis on the putative signaling molecules and pathways proposed to exert changes on arteriolar physiology.
Collapse
Affiliation(s)
- Stephen V Straub
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
106
|
Nossaman BD, Baber SR, Nazim MM, Waldron PR, Hyman AL, Kadowitz PJ. Acetaminophen, phenacetin and dipyrone do not modulate pressor responses to arachidonic Acid or to pressor agents. Pharmacology 2007; 80:249-60. [PMID: 17627114 DOI: 10.1159/000105136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 03/12/2007] [Indexed: 12/23/2022]
Abstract
In contrast to nonsteroidal anti-inflammatory drugs (NSAIDs), the nonopioid analgesics phenacetin, acetaminophen and dipyrone exhibit weak anti-inflammatory properties. An explanation for this difference in pharmacologic activity was provided by the recent discovery of a new cyclooxygenase isoform, cyclooxygenase (COX)-3, that is reported to be inhibited by phenacetin, acetaminophen and dipyrone. However, COX-3 was found to be a spliced variant of COX-1 and renamed COX-1b. Although recent studies provide evidence for the existence of this new COX isoform, it is uncertain whether this COX-3 (COX-1b) isoform, or putative acetaminophen-sensitive pathway, plays a role in the generation of vasoactive prostaglandins. NSAIDs increase systemic blood pressure by inhibiting the formation of vasodilator prostanoids. Angiotensin II, norepinephrine and other vasoconstrictor agents have been reported to release prostaglandins. It is possible that this acetaminophen-sensitive pathway also modulates pressor responses to these vasoconstrictor agents. Therefore, the purpose of the present study was to determine whether this acetaminophen-sensitive pathway plays a role in the generation of vasoactive products of arachidonic acid or in the modulation of vasoconstrictor responses in the pulmonary and systemic vascular bed of the intact-chest rat. In the present study, the nonopioid analgesics did not attenuate changes in pulmonary or systemic arterial pressure in response to injections of the prostanoid precursor, arachidonic acid, to the thromboxane A(2) mimic, U46619, or to angiotensin II or norepinephrine. The results of the present study do not provide evidence in support of a role of a functional COX-3 (COX-1b) isoform, or an acetaminophen-sensitive pathway, in the generation of vasoactive prostanoids or in the modulation of responses to vasoconstrictor hormones in the intact-chest rat.
Collapse
Affiliation(s)
- Bobby D Nossaman
- Department of Anesthesiology, Ochsner Medical Center, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
107
|
Kitaura H, Uozumi N, Tohmi M, Yamazaki M, Sakimura K, Kudoh M, Shimizu T, Shibuki K. Roles of nitric oxide as a vasodilator in neurovascular coupling of mouse somatosensory cortex. Neurosci Res 2007; 59:160-71. [PMID: 17655958 DOI: 10.1016/j.neures.2007.06.1469] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/12/2007] [Accepted: 06/18/2007] [Indexed: 11/17/2022]
Abstract
Neural activities trigger regional vasodilation in the brain. Diffusible messengers such as nitric oxide (NO) and prostanoids are considered to work as vasodilators in neurovascular coupling. However, their roles are still controversial. In the present study, cortical images of neural activities and vasodilation were recorded through the intact skull of C57BL/6 mice anesthetized with urethane. Flavoprotein fluorescence responses elicited by vibratory hindpaw stimulation were followed by darkening of arteriole images reflecting vasodilation in the somatosensory cortex. Vasodilation was also observed in light reflection images at the wavelength of 570 nm in the same mice. We perfused the surface of the cortex under the skull with 100 microM N(G)-nitro-l-arginine (l-NA), an inhibitor of NO synthase (NOS), and 10 microM indomethacin, an inhibitor of cyclooxygenase (COX). These drugs suppressed vasodilation without changing flavoprotein fluorescence responses. A mixture of l-NA and indomethacin almost completely eliminated vasodilation. In mice lacking neuronal NOS (nNOS), activity-dependent vasodilation was significantly suppressed compared with that in littermate control mice, while that in mice lacking cytosolic phospholipase A2 alpha (cPLA2alpha) was unchanged. These results indicate that NO works as a vasodilator in neurovascular coupling of the mouse somatosensory cortex.
Collapse
Affiliation(s)
- Hiroki Kitaura
- Department of Neurophysiology, Brain Research Institute, Niigata University, Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Lee CR, North KE, Bray MS, Couper DJ, Heiss G, Zeldin DC. Cyclooxygenase polymorphisms and risk of cardiovascular events: the Atherosclerosis Risk in Communities (ARIC) study. Clin Pharmacol Ther 2007; 83:52-60. [PMID: 17495879 PMCID: PMC2244790 DOI: 10.1038/sj.clpt.6100221] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyclooxygenase-derived prostaglandins modulate cardiovascular disease risk. We genotyped 2212 Atherosclerosis Risk in Communities study participants (1,023 incident coronary heart disease (CHD) cases; 270 incident ischemic stroke cases; 919 non-cases) with available DNA for polymorphisms in PTGS1 and PTGS2. Using a case-cohort design, associations between genotype and CHD or stroke risk were evaluated using proportional hazards regression. In Caucasians, the reduced function PTGS1 -1006A variant allele was significantly more common among stroke cases compared to non-cases (18.2 versus 10.6%, P=0.027). In African Americans, the reduced function PTGS2 -765C variant allele was significantly more common in stroke cases (61.4 versus 49.4%, P=0.032). No significant relationships with CHD risk were observed. However, aspirin utilization appeared to modify the relationship between the PTGS2 G-765C polymorphism and CHD risk (interaction P=0.072). These findings suggest that genetic variation in PTGS1 and PTGS2 may be important risk factors for the development of cardiovascular disease events. Confirmation in independent populations is necessary.
Collapse
Affiliation(s)
- CR Lee
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - KE North
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - MS Bray
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - DJ Couper
- Department of Biostatistics, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - G Heiss
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - DC Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
109
|
Lok J, Gupta P, Guo S, Kim WJ, Whalen MJ, van Leyen K, Lo EH. Cell-cell signaling in the neurovascular unit. Neurochem Res 2007; 32:2032-45. [PMID: 17457674 DOI: 10.1007/s11064-007-9342-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/23/2007] [Indexed: 12/13/2022]
Abstract
Historically, the neuron has been the conceptual focus for almost all of neuroscience research. In recent years, however, the concept of the neurovascular unit has emerged as a new paradigm for investigating both physiology and pathology in the CNS. This concept proposes that a purely neurocentric focus is not sufficient, and emphasizes that all cell types in the brain including neuronal, glial and vascular components, must be examined in an integrated context. Cell-cell signaling and coupling between these different compartments form the basis for normal function. Disordered signaling and perturbed coupling form the basis for dysfunction and disease. In this mini-review, we will survey four examples of this phenomenon: hemodynamic neurovascular coupling linking blood flow to brain activity; cellular communications that evoke the blood-brain barrier phenotype; parallel systems that underlie both neurogenesis and angiogenesis in the CNS; and finally, the potential exchange of trophic factors that may link neuronal, glial and vascular homeostasis.
Collapse
Affiliation(s)
- Josephine Lok
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, MGH East 149-2401, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Ivancev V, Palada I, Valic Z, Obad A, Bakovic D, Dietz NM, Joyner MJ, Dujic Z. Cerebrovascular reactivity to hypercapnia is unimpaired in breath-hold divers. J Physiol 2007; 582:723-30. [PMID: 17412771 PMCID: PMC2075341 DOI: 10.1113/jphysiol.2007.128991] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hypercapnic cerebrovascular reactivity is decreased in obstructive sleep apnoea and congestive heart disease perhaps as a result of repeated apnoeas. To test the hypothesis that repeated apnoeas blunt cerebrovascular reactivity to hypercapnia, we studied breath hold divers and determined cerebrovascular reactivity by measuring changes in middle cerebral artery velocity (MCAV, cm s(-1)) per mmHg change in end-tidal partial pressure of CO2(PET,CO2 ) in response to two hyperoxic hypercapnia rebreathing manoeuvres (modified Read protocol) in elite breath-hold divers (BHD, n=7) and non-divers (ND, n=7). In addition, ventilation and central (beat-to-beat stroke volume measurement with Modelflow technique) haemodynamics were determined. Ventilatory responses to hypercapnia were blunted in BHD versus ND largely due to lower breathing frequency. Cerebrovascular reactivity did not differ between groups (3.7 +/- 1.4 versus 3.4 +/- 1.3% mmHg(-1) in BHD and ND, respectively; P=0.90) and the same was found for cerebral vascular resistance and MCAV recovery to baseline after termination of the CO2 challenge. Cardiovascular parameters were not changed significantly during rebreathing in either group, except for a small increase in mean arterial pressure for both groups. Our findings indicate that the regulation of the cerebral circulation in response to hypercapnia is intact in elite breath-hold divers, potentially as a protective mechanism against the chronic intermittent cerebral hypoxia and/or hypercapnia that occurs during breath-hold diving. These data also suggest that factors other than repeated apnoeas contribute to the blunting of cerebrovascular reactivity in conditions like sleep apnoea.
