101
|
Castro-Gonzalez S, Shi Y, Colomer-Lluch M, Song Y, Mowery K, Almodovar S, Bansal A, Kirchhoff F, Sparrer K, Liang C, Serra-Moreno R. HIV-1 Nef counteracts autophagy restriction by enhancing the association between BECN1 and its inhibitor BCL2 in a PRKN-dependent manner. Autophagy 2021; 17:553-577. [PMID: 32097085 PMCID: PMC8007141 DOI: 10.1080/15548627.2020.1725401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy/autophagy is an auto-digestive pro-survival pathway activated in response to stress to target cargo for lysosomal degradation. In recent years, autophagy has become prominent as an innate antiviral defense mechanism through multiple processes, such as targeting virions and viral components for elimination. These exciting findings have encouraged studies on the ability of autophagy to restrict HIV. However, the role of autophagy in HIV infection remains unclear. Whereas some reports indicate that autophagy is detrimental for HIV, others have claimed that HIV deliberately activates this pathway to increase its infectivity. Moreover, these contrasting findings seem to depend on the cell type investigated. Here, we show that autophagy poses a hurdle for HIV replication, significantly reducing virion production. However, HIV-1 uses its accessory protein Nef to counteract this restriction. Previous studies have indicated that Nef affects autophagy maturation by preventing the fusion between autophagosomes and lysosomes. Here, we uncover that Nef additionally blocks autophagy initiation by enhancing the association between BECN1 and its inhibitor BCL2, and this activity depends on the cellular E3 ligase PRKN. Remarkably, the ability of Nef to counteract the autophagy block is more frequently observed in pandemic HIV-1 and its simian precursor SIVcpz infecting chimpanzees than in HIV-2 and its precursor SIVsmm infecting sooty mangabeys. In summary, our findings demonstrate that HIV-1 is susceptible to autophagy restriction and define Nef as the primary autophagy antagonist of this antiviral process.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin, beta; ATG16L1: autophagy related 16 like 1; BCL2: bcl2 apoptosis regulator; BECN1: beclin 1; cDNA: complementary DNA; EGFP: enhanced green fluorescence protein; ER: endoplasmic reticulum; Gag/p55: group-specific antigen; GFP: green fluorescence protein; GST: glutathione S transferase; HA: hemagglutinin; HIV: human immunodeficiency virus; IP: immunoprecipitation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nef: negative factor; PRKN: parkin RBR E3 ubiquitin ligase; PtdIns3K: phosphatidylinositol 3 kinase; PtdIns3P: phosphatidylinositol 3 phosphate; PTM: post-translational modification; RT-qPCR: reverse transcription followed by quantitative PCR; RUBCN: rubicon autophagy regulator; SEM: standard error of the mean; SERINC3: serine incorporator 3; SERINC5: serine incorporator 5; SIV: simian immunodeficiency virus; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; UVRAG: UV radiation resistance associated gene; VSV: vesicular stomatitis virus; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yuhang Shi
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Ying Song
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaitlyn Mowery
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Immunology and Molecular Microbiology, Texas Tech Health Sciences Center, Lubbock, TX, USA
| | - Anju Bansal
- Medicine, Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, University of Ulm, Ulm, Germany
| | | | - Chengyu Liang
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ruth Serra-Moreno
- Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
102
|
Liu Y, Zhao D, Peng W, Xue P, Jiang X, Chen S, Gao H, Wang X, Feng S. Atmospheric PM 2.5 blocking up autophagic flux in HUVECs via inhibiting Sntaxin-17 and LAMP2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111450. [PMID: 33039871 DOI: 10.1016/j.ecoenv.2020.111450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Despite of growing evidence linking PM2.5 exposure to autophagic activity in various human cells, the functional significance of PM2.5 exposure affecting autophagy in the pathogenesis of human cardiovascular disease and the underlying molecular mechanisms remain unclear. In this study, the effects of ambient PM2.5 (with final concentration 0, 1, 5, 25 µg/mL) on the autophagic activity in human umbilical vein endothelial cells (HUVECs) were systematically studied. The results showed that the internalized PM2.5 mainly localized in the membrane-surrounded vacuoles in the cytoplasm. Compared with the negative control, dose-dependent increase of autophagosomes, puncta and protein levels of LC3-II and p62, and both dose- and time-dependent increase of AKT phosphorylation, with inversely time-dependent reduction of Beclin 1, ATG3 and ATG5 proteins, were presented in the PM2.5-treated HUVECs, indicating a clear impairment of autophagic degradation in the PM2.5-exposed HUVECs. Meanwhile, increase in lysosomes, LAMP1, proteases of CTSB and CTSD, and protein phosphorylation of ERK1/2 and TFEB was identified in the PM2.5-treated HUVECs, showing a PM2.5-mediated enhancement in lysosomal activity. A novel finding in this study is that both Sntaxin-17 and LAMP2, two key proteins involved in the control of membrane fusion between autophagosome and lysosome, were significantly decreased in the PM2.5-exposed HUVECs, suggesting that the fusion of autophagosome-lysosome was blocked up. Collectively, ambient PM2.5 exposure may block up the autophagic flux in HUVECs through inhibiting the expression of Sntaxin-17 and LAMP2. Autophagic activity in HUVECs is a useful biomarker for assessing risks of environmental factors to human cardiovascular health.
Collapse
Affiliation(s)
- Yuanfeng Liu
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China; The Institute of Preventive Medicine, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Dongting Zhao
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Wenyi Peng
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Panpan Xue
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Xiaojun Jiang
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Shuting Chen
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Huiqian Gao
- The Institute of Preventive Medicine, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Shaolong Feng
- The Institute of Preventive Medicine, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
103
|
Jiang K, Xu Y, Wang D, Chen F, Tu Z, Qian J, Xu S, Xu Y, Hwa J, Li J, Shang H, Xiang Y. Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis. Protein Cell 2021; 13:336-359. [PMID: 33417139 PMCID: PMC9008115 DOI: 10.1007/s13238-020-00809-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular mortality in patients with diabetes mellitus but the protective mechanism remains elusive. Here we demonstrated that the SGLT2 inhibitor, Empagliflozin (EMPA), suppresses cardiomyocytes autosis (autophagic cell death) to confer cardioprotective effects. Using myocardial infarction (MI) mouse models with and without diabetes mellitus, EMPA treatment significantly reduced infarct size, and myocardial fibrosis, thereby leading to improved cardiac function and survival. In the context of ischemia and nutritional glucose deprivation where autosis is already highly stimulated, EMPA directly inhibits the activity of the Na+/H+ exchanger 1 (NHE1) in the cardiomyocytes to regulate excessive autophagy. Knockdown of NHE1 significantly rescued glucose deprivation-induced autosis. In contrast, overexpression of NHE1 aggravated the cardiomyocytes death in response to starvation, which was effectively rescued by EMPA treatment. Furthermore, in vitro and in vivo analysis of NHE1 and Beclin 1 knockout mice validated that EMPA’s cardioprotective effects are at least in part through downregulation of autophagic flux. These findings provide new insights for drug development, specifically targeting NHE1 and autosis for ventricular remodeling and heart failure after MI in both diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yue Xu
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dandan Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Chen
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zizhuo Tu
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jie Qian
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Sheng Xu
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237, China
| | - John Hwa
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
104
|
Wu S, Zhang H, Chen N, Zhang C, Guo X. Metformin protects cardiomyocytes against oxygen-glucose deprivation injury by promoting autophagic flux through AMPK pathway. J Drug Target 2021; 29:551-561. [PMID: 33355497 DOI: 10.1080/1061186x.2020.1868478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metformin has been shown to protect myocardial ischaemia/reperfusion or hypoxia/reoxygenation injury. In our current study, we investigated the effects of metformin on autophagy and its possible underlying mechanisms in in vivo myocardial infarction (MI) model and in vitro oxygen-glucose deprivation (OGD) model. A rat model of MI was made by ligating coronary artery in vivo study. Metformin (200 mg/kg/day) could improve cardiac function, prevent rats from MI-induced injury by reducing myocardial infarct size and apoptosis. Moreover, metformin furtherly promoted autophagy by increasing the protein expression of LC3-II, ATG5, ATG7 and Beclin1, and by involving AMPK pathway during MI. H9c2 cells were treated with metformin (4 mM) in vitro study to assess its effects after exposure to OGD. Metformin increased cell viability and inhibited OGD-induced LDH synthesis and cell apoptosis. Furthermore, metformin increased autophagosome formations as well as expression of autophagy-related proteins, promoted autophagic flux. In addition, metformin augmented the protein level of Bcl-2 and diminished the protein levels of Bax and cleaved caspase-3. Metformin also upregulated p-AMPK expression. Nevertheless, the above-mentioned effects of metformin on H9c2 cells were remarkably eliminated by compound C (an AMPK inhibitor). In summary, we displayed that metformin protected cardiomyocytes against OGD-induced injury and apoptosis by promoting autophagic flux through the AMPK pathway.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hairong Zhang
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Ningheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuang Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
105
|
Wang S, Guo R, Su Y, Yang C, Guo Y, Tan C, Zhao B. Swainsonine promotes apoptosis by impairing lysosomal function and inhibiting autophagic degradation in rat primary renal tubular epithelial cells. Chem Biol Interact 2020; 336:109319. [PMID: 33186601 DOI: 10.1016/j.cbi.2020.109319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Swainsonine (SW), an indolizidine alkaloid, is the primary toxin in locoweeds that causes toxicity syndrome in livestock. Current research shows that SW can induce both apoptosis and autophagy. However, the relationship between, and regulatory mechanism of, autophagy and apoptosis in SW-mediated cytotoxicity remain unclear. In this study, we investigated the role of autophagy and apoptosis in SW-induced cytotoxicity in rat primary renal tubular epithelial cells (RTECs). We examined the effect of SW on lysosomal function using western blotting, transmission electron microscopy, fluorescent microscopy, and flow cytometry. The results showed that SW induced both autophagy and apoptosis, and autophagy protected RTECs from cellular damage. Activating autophagy using rapamycin (Rapa) inhibited apoptosis, while suppressing autophagy using bafilomycin A1 (Baf A1) greatly enhanced SW-induced apoptosis. SW treatment suppressed the expression of lysosomal-related proteins, and co-incubation with SW and aloxistatin (E64d) further promoted apoptosis and LC3-II accumulation in RTECs. These results suggest that SW causes toxicity by disrupting lysosomal dysfunction, inhibiting autophagic degradation, and promoting apoptosis.