Collapse
Affiliation(s)
- Vladimir Ivancev
- Department of Physiology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Bosetti F. Arachidonic acid metabolism in brain physiology and pathology: lessons from genetically altered mouse models. J Neurochem 2007; 102:577-86. [PMID: 17403135 PMCID: PMC2084377 DOI: 10.1111/j.1471-4159.2007.04558.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The arachidonic acid (AA) cascade involves the release of AA from the membrane phospholipids by a phospholipase A(2), followed by its subsequent metabolism to bioactive prostanoids by cyclooxygenases coupled with terminal synthases. Altered brain AA metabolism has been implicated in neurological, neurodegenerative, and psychiatric disorders. The development of genetically altered mice lacking specific enzymes of the AA cascade has helped to elucidate the individual roles of these enzymes in brain physiology and pathology. The roles of AA and its metabolites in brain physiology, with a particular emphasis on the phospholipase A(2)/cyclooxygenases pathway, are summarized, and the specific phenotypes of genetically altered mice relevant to brain physiology and neurotoxic models are discussed.
Collapse
Affiliation(s)
- Francesca Bosetti
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
112
|
Hoffmeyer HW, Enager P, Thomsen KJ, Lauritzen MJ. Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers. J Cereb Blood Flow Metab 2007; 27:575-87. [PMID: 16896350 DOI: 10.1038/sj.jcbfm.9600372] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional neuroimaging and normal brain function rely on the robust coupling between neural activity and cerebral blood flow (CBF), that is neurovascular coupling. We examined neurovascular coupling in rat sensory cortex in response to direct stimulation of transcallosal pathways, which allows examination of brain regions inaccessible to peripheral stimulation techniques. Using laser-Doppler flowmetry to record CBF and electrophysiologic recordings of local field potentials (LFPs), we show an exponential relation between CBF responses and summed LFP amplitudes. Hemodynamic responses were dependent on glutamate receptor activation. CNQX, an AMPA receptor blocker, strongly attenuated evoked CBF responses and LFP amplitudes at all stimulation frequencies. In comparison, N-methyl D-aspartate (NMDA) receptor blockade by MK801 attenuated CBF responses at high (>7 Hz) but not low (<7 Hz) stimulation frequencies, without affecting evoked LFP amplitudes. This shows the limitation of using LFP amplitudes as indicators of synaptic activity. 7-Nitroindazole, a neuronal nitric oxide synthase inhibitor, and indomethacin, a nonspecific cyclooxygenase inhibitor, attenuated the hemodynamic responses by 50%+/-1% and 48%+/-1%, respectively, without affecting LFP amplitudes. The data suggest that preserved activity of both AMPA and NMDA receptors is necessary for the full CBF response evoked by stimulation of rodent interhemispheric connections. AMPA receptor activation gives rise to a measurable LFP, but NMDA receptor activation does not. The lack of a measurable LFP from neural processes that contribute importantly to CBF may explain some of the difficulties in transforming extracellular current or voltage measurements to a hemodynamic response.
Collapse
Affiliation(s)
- Henrik W Hoffmeyer
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | |
Collapse
|
113
|
Abstract
The brain is critically dependent on oxygen and glucose supply for normal function. Various neurovascular control mechanisms assure that the blood supply of the brain is adequate to meet the energy needs of its components. Emerging evidence shows that neuronal activity can control microcirculation using astrocytes as a mediator. Astrocytes can sense neuronal activity and are involved in signal transmission. Synaptic activity triggers an increase in the intracellular calcium concentration [Ca(2+)]i of adjacent astrocytes, stimulating the release of adenosine triphosphate (ATP) and glutamate. The released ATP mediates the propagation of Ca(2+) waves between neighboring astrocytes, thereby recruiting them to mediate adequate cerebrovascular response to neuronal activation. Simultaneously, sodium-dependent glutamate uptake in astrocytes generates Na(+) waves and subsequently increases glucose uptake and metabolism that leads to the formation of lactate, which is then delivered to neurons as an energy substrate. Further, astrocytic Ca(2+) elevations can lead to secretion of vasodilatory substances from perivascular endfeet, such as epoxyeicosatrienoic acid (EETs), adenosine, nitric oxide (NO), and cyclooxygenase-2 (COX-2) metabolites, resulting in increased local blood flow. Thus, astrocytes by releasing vasoactive molecules mediate the neuron-astrocyte-endothelial signaling pathway and play a profound role in coupling blood flow to neuronal activity.
Collapse
Affiliation(s)
- Danica Jakovcevic
- Department of Physiology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
114
|
Vantanajal JS, Ashmead JC, Anderson TJ, Hepple RT, Poulin MJ. Differential sensitivities of cerebral and brachial blood flow to hypercapnia in humans. J Appl Physiol (1985) 2007; 102:87-93. [PMID: 17023571 DOI: 10.1152/japplphysiol.00772.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it is known that the vasculatures of the brain and the forearm are sensitive to changes in arterial Pco2, previous investigations have not made direct comparisons of the sensitivities of cerebral blood flow (CBF) (middle cerebral artery blood velocity associated with maximum frequency of Doppler shift; V̄p) and brachial blood flow (BBF) to hypercapnia. We compared the sensitivities of V̄p and BBF to hypercapnia in humans. On the basis of the critical importance of the brain for the survival of the organism, we hypothesized that V̄p would be more sensitive than BBF to hypercapnia. Nine healthy males (30.1 ± 5.2 yr, mean ± SD) participated. Euoxic hypercapnia (end-tidal Po2 = 88 Torr, end-tidal Pco2 = 9 Torr above resting) was achieved by using the technique of dynamic end-tidal forcing. V̄p was measured by transcranial Doppler ultrasound as an index of CBF, whereas BBF was measured in the brachial artery by echo Doppler. V̄p and BBF were measured during two 60-min trials of hypercapnia, each trial separated by 60 min. Since no differences in the responses were found between trials, data from both trials were averaged to make comparisons between V̄p and BBF. During hypercapnia, V̄p and BBF increased by 34 ± 8 and 14 ± 8%, respectively. V̄p remained elevated throughout the hypercapnic period, but BBF returned to baseline levels by 60 min. The V̄p CO2 sensitivity was greater than BBF (4 ± 1 vs. 2 ± 1%/Torr; P < 0.05). Our findings confirm that V̄p has a greater sensitivity than BBF in response to hypercapnia and show an adaptive response of BBF that is not evident in V̄p.
Collapse
Affiliation(s)
- Jimmy S Vantanajal
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1 Canada
| | | | | | | | | |
Collapse
|
115
|
Hortobágyi L, Kis B, Hrabák A, Horváth B, Huszty G, Schweer H, Benyó B, Sándor P, Busija DW, Benyó Z. Adaptation of the hypothalamic blood flow to chronic nitric oxide deficiency is independent of vasodilator prostanoids. Brain Res 2006; 1131:129-37. [PMID: 17161389 PMCID: PMC1820619 DOI: 10.1016/j.brainres.2006.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 10/25/2006] [Accepted: 11/05/2006] [Indexed: 01/21/2023]
Abstract
The aim of our study was to investigate the adaptation of the hypothalamic circulation to chronic nitric oxide (NO) deficiency in rats. Hypothalamic blood flow (HBF) remained unaltered during chronic oral administration of the NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, 1 mg/ml drinking water) although acute NOS blockade by intravenous l-NAME injection (50 mg/kg) induced a dramatic HBF decrease. In chronically NOS blocked animals, however, acute l-NAME administration failed to influence the HBF. Reversal of chronic NOS blockade by intravenous l-arginine infusion evoked significant hypothalamic hyperemia suggesting the appearance of a compensatory vasodilator mechanism in the absence of NO. In order to clarify the potential involvement of vasodilator prostanoids in this adaptation, cyclooxygenase (COX) mRNA and protein levels were determined in the hypothalamus, but none of the known isoenzymes (COX-1, COX-2, COX-3) showed upregulation after chronic NOS blockade. Furthermore, levels of vasodilator prostanoid (PGI(2), PGE(2) and PGD(2)) metabolites were also not elevated. Interestingly, however, hypothalamic levels of vasoconstrictor prostanoids (TXA(2) and PGF(2alpha)) decreased after chronic NOS blockade. COX inhibition by indomethacin but not by diclofenac decreased the HBF in control animals. However, neither indomethacin nor diclofenac induced an altered HBF-response after chronic l-NAME treatment. Although urinary excretion of PGI(2) and PGE(2) metabolites markedly increased during chronic NOS blockade, indicating COX activation in the systemic circulation, we conclude that the adaptation of the hypothalamic circulation to the reduction of NO synthesis is independent of vasodilator prostanoids. Reduced release of vasoconstrictor prostanoids, however, may contribute to the normalization of HBF after chronic loss of NO.
Collapse
Affiliation(s)
- László Hortobágyi
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Nishida N, Blood AB, Hunter CJ, Bragg S, Williams J, Pearce WJ, Power GG. Role of prostanoids in the regulation of cerebral blood flow during normoxia and hypoxia in the fetal sheep. Pediatr Res 2006; 60:524-9. [PMID: 16988195 DOI: 10.1203/01.pdr.0000242268.99726.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The fetal cardiovascular responses to hypoxia include decreased peripheral blood flow and increased cerebral, cardiac, and adrenal blood flow. Prostanoids, metabolites of cyclooxygenase enzyme activity, have potent effects on vascular tone in both the adult and the fetus. To examine the role of prostanoids in the regulation of fetal cerebral blood flow (CBF) during acute hypoxic stress, eight near term fetal sheep were studied after infusing vehicle or diclofenac, a cyclooxygenase inhibitor, followed by a 30-min period of hypoxia (arterial Po(2) 12 Torr). In the control experiments, CBF, measured continuously with laser Doppler flowmetry, increased to 148% of baseline values (p < 0.01) and cerebral vascular resistance decreased to 70% of baseline values after 30 min of hypoxic stress. During diclofenac infusion, hypoxia resulted in a CBF increase to only 129% of baseline, a significant attenuation (p < 0.05), accompanied by decreased plasma prostanoid concentrations. Increases in mean arterial blood pressure during hypoxia were also attenuated by diclofenac infusion. Flow and pressure responses were not accompanied by changes in cerebral vascular resistance. These results indicate that prostanoids indirectly modulate fetal CBF responses to hypoxia, but that their effects are mediated through modulation of systemic rather than cerebral vascular tone.