Collapse
Affiliation(s)
- Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rong Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongxia Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yazhou Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chengjian Tan
- Department of Biotechnology, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Poisonous Plants in Western China, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
106
|
Patience Ojo O, Perez-Corredor PA, Gutierrez-Vargas JA, Busayo Akinola O, Cardona-Gómez GP. Lasting metabolic effect of a high-fructose diet on global cerebral ischemia. Nutr Neurosci 2020; 25:1159-1172. [PMID: 33164710 DOI: 10.1080/1028415x.2020.1841482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Obesity is a public health problem that is associated with cerebrovascular diseases, such as ischemic stroke. The coexistence of obesity with cerebral ischemia has been suggested to be considerably detrimental to the neurological system. Objective: Hence, in this study, we evaluated the long-term effects of a 20% high fructose diet (HFD) and global cerebral ischemia on neurological, cognitive and emotional performance in three-month-old male Wistar rats. Results: Our results demonstrated that fructose intake led to increases in body weight and blood glucose, as well as reduced insulin sensitivity. The co-morbidity of fructose intake and cerebral ischemia resulted to hyperlipidemia, as well as increases in liver and adipocyte damage, which worsened neurological performance and resulted in alterations in learning and emotional skills at two weeks post-ischemia. No significant biochemical changes in autophagy and plasticity markers at the late stage of ischemia were observed. Conclusion: These results suggested that obesity causes a lasting effect on metabolic disorders that can contribute to increased neurological impairment after cerebral ischemia.
Collapse
Affiliation(s)
- Oluwatomilayo Patience Ojo
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia.,Division of Neuroendocrinology, Department of Anatomy, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Nigeria
| | - Paula Andrea Perez-Corredor
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia
| | - Johanna Andrea Gutierrez-Vargas
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia.,Grupo de Investigación en Saluddel Adulto Mayor (GISAM), Corporación Universitaria Remington, Medellín, Colombia
| | - Oluwole Busayo Akinola
- Division of Neuroendocrinology, Department of Anatomy, Faculty of Basic Medical Science, University of Ilorin, Ilorin, Nigeria
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
107
|
Cleveland KH, Brosius FC, Schnellmann RG. Regulation of mitochondrial dynamics and energetics in the diabetic renal proximal tubule by the β 2-adrenergic receptor agonist formoterol. Am J Physiol Renal Physiol 2020; 319:F773-F779. [PMID: 32954853 PMCID: PMC7789990 DOI: 10.1152/ajprenal.00427.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes is a prevalent metabolic disease that contributes to ∼50% of all end-stage renal disease and has limited treatment options. We previously demonstrated that the β2-adrenergic receptor agonist formoterol induced mitochondrial biogenesis and promoted recovery from acute kidney injury. Here, we assessed the effects of formoterol on mitochondrial dysfunction and dynamics in renal proximal tubule cells (RPTCs) treated with high glucose and in a mouse model of type 2 diabetes. RPTCs exposed to 17 mM glucose exhibited increased electron transport chain (ETC) complex I, II, III, and V protein levels and reduced ATP levels and uncoupled oxygen consumption rate compared with RPTCs cultured in the absence of glucose or osmotic controls after 96 h. ETC proteins, ATP, and oxygen consumption rate were restored in RPTCs treated with formoterol. RPTCs exposed to high glucose had increased phospho-dynamin-related protein 1 (Drp1), a mitochondrial fission protein, and decreased mitofusin 1 (Mfn1), a mitochondrial fusion protein. Formoterol treatment restored phospho-Drp1 and Mfn1 to control levels. Db/db and nondiabetic (db/m) mice (10 wk old) were treated with formoterol or vehicle for 3 wk and euthanized. Db/db mice showed increased renal cortical ETC protein levels in complexes I, III, and V and decreased ATP; these changes were prevented by formoterol. Phospho-Drp1 was increased and Mfn1 was decreased in db/db mice, and formoterol restored both to control levels. Together, these findings demonstrate that hyperglycemic conditions in vivo and exposure of RPTCs to high glucose similarly alter mitochondrial bioenergetic and dynamics profiles and that treatment with formoterol can reverse these effects. Formoterol may be a promising strategy for treating early stages of diabetic kidney disease.
Collapse
Affiliation(s)
- Kristan H. Cleveland
- 1Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Frank C. Brosius
- 2Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona,3Departments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Rick G. Schnellmann
- 1Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona,4Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona,5Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
108
|
Gao Y, Galis ZS. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol 2020; 41:179-185. [PMID: 33086867 DOI: 10.1161/atvbaha.120.314346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditionally, much research effort has been invested into focusing on disease, understanding pathogenic mechanisms, identifying risk factors, and developing effective treatments. A few recent studies unraveling the basis for absence of disease, including cardiovascular disease, despite existing risk factors, a phenomenon commonly known as resilience, are adding new knowledge and suggesting novel therapeutic approaches. Given the central role of endothelial function in cardiovascular health, we herein provide a number of considerations that warrant future research and considering a paradigm shift toward identifying the molecular underpinnings of endothelial resilience.
Collapse
Affiliation(s)
- Yunling Gao
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Zorina S Galis
- From the Division of Cardiovascular Sciences, Vascular Biology and Hypertension Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
109
|
Luo W, Gui DD, Yan BJ, Ren Z, Peng LJ, Wei DH, Liu LS, Zhang DW, Jiang ZS. Hydrogen Sulfide Switch Phenomenon Regulating Autophagy in Cardiovascular Diseases. Cardiovasc Drugs Ther 2020; 34:113-121. [PMID: 32090295 DOI: 10.1007/s10557-019-06927-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S), a novel gaseous signaling molecule, is a vital physiological signal in mammals. H2S protects the cardiovascular system via modulation of vasodilation, vascular remodeling, and inhibition of vascular calcification, and also has anti-atherosclerosis properties. Autophagy is a lysosomal-mediated intracellular degradation mechanism for excessive or abnormal proteins and lipids. The contribution of autophagy to normal and disease-state cell physiology is extremely complicated. Autophagy acts as a double-edged sword in the cardiovascular system. It can defend against damage to cells caused by environmental changes and it can also induce active cell death under certain conditions. In recent years, accumulating evidence indicates that H2S can up- or downregulate autophagy in many pathological processes, thereby switching from a harmful to a beneficial role. In this review, we summarize progress on understanding the mechanism by which H2S regulates autophagy in cardiovascular disease. We also discuss a H2S switch phenomenon that regulates autophagy and provides protection in cardiovascular diseases.
Collapse
Affiliation(s)
- Wen Luo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan Province, China
| | - Dan-Dan Gui
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan Province, China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan Province, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan Province, China
| | - Li-Jun Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan Province, China.,Medical Record Statistics Office and Library, The Pediatric Academy of University of South China, Changsha, 410007, Hunan Province, China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan Province, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan Province, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
110
|
Shan R, Liu N, Yan Y, Liu B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol Res 2020; 166:105169. [PMID: 33053445 DOI: 10.1016/j.phrs.2020.105169] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a multifactorial chronic inflammatory disease of the arterial wall, and an important pathological basis of coronary heart disease. Endothelial cells, vascular smooth muscle cells, and macrophages play important roles in the development of atherosclerosis. Of note, apoptosis and autophagy, two types of programmed cell death, influence the development and progression of atherosclerosis via the modulation of such cells. The small heat shock protein Hsp27 is a multifunctional protein induced by various stress factors and has a protective effect on cells. A large number of studies have demonstrated that Hsp27 plays an important role in regulating apoptosis. Recently, some studies have suggested that Hsp27 also participates in the autophagic process. Moreover, Hsp27 is closely related to the occurrence and development of atherosclerosis. Here, we summarize the molecular mechanisms of apoptosis and autophagy and discuss their effects on endothelial cells, vascular smooth muscle cells, and macrophages in the context of atherosclerotic procession. We further explore the involvement of Hsp27 in apoptosis, autophagy, and atherosclerosis. We speculate that Hsp27 may exert its anti-atherosclerotic role via the regulation of apoptosis and autophagy; this may provide the basis for the development of new approaches for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ruiting Shan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Youyou Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
111
|
Abudureyimu M, Yu W, Cao RY, Zhang Y, Liu H, Zheng H. Berberine Promotes Cardiac Function by Upregulating PINK1/Parkin-Mediated Mitophagy in Heart Failure. Front Physiol 2020; 11:565751. [PMID: 33101051 PMCID: PMC7546405 DOI: 10.3389/fphys.2020.565751] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 01/07/2023] Open
Abstract
Berberine has been verified to protect cardiac function in patients with heart failure (HF). However, the mechanism(s) involved in berberine-mediated cardioprotective effects has not been clearly elucidated. The aim of this study was to further investigate the mechanism(s) involved in the beneficial effects of berberine on transverse aortic contraction (TAC)-induced chronic HF. Mice were randomly divided into four groups. Berberine was administered at a dose of 50 mg/kg/day for 4 weeks via oral gavage. Our findings showed that TAC-induced pressure overload (PO) prompted cardiac dysfunction, cardiac hypertrophy, interstitial fibrosis, cardiomyocyte apoptosis and mitochondrial injury, accompanied with suppressed mitophagy, the effects of which were attenuated by berberine. Furthermore, mitophagy regulators PINK1 and mito-Parkin were downregulated in TAC-induced HF, while berberine upregulated PINK1/Parkin-mediated mitophagy. Notably, knockdown of PINK1 by small interfering RNA significantly suppressed Parkin-mediated mitochondrial ubiquitination and nullified the beneficial actions on HF exerted by berberine. Taken together, our results indicated that berberine plays a critical role in attenuating cardiac hypertrophy and preserving cardiac function from PO induced HF. The potential underlying mechanism is the activation of mitochondrial autophagy via PINK1/Parkin/Ubiquitination pathway.