Collapse
Affiliation(s)
- Naoko Nishida
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan 13-8602
| | | | | | | | | | | | | |
Collapse
|
117
|
Bhattacharjee AK, Chang L, White L, Bazinet RP, Rapoport SI. D-Amphetamine stimulates D2 dopamine receptor-mediated brain signaling involving arachidonic acid in unanesthetized rats. J Cereb Blood Flow Metab 2006; 26:1378-88. [PMID: 16511499 DOI: 10.1038/sj.jcbfm.9600290] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In rat brain, dopaminergic D(2)-like but not D(1)-like receptors can be coupled to phospholipase A(2) (PLA(2)) activation, to release the second messenger, arachidonic acid (AA, 20:4n-6), from membrane phospholipids. In this study, we hypothesized that D-amphetamine, a dopamine-releasing agent, could initiate such AA signaling. The incorporation coefficient, k* (brain radioactivity/integrated plasma radioactivity) for AA, a marker of the signal, was determined in 62 brain regions of unanesthetized rats that were administered i.p. saline, D-amphetamine (2.5 or 0.5 mg/kg i.p.), or the D(2)-like receptor antagonist raclopride (6 mg/kg, i.v.) before saline or 2.5 mg/kg D-amphetamine. After injecting [1-(14)C]AA intravenously, k* was measured by quantitative autoradiography. Compared to saline-treated controls, D-amphetamine 2.5 mg/kg i.p. increased k* significantly in 27 brain areas rich in D(2)-like receptors. Significant increases were evident in neocortical, extrapyramidal, and limbic regions. Pretreatment with raclopride blocked the increments, but raclopride alone did not alter baseline values of k*. In independent experiments, D-amphetamine 0.5 mg/kg i.p. increased k* significantly in only seven regions, including the nucleus accumbens and layer IV neocortical regions. These results indicate that D-amphetamine can indirectly activate brain PLA(2) in the unanesthetized rat, and that activation is initiated entirely at D(2)-like receptors. D-Amphetamine's low-dose effects are consistent with other evidence that the nucleus accumbens, considered a reward center, is particularly sensitive to the drug.
Collapse
Affiliation(s)
- Abesh K Bhattacharjee
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
118
|
Im JY, Kim D, Paik SG, Han PL. Cyclooxygenase-2-dependent neuronal death proceeds via superoxide anion generation. Free Radic Biol Med 2006; 41:960-72. [PMID: 16934679 DOI: 10.1016/j.freeradbiomed.2006.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 05/03/2006] [Accepted: 06/02/2006] [Indexed: 11/20/2022]
Abstract
Cyclooxygenase-2 (COX-2) expression is induced in the neurons of the pathologic brain and elevated COX-2 expressions can lead to neuronal death. Here, we report that COX-2 induction in cortical neurons induced by LPS pretreatment for more than 12 h increased the neurotoxic effects of low doses of Fe2+ by more than 2.5-fold. Moreover, the neurotoxicity induced by 30 muM Fe2+ in LPS-pretreated cells exceeded that induced by 100 microM Fe2+ in LPS-untreated cells. LPS pretreatment also similarly aggravated the neurotoxic effects of low doses of H2O2, Zn2+, and sodium nitroprusside. This LPS-induced Fe2+ -toxicity enhancement was blocked by trolox, vitamin C, the SOD mimetic MnTBAP, and by the COX-2-specific inhibitor NS398, but not by inhibitors of xanthine oxidase, NADPH oxidase, NOS, and monoamine oxidase. Cortical neurons with enhanced COX-2 expression showed superoxide generation, GSH depletion, and lipid peroxidation in response to low doses of Fe2+, and all of these changes were repressed by MnTBAP or NS398. Consistent with this pharmacological data, cortical neurons prepared from COX-2 knockout mice showed marked reductions in LPS-induced Fe2+ -toxicity enhancement and superoxide generation. These results suggest that COX-2 functions as a cellular factor which induces superoxide-mediated cell death in primary cortical neurons.
Collapse
Affiliation(s)
- Joo-Young Im
- Division of Nano Science and Department of Life Sciences, Ewha Womans University, 11-1, Daehyun-Dong, Seodaemoon-Gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
119
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
120
|
Miller AA, Drummond GR, Sobey CG. Novel isoforms of NADPH-oxidase in cerebral vascular control. Pharmacol Ther 2006; 111:928-48. [PMID: 16616784 DOI: 10.1016/j.pharmthera.2006.02.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Reactive oxygen species (ROS) are thought to play an important role in the initiation and progression of a variety of vascular diseases. Furthermore, accumulating evidence indicates that ROS may also serve as important cell signalling molecules for the regulation of normal vascular function. Recently, a novel family of proteins (Nox1, 2 and 4) that act as the catalytic subunit of the superoxide (O2-) producing enzyme NADPH-oxidase has been discovered in vascular cells. There is now preliminary evidence suggesting that NADPH-oxidase-derived ROS may serve as a physiological vasodilator mechanism in the cerebral circulation. Moreover, the activity of NADPH-oxidase is profoundly greater in cerebral versus systemic arteries. Studies have shown that Nox1, Nox2 (also known as gp91phox) and Nox4 are all expressed in cerebral arteries, suggesting that multiple isoforms of NADPH-oxidase may be important for ROS production by cerebral arteries. Enhanced NADPH-oxidase activity is associated with several vascular-related diseases, including hypertension, stroke, subarachnoid haemorrhage and Alzheimer's dementia; however, the consequences of this for cerebral vascular function are controversial. For example, there is some evidence suggesting that NADPH-oxidase-derived O2- may play a role in endothelial dysfunction of cerebral arteries and a subsequent rise in cerebral vascular tone, associated with hypertension. However, activation of NADPH-oxidase elicits cerebral vasodilatation in vivo, and this mechanism is enhanced in chronic hypertension. While further supportive evidence is needed, it is an intriguing possibility that NADPH-oxidase-derived ROS may play a protective role in regulating cerebral vascular tone during disease.
Collapse
Affiliation(s)
- Alyson A Miller
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
121
|
Stefanovic B, Bosetti F, Silva AC. Modulatory role of cyclooxygenase-2 in cerebrovascular coupling. Neuroimage 2006; 32:23-32. [PMID: 16626973 DOI: 10.1016/j.neuroimage.2006.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/02/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022] Open
Abstract
To investigate the role of cyclooxygenase-2 (COX-2) in the cerebrovascular coupling, hemodynamic and neuronal responses to forepaw stimulation were measured in alpha-chloralose-anesthetized rats (N = 18) before and after intravenous administration of Meloxicam (MEL), a preferential COX-2 inhibitor, and following a bolus of prostaglandin E(2) (PGE(2)), a prominent vasodilatatory product of COX-2 catalyzed metabolism of arachidonic acid. The cerebral blood flow (CBF) and blood-oxygenation-level-dependent (BOLD) response was quantified using continuous arterial spin labeling magnetic resonance imaging. Neuronal activity was measured by recording somatosensory-evoked potentials (SEPs) via intracranial electrodes. Both MEL and PGE(2) had a significant effect on the activation-elicited CBF (P < 10(-6)) and BOLD (P < 10(-6)) responses, without affecting the baseline perfusion. Meloxicam decreased brain COX enzymatic activity by 57 +/- 14% and decreased the stimulation-induced CBF response to 32 +/- 2% and BOLD to 46 +/- 1% of their respective pre-drug amplitudes. In turn, PGE(2) bolus resulted in a partial recovery of functional hyperemia, with the CBF response recovering to 52 +/- 3% and the BOLD response to 56 +/- 2% of their values prior to MEL administration. There was no concomitant decrease in either amplitudes or latencies of SEP components. These findings suggest a modulatory role of COX-2 products in the cerebrovascular coupling and provide evidence for existence of a functional metabolic buffer.
Collapse
Affiliation(s)
- Bojana Stefanovic
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke/NIH, 10 Center Drive, Building 10, Room B1D109, Bethesda, MD 20892-1065, USA.
| | | | | |
Collapse
|
122
|
Zhao Y, Patzer A, Herdegen T, Gohlke P, Culman J. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J 2006; 20:1162-75. [PMID: 16770015 DOI: 10.1096/fj.05-5007com] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Up-regulation of cyclooxygenase (COX)-2 exacerbates neuronal injury after cerebral ischemia and contributes to neuronal cell death. The present study clarifies the function of cerebral peroxisome-proliferator-activated receptor(s) gamma (PPARgamma) in the expression of COX-2 in neurons of the rat brain after middle cerebral artery occlusion (MCAO) with reperfusion by immunohistochemistry, Western blot, and immunofluorescence staining. In peri-infarct cortical areas the PPARgamma was located in both microglia and neurons, whereas COX-2 was almost exclusively expressed in neurons. PPARgamma immunolabeling reached the peak 12 h after MCAO, whereas the number of COX-2 immunostained cells gradually rose and reached its peak at 48 h. Intracerebroventricular infusion of pioglitazone, an agonist of the PPARgamma, over a 5-day period before and 2 days after MCAO, reduced the infarct size, the expression of tumor necrosis factor alpha (TNF-alpha), COX-2, and the number of cells positively stained for COX-1 and COX-2 in the peri-infarct cortical regions. COX-2 induction was also attenuated in the ipsilateral but not in the contralateral hippocampus. In primary cortical neurons expressing the PPARgamma, pioglitazone suppressed COX-2 expression in response to oxidative stress. This protective effect was reversed after cotreatment with GW 9662, a selective antagonist of the PPARgamma, clearly demonstrating a PPARgamma-dependent mechanism. Our data provide evidence that activation of neuronal PPARgamma considerably contributes to neuroprotection by prevention of COX-2 up-regulation in vitro and in peri-infarct brain areas.
Collapse
Affiliation(s)
- Yi Zhao
- Institute of Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel Hospitalstrasse 4 24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
123
|
Ohata H, Cao S, Koehler RC. Contribution of adenosine A2A and A2B receptors and heme oxygenase to AMPA-induced dilation of pial arterioles in rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R728-35. [PMID: 16601261 PMCID: PMC1764456 DOI: 10.1152/ajpregu.00757.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) has been implicated in mediation of cerebral vasodilation during neuronal activation and, specifically, in pharmacological activation of N-methyl-d-aspartate (NMDA) and kainate receptors. Possible mediators of cerebral vasodilation to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) have not been well studied in mature brain, although heme oxygenase (HO) activity has been implicated in newborn pigs. In anesthetized rats, 5 min of topical superfusion of 30 and 100 microM AMPA on the cortical surface through a closed cranial window resulted in increases in pial arteriolar diameter. The dilatory response to AMPA was not inhibited by superfusion of an NO synthase inhibitor, a cyclooxygenase-2 inhibitor, or a cytochrome P-450 epoxygenase inhibitor, all of which have been shown to inhibit the cortical blood flow response to sensory activation. However, the 48 +/- 13% dilation to 100 microM AMPA was attenuated 56-71% by superfusion of the adenosine A(2A) receptor antagonist ZM-241385, the A(2B) receptor antagonist alloxazine, and the HO inhibitor chromium mesoporphyrin. Combination of the latter three inhibitors did not attenuate the dilator response more than the individual inhibitors, whereas an AMPA receptor antagonist fully blocked the vasodilation to AMPA. These results indicate that cortical pial arteriolar dilation to AMPA does not require activation of NO synthase, cyclooxygenase-2, or cytochrome P-450 epoxygenase but does depend on activation of adenosine A(2A) and A(2B) receptors. In addition, CO derived from HO appears to play a role in the vascular response to AMPA receptor activation in mature brain by a mechanism that is not additive with that of adenosine receptor activation.
Collapse
Affiliation(s)
- Hiroto Ohata
- Dept. of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287-4961, USA
| | | | | |
Collapse
|
124
|
Cho S, Park EM, Febbraio M, Anrather J, Park L, Racchumi G, Silverstein RL, Iadecola C. The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J Neurosci 2006; 25:2504-12. [PMID: 15758158 PMCID: PMC6725161 DOI: 10.1523/jneurosci.0035-05.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The class B scavenger receptor CD36 is involved in the cytotoxicity associated with inflammation, but its role in the inflammatory reaction that accompanies cerebral ischemia has not been examined. In this study, we investigated whether CD36 contributes to the brain damage produced by cerebral ischemia. The middle cerebral artery was transiently occluded in wild-type mice and in mice deficient in CD36. In wild-type mice, CD36 protein expression was increased in the ischemic brain, such that it was located predominantly in cells expressing the microglia/macrophage marker CD11b. The infarct produced by middle cerebral artery occlusion was 49% smaller in CD36-null mice than in wild-type controls, an effect associated with improved neurological function. The attenuation in brain injury in CD36 nulls could not be attributed to differences in cerebral blood flow during ischemia-reperfusion. However, the increase in reactive oxygen species (ROS) produced by cerebral ischemia was markedly attenuated in CD36-null mice in the early stage after reperfusion. The data unveil a previously unrecognized role of CD36 in ischemia-induced ROS production and brain injury. Modulation of CD36 signaling may provide a new strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Sunghee Cho
- Division of Neurobiology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985) 2006; 100:328-35. [PMID: 16357086 DOI: 10.1152/japplphysiol.00966.2005] [Citation(s) in RCA: 846] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The brain is critically dependent on a continuous supply of blood to function. Therefore, the cerebral vasculature is endowed with neurovascular control mechanisms that assure that the blood supply of the brain is commensurate to the energy needs of its cellular constituents. The regulation of cerebral blood flow (CBF) during brain activity involves the coordinated interaction of neurons, glia, and vascular cells. Thus, whereas neurons and glia generate the signals initiating the vasodilation, endothelial cells, pericytes, and smooth muscle cells act in concert to transduce these signals into carefully orchestrated vascular changes that lead to CBF increases focused to the activated area and temporally linked to the period of activation. Neurovascular coupling is disrupted in pathological conditions, such as hypertension, Alzheimer disease, and ischemic stroke. Consequently, CBF is no longer matched to the metabolic requirements of the tissue. This cerebrovascular dysregulation is mediated in large part by the deleterious action of reactive oxygen species on cerebral blood vessels. A major source of cerebral vascular radicals in models of hypertension and Alzheimer disease is the enzyme NADPH oxidase. These findings, collectively, highlight the importance of neurovascular coupling to the health of the normal brain and suggest a therapeutic target for improving brain function in pathologies associated with cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Helene Girouard
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, USA
| | | |
Collapse
|
126
|
Abstract
Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.
Collapse
Affiliation(s)
- Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
127
|
Berwick J, Johnston D, Jones M, Martindale J, Redgrave P, McLoughlin N, Schiessl I, Mayhew JEW. Neurovascular coupling investigated with two-dimensional optical imaging spectroscopy in rat whisker barrel cortex. Eur J Neurosci 2006; 22:1655-66. [PMID: 16197506 DOI: 10.1111/j.1460-9568.2005.04347.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Optical imaging slit spectroscopy is a powerful method for estimating quantitative changes in cerebral haemodynamics, such as deoxyhaemoglobin, oxyhaemoglobin and blood volume (Hbr, HbO2 and Hbt, respectively). Its disadvantage is that there is a large loss of spatial data as one image dimension is used to encode spectral wavelength information. Single wavelength optical imaging, on the other hand, produces high-resolution spatiotemporal maps of brain activity, but yields only indirect measures of Hbr, HbO2 and Hbt. In this study we perform two-dimensional optical imaging spectroscopy (2D-OIS) in rat barrel cortex during contralateral whisker stimulation to obtain two-dimensional maps over time of Hbr, HbO2 and Hbt. The 2D-OIS was performed by illuminating the cortex with four wavelengths of light (575, 559, 495 and 587 nm), which were presented sequentially at a high frame rate (32 Hz). The contralateral whisker pad was stimulated using two different durations: 1 and 16 s (5 Hz, 1.2 mA). Control experiments used a hypercapnic (5% CO2) challenge to manipulate baseline blood flow and volume in the absence of corresponding neural activation. The 2D-OIS method allowed separation of artery, vein and parenchyma regions. The magnitude of the haemodynamic response elicited varied considerably between different vascular compartments; the largest responses in Hbt were in the arteries and the smallest in the veins. Phase lags in the HbO2 response between arteries and veins suggest that a process of upstream signalling maybe responsible for dilating the arteries. There was also a consistent increase in Hbr from arterial regions after whisker stimulation.
Collapse
Affiliation(s)
- J Berwick
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2005; 9:260-7. [PMID: 16388306 DOI: 10.1038/nn1623] [Citation(s) in RCA: 813] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 12/02/2005] [Indexed: 12/12/2022]
Abstract
Local increase in blood flow during neural activity forms the basis for functional brain imaging, but its mechanism remains poorly defined. Here we show that cortical astrocytes in vivo possess a powerful mechanism for rapid vasodilation. We imaged the activity of astrocytes labeled with the calcium (Ca(2+))-sensitive indicator rhod-2 in somatosensory cortex of adult mice. Photolysis of caged Ca(2+) in astrocytic endfeet ensheathing the vessel wall was associated with an 18% increase in arterial cross-section area that corresponded to a 37% increase in blood flow. Vasodilation occurred with a latency of only 1-2 s, and both indomethacin and the cyclooxygenase-1 inhibitor SC-560 blocked the photolysis-induced hyperemia. These observations implicate astrocytes in the control of local microcirculation and suggest that one of their physiological roles is to mediate vasodilation in response to increased neural activity.