Collapse
Affiliation(s)
- Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Wenjun Yu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Richard Yang Cao
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haibo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongchao Zheng
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
112
|
Jiang M, Liu T, Zhang J, Gao S, Tao B, Cao R, Qiu Y, Liu J, Li Y, Wang Y, Cao F. Rapamycin Promotes Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells in a Stage-Dependent Manner. Stem Cells Dev 2020; 29:1229-1239. [PMID: 32693734 DOI: 10.1089/scd.2020.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are a promising source for cardiac regenerative therapy, and ideal for in vitro cell modeling of cardiovascular diseases and drug screening. Recent studies have shown that rapamycin can promote cardiomyocyte differentiation in various stem cells. However, how rapamycin affects cardiomyocyte differentiation of iPSCs is still not fully understood. This study aimed to investigate the effect of rapamycin on cardiomyocyte differentiation based on embryoid body (EB) method. First, to determine the autophagy induction protocol, different concentrations of rapamycin were applied in hEBs on day 6. The autophagy was most significant when applying rapamycin at 1 μM for 48 h, demonstrating by the LC3II/LC3I ratio and p62 expression. Then, 1 μM rapamycin was applied for 48 h at different time points of cardiomyocyte differentiation to investigate the role of rapamycin in this process. Compared with control, rapamycin applied on days 0-4 of differentiation significantly decreased the proportion of beating EBs and expression of cardiomyocyte-specific genes, while rapamycin applied on days 4-14 significantly increased them. Among all groups, rapamycin applied on days 4-6 achieved highest cardiomyocyte differentiation efficiency. Furthermore, using autophagy inhibitor NH4Cl and GSK-3β inhibitor CHIR-99021, we found rapamycin-induced autophagy promoted cardiomyocyte differentiation at middle stage by negatively regulating the Wnt/β-catenin signaling pathway. These results suggest that rapamycin regulates EB-based cardiomyocyte differentiation in a stage-dependent manner, and the negative regulation of Wnt/β-catenin signaling pathway by autophagy was involved in the prodifferentiation effect of rapamycin at middle stage.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Tong Liu
- Department of Cardiology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Jibin Zhang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Shan Gao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Bo Tao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ruihua Cao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Ya Qiu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Junsong Liu
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Yanhua Li
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Yabin Wang
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| | - Feng Cao
- Department of Cardiology & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital & Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
113
|
Xiao Q, Chen XH, Jiang RC, Chen SY, Chen KF, Zhu X, Zhang XL, Huang JJ, Qin Y, Zhang GP, Yi Q, Luo JD. Ubc9 Attenuates Myocardial Ischemic Injury Through Accelerating Autophagic Flux. Front Pharmacol 2020; 11:561306. [PMID: 33041800 PMCID: PMC7522513 DOI: 10.3389/fphar.2020.561306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023] Open
Abstract
Aims SUMOylation is a post-translational modification that plays a crucial role in the cellular stress response. We aimed to demonstrate whether and how the SUMO E2 conjugation enzyme Ubc9 affects acute myocardial ischemic (MI) injury. Methods and Results Adenovirus expressing Ubc9 was administrated by multipoint injection in the border zone of heart immediately after MI in C57BL/6 mice. Neonatal rat cardiomyocytes (NRCMs) were also infected, followed by oxygen and glucose deprivation (OGD). In vivo, Ubc9 adenovirus-injected mice showed decreased cardiomyocyte apoptosis, reduced myocardial fibrosis, and improved cardiac function post-MI. In vitro, overexpression of Ubc9 decreased cardiomyocyte apoptosis, whereas silence of Ubc9 showed the opposite results during OGD. We next found that Ubc9 significantly decreased the accumulation of autophagy marker p62/SQSTM, while the LC3 II level hardly changed. When in the presence of bafilomycin A1 (BAF), the Ubc9 adenovirus plus OGD group presented a higher level of LC3 II and GFP-LC3 puncta than the OGD group. Moreover, the Ubc9 adenovirus group displayed increased numbers of yellow plus red puncta and a rising ratio of red to yellow puncta on the mRFP-GFP-LC3 fluorescence assay, indicating that Ubc9 induces an acceleration of autophagic flux from activation to degradation. Mechanistically, Ubc9 upregulated SUMOylation of the core proteins Vps34 and Beclin1 in the class III phosphatidylinositol 3-kinase (PI3K-III) complexes and boosted the protein assembly of PI3K-III complex I and II under OGD. Moreover, the colocalization of Vps34 with autophagosome marker LC3 or lysosome marker Lamp1 was augmented after Ubc9 overexpression, indicating a positive effect of Ubc9-boosted protein assembly of the PI3K-III complexes on autophagic flux enhancement. Conclusions We uncovered a novel role of Ubc9 in protecting cardiomyocytes from ischemic stress via Ubc9-induced SUMOylation, leading to increased PI3K-III complex assembly and autophagy-positioning. These findings may indicate a potential therapeutic target, Ubc9, for treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Qing Xiao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacology, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiu-Hui Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Ru-Chao Jiang
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Sheng-Ying Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Kai-Feng Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Xiang Zhu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Ling Zhang
- Department of Neonatology, Maternal and Children Hospital of Guangdong Province, Guangzhou, China
| | - Jun-Jun Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuan Qin
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Gui-Ping Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Quan Yi
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Jian-Dong Luo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacology, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
114
|
CaMKIIδ inhibition protects against myocardial ischemia/reperfusion injury: Role of Beclin-1-dependent autophagy. Eur J Pharmacol 2020; 886:173539. [PMID: 32918874 DOI: 10.1016/j.ejphar.2020.173539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II δ (CaMKIIδ) has been shown to play a vital role in pathological events in myocardial ischemia/reperfusion (IR) injury. Dysregulation of autophagy in cardiomyocytes is implicated in myocardial IR injury. Here, we examined whether CaMKIIδ inhibition could protect against myocardial IR injury through alleviating autophagy dysfunction and evaluated the potential role of CaMKIIδ in Beclin-1-dependent autophagy in ischemia/reperfused hearts. This study was performed using isolated perfused rat hearts and H9c2 cardiac myoblasts. KN-93, but not KN-92, inhibited the phosphorylation of CaMKIIδ at Thr286 and its substrate phospholamban at Thr17 besides the CaMKIIδ activity in myocardial IR. KN-93, but not KN-92 significantly improved post-ischemic cardiac function and reduced cell death. In cultured H9c2 cardiac myoblasts, KN-93 or CaMKIIδ siRNA, but not KN-92, attenuated simulated IR (SIR)-induced cell death. Moreover, CaMKIIδ inhibition could alleviate IR-induced autophagic dysfunction as evidenced in reduced levels of Atg5, p62, and LC3BII in isolated rat hearts and H9c2 cardiac myoblasts. Furthermore, co-treatment with bafilomycin A1, a lysosomal inhibitor, in CaMKII inhibition-treated cells suggested that CaMKII inhibition alleviated autophagic flux. CaMKIIδ inhibition mitigated the phosphorylation of Beclin-1 at Ser90. As expected, Beclin-1 siRNA significantly decreased the levels of Beclin-1 and Beclin-1 phosphorylation accompanied by partial reductions in Atg5, LC3BII, p62, cleaved caspase-3 and cytochrome c. However, Beclin-1 siRNA had little effect on CaMKIIδ phosphorylation. Taken together, these results demonstrated that CaMKIIδ inhibition reduced myocardial IR injury by improving autophagy dysfunction, and that CaMKIIδ-induced autophagy dysfunction partially depended on the phosphorylation of Beclin-1.
Collapse
|
115
|
miR-30e-3p Promotes Cardiomyocyte Autophagy and Inhibits Apoptosis via Regulating Egr-1 during Ischemia/Hypoxia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7231243. [PMID: 32879888 PMCID: PMC7448244 DOI: 10.1155/2020/7231243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Background Microvascular obstruction (MVO) can result in coronary microcirculation embolism and myocardial microinfarction. Myocardial injury induced by MVO is characterized by continuous ischemia and hypoxia of cardiomyocytes. Autophagy and apoptosis are closely associated with various cardiovascular diseases. Based on our previous study, we observed a decrease in miR-30e-3p expression and an increase in Egr-1 expression in a rat coronary microembolization model. However, the specific function of miR-30e-3p in regulating autophagy and apoptosis in an ischemia/hypoxia (IH) environment remains to be deciphered. We exposed cardiomyocytes to an IH environment and then determined whether miR-30e-3p was involved in promoting cardiomyocyte autophagy and inhibiting apoptosis by regulating Egr-1. Methods Cardiomyocytes were isolated from rats for our in vitro study. miR-30e-3p was either overexpressed or inhibited by transfection with lentiviral vectors into cardiomyocytes. 3-Methyladenine (3-MA) was used to inhibit autophagy. RT-qPCR and western blotting were used to determine the expression levels of miR-30e-3p, Egr-1, and proteins related to the autophagy and apoptosis process. Autophagic vacuoles and autophagic flux were evaluated using transmission electron microscopy (TEM) and confocal microscopy, respectively. Cardiomyocyte viability was evaluated using the MTS assay. Cell injury was assessed by lactate dehydrogenase (LDH) leakage, and apoptosis was determined by flow cytometry. Results Both miR-30e-3p expression and autophagy were significantly inhibited, and apoptosis was increased in cardiomyocytes after 9 hours of IH exposure. Overexpression of miR-30e-3p increased autophagy and inhibited apoptosis, as well as suppressed Egr-1 expression and decreased cell injury. In addition, inhibition of miR-30e-3p reduced autophagy and increased apoptosis and cell injury. Conclusions miR-30e-3p may be involved in promoting cardiomyocyte autophagy and inhibiting apoptosis by indirectly regulating Egr-1 expression in an IH environment.
Collapse
|
116
|
TFPIα alleviated vascular endothelial cell injury by inhibiting autophagy and the class III PI3K/Beclin-1 pathway. Thromb Res 2020; 195:151-157. [PMID: 32702563 DOI: 10.1016/j.thromres.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
Endothelium (EC) dysfunction plays an important role in vascular diseases, such as arteriosclerosis and hypoxia/reoxygenation (H/R) injury. Tissue factor pathway inhibitor (TFPI) is the only physiological inhibitor of the TF/FVIIa complex in vivo. This experiment aimed to determine the effect of TFPIα on H/R-induced EC injury and the possible mechanisms. The MIC101 hypoxia system was used to establish an EC H/R injury model in vitro. Our results showed that 6 h after reoxygenation, the EC injury in H/R group was higher than that in the control group, whereas after adding TFPIα, the EC injury was alleviate than that in H/R group. The level of ROS was higher in the H/R group than in the control group, while it was apparently lower in the H/R+TFPIα group than in the H/R group. After H/R, the number of autophagosomes and the autophagic flux were significantly increased, whereas TFPIα could decrease the autophagy level after H/R. The expressions of LC3-II/LC3-I, Beclin-1 and PI3K were obviously higher after H/R and lower after adding TFPIα. In conclusion, autophagy contributes to EC injury during the H/R period. TFPIα could decrease autophagy in ECs, and the mechanism might be class III PI3K/Beclin-1 pathway regulation.
Collapse
|
117
|
Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm 2020; 2020:7527953. [PMID: 32724296 PMCID: PMC7366221 DOI: 10.1155/2020/7527953] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the new coronavirus SARS-CoV-2 that mostly affects the respiratory system. The consequent inflammation is not able to clear viruses. The persistent excessive inflammatory response can build up a clinical picture that is very difficult to manage and potentially fatal. Modulating the immune response plays a key role in fighting the disease. One of the main defence systems is the activation of neutrophils that release neutrophil extracellular traps (NETs) under the stimulus of autophagy. Various molecules can induce NETosis and autophagy; some potent activators are damage-associated molecular patterns (DAMPs) and, in particular, the high-mobility group box 1 (HMGB1). This molecule is released by damaged lung cells and can induce a robust innate immunity response. The increase in HMGB1 and NETosis could lead to sustained inflammation due to SARS-CoV-2 infection. Therefore, blocking these molecules might be useful in COVID-19 treatment and should be further studied in the context of targeted therapy.
Collapse
Affiliation(s)
- Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Gerolamo Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
118
|
The Mitochondria: A Target of Polyphenols in the Treatment of Diabetic Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21144962. [PMID: 32674299 PMCID: PMC7404043 DOI: 10.3390/ijms21144962] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a constellation of symptoms consisting of ventricular dysfunction and cardiomyocyte disarray in the presence of diabetes. The exact cause of this type of cardiomyopathy is still unknown; however, several processes involving the mitochondria, such as lipid and glucose metabolism, reactive oxygen species (ROS) production, apoptosis, autophagy and mitochondrial biogenesis have been implicated. In addition, polyphenols have been shown to improve the progression of diabetes. In this review, we discuss some of the mechanisms by which polyphenols, particularly resveratrol, play a role in slowing the progression of DCM. The most important intermediates by which polyphenols exert their protective effect include Bcl-2, UCP2, SIRT-1, AMPK and JNK1. Bcl-2 acts to attenuate apoptosis, UCP2 decreases oxidative stress, SIRT-1 increases mitochondrial biogenesis and decreases oxidative stress, AMPK increases autophagy, and JNK1 decreases apoptosis and increases autophagy. Our dissection of these molecular players aims to provide potential therapeutic targets for the treatment of DCM.
Collapse
|
119
|
Jiang Y, Gu Y, Xu H, Tian X, Zhang X, Xu X, Yan W, Zhang X. Bromide impairs the circadian clock and glycolytic homeostasis via disruption of autophagy in rat H9C2 cardiomyocytes. BMC Mol Cell Biol 2020; 21:44. [PMID: 32560625 PMCID: PMC7304218 DOI: 10.1186/s12860-020-00289-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Trace elements function as essential cofactors that are involved in various biochemical processes in mammals. Autophagy is vital for nutrient supplement, which is an important Zeitegber for the circadian homeostasis in heart. Here, we considered the possibility that autophagy, as well as the cardiomyocyte clock and glycolysis are interlinked. Detrimental effects were observed when cardiac system is exposed to bromine containing drugs. This study investigated the effects and mechanisms of bromide on the circadian clock and glycolytic metabolism of H9C2 cardiomyocytes. Results In the present study, bromide does not affect cell viability and apoptosis of H9C2 cardiomyocytes. Bromide dampens the clock and glycolytic (Hk2 and Pkm2) gene expression rhythmicity in a dose-dependent manner. Additionally, bromide inhibits autophagic process in H9C2 cardiomyocytes. In contrast, rapamycin (an autophagy inducer) dramatically restores the inhibitory effect of NaBr on the mRNA expression levels of clock genes (Bmal1, Cry1 and Rorα) and glycolytic genes (Hk2 and Pkm2). Conclusions Our results reveal that bromide represses the clock and glycolytic gene expression patterns, partially through inhibition of autophagy.
Collapse
Affiliation(s)
- Yicheng Jiang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Yang Gu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Hai Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiaoyi Tian
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xuefeng Zhang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiaojin Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Wenting Yan
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiwen Zhang
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
120
|
Lin YB, Huang DJ, Huang HL, Chen DX, Huang JH. Sophocarpine ameliorates cardiac hypertrophy through activation of autophagic responses. Biosci Biotechnol Biochem 2020; 84:2054-2061. [PMID: 32544026 DOI: 10.1080/09168451.2020.1780111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mounting evidences indicate that autophagy is an essential homeostatic mechanism to maintain the global cardiac structure function. Sophocarpine (SOP), a major bioactive compound derived from the natural plant Sophora flavescens. However, the role of SOP in cardiac hypertrophy remain to be fully elucidated. In the present study, we tested the hypothesis that SOP protects against Ang II-induced cardiac hypertrophy by mediating the regulation of autophagy. The results demonstrated that SOP attenuated the Ang II-induced cardiac hypertrophy, as assessed by measurements of echocardiography parameters, the ratios of heart weight/body weight and left ventricle weight/body weight, histopathological staining, cross-sectional cardiomyocyte area, and the expression levels of cardiac hypertrophic markers. The anti-hypertrophic effect of SOP was mediated by activating autophagy-related pathway, as revealed by reversal of the increased autophagy marker protein expression. These findings reveal a novel mechanism of SOP attenuating cardiac hypertrophy via activating autophagy-related signaling pathways.
Collapse
Affiliation(s)
- Yue-Bao Lin
- Department of General Medicine, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Dong-Jian Huang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Huan-Liang Huang
- Department of Emergency, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - De-Xiong Chen
- Department of General Medicine, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jiong-Hua Huang
- Department of Vasculocardiology, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| |
Collapse
|
121
|
Hughes WE, Beyer AM, Gutterman DD. Vascular autophagy in health and disease. Basic Res Cardiol 2020; 115:41. [PMID: 32506214 DOI: 10.1007/s00395-020-0802-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Homeostasis is maintained within organisms through the physiological recycling process of autophagy, a catabolic process that is intricately involved in the mobilization of nutrients during starvation, recycling of cellular cargo, as well as initiation of cellular death pathways. Specific to the cardiovascular system, autophagy responds to both chemical (e.g. free radicals) and mechanical stressors (e.g. shear stress). It is imperative to note that autophagy is not a static process, and measurement of autophagic flux provides a more comprehensive investigation into the role of autophagy. The overarching themes emerging from decades of autophagy research are that basal levels of autophagic flux are critical, physiological stressors may increase or decrease autophagic flux, and more importantly, aberrant deviations from basal autophagy may elicit detrimental effects. Autophagy has predominantly been examined within cardiac or vascular smooth muscle tissue within the context of disease development and progression. Autophagic flux within the endothelium holds an important role in maintaining vascular function, demonstrated by the necessary role for intact autophagic flux for shear-induced release of nitric oxide however the underlying mechanisms have yet to be elucidated. Within this review, we theorize that autophagy itself does not solely control vascular homeostasis, rather, it works in concert with mitochondria, telomerase, and lipids to maintain physiological function. The primary emphasis of this review is on the role of autophagy within the human vasculature, and the integrative effects with physiological processes and diseases as they relate to the vascular structure and function.
Collapse
Affiliation(s)
- William E Hughes
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA.
| | - Andreas M Beyer
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA
| | - David D Gutterman
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA
| |
Collapse
|
122
|
He Y, Liu B, Yao P, Shao Y, Cheng Y, Zhao J, Wu J, Zhao ZW, Huang W, Christopher TA, Lopez B, Ma X, Cao Y. Adiponectin inhibits cardiac arrest/cardiopulmonary resuscitation‑induced apoptosis in brain by increasing autophagy involved in AdipoR1‑AMPK signaling. Mol Med Rep 2020; 22:870-878. [PMID: 32468051 PMCID: PMC7339636 DOI: 10.3892/mmr.2020.11181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 04/04/2020] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence suggests that both apoptosis and autophagy contribute to global cerebral ischemia‑reperfusion (GCIR)‑induced neuronal death, which results from cardiac arrest (CA). However, the mechanism of how GCIR may affect the balance between apoptosis and autophagy resulting from CA remains to be elucidated. Additionally, the role of adiponectin (APN) in reversing the apoptosis and autophagy induced by GCIR following cardiac arrest‑cardiopulmonary resuscitation (CA‑CPR) is unclear. Thus, the aim of the present study was to investigate how GCIR affect the apoptosis and autophagy in response to CA and to clarify whether APN may alter the apoptosis and autophagy of neuronal death in GCIR‑injured brain post‑CA‑CPR. Using normal controls (Sham group) and two experimental groups [CA‑CPR‑induced GCIR injury (PCAS) group and exogenous treatment with adiponectin post‑CA‑CPR (APN group)], it was demonstrated that both apoptosis and autophagy were observed simultaneously in the brain subjected to GCIR, but apoptosis appeared to be more apparent. Exogenous administration of APN significantly reduced the formation of malondialdehyde, a marker of oxidative stress and increased the expression of superoxide dismutase, an anti‑oxidative enzyme, resulting in the stimulation of autophagy, inhibition of apoptosis and reduced brain tissue injury (P<0.05 vs. PCAS). APN treatment increased the expression of APN receptor 1 (AdipR1) and the phosphorylation of AMP‑activated protein kinase (AMPK; Ser182) in brain tissues. In conclusion, GCIR induced apoptosis and inhibited autophagy, contributing to brain injury in CA‑CPR. By contrast, APN reduced the brain injury by reversing the changes of neuronal autophagy and apoptosis induced by GCIR. The possible mechanism might owe to its effects on the activation of AMPK after combining with AdipR1 on neurons, which suggests a novel intervention against GCIR injury in CA‑CPR conditions.