Collapse
Affiliation(s)
- Takahiro Takano
- Center for Aging and Developmental Biology, Department of Neurosurgery, University of Rochester Medical School, 601 Elmwood Avenue, Rochester, New York 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
Nakatsuka A, Mizuno R, Ono N, Nakayama J, Ohhashi T. Arachidonic Acid-Induced COX-1 and COX-2-Mediated Vasodilation in Rat Gingival Arterioles In Vivo. ACTA ACUST UNITED AC 2005; 55:293-302. [PMID: 16281994 DOI: 10.2170/jjphysiol.r2137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 11/11/2005] [Indexed: 11/05/2022]
Abstract
The roles of cyclooxygenase (COX) and prostaglandins (PGs) in the regulation of vasoreactivity of rat gingival arterioles in vivo were evaluated by sing an intravital microscope. The superfusion of indomethacin (a nonselective COX inhibitor) or SC-560 (a selective COX-1 inhibitor) onto the gingiva significantly constricted the arterioles, though NS-398 (a selective COX-2 inhibitor) did not affect the diameter of the arterioles. The SC-560-mediated constriction of the arterioles was completely reversed by an additional treatment with arachidonic acid (AA). The superfusion of AA, beraprost-Na (an analogue of PGI2) or PGE2 onto the gingival significantly dilated the arterioles dose-dependently. The AA-induced dilation of the arterioles was significantly reduced by the treatment with SC-560 or NS-398. The expression of COX-1 and COX-2 were positive in the endothelium, but not the smooth muscles, of the arterioles. The expression of PGE synthase (PGES) was found only in the smooth muscles, but not the endothelium, of the arterioles. Neither the endothelium nor the smooth muscles of the arterioles expressed PGI synthase (PGIS). These findings suggest that the COX-2-mediated PG cascade may collaborate with the COX-1 pathway in the regulation of arteriolar myogenic activity in rat gingiva in the case of the supply of a large amount of AA.
Collapse
Affiliation(s)
- Atsushi Nakatsuka
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, 390-8621 Japan.
| | | | | | | | | |
Collapse
|
130
|
Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, Carlson GA, Iadecola C. NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci 2005; 25:1769-77. [PMID: 15716413 PMCID: PMC6725936 DOI: 10.1523/jneurosci.5207-04.2005] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Overproduction of the amyloid beta (Abeta) peptide is a key factor in the pathogenesis of Alzheimer's disease (AD), but the mechanisms of its pathogenic effects have not been defined. Patients with AD have cerebrovascular alterations attributable to the deleterious effects of Abeta on cerebral blood vessels. We report here that NADPH oxidase, the major source of free radicals in blood vessels, is responsible for the cerebrovascular dysregulation induced by Abeta. Thus, the free-radical production and the associated alterations in vasoregulation induced by Abeta are abrogated by the NADPH oxidase peptide inhibitor gp91ds-tat and are not observed in mice lacking the catalytic subunit of NADPH oxidase (gp91phox). Furthermore, oxidative stress and cerebrovascular dysfunction do not occur in transgenic mice overexpressing the amyloid precursor protein but lacking gp91phox. The mechanisms by which NADPH oxidase-derived radicals mediate the cerebrovascular dysfunction involve reduced bioavailability of nitric oxide. Thus, a gp91phox-containing NADPH oxidase is the critical link between Abeta and cerebrovascular dysfunction, which may underlie the alteration in cerebral blood flow regulation observed in AD patients.
Collapse
Affiliation(s)
- Laibaik Park
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Baber SR, Deng W, Rodriguez J, Master RG, Bivalacqua TJ, Hyman AL, Kadowitz PJ. Vasoactive prostanoids are generated from arachidonic acid by COX-1 and COX-2 in the mouse. Am J Physiol Heart Circ Physiol 2005; 289:H1476-87. [PMID: 15863457 DOI: 10.1152/ajpheart.00195.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Generation of vasoactive prostanoids from arachidonic acid by cyclooxygenase (COX)-1 and COX-2 was investigated in anesthetized mice. Intravenous injections of the prostanoid precursor arachidonic acid increased pulmonary arterial pressure and decreased systemic arterial pressure. Pulmonary pressor and systemic depressor responses were attenuated by SC-560 and nimesulide, inhibitors of COX-1 and COX-2, in doses that did not alter responses to injected prostanoids. Pulmonary pressor responses to arachidonic acid were blocked and a depressor response was unmasked, whereas systemic depressor responses were not altered, by a thromboxane receptor antagonist. Pulmonary and systemic pressor responses to angiotensin II injections and systemic pressor responses to angiotensin II infusion were not modified by COX-1 or COX-2 inhibitors but were attenuated by losartan. Systemic depressor responses to arachidonic acid were smaller in COX-1 and COX-2 knockout mice, whereas responses to angiotensin II, norepinephrine, U-46619, endothelin-1, and PGE1were not different in COX-1 and COX-2 knockout and wild-type control mice. These results suggest that vasoactive prostanoids with pulmonary pressor and systemic vasodepressor activity are formed by COX-1 and COX-2 and are consistent with Western blot analysis and immunostaining showing the presence of COX-1 and COX-2. These data suggest that thromboxane A2(TxA2) is formed from the precursor by COX-1 and COX-2 in the lung and are in agreement with immunofluorescence studies showing thromboxane synthase. The present data suggest that COX-1- or COX-2-derived prostanoids do not modulate responses to angiotensin II or other vasoactive agents and that prostanoid responses are similar in CD-1 and C57BL/6 and in male and female mice.
Collapse
Affiliation(s)
- Syed R Baber
- Department of Pharmacology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Domoki F, Nagy K, Temesvári P, Bari F. Selective inhibitors differentially affect cyclooxygenase-dependent pial arteriolar responses in newborn pigs. Pediatr Res 2005; 57:853-7. [PMID: 15845634 DOI: 10.1203/01.pdr.0000161415.62776.0a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cyclooxygenase (COX)-derived prostanoids play an important role in the cerebrovascular control of newborns. In humans and in the widely accepted model of piglets, both the COX-1 and the COX-2 isoforms are expressed in cerebral arteries. However, the involvement of these isoforms in cerebrovascular control is unknown. Therefore we tested if specific inhibitors of COX-1 and/or COX-2 would differentially affect pial arteriolar responses to COX-dependent stimuli in piglets. Anesthetized, ventilated piglets (n = 35) were equipped with a closed cranial window, and changes in pial arteriolar diameters (baseline approximately 100 microm) to hypercapnia (ventilation with 5-10% CO(2), 21% O(2), balance N(2)), arterial hypotension (40 mm Hg MABP achieved by blood withdrawal), and Ach (Ach, 10-100 microM) were determined via intravital microscopy. Arteriolar responses were repeatedly tested 15 min after IV administration of selective COX-1 and COX-2 inhibitors SC-560 and NS-398 (1-1 mg/kg), and nonselective inhibitors indomethacin (0.3-1 mg/kg), acetaminophen (30 mg/kg), and ibuprofen (30 mg/kg). Hypercapnia resulted in concentration-dependent, reversible, (approximately 20-40%) increases in pial arteriolar diameters that were unaffected by NS-398, SC-560, acetaminophen and ibuprofen. In contrast, 0.3 mg/kg indomethacin significantly reduced, 1 mg/kg virtually abolished the vasodilation. Arterial hypotension elicited (approximately 15-20%) vasodilation that was similarly reduced by NS-398 and indomethacin but was unaltered by SC-560. Ach dose-dependently constricted pial arterioles. This response was similarly attenuated by NS-398, indomethacin, and ibuprofen, but left intact by SC-560. We conclude that the assessed COX-dependent vascular reactions appear to depend largely on COX-2 activity. However, hypercapnia-induced vasodilation was found indomethacin-sensitive instead of a COX-dependent response in the piglet.
Collapse
Affiliation(s)
- Ferenc Domoki
- Department of Physiology, University of Szeged, H-6720, Hungary.