Collapse
Affiliation(s)
- Yarong He
- Emergency Medicine Department, West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bofu Liu
- Emergency Medicine Department, West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Peng Yao
- Emergency Medicine Department, West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuming Shao
- Emergency Medicine Department, West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanwei Cheng
- Emergency Medicine Department, West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Zhao
- Emergency Medicine Department, West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Clinical Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi Wei Zhao
- West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Theodore A Christopher
- Emergency Medicine Department, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Bernard Lopez
- Emergency Medicine Department, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Xinliang Ma
- Emergency Medicine Department, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Yu Cao
- Emergency Medicine Department, West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
123
|
Chen M, Zhang S, Nie Z, Wen X, Gao Y. Identification of an Autophagy-Related Prognostic Signature for Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:873. [PMID: 32547955 PMCID: PMC7274034 DOI: 10.3389/fonc.2020.00873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal autophagy is closely related to the development of cancer. Many studies have demonstrated that autophagy plays an important role in biological function in clear cell renal cell carcinoma (ccRCC). This study aimed to construct a prognostic signature for ccRCC based on autophagy-related genes (ARGs) to predict the prognosis of ccRCC. Differentially expressed ARGs were obtained from ccRCC RNA-seq data in The Cancer Genome Atlas (TCGA) database. ARGs were enriched by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The prognostic ARGs used to construct the risk score models for overall survival (OS) and disease-free survival (DFS) were identified by Cox regression analyses. According to the median value of the risk score, patients were divided into a high-risk group and a low-risk group. The OS and DFS were analyzed by the Kaplan-Meier method. The predictive accuracy was determined by a receiver operating characteristic (ROC) curve analysis. Additionally, we performed stratification analyses based on different clinical variables and evaluated the correlation between the risk score and the clinical variables. The differentially expressed ARGs were mainly enriched in the platinum drug resistance pathway. The prognostic signatures based on 11 ARGs for OS and 5 ARGs for DFS were constructed and showed that the survive time was significantly shorter in the high-risk group than in the low-risk group (P < 0.001). The ROC curve for OS exhibited good predictive accuracy, with an area under the curve value of 0.738. In the stratification analyses, the OS time of the high-risk group was shorter than that of the low-risk group stratified by different clinical variables. In conclusion, an autophagy-related signature for OS we constructed can independently predict the prognosis of ccRCC patient, and provide a deep understanding of the potential biological mechanisms of autophagy in ccRCC.
Collapse
Affiliation(s)
- Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
124
|
Liang X, Liu L, Wang Y, Guo H, Fan H, Zhang C, Hou L, Liu Z. Autophagy-driven NETosis is a double-edged sword - Review. Biomed Pharmacother 2020; 126:110065. [PMID: 32200255 DOI: 10.1016/j.biopha.2020.110065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a cellular mechanism responsible for delivering protein aggregates or damaged organelles to lysosomes for degradation. It is also simultaneously a precise regulatory process, which is crucial for dealing with hunger, oxidative stress, and pathogen defense. Neutrophil Extracellular Traps (NETs), which form a part of a newly described bactericidal process, are reticular structures composed of a DNA backbone and multiple functional proteins, formed via a process known as NETosis. NETs exert their anti-infection activity by capturing pathogenic microorganisms, inhibiting their spread and inactivating virulence factors. However, NETs may also activate an immune response in non-infectious diseases, leading to tissue damage. Although the mechanism underlying this phenomenon is unclear, a large number of studies have suggested that autophagy may be involved. Autophagy-mediated NETs not only induce inflammation and tissue damage, but can also lead to cell senescence, malignant transformation, and cell death. Autophagy-dependent NETs also play a beneficial role in the hostwith respect to pathogen clearance and immune defense. Through careful review of the literature, we have found that the distinct roles of autophagy in NETosis may be dependent on the extent of autophagy and the specific manner in which it was induced. This article summarizes numerous recent studies, and reviews the role of autophagy-driven NETosis in various diseases, in the hope that this will lead to the development of more effective treatments.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Li Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China.
| | - Yan Wang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Hua Fan
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Lili Hou
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Zhibo Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| |
Collapse
|
125
|
Commentary: Rodent model of myocardial autophagy after ventriculoplasty for ischemic cardiomyopathy: Not ready for prime time yet. J Thorac Cardiovasc Surg 2020; 163:e41-e42. [PMID: 32171479 DOI: 10.1016/j.jtcvs.2020.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
|
126
|
Zhang P, Li Y, Fu Y, Huang L, Liu B, Zhang L, Shao XM, Xiao D. Inhibition of Autophagy Signaling via 3-methyladenine Rescued Nicotine-Mediated Cardiac Pathological Effects and Heart Dysfunctions. Int J Biol Sci 2020; 16:1349-1362. [PMID: 32210724 PMCID: PMC7085229 DOI: 10.7150/ijbs.41275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Cigarette smoking is a well-established risk factor for myocardial infarction and sudden cardiac death. The deleterious effects are mainly due to nicotine, but the mechanisms involved and theranostics remain unclear. Thus, we tested the hypothesis that nicotine exposure increases the heart sensitivity to ischemia/reperfusion injury and dysfunction, which can be rescued by autophagy inhibitor. Methods: Nicotine or saline was administered to adult rats via subcutaneous osmotic minipumps in the absence or presence of an autophagy inhibitor, 3-methyladenine (3-MA). After 30 days of nicotine treatment, the rats underwent the cardiac ischemia/reperfusion (I/R) procedure and echocardiography analysis, and the heart tissues were isolated for molecular biological studies. Results: Nicotine exposure increased I/R-induced cardiac injury and cardiac dysfunction as compared to the control. The levels of autophagy-related proteins including LC3 II, P62, Beclin1, and Atg5 were upregulated in the reperfused hearts isolated from nicotine-treated group. In addition, nicotine enhanced cardiac and plasma ROS production, and increased the phosphorylation of GSK3β (ser9) in the left ventricle tissues. Treatment with 3-MA abolished nicotine-mediated increase in the levels of autophagy-related proteins and phosphorylation of GSK3β, but had no effect on ROS production. Of importance, 3-MA ameliorated the augmented I/R-induced cardiac injury and dysfunction in the nicotine-treated group as compared to the control. Conclusion: Our results demonstrate that nicotine exposure enhances autophagy signaling pathway, resulting in development of ischemic-sensitive phenotype of heart. It suggests a potentially novel therapeutic strategy of autophagy inhibition for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Peng Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.,Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yingjie Fu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
127
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
128
|
Chávez MN, Morales RA, López-Crisosto C, Roa JC, Allende ML, Lavandero S. Autophagy Activation in Zebrafish Heart Regeneration. Sci Rep 2020; 10:2191. [PMID: 32042056 PMCID: PMC7010704 DOI: 10.1038/s41598-020-59106-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a key role in the maintenance of overall cellular health. While it has been suggested that autophagy may elicit cardioprotective and pro-survival modulating functions, excessive activation of autophagy can also be detrimental. In this regard, the zebrafish is considered a hallmark model for vertebrate regeneration, since contrary to adult mammals, it is able to faithfully regenerate cardiac tissue. Interestingly, the role that autophagy may play in zebrafish heart regeneration has not been studied yet. In the present work, we hypothesize that, in the context of a well-established injury model of ventricular apex resection, autophagy plays a critical role during cardiac regeneration and its regulation can directly affect the zebrafish regenerative potential. We studied the autophagy events occurring upon injury using electron microscopy, in vivo tracking of autophagy markers, and protein analysis. Additionally, using pharmacological tools, we investigated how rapamycin, an inducer of autophagy, affects regeneration relevant processes. Our results show that a tightly regulated autophagic response is triggered upon injury and during the early stages of the regeneration process. Furthermore, treatment with rapamycin caused an impairment in the cardiac regeneration outcome. These findings are reminiscent of the pathophysiological description of an injured human heart and hence put forward the zebrafish as a model to study the poorly understood double-sword effect that autophagy has in cardiac homeostasis.
Collapse
Affiliation(s)
- Myra N Chávez
- Advanced Center for Chronic Diseases (ACCDiS) & Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Rodrigo A Morales
- Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS) & Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Allende
- Center for Genome Regulation (CGR), Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS) & Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile. .,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
129
|
Piao S, Nagar H, Kim S, Lee I, Choi SJ, Kim T, Jeon BH, Kim CS. CRIF1 deficiency induced mitophagy via p66shc-regulated ROS in endothelial cells. Biochem Biophys Res Commun 2020; 522:869-875. [DOI: 10.1016/j.bbrc.2019.11.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022]
|
130
|
Zheng X, Yang Z, Gu Q, Xia F, Fu Y, Liu P, Yin XM, Li M. The protease activity of human ATG4B is regulated by reversible oxidative modification. Autophagy 2020; 16:1838-1850. [PMID: 31880198 DOI: 10.1080/15548627.2019.1709763] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Macroautophagy/autophagy plays a pivotal role in cytoplasmic material recycling and metabolic turnover, in which ATG4B functions as a "scissor" for processing pro-LC3 and lipidated LC3 to drive the autophagy progress. Mounting evidence has demonstrated the tight connection between ROS and autophagy during various pathological situations. Coincidentally, several studies have shown that ATG4B is potentially regulated by redox modification, but the underlying molecular mechanism and its relationship with autophagy is ambiguous. In this study, we verified that ATG4B activity was definitely regulated in a reversible redox manner. We also determined that Cys292 and Cys361 are essential sites of ATG4B to form reversible intramolecular disulfide bonds that respond to oxidative stress. Interestingly, we unraveled a new phenomenon that ATG4B concurrently formed disulfide-linked oligomers at Cys292 and Cys361, and that both sites underwent redox modifications thereby modulating ATG4B activity. Finally, increased autophagic flux and decreased oxidation sensitivity were observed in Cys292 and Cys361 double site-mutated cells under normal growth conditions. In conclusion, our research reveals a novel molecular mechanism that oxidative modification at Cys292 and Cys361 sites regulates ATG4B function, which modulates autophagy.Abbreviations: Air-ox: air-oxidation; ATG4B: autophagy related 4B cysteine peptidase; BCNU: 1,3-bis(2-chloroethyl)-1-nitrosourea; CBB: Coomassie Brilliant Blue; CM: complete medium; CQ: chloroquine; DTT: dithiothreitol; GSH: reduced glutathione; GSNO: S-nitrosoglutathione; GSSG: oxidized glutathione; HMW: high molecular weight; H2O2: hydrogen peroxide; NAC: N-acetyl-L-cysteine; NEM: N-ethylmaleimide; PE: phosphatidylethanolamine; PTM: post-translational modification; ROS, reactive oxygen species; WT: wild type.