| | | | | | | |
Collapse
|
133
|
Ainslie PN, Ashmead JC, Ide K, Morgan BJ, Poulin MJ. Differential responses to CO2 and sympathetic stimulation in the cerebral and femoral circulations in humans. J Physiol 2005; 566:613-24. [PMID: 15890697 PMCID: PMC1464750 DOI: 10.1113/jphysiol.2005.087320] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The relative importance of CO2 and sympathetic stimulation in the regulation of cerebral and peripheral vasculatures has not been previously studied in humans. We investigated the effect of sympathetic activation, produced by isometric handgrip (HG) exercise, on cerebral and femoral vasculatures during periods of isocapnia and hypercapnia. In 14 healthy males (28.1 +/- 3.7 (mean +/- S.D.) years), we measured flow velocity (VP; transcranial Doppler ultrasound) in the middle cerebral artery during euoxic isocapnia (ISO, +1 mmHg above rest) and two levels of euoxic hypercapnia (HC5, end-tidal P(CO(2)), P(ET,CO2), = +5 mmHg above ISO; HC10, P(ET,CO2) = +10 above ISO). Each P(ET,CO2) level was maintained for 10 min using the dynamic end-tidal forcing technique, during which increases in sympathetic activity were elicited by a 2-min HG at 30% of maximal voluntary contraction. Femoral blood flow (FBF; Doppler ultrasound), muscle sympathetic nerve activity (MSNA; microneurography) and mean arterial pressure (MAP; Portapres) were also measured. Hypercapnia increased VP and FBF by 5.0 and 0.6% mmHg-1, respectively, and MSNA by 20-220%. Isometric HG increased MSNA by 50% and MAP by 20%, with no differences between ISO, HC5 and HC10. During the ISO HG there was an increase in cerebral vascular resistance (CVR; 20 +/- 11%), while VP remained unchanged. During HC5 and HC10 HG, VP increased (13% and 14%, respectively), but CVR was unchanged. In contrast, HG-induced sympathetic stimulation increased femoral vascular resistance (FVR) during ISO, HC5 and HC10 (17-41%), while there was a general decrease in FBF below ISO. The HG-induced increases in MSNA were associated with increases in FVR in all conditions (r = 0.76-0.87), whereas increases in MSNA were associated with increases in CVR only during ISO (r = 0.91). In summary, in the absence of hypercapnia, HG exercise caused cerebral vasoconstriction, myogenically and/or neurally, which was reflected by increases in CVR and a maintained VP. In contrast, HG increased FVR during conditions of ISO, HC5 and HC10. Therefore, the cerebral circulation is more responsive to alterations in PCO2, and less responsive to sympathetic stimulation than the femoral circulation.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Physiology & Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
134
|
Pepicelli O, Fedele E, Berardi M, Raiteri M, Levi G, Greco A, Ajmone-Cat MA, Minghetti L. Cyclo-oxygenase-1 and -2 differently contribute to prostaglandin E2 synthesis and lipid peroxidation after in vivo activation of N-methyl-d-aspartate receptors in rat hippocampus. J Neurochem 2005; 93:1561-7. [PMID: 15935072 DOI: 10.1111/j.1471-4159.2005.03150.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using intracerebral microdialysis, we reported previously that acute in vivo activation of NMDA glutamate receptors triggers rapid and transient releases of prostaglandin E2 (PGE2) and F2-isoprostane 15-F(2t)-IsoP in the hippocampus of freely moving rats. The formation of the two metabolites--produced through cyclo-oxygenase (COX) enzymatic activity and free radical-mediated peroxidation of arachidonic acid (AA), respectively,--was prevented by the specific NMDA antagonist MK-801, and was largely dependent on COX-2 activity. Here, we demonstrate that besides COX-2, which is the prominent COX isoform in the brain and particularly in the hippocampus, the constitutive isoform, COX-1 also contributes to prostaglandin (PG) synthesis and oxidative damage following in vivo acute activation of hippocampal NMDA glutamate receptors. The relative contribution of the two isoforms is dynamically regulated, as the COX-2 selective inhibitor NS398 immediately prevented PGE2 and 15-F(2t)-IsoP formation during the application of NMDA, whereas the COX-1 selective inhibitor SC560 was effective only 1 h after agonist infusion. Our data suggest that, although COX-2 is the prominent isoform, COX-1 activity may significantly contribute to excitotoxicity, particularly when considering the amount of lipid peroxidation associated with its catalytic cycle. We suggest that both isoforms should be considered as possible therapeutic targets to prevent brain damage caused by excitotoxicity.
Collapse
Affiliation(s)
- Olimpia Pepicelli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Delarge J, Dogné JM, Julémont F, Leval XD, Pirotte B, Sanna V. Advances in the field of COX-2 inhibition. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.7.969] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
136
|
Foley LM, Hitchens TK, Kochanek PM, Melick JA, Jackson EK, Ho C. Murine orthostatic response during prolonged vertical studies: Effect on cerebral blood flow measured by arterial spin-labeled MRI. Magn Reson Med 2005; 54:798-806. [PMID: 16142710 DOI: 10.1002/mrm.20621] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-field MRI scanners are, in principle, well suited for mouse studies; however, many high-field magnets employ a vertical design that may influence the physiological state of the rodent. The purpose of this study was to investigate the orthostatic response of cerebral blood flow (CBF) in mice during a prolonged MR experiment in the vertical position. Arterial spin-labeled (ASL) MRI was performed at 4.7-Tesla with a 15-cm gradient insert that allowed horizontal and vertical CBF measurements to be obtained with the same scanner. For mice in the head-up (HU) vertical position, CBF decreased by approximately 40% compared to the horizontal position, although blood pressure did not differ. Furthermore, CBF values for vertically positioned mice treated with phenylephrine remained constant while blood pressure increased. These results support the conclusion that cerebral autoregulation was intact, albeit at a lower level. Since CBF recovers to near horizontal values by volume loading with saline, it appears that a decrease in central venous pressure (CVP) leading to an increase in sympathetic tone may be a contributing mechanism for lowered CBF. This suggests that using an HU vertical position for MRI in mice may have broader implications, especially for studies that rely on CBF (such as BOLD and fMRI).
Collapse
Affiliation(s)
- Lesley M Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
137
|
Wang H, Hitron IM, Iadecola C, Pickel VM. Synaptic and vascular associations of neurons containing cyclooxygenase-2 and nitric oxide synthase in rat somatosensory cortex. ACTA ACUST UNITED AC 2004; 15:1250-60. [PMID: 15616132 DOI: 10.1093/cercor/bhi008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme for prostanoid synthesis that is present in cortical pyramidal neurons and highly implicated in control of cerebral blood flow during neural activity. We examined the electron microscopic localization of COX-2 and neuronal nitric oxide synthase (nNOS), a functionally related enzyme, in the somatosensory cortex of rat brain to determine the relevant functional sites. COX-2 immunoreactivity was detected in significantly more somatodendritic than axonal profiles, while nNOS was more often seen in axon terminals. The dendritic COX-2 was localized to endomembranes near synaptic inputs from axon terminals, some of which contained nNOS. Conversely, COX-2 terminals formed asymmetric, excitatory-type synapses with dendrites containing nNOS. The dendritic and axonal profiles containing COX-2 as well as those containing nNOS were minimally separated from penetrating arterioles and capillaries by filamentous glial processes. The perivascular COX-2 labeled terminals were among those that also formed axo-dendritic synapses, suggesting that the release of prostanoids and/or excitatory transmitters from a single terminal may simultaneously affect neuronal activity and cerebral blood flow. Thus, COX-2 has a compartmental distribution in somatosensory cortical neurons consistent with the local neuronal synthesis of prostanoids that are involved in neurovascular coupling and whose actions are modulated by nitric oxide.
Collapse
Affiliation(s)
- Hong Wang
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
138
|
Sasaki T, Kitagawa K, Yamagata K, Takemiya T, Tanaka S, Omura-Matsuoka E, Sugiura S, Matsumoto M, Hori M. Amelioration of hippocampal neuronal damage after transient forebrain ischemia in cyclooxygenase-2-deficient mice. J Cereb Blood Flow Metab 2004; 24:107-13. [PMID: 14688622 DOI: 10.1097/01.wcb.0000100065.36077.4a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several studies have suggested that cyclooxygenase-2 (COX-2) plays a role in ischemic neuronal death. Genetic disruption of COX-2 has been shown to reduce susceptibility to focal ischemic injury and N-methyl-d-aspartate-mediated neurotoxicity. The purpose of this study was to examine the effects of COX-2 deficiency on neuronal vulnerability after transient forebrain ischemia. Marked upregulation of COX-2 immunostaining in neurons was observed at the early stage and prominent COX-2 staining persisted in the CA1 medial sector and CA2 sector over 3 days after ischemia. The immunohistologic pattern of COX-2 staining in these sectors gradually condensed to a perinuclear location. The degree of hippocampal neuronal injury produced by global ischemia in COX-2-deficient mice was less than that in wild-type mice, coincident with attenuation of DNA fragmentation in the hippocampus. Also, treatment with a selective COX-2 inhibitor, nimesulide, after ischemia decreased hippocampal neuronal damages. These results of genetic disruption and chemical inhibition of cyclooxygenase-2 show that inhibition of COX-2 ameliorates selective neuronal death after transient forebrain ischemia in mice.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Baber SR, Hyman AL, Kadowitz PJ. Role of COX-1 and -2 in prostanoid generation and modulation of angiotensin II responses. Am J Physiol Heart Circ Physiol 2003; 285:H2399-410. [PMID: 14613912 DOI: 10.1152/ajpheart.00294.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of cyclooxygenase (COX)-1 and -2 in prostanoid formation and modulation of pressor responses to ANG II was investigated in the pulmonary and systemic vascular beds in the rat. In the present study, selective COX-1 and -2 inhibitors attenuated increases in pulmonary arterial pressure and decreases in systemic arterial pressure in response to arachidonic acid but did not alter responses to PGE1 or U-46619. The selective COX-1 and -2 inhibitors did not modify systemic pressor responses to injections or infusions of ANG II or pulmonary pressor responses to injections of the peptide. COX-2 inhibitors did not alter, whereas a COX-1 inhibitor depressed, arachidonic acid-induced platelet aggregation. These data provide evidence in support of the hypothesis that prostanoid synthesis occurs by way of the COX-1 and -2 pathways in the pulmonary and systemic vascular beds but that pressor responses to ANG II are not mediated or modulated by these pathways in the rat.