Collapse
Affiliation(s)
- Xueping Zheng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Provincial Key Laboratory of New Drug Design and Evaluation , Guangzhou, Guangdong, China
| | - Zuolong Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Provincial Key Laboratory of New Drug Design and Evaluation , Guangzhou, Guangdong, China
| | - Qianqian Gu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Provincial Key Laboratory of New Drug Design and Evaluation , Guangzhou, Guangdong, China
| | - Fan Xia
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Provincial Key Laboratory of New Drug Design and Evaluation , Guangzhou, Guangdong, China
| | - Yuanyuan Fu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Provincial Key Laboratory of New Drug Design and Evaluation , Guangzhou, Guangdong, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Provincial Key Laboratory of New Drug Design and Evaluation , Guangzhou, Guangdong, China
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine , Indianapolis, IN, USA
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Provincial Key Laboratory of New Drug Design and Evaluation , Guangzhou, Guangdong, China
| |
Collapse
|
131
|
|
132
|
Sun X, Wu A, Kwan Law BY, Liu C, Zeng W, Ling Qiu AC, Han Y, He Y, Wai Wong VK. The active components derived from Penthorum chinensePursh protect against oxidative-stress-induced vascular injury via autophagy induction. Free Radic Biol Med 2020; 146:160-180. [PMID: 31689485 DOI: 10.1016/j.freeradbiomed.2019.10.417] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress-induced damage has been proposed as a major risk factor for cardiovascular disease and is a pathogenic feature of atherosclerosis. Although autophagy was reported to have a protective effect against atherosclerosis, its mechanism for reducing oxidative stress remains un-elucidated. In this study, we have identified 4 novel autophagic compounds from traditional Chinese medicines (TCMs), which activated the AMPK mediated autophagy pathway for the recovery of mitochondrial membrane potential (MMP) to reduce the production of reactive oxygen species (ROS) in Human umbilical vein endothelial cells (HUVECs). In this study, 4 compounds (TA, PG, TB and PG1) identified from Penthorum chinense Pursh (PCP) were demonstrated for the first time to possess binding affinity to HUVECs cell membranes via cell membrane chromatography (CMC) accompanied by UHPLC-TOF-MS analysis, and the 4 identified compounds induce autophagy in HUVECs. Among the 4 autophagic activators identified from PCP, TA (Thonningianin A, Pinocembrin dihydrochalcone-7-O-[3″-O-galloyl-4″,6″-hexahydroxydiphenoyl]-glucoside) is the major chemcial component in PCP, which possesses the most potent autophagy effect via a Ca2+/AMPK-dependent and mTOR-independent pathways. Moreover, TA efficiently reduced the level of ROS in HUVECs induced by H2O2. Additionally, the expression of pro- and cleaved-IL-1β in the aortic artery of ApoE-KO mice were also alleviated at the transcription and post-transcription levels after the administration of TA, which might be correlated to the reduction of oxidative-stress induced inflammasome-related Nod-like receptor protein3 (NLRP3) in the aortic arteries of ApoE-KO mice. This study has pinpointed the novel autophagic role of TA in alleviating the oxidative stress of HUVECs and aortic artery of ApoE-KO mice, and provided insight into the therapeutic application of TA in treatment of atherosclerosis or other cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaolei Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Anguo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chaolin Liu
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Alena Cong Ling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yanzheng He
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
133
|
Jin L, Zhou Y, Han L, Piao J. MicroRNA302-367-PI3K-PTEN-AKT-mTORC1 pathway promotes the development of cardiac hypertrophy through controlling autophagy. In Vitro Cell Dev Biol Anim 2019; 56:112-119. [PMID: 31845077 DOI: 10.1007/s11626-019-00417-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Cardiac hypertrophy at a decompensated state eventually leads to heart failure that mostly contributes to deaths globally. Dysregulated cardiac autophagy is a hallmark of a diseased heart, and a close contact between cardiac autophagy and cardiac hypertrophy is emerging. MicroRNAs (miRNAs) have been recently reported to be prominently implicated in cardiac hypertrophy through regulating cardiac autophagy. However, the role and function of miR302-367 clusters in cardiac autophagy and cardiac hypertrophy remain largely masked. Therefore, to investigate the performance of miR302-367 in cardiac hypertrophy, the specific in vitro hypertrophic model was established in H9c2 cells upon Ang II treatment. Consequently, we discovered a distinct inhibition on autophagy and a remarkable upregulation of miR302-367 expression in hypertrophic H9c2 cells. Besides, loss- and gain-of-function assays demonstrated miR302-367 inhibited autophagy and then aggravated cardiac hypertrophy. Mechanically, PTEN was predicted and confirmed as the shared target of miR302-367. Further, we recognized the apparent inactivation of PI3K/AKT/mTORC1 signaling in the face of miR302-367 suppression in Ang II-induced hypertrophic H9c2 cells. Moreover, co-treatment of PTEN inhibitor re-activated the PI3K/AKT/mTORC1 pathway, therefore counteracting the pro-autophagic and anti-hypertrophic effects of miR302-367 depletion on cardiomyocytes. These findings unveiled the pivotal role of the miR302-367 cluster in regulating cardiac autophagy and therefore modulating cardiac hypertrophy through PTEN/PI3K/AKT/mTORC1 signaling, indicating a promising therapeutic strategy for cardiac hypertrophy and even heart failure. Graphical abstract .
Collapse
Affiliation(s)
- Lianhua Jin
- Cardiology Department of Pediatric of the First Hospital of Jilin University, No.71 Xinmin Street, Changchun City, 130021, Jilin Province, China
| | - Yan Zhou
- Cardiology Department of Pediatric of the First Hospital of Jilin University, No.71 Xinmin Street, Changchun City, 130021, Jilin Province, China
| | - Lizhi Han
- Cardiology Department of Pediatric of the First Hospital of Jilin University, No.71 Xinmin Street, Changchun City, 130021, Jilin Province, China
| | - Jinhua Piao
- Cardiology Department of Pediatric of the First Hospital of Jilin University, No.71 Xinmin Street, Changchun City, 130021, Jilin Province, China.
| |
Collapse
|
134
|
Ebadi N, Ghafouri-Fard S, Taheri M, Arsang-Jang S, Parsa SA, Omrani MD. Dysregulation of autophagy-related lncRNAs in peripheral blood of coronary artery disease patients. Eur J Pharmacol 2019; 867:172852. [PMID: 31836534 DOI: 10.1016/j.ejphar.2019.172852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/26/2022]
Abstract
Coronary artery disease (CAD) as a major cause of death has been associated with dysregulation of several processes among them is autophagy. In the current study, we assessed expression of autophagy related gene 5 (ATG5) and three ATG5-associated long non-coding RNAs (lncRNAs Chast, HULC and DICER1-AS1) in the peripheral blood of patients with premature CAD and healthy subjects. Expression levels of ATG5, Chast, HULC and DICER1-AS1 were significantly lower in peripheral blood of CAD cases compared with healthy subjects. Receiver Operating Characteristic (ROC) curve analysis showed that HULC and DICER1-AS1 can properly differentiate CAD patients from healthy subjects (area under curve (AUC) values of 0.90 and 0.87, respectively). Expression levels of ATG5 and Chast were inversely correlated with FBS levels (r = -0.41, P < 0.0001 and r = -0.38, P < 0.0001 respectively) but no other biochemical factors. Expression of DICER1-AS1 was inversely correlated with FBS (r = -0.54, P < 0.0001), TG (r = -0.29, P < 0.0001) and TG/HDL ratio (r = -0.27, P < 0.0001). Expression of HULC was inversely correlated with age (r = -0.24, P < 0.0001), FBS (r = -0.62, P < 0.0001) and TG (r = -0.31, P < 0.0001). There were significant pairwise correlations between expression levels of all genes. The most robust correlations were detected ATG5 and Chast (r = 0.81, P < 0.0001) and between DICER1-AS1 and HULC (r = 0.75, P < 0.0001). The current study further verified associations between dysregulation of autophagy and CAD. Moreover, our results indicate appropriateness of two autophagy-related lncRNAs for differentiation of CAD status.
Collapse
Affiliation(s)
- Nader Ebadi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Cellular and Molecular Research Center, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Saeed Alipour Parsa
- Department of Cardiology, Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
135
|
Nediani C, Ruzzolini J, Romani A, Calorini L. Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants (Basel) 2019; 8:E578. [PMID: 31766676 PMCID: PMC6943788 DOI: 10.3390/antiox8120578] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Growing scientific literature data suggest that the intake of natural bioactive compounds plays a critical role in preventing or reducing the occurrence of human chronic non-communicable diseases (NCDs). Oleuropein, the main phenolic component of Olea europaea L., has attracted scientific attention for its several health beneficial properties such as antioxidant, anti-inflammatory, cardio- and neuro-protective, and anti-cancer. This article is a narrative review focused on the current literature concerning the effect of oleuropein in NCDs, such as neuro- and cardiovascular diseases, diabetes mellitus, chronic kidney diseases, and cancer, by its putative antioxidant and anti-inflammatory activity, but also for its other peculiar actions such as an autophagy inducer and amyloid fibril growth inhibitor and, finally, for its anti-cancer effect. Despite the increasing number of published studies, looking at the beneficial effects of oleuropein, there is limited clinical evidence focused on the benefits of this polyphenol as a nutraceutical product in humans, and many problems are still to be resolved about its bioavailability, bioaccessibility, and dosage. Thus, future clinical randomized trials are needed to establish the relation between the beneficial effects and the mechanisms of action occurring in the human body in response to the intake of oleuropein.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Florence, Italy;
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
- Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education (DENOTHE), University of Florence, Piazza di San Marco 4, 50121 Florence, Italy
| |
Collapse
|
136
|
Padrón-Barthe L, Villalba-Orero M, Gómez-Salinero JM, Domínguez F, Román M, Larrasa-Alonso J, Ortiz-Sánchez P, Martínez F, López-Olañeta M, Bonzón-Kulichenko E, Vázquez J, Martí-Gómez C, Santiago DJ, Prados B, Giovinazzo G, Gómez-Gaviro MV, Priori S, Garcia-Pavia P, Lara-Pezzi E. Severe Cardiac Dysfunction and Death Caused by Arrhythmogenic Right Ventricular Cardiomyopathy Type 5 Are Improved by Inhibition of Glycogen Synthase Kinase-3β. Circulation 2019; 140:1188-1204. [PMID: 31567019 PMCID: PMC6784777 DOI: 10.1161/circulationaha.119.040366] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy/arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium, resulting in heart failure and sudden cardiac death. The most aggressive arrhythmogenic cardiomyopathy/ARVC subtype is ARVC type 5 (ARVC5), caused by a p.S358L mutation in TMEM43 (transmembrane protein 43). The function and localization of TMEM43 are unknown, as is the mechanism by which the p.S358L mutation causes the disease. Here, we report the characterization of the first transgenic mouse model of ARVC5. METHODS We generated transgenic mice overexpressing TMEM43 in either its wild-type or p.S358L mutant (TMEM43-S358L) form in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. RESULTS We found that mice expressing TMEM43-S358L recapitulate the human disease and die at a young age. Mutant TMEM43 causes cardiomyocyte death and severe fibrofatty replacement. We also demonstrate that TMEM43 localizes at the nuclear membrane and interacts with emerin and β-actin. TMEM43-S358L shows partial delocalization to the cytoplasm, reduced interaction with emerin and β-actin, and activation of glycogen synthase kinase-3β (GSK3β). Furthermore, we show that targeting cardiac fibrosis has no beneficial effect, whereas overexpression of the calcineurin splice variant calcineurin Aβ1 results in GSK3β inhibition and improved cardiac function and survival. Similarly, treatment of TMEM43 mutant mice with a GSK3β inhibitor improves cardiac function. Finally, human induced pluripotent stem cells bearing the p.S358L mutation also showed contractile dysfunction that was partially restored after GSK3β inhibition. CONCLUSIONS Our data provide evidence that TMEM43-S358L leads to sustained cardiomyocyte death and fibrofatty replacement. Overexpression of calcineurin Aβ1 in TMEM43 mutant mice or chemical GSK3β inhibition improves cardiac function and increases mice life span. Our results pave the way toward new therapeutic approaches for ARVC5.