Collapse
Affiliation(s)
- Syed R Baber
- Department of Pharmacology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | |
Collapse
|
140
|
Kazama K, Wang G, Frys K, Anrather J, Iadecola C. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol 2003; 285:H1890-9. [PMID: 12907423 DOI: 10.1152/ajpheart.00464.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether angiotensin II (ANG II), a peptide that plays a central role in the genesis of hypertension, alters the coupling between synaptic activity and cerebral blood flow (CBF), a critical homeostatic mechanism that assures adequate cerebral perfusion to active brain regions. The somatosensory cortex was activated by stroking the facial whiskers in anesthetized C57BL/6J mice while local CBF was recorded by laser-Doppler flowmetry. Intravenous ANG II infusion (0.25 mug.kg-1.min-1) increased mean arterial pressure (MAP) from 82 +/- 2 to 102 +/- 3 mmHg (P < 0.05) without affecting resting CBF (P > 0.05). ANG II attenuated the CBF increase produced by whisker stimulation by 65% (P < 0.05) but did not affect the response to hypercapnia or to neocortical application of the nitric oxide donor S-nitroso-N-acetyl penicillamine (P > 0.05). The effect of ANG II on functional hyperemia persisted if the elevation in MAP was offset by controlled hemorrhage or prevented by topical application of the peptide to the activated cortex. ANG II did not reduce the amplitude of the P1 wave of the field potentials evoked by whisker stimulation (P > 0.05). Infusion of phenylephrine increased MAP (P > 0.05 from ANG II) but did not alter the functional hyperemic response (P > 0.05). The data suggest that ANG II alters the coupling between CBF and neural activity. The mechanisms of the effect are not related to the elevation in MAP and/or to inhibition of the synaptic activity evoked by whisker stimulation. The imbalance between CBF and neural activity induced by ANG II may alter the homeostasis of the neuronal microenvironment and contribute to brain dysfunction during ANG II-induced hypertension.
Collapse
Affiliation(s)
- Ken Kazama
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 E. 69th Street, Rm. KB410, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
141
|
Candelario-Jalil E, González-Falcón A, García-Cabrera M, Álvarez D, Al-Dalain S, Martínez G, Sonia León O, Springer JE. Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem 2003; 86:545-55. [PMID: 12859668 PMCID: PMC1636020 DOI: 10.1046/j.1471-4159.2003.01812.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the relative contribution of COX-1 and/or COX-2 to oxidative damage, prostaglandin E2 (PGE2) production and hippocampal CA1 neuronal loss in a model of 5 min transient global cerebral ischemia in gerbils. Our results revealed a biphasic and significant increase in PGE2 levels after 2 and 24-48 h of reperfusion. The late increase in PGE2 levels (24 h) was more potently reduced by the highly selective COX-2 inhibitor rofecoxib (20 mg/kg) relative to the COX-1 inhibitor valeryl salicylate (20 mg/kg). The delayed rise in COX catalytic activity preceded the onset of histopathological changes in the CA1 subfield of the hippocampus. Post-ischemia treatment with rofecoxib (starting 6 h after restoration of blood flow) significantly reduced measures of oxidative damage (glutathione depletion and lipid peroxidation) seen at 48 h after the initial ischemic episode, indicating that the late increase in COX-2 activity is involved in the delayed occurrence of oxidative damage in the hippocampus after global ischemia. Interestingly, either selective inhibition of COX-2 with rofecoxib or inhibition of COX-1 with valeryl salicylate significantly increased the number of healthy neurons in the hippocampal CA1 sector even when the treatment began 6 h after ischemia. These results provide the first evidence that both COX isoforms are involved in the progression of neuronal damage following global cerebral ischemia, and have important implications for the potential therapeutic use of COX inhibitors in cerebral ischemia.
Collapse
Affiliation(s)
| | - Armando González-Falcón
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Michel García-Cabrera
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Dalia Álvarez
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Said Al-Dalain
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Gregorio Martínez
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Olga Sonia León
- Department of Pharmacology, University of Havana (CIEB-IFAL), Apartado Postal 6079, Havana City 10600, Cuba
| | - Joe E. Springer
- Department of Anatomy and Neurobiology, Spinal Cord and Brain Injury Research Center, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
142
|
Abstract
Cerebral microvessels have a unique ultrastructure form, which allows for the close relationship of the endothelium and blood elements to the neurons they serve, via intervening astrocytes. To focal ischemia, the cerebral microvasculature rapidly displays multiple dynamic responses. Immediate events include breakdown of the primary endothelial cell permeability barrier, with transudation of plasma, expression of endothelial cell-leukocyte adhesion receptors, loss of endothelial cell and astrocyte integrin receptors, loss of their matrix ligands, expression of members of several matrix-degrading protease families, and the appearance of receptors associated with angiogenesis and neovascularization. These events occur pari passu with neuron injury. Alterations in the microvessel matrix after the onset of ischemia also suggest links to changes in nonvascular cell viability. Microvascular obstruction within the ischemic territory occurs after occlusion and reperfusion of the feeding arteries ("focal no-reflow" phenomenon). This can result from extrinsic compression and intravascular events, including leukocyte(-platelet) adhesion, platelet-fibrin interactions, and activation of coagulation. All of these events occur in microvessels heterogeneously distributed within the ischemic core. The panorama of acute microvessel responses to focal cerebral ischemia provide opportunities to understand interrelationships between neurons and their microvascular supply and changes that underlie a number of central nervous system neurodegenerative disorders.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 132, La Jolla, CA 92037, U.S.A.
| | | |
Collapse
|
143
|
Doré S, Otsuka T, Mito T, Sugo N, Hand T, Wu L, Hurn PD, Traystman RJ, Andreasson K. Neuronal overexpression of cyclooxygenase-2 increases cerebral infarction. Ann Neurol 2003; 54:155-62. [PMID: 12891667 DOI: 10.1002/ana.10612] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increases in COX-2 enzymatic activity and prostaglandin production have been associated with neuronal injury in both acute and age-related degenerative neurological diseases. In this study, we tested the effects of increased COX-2 activity in a model of transient focal ischemia using a transgenic mouse model in which human COX-2 is constitutively expressed selectively in neurons of the striatum, cerebral cortex, and hippocampus. These COX-2 transgenic mice harbor elevated levels of PGE(2) that are 10-fold higher than nontransgenic levels. A significant increase in infarct volume was observed after middle cerebral artery occlusion with 4 days of reperfusion in COX-2 transgenic mice as compared with nontransgenic littermates. Pretreatment of nontransgenic mice with the selective COX-2 inhibitor SC58236 resulted in a significant reduction of infarct volume in nontransgenic mice, consistent with previous pharmacological studies. However, transgenic COX-2 mice treated with SC58236 did not show a significant reduction. This suggests that chronic increases in COX-2 expression and enzymatic activity, which can occur in aging and in pathological states characterized by oxidative stress and chronic inflammatory processes, can lead to downstream cellular changes that have a negative impact on neuronal survival in cerebrovascular disease.
Collapse
Affiliation(s)
- Sylvain Doré
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Ospina JA, Duckles SP, Krause DN. 17beta-estradiol decreases vascular tone in cerebral arteries by shifting COX-dependent vasoconstriction to vasodilation. Am J Physiol Heart Circ Physiol 2003; 285:H241-50. [PMID: 12637362 DOI: 10.1152/ajpheart.00018.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that estrogen treatment increases cerebrovascular cyclooxygenase-1, prostacyclin synthase, and production of prostacyclin. Therefore, vascular tone and prostanoid production were measured to investigate functional consequences of estrogen exposure. Middle cerebral arteries were isolated from ovariectomized female Fischer-344 rats with or without chronic in vivo 17beta-estradiol treatment. In vivo 17beta-estradiol treatment increased cerebral artery diameter; functional endothelium was required for expression of these differences. The nonspecific cyclooxygenase inhibitor indomethacin constricted, whereas arachidonic acid dilated, cerebral arteries from estrogen-treated animals. Estrogen exposure increased production of prostacyclin by cerebral arteries. Conversely, in estrogen-deficient animals, indomethacin dilated and arachidonic acid constricted cerebral blood vessels. This correlated with vasorelaxation following inhibition of the thromboxane-endoperoxide receptor with SQ-29548 but not after selective blockade of thromboxane synthase with furegrelate, suggesting prostaglandin endoperoxide (i.e., PGH2) activity. Removal of the endothelium or selective blockade of cyclooxygenase-1 with SC-560 abolished estrogen-mediated differences in the effects of arachidonate on vessel diameter and on prostacyclin production by cerebral arteries. These data suggest 17beta-estradiol decreases cerebrovascular tone by shifting the primary end product of the endothelial cyclooxygenase-1 pathway from the constrictor prostaglandin PGH2 to the vasodilator prostacyclin. These effects of estrogen may contribute to the heightened thromboresistance and enhanced cerebral blood flow documented in pre-versus postmenopausal women.