Collapse
Affiliation(s)
- Laura Padrón-Barthe
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Jesús M Gómez-Salinero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Fernando Domínguez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.)
| | - Marta Román
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.)
| | - Javier Larrasa-Alonso
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Paula Ortiz-Sánchez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Fernando Martínez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Marina López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Elena Bonzón-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Carlos Martí-Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.)
| | - Demetrio J Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Belén Prados
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - Giovanna Giovinazzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.)
| | - María Victoria Gómez-Gaviro
- Departamento de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (M.V.G.-G.).,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain (M.V.G.-G.)
| | - Silvia Priori
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.).,Molecular Cardiology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy (S.P.)
| | - Pablo Garcia-Pavia
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain (L.P.-B., F.D., M.R., P.G.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,ERN GUARD-HEART (European Reference Network for Rare and Complex Diseases of the Heart) (F.D., S.P., P.G.-P.).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain (P.G.-P.).,Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.P.-B., M.V.-O., J.M.G.-S., F.D., J.L.-A., P.O.-S., F.M., M.L.-O., E.B.-K., J.V., C.M.-G., D.J.S., B.P., G.G., S.P., E.L.-P.).,CIBER Cardiovascular Diseases (CIBERCV), Madrid, Spain (L.P.-B., F.D., E.B.-K., J.V., C.M.-G., P.G.-P., E.L.-P.).,Faculty of Medicine, National Heart & Lung Institute, Imperial College London, UK (E.L.-P.)
| |
Collapse
|
137
|
Guo FX, Wu Q, Li P, Zheng L, Ye S, Dai XY, Kang CM, Lu JB, Xu BM, Xu YJ, Xiao L, Lu ZF, Bai HL, Hu YW, Wang Q. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ 2019; 26:1670-1687. [PMID: 30683918 PMCID: PMC6748100 DOI: 10.1038/s41418-018-0235-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is a progressive, chronic inflammation in arterial walls. Long noncoding RNAs (lncRNAs) participate in inflammation, but the exact mechanism in atherosclerosis is unclear. Our microarray analyses revealed that the levels of lncRNA-FA2H-2 were significantly decreased by oxidized low-density lipoprotein (OX-LDL). Bioinformatics analyses indicated that mixed lineage kinase domain-like protein (MLKL) might be regulated by lncRNA-FA2H-2. In vitro experiments showed that lncRNA-FA2H-2 interacted with the promoter of the MLKL gene, downregulated MLKL expression, and the binding sites between -750 and 471 were necessary for lncRNA-FA2H-2 responsiveness to MLKL. Silencing lncRNA-FA2H-2 and overexpression of MLKL could activate inflammation and inhibited autophagy flux. Both lncRNA-FA2H-2 knockdown and overexpression of MLKL could significantly aggravate inflammatory responses induced by OX-LDL. We found that the 3-methyladenine (3-MA) and Atg7-shRNA enhanced inflammatory responses induced by knockdown of lncRNA-FA2H-2 and overexpression of MLKL. We demonstrated that the effects of MLKL on autophagy might be associated with a mechanistic target of rapamycin (mTOR)-dependent signaling pathways. In vivo experiments with apoE knockout mice fed a western diet demonstrated that LncRNA-FA2H-2 knockdown decreased microtubule-associated expression of microtubule-associated protein 1 light chain 3 II and lysosome-associated membrane protein 1, but increased expression of sequestosome 1 (p62), MLKL, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, and interleukin-6 in atherosclerotic lesions. Our findings indicated that the lncRNA-FA2H-2-MLKL pathway is essential for regulation of autophagy and inflammation, and suggested that lncRNA-FA2H-2 and MLKL could act as potential therapeutic targets to ameliorate atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Feng-Xia Guo
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pan Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Xiao-Yan Dai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing-Bo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bang-Ming Xu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuan-Jun Xu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Xiao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Feng Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huan-Lan Bai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
138
|
Wang K, Yang C, Shi J, Gao T. Ox-LDL-induced lncRNA MALAT1 promotes autophagy in human umbilical vein endothelial cells by sponging miR-216a-5p and regulating Beclin-1 expression. Eur J Pharmacol 2019; 858:172338. [DOI: 10.1016/j.ejphar.2019.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
|
139
|
Tu H, Yang S, Jiang T, Wei L, Shi L, Liu C, Wang C, Huang H, Hu Y, Chen Z, Chen J, Li Z, Li J. Elevated pulmonary tuberculosis biomarker miR-423-5p plays critical role in the occurrence of active TB by inhibiting autophagosome-lysosome fusion. Emerg Microbes Infect 2019; 8:448-460. [PMID: 30898038 PMCID: PMC6455132 DOI: 10.1080/22221751.2019.1590129] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapid diagnosis of pulmonary tuberculosis is an effective measure to prevent the spread of tuberculosis. However, the grim fact is that the new, rapid, and safe methods for clinical diagnosis are lacking. Moreover, although auto-lysosome is critical in clearing Mycobacterium tuberculosis, the pathological significance of microRNAs, as biomarkers of tuberculosis, in autophagosome maturation is unclear. Here, these microRNAs were investigated by Solexa sequencing and qPCR validation, and a potential diagnostic model was established by logistic regression. Besides that, the mechanism of one of the microRNAs involved in the occurrence of tuberculosis was studied. The results showed that the expression of miR-423-5p, miR-17-5p, and miR-20b-5p were significantly increased in the serum of patients with tuberculosis. The combination of these three microRNAs established a model to diagnose tuberculosis with an accuracy of 78.18%, and an area under the curve value of 0.908. Bioinformatics analysis unveiled miR-423-5p as the most likely candidate in regulating autophagosome maturation. The up-regulation of miR-423-5p could inhibit autophagosome maturation through suppressing autophagosome–lysosome fusion in macrophages. Further investigations showed that VPS33A was the direct target of miR-423-5p, and the two CUGCCCCUC domains in VPS33A 3’-UTR were the direct regulatory sites for miR-423-5p. In addition, an inverse correlation between VPS33A and miR-423-5p was found in peripheral blood mononuclear cells of patients with tuberculosis. Since the inhibition of autolysosome formation plays a critical role in tuberculosis occurrence, our findings suggests that miR-423-5p could suppress autophagosome–lysosome fusion by post-transcriptional regulation of VPS33A, which might be important for the occurrence of active tuberculosis.
Collapse
Affiliation(s)
- Huihui Tu
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Su Yang
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Tingting Jiang
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China.,b School of Medicine , South China University of Technology , Guangzhou , People's Republic of China
| | - Liliang Wei
- c Department of Pneumology , Shaoxing Municipal Hospital , Shaoxing , People's Republic of China
| | - Liying Shi
- d Department of Clinical Laboratory , Zhejiang Hospital , Hangzhou , People's Republic of China
| | - Changming Liu
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Chong Wang
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Huai Huang
- b School of Medicine , South China University of Technology , Guangzhou , People's Republic of China
| | - Yuting Hu
- b School of Medicine , South China University of Technology , Guangzhou , People's Republic of China
| | - Zhongliang Chen
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Jing Chen
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Zhongjie Li
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| | - Jicheng Li
- a Institute of Cell Biology , Zhejiang University School of Medicine , Hangzhou , People's Republic of China
| |
Collapse
|
140
|
Castañeda D, Gabani M, Choi SK, Nguyen QM, Chen C, Mapara A, Kassan A, Gonzalez AA, Ait-Aissa K, Kassan M. Targeting Autophagy in Obesity-Associated Heart Disease. Obesity (Silver Spring) 2019; 27:1050-1058. [PMID: 30938942 DOI: 10.1002/oby.22455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/30/2019] [Indexed: 01/18/2023]
Abstract
Over the past three decades, the increasing rates of obesity have led to an alarming obesity epidemic worldwide. Obesity is associated with an increased risk of cardiovascular diseases; thus, it is essential to define the molecular mechanisms by which obesity affects heart function. Individuals with obesity and overweight have shown changes in cardiac structure and function, leading to cardiomyopathy, hypertrophy, atrial fibrillation, and arrhythmia. Autophagy is a highly conserved recycling mechanism that delivers proteins and damaged organelles to lysosomes for degradation. In the hearts of patients and mouse models with obesity, this process is impaired. Furthermore, it has been shown that autophagy flux restoration in obesity models improves cardiac function. Therefore, autophagy may play an important role in mitigating the adverse effects of obesity on the heart. Throughout this review, we will discuss the benefits of autophagy on the heart in obesity and how regulating autophagy might be a therapeutic tool to reduce the risk of obesity-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Diana Castañeda
- Department of Biological Sciences, California State University, Los Angeles, California, USA
| | - Mohanad Gabani
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, USA
| | - Cheng Chen
- Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China, Shanghai
| | - Ayesha Mapara
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, USA
| | - Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, California, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karima Ait-Aissa
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Modar Kassan
- Cardiovascular Division, Department of Medicine, Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
141
|
Valproic acid attenuates sepsis-induced myocardial dysfunction in rats by accelerating autophagy through the PTEN/AKT/mTOR pathway. Life Sci 2019; 232:116613. [PMID: 31265853 DOI: 10.1016/j.lfs.2019.116613] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/15/2023]
Abstract
AIMS Sepsis is a leading cause of death and disability worldwide. Autophagy may play a protective role in sepsis-induced myocardial dysfunction (SIMD). The present study investigated whether valproic acid (VPA), a class I histone deacetylase (HDAC) inhibitor, can attenuate SIMD by accelerating autophagy. MAIN METHODS A sepsis model was established via the cecum ligation and puncture of male Sprague-Dawley rats. Cardiac injuries were measured using serum markers, echocardiographic cardiac parameters, and hematoxylin and eosin staining. Cardiac mitochondria injuries were detected with transmission electron microscopy, adenosine triphosphate (ATP) and cardiac mitochondrial DNA (mtDNA) contents. Cardiac oxidative levels were measured using redox markers in the cardiac homogenate. Real-time polymerase chain reaction (RT-PCR) and Western blot were performed to detect the expression levels of relative genes and proteins. HDAC binding to the phosphatase and tensin homolog deleted on chromosome ten (PTEN) promoters and histone acetylation levels of the PTEN promoters were analyzed via chromatin immunoprecipitation and quantitative RT-PCR. KEY FINDINGS VPA can ameliorate SIMD by enhancing the autophagy level of the myocardium to reduce mitochondrial damage, oxidative stress, and myocardial inflammation in septic rats. Moreover, this study demonstrated that VPA induces autophagy by inhibiting HDAC1- and HDAC3-mediated PTEN expression in the myocardial tissues of septic rats. SIGNIFICANCE This study found that VPA attenuates SIMD through myocardial autophagy acceleration by increasing PTEN expression and inhibiting the AKT/mTOR pathway. These findings preliminarily suggest that VPA may be a potential approach for the intervention and treatment of SIMD.
Collapse
|
142
|
Vaspin Prevents Tumor Necrosis Factor-α-Induced Apoptosis in Cardiomyocytes by Promoting Autophagy. J Cardiovasc Pharmacol 2019; 77:257-267. [PMID: 29734265 DOI: 10.1097/fjc.0000000000000562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Visceral adipose tissue-derived serine protease inhibitor (Vaspin) is an adipocytokine that has been shown to exert anti-inflammatory effects and inhibits apoptosis under diabetic conditions. This study was designed to investigate the impact of vaspin on autophagy in tumor necrosis factor (TNF)-α-induced injury in cardiomyocytes and its cardioprotective effects in the pathogenesis of diabetic cardiomyopathy (DCM). H9C2 cells were treated with TNF-α with or without vaspin in vitro. Tumor necrosis factor-α treatment inhibited autophagy and promoted apoptosis in H9C2 cells after stimulating for 24 hours. Pretreatment with vaspin significantly mitigated apoptosis induced by TNF-α partly because of augment effects of vaspin on autophagy as demonstrated by a higher ratio of LC3-II/LC3-I, higher expression of Beclin-1, and increased autophagosomes formation. Furthermore, the AKT agonist IGF-1 significantly reversed the effect of vaspin on autophagy. In vivo DCM model was also developed by treating rats with streptozotocin followed by intraperitoneal injection with vaspin. In DCM rats, upregulation of vaspin reversed cardiac dysfunction, as identified by increased left ventricular ejection fractions and fractional shortening levels, a higher Em/Am ratio, and lower levels of TNF-α, lactate dehydrogenase, creatine kinase, and creatine kinase-myocardial isoenzyme. In conclusion, vaspin attenuated the TNF-α-induced apoptosis by promoting autophagy probably through inhibiting the PI3K/AKT/mTOR pathway and further ameliorated the cardiac dysfunction in DCM rats.
Collapse
|
143
|
Miyazaki T, Miyazaki A. Impact of Dysfunctional Protein Catabolism on Macrophage Cholesterol Handling. Curr Med Chem 2019; 26:1631-1643. [PMID: 29589525 DOI: 10.2174/0929867325666180326165234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/24/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022]
Abstract
Protein catabolism in macrophages, which is accomplished mainly through autophagy- lysosomal degradation, ubiquitin-proteasome system, and calpains, is disturbed in atheroprone vessels. Moreover, growing evidence suggests that defects in protein catabolism interfere with cholesterol handling in macrophages. Indeed, decreases in autophagy facilitate the deposition of cholesterol in atheroprone macrophages and the subsequent development of vulnerable atherosclerotic plaques due to impaired catabolism of lipid droplets and limited efferocytic clearance of dead cells. The proteasome is responsible for the degradation of ATP-binding cassette transporters, which leads to impaired cholesterol efflux from macrophages. Overactivation of conventional calpains contributes to excessive processing of functional proteins, thereby accelerating receptor-mediated uptake of oxidized low-density lipoproteins (LDLs) and slowing cholesterol efflux. Furthermore, calpain-6, an unconventional nonproteolytic calpain in macrophages, potentiates pinocytotic uptake of native LDL and attenuates the efferocytic clearance of dead cells. Herein, we focus on recent progress in understanding how defective protein catabolism is associated with macrophage cholesterol handling and subsequent atherogenesis.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
144
|
Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 316:H1237-H1252. [PMID: 30925069 PMCID: PMC6620689 DOI: 10.1152/ajpheart.00004.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
The death of cardiomyocytes is a precursor for the cascade of hypertrophic and fibrotic remodeling that leads to cardiomyopathy. In diabetes mellitus (DM), the metabolic environment of hyperglycemia, hyperlipidemia, and oxidative stress causes cardiomyocyte cell death, leading to diabetic cardiomyopathy (DMCM), an independent cause of heart failure. Understanding the roles of the cell death signaling pathways involved in the development of cardiomyopathies is crucial to the discovery of novel targeted therapeutics and biomarkers for DMCM. Recent evidence suggests that hydrogen sulfide (H2S), an endogenous gaseous molecule, has cardioprotective effects against cell death. However, very little is known about signaling by which H2S and its downstream targets regulate myocardial cell death in the DM heart. This review focuses on H2S in the signaling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in DMCM and other cardiomyopathies, abnormalities in H2S synthesis in DM, and potential H2S-based therapeutic strategies to mitigate myocardial cell death to ameliorate DMCM.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Anesthesiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
145
|
Dai Z, Zhu B, Yu H, Jian X, Peng J, Fang C, Wu Y. Role of autophagy induced by arecoline in angiogenesis of oral submucous fibrosis. Arch Oral Biol 2019; 102:7-15. [DOI: 10.1016/j.archoralbio.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
|
146
|
Zhang D, Bhatnagar A, Baba SP. Inhibition of aldose reductase activity stimulates starvation induced autophagy and clears aldehyde protein adducts. Chem Biol Interact 2019; 306:104-109. [DOI: 10.1016/j.cbi.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
|
147
|
Rajendran P, Alzahrani AM, Hanieh HN, Kumar SA, Ben Ammar R, Rengarajan T, Alhoot MA. Autophagy and senescence: A new insight in selected human diseases. J Cell Physiol 2019; 234:21485-21492. [PMID: 31144309 DOI: 10.1002/jcp.28895] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/28/2022]
Abstract
Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Hofouf, Saudi Arabia
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Hofouf, Saudi Arabia
| | - Hamza N Hanieh
- Department of Biological Sciences, College of Science, Al-Hussein Bin Talal University, Ma'an, Jordan.,Department of Medical Analysis, Aisha Bint Al Hussein College for Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - Sekar Ashok Kumar
- Faculty of Technology, Center of Biotechnology, Anna University, Chennai, India
| | - Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Hofouf, Saudi Arabia.,Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology, Hammam-Lif, Tunisia
| | | | - Mohammed A Alhoot
- Department of Medical Microbiology Unit, International Medical School (IMS), Management & Science University (MSU), Shah Alam, Malaysia
| |
Collapse
|
148
|
Abstract
Approximately half of the patients with signs and symptoms of heart failure have a left ventricular ejection fraction that is not markedly abnormal. Despite the historically initial surprise, heightened risks for heart failure specific major adverse events occur across the broad range of ejection fraction, including normal. The recognition of the magnitude of the problem of heart failure with preserved ejection fraction in the past 20 years has spurred an explosion of clinical investigation and growing intensity of informative outcome trials. This article addresses the historic development of this component of the heart failure syndrome, including the epidemiology, pathophysiology, and existing and planned therapeutic studies. Looking forward, more specific phenotyping and even genotyping of subpopulations should lead to improvements in outcomes from future trials.
Collapse
Affiliation(s)
- Marc A. Pfeffer
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amil M. Shah
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Barry A. Borlaug
- Cardiovascular Medicine Division, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
149
|
Ghasemi Tahrir F, Gupta M, Myers V, Gordon J, Cheung JY, Feldman AM, Khalili K. Role of Bcl2-associated Athanogene 3 in Turnover of Gap Junction Protein, Connexin 43, in Neonatal Cardiomyocytes. Sci Rep 2019; 9:7658. [PMID: 31114002 PMCID: PMC6529437 DOI: 10.1038/s41598-019-44139-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Any pathological stress that impairs expression, turnover and phosphorylation of connexin 43 (Cx43), one of the major proteins of gap junctions, can adversely impact myocardial cell behavior, thus leading to the development of cardiac arrhythmias and heart failure. Our results in primary neonatal rat ventricular cardiomyocytes (NRVCs) show that impairment of the autophagy-lysosome pathway dysregulates degradation of Cx43, either by inhibiting lysosomal activity or suppressing the level of Bcl2-associated athanogene 3 (BAG3), a stress-induced pleiotropic protein that is involved in protein quality control (PQC) via the autophagy pathway. Inhibition of lysosomal activity leads to the accumulation of Cx43 aggregates and suppression of BAG3 significantly diminished turnover of Cx43. In addition, knock-down of BAG3 reduced the levels of Cx43 by dysregulating Cx43 protein stability. Under stress conditions, expression of BAG3 affected the state of Cx43 phosphorylation and its degradation. Furthermore, we found that BAG3 co-localized with the cytoskeleton protein, α-Tubulin, and depolymerization of α-Tubulin led to the intracellular accumulation of Cx43. These observations ascribe a novel function for BAG3 that involves control of Cx43 turnover under normal and stress conditions and potentially for optimizing communication of cardiac muscle cells through gap junctions.
Collapse
Affiliation(s)
- Farzaneh Ghasemi Tahrir
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Manish Gupta
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Valerie Myers
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jennifer Gordon
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Joseph Y Cheung
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Arthur M Feldman
- Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
150
|
Liu H, Sun X, Gong X, Wang G. Human umbilical cord mesenchymal stem cells derived exosomes exert antiapoptosis effect via activating PI3K/Akt/mTOR pathway on H9C2 cells. J Cell Biochem 2019; 120:14455-14464. [PMID: 30989714 DOI: 10.1002/jcb.28705] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Hui Liu
- Department of Cardiology, State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing People's Republic of China
| | - Xiaolu Sun
- Department of Cardiology, State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing People's Republic of China
| | - Xuhe Gong
- Department of Cardiology Beijing Friendship Hospital, Capital Medical University Beijing People's Republic of China
| | - Guogan Wang
- Department of Cardiology, State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing People's Republic of China
| |
Collapse
|