Collapse
Affiliation(s)
- Jose A Ospina
- Department of Pharmacology, College of Medicine, University of California, Irvine, CA 92697-4625, USA
| | | | | |
Collapse
|
145
|
Hayashi T, Noshita N, Sugawara T, Chan PH. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab 2003; 23:166-80. [PMID: 12571448 DOI: 10.1097/01.wcb.0000041283.53351.cb] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Angiogenesis is an intricately regulated phenomenon. Its mechanisms in the ischemic brain have not been clearly elucidated. The authors investigated expression of angiogenesis-related genes using a complementary DNA (cDNA) array method as well as Western blotting and immunohistochemistry, and compared these studies with a temporal profile of angiogenesis in mouse brains after ischemia. The number of vessels significantly increased 3 days after injury, and proliferating endothelial cells increased as early as 1 day. This means that angiogenesis occurs immediately after the injury. Ninety-six genes implicated in angiogenesis were investigated with a cDNA array study. It was found that 42, 29, and 13 genes were increased at 1 hour, 1 day, and 21 days, respectively. Most of the well-known angiogenic factors increased as early as 1 hour. Vessel-stabilizing factors such as thrombospondins also increased. At 1 day, however, thrombospondins decreased to lower levels than in the control, indicating a shift from vascular protection to angiogenesis. At 21 days, many genes were decreased, but some involved in tissue repair were newly increased. Western blotting and immunohistochemistry showed findings compatible with the cDNA array study. Many molecules act in an orchestrated fashion in the brain after ischemia and should be taken into account for therapeutic angiogenesis for stroke.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Neurosurgery, Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
146
|
Miyamoto O, Tamae K, Kasai H, Hirakawa H, Hayashida Y, Konishi R, Itano T. Suppression of hyperemia and DNA oxidation by indomethacin in cerebral ischemia. Eur J Pharmacol 2003; 459:179-86. [PMID: 12524144 DOI: 10.1016/s0014-2999(02)02876-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated antioxidative activity and the effect of indomethacin, an agent that inhibits cyclooxygenase, on extracellular glutamate and cerebral blood flow in cerebral ischemia in gerbils. Pre-ischemic administration of indomethacin (5 mg/kg, i.p.) significantly rescued hippocampal CA1 neurons (9+/-6 cells/mm in the ischemia, 87+/-43 cells/mm in the indomethacin group, P<0.001). DNA fragmentation induced by ischemia was also examined using the terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) method and indomethacin reduced TUNEL positive cells (140+/-21 in the ischemia, 99+/-31 in the indomethacin group, P<0.01). In addition, indomethacin attenuated the increase in hippocampal blood flow during reperfusion, but not increased extracellular glutamate by ischemia. Eight-hydroxydeoxyguanosine (8-OH-dG), a highly sensitive marker of DNA oxidation, was measured 90 min following ischemia using high-pressure liquid chromatography. Indomethacin significantly decreased the level of ischemia-induced 8-OH-dG in the hippocampus (P<0.05). These results suggest that indomethacin may protect neurons by attenuating oxidative stress and reperfusion injury in ischemic insult.
Collapse
Affiliation(s)
- Osamu Miyamoto
- Department of Neurobiology, Kagawa Medical University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
147
|
Bakalova RA, Matsuura T, Kanno I. Cyclooxygenase-pathway participates in the regulation of regional cerebral blood flow in response to neuronal activation under normo- and hypercapnia. Prostaglandins Leukot Essent Fatty Acids 2002; 67:379-88. [PMID: 12468258 DOI: 10.1054/plef.2002.0445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was designed to investigate whether cyclooxygenase products are involved in the regulation of the regional cerebral blood flow, evoked by somatosensory activation (evoked rCBF) under normo- and hypercapnia. Indomethacin (IMC) was used as cyclooxygenase inhibitor. It was applied intravenously (i.v., 10 mg/kg/h) in two experimental protocols-before hypercapnia (i) and after hypercapnia (ii). Somatosensory activation was induced by electrical hind paw stimulation (5 Hz frequency, 5 s duration, 1.5 mA). The evoked rCBF-response was measured in alpha -chloralose anesthetized rats using laser-Doppler flowmetry. IMC abolished completely the effect of hypercapnia on the baseline level of CBF. The drug reduced significantly evoked rCBF-response also. The inhibitory effect of IMC on evoked rCBF-response is better expressed under normocapnia (approximately 70%) than that under hypercapnia (approximately 40%). After IMC application, the normalized evoked rCBF curves peaked earlier as compared to that before its application (P<0.05), although the rise time of 0.5 s was nearly constant regardless of stimulus frequency. In conclusion, the results suggest a participation of IMC-sensitive and cyclooxygenase-dependent mechanisms in the regulation of evoked rCBF, induced by somatosensory stimulation.
Collapse
Affiliation(s)
- R A Bakalova
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Senshu-Kubota-Machi, Akita, Japan.
| | | | | |
Collapse
|
148
|
Fang X, Chen P, Moore SA. The oxygen radical scavenger pyrrolidine dithiocarbamate enhances interleukin-1beta-induced cyclooxygenase-2 expression in cerebral microvascular smooth muscle cells. Microvasc Res 2002; 64:405-13. [PMID: 12453435 DOI: 10.1006/mvre.2002.2431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress and inducible cyclooxygenase-2 (COX-2)-mediated prostaglandin (PG) formation have been proposed to play an important role in cytokine-induced vascular pathology. To explore the relationship between oxidative stress and COX-2 induction, cultured murine cerebral microvascular smooth muscle cells (SMCs) were stimulated with interleukin-1beta (IL-1beta) in the presence or absence of an oxygen radical scavenger, pyrrolidine dithiocarbamate (PDTC). IL-1beta increased COX-2 protein expression in a dose- and time-dependent manner, an increase that was further enhanced by PDTC in a dose-dependent manner. PDTC did not, however, affect the expression of COX-1 protein. In the presence of 100 microM PDTC, PGE(2) production induced by IL-1beta (5 ng/ml) was increased by threefold as compared with IL-1beta alone. Although PDTC enhanced COX-2 protein expression, it did not increase IL-1beta-induced expression of COX-2 mRNA, indicating that the regulatory effect occurred at the posttranscriptional level. The time course of COX-2 protein degradation indicated that PDTC also did not alter the stability of the COX-2 protein induced by IL-1beta. These results suggest that endogenous oxygen radicals may blunt COX-2 induced by IL-1beta through an effect on translation.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
149
|
Peng X, Carhuapoma JR, Bhardwaj A, Alkayed NJ, Falck JR, Harder DR, Traystman RJ, Koehler RC. Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am J Physiol Heart Circ Physiol 2002; 283:H2029-37. [PMID: 12384482 DOI: 10.1152/ajpheart.01130.2000] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Application of glutamate to glial cell cultures stimulates the formation and release of epoxyeicosatrienoic acids (EETs) from arachidonic acid by cytochome P-450 epoxygenases. Epoxygenase inhibitors reduce the cerebral vasodilator response to glutamate and N-methyl-D-aspartate. We tested the hypothesis that epoxygenase inhibitors reduce the somatosensory cortical blood flow response to whisker activation. In chloralose-anesthetized rats, percent changes in cortical perfusion over whisker barrel cortex were measured by laser-Doppler flowmetry during whisker stimulation. Two pharmacologically distinct inhibitors were superfused subdurally: 1) N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH), an epoxygenase substrate inhibitor; and 2) miconazole, a reversible cytochrome P-450 inhibitor acting on the heme moiety. Superfusion with 5 micromol/l MS-PPOH decreased the hyperemic response to whisker stimulation by 28% (from 25 +/- 9 to 18 +/- 7%, means +/- SD, n = 8). With 20 micromol/l MS-PPOH superfusion, the response was decreased by 69% (from 28 +/- 9% to 9 +/- 4%, n = 8). Superfusion with 20 micromol/l miconazole decreased the flow response by 67% (from 31 +/- 6% to 10 +/- 3%, n = 8). Subsequent superfusion with vehicle restored the response to 26 +/- 11%. Indomethacin did not prevent MS-PPOH inhibition of the flow response, suggesting that EET-related vasodilation was not dependent solely on cyclooxygenase metabolism of 5,6-EET. Neither MS-PPOH nor miconazole changed baseline flow, reduced the blood flow response to an adenosine A(2) agonist, or decreased somatosensory evoked potentials. The marked reduction of the cortical flow response to whisker stimulation with two different types of epoxygenase inhibitors indicates that EETs play an important role in the physiological coupling of blood flow to neural activation.
Collapse
Affiliation(s)
- Xinqi Peng
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street/Blalock 1404-E, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Pérez-Vizcaíno F, López-López JG, Santiago R, Cogolludo A, Zaragozá-Arnáez F, Moreno L, Alonso MJ, Salaices M, Tamargo J. Postnatal maturation in nitric oxide-induced pulmonary artery relaxation involving cyclooxygenase-1 activity. Am J Physiol Lung Cell Mol Physiol 2002; 283:L839-48. [PMID: 12225961 DOI: 10.1152/ajplung.00293.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The maturation in the vasodilator response to nitric oxide (NO) in isolated intrapulmonary arteries was analyzed in newborns and 15- to 20-day-old piglets. The vasodilator responses to NO gas but not to the NO donor sodium nitroprusside increased with age. The inhibitory effects of the superoxide dismutase inhibitor diethyldithiocarbamate and xanthine oxidase plus hypoxanthine and the potentiation induced by superoxide dismutase and MnCl(2) of NO-induced vasodilatation were similar in the two age groups. Diphenyleneiodonium (NADPH oxidase inhibitor) potentiated the response to NO, and this effect was more pronounced in the older animals. The nonselective cyclooxygenase inhibitors indomethacin and meclofenamate and the preferential cyclooxygenase-1 inhibitor aspirin augmented NO-induced relaxation specifically in newborns, whereas the selective cycloxygenase-2 inhibitor NS-398 had no effect. The expressions of alpha-actin, cycloxygenase-1, and cycloxygenase-2 proteins were similar, whereas Cu,Zn-superoxide dismutase decreased with age. Therefore, the present data suggest that the maturational increase in the vasodilatation of NO in the pulmonary arteries during the first days of extrauterine life involves a cycloxygenase-dependent inhibition of neonatal NO activity.
Collapse
Affiliation(s)
- Francisco Pérez-Vizcaíno
- Department of Pharmacology, Institute of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|