101
|
Audsley KM, McDonnell AM, Waithman J. Cross-Presenting XCR1 + Dendritic Cells as Targets for Cancer Immunotherapy. Cells 2020; 9:cells9030565. [PMID: 32121071 PMCID: PMC7140519 DOI: 10.3390/cells9030565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of dendritic cells (DCs) to generate effective anti-tumor T cell immunity has garnered much attention over the last thirty-plus years. Despite this, limited clinical benefit has been demonstrated thus far. There has been a revival of interest in DC-based treatment strategies following the remarkable patient responses observed with novel checkpoint blockade therapies, due to the potential for synergistic treatment. Cross-presenting DCs are recognized for their ability to prime CD8+ T cell responses to directly induce tumor death. Consequently, they are an attractive target for next-generation DC-based strategies. In this review, we define the universal classification system for cross-presenting DCs, and the vital role of this subset in mediating anti-tumor immunity. Furthermore, we will detail methods of targeting these DCs both ex vivo and in vivo to boost their function and drive effective anti-tumor responses.
Collapse
Affiliation(s)
- Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| | - Alison M. McDonnell
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- National Centre for Asbestos Related Diseases, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| |
Collapse
|
102
|
Elsayed R, Kurago Z, Cutler CW, Arce RM, Gerber J, Celis E, Sultan H, Elashiry M, Meghil M, Sun C, Auersvald CM, Awad ME, Zeitoun R, Elsayed R, Eldin M Elshikh M, Isales C, Elsalanty ME. Role of dendritic cell-mediated immune response in oral homeostasis: A new mechanism of osteonecrosis of the jaw. FASEB J 2020; 34:2595-2608. [PMID: 31919918 DOI: 10.1096/fj.201901819rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 11/11/2022]
Abstract
Dendritic cells are an important link between innate and adaptive immune response. The role of dendritic cells in bone homeostasis, however, is not understood. Osteoporosis medications that inhibit osteoclasts have been associated with osteonecrosis, a condition limited to the jawbone, thus called medication-related osteonecrosis of the jaw. We propose that disruption of the local immune response renders the oral microenvironment conducive to osteonecrosis. We tested whether zoledronate (Zol) treatment impaired dendritic cell (DC) functions and increased bacterial load in alveolar bone in vivo and whether DC inhibition alone predisposed the animals to osteonecrosis. We also analyzed the role of Zol in impairment of differentiation and function of migratory and tissue-resident DCs, promoting disruption of T-cell activation in vitro. Results demonstrated a Zol induced impairment in DC functions and an increased bacterial load in the oral cavity. DC-deficient mice were predisposed to osteonecrosis following dental extraction. Zol treatment of DCs in vitro caused an impairment in immune functions including differentiation, maturation, migration, antigen presentation, and T-cell activation. We conclude that the mechanism of Zol-induced osteonecrosis of the jaw involves disruption of DC immune functions required to clear bacterial infection and activate T cell effector response.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Zoya Kurago
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.,Biochemistry and Molecular Biology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Jennifer Gerber
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Esteban Celis
- Biochemistry and Molecular Biology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hussein Sultan
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Mahmoud Elashiry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.,Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed Meghil
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.,Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Christina Sun
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Caroline M Auersvald
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed E Awad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Rana Zeitoun
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Riham Elsayed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Mohey Eldin M Elshikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Carlos Isales
- Department of neuroscience and regenerative medicine, Augusta University, Augusta, GA, USA
| | - Mohammed E Elsalanty
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
103
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
104
|
Guermonprez P, Gerber-Ferder Y, Vaivode K, Bourdely P, Helft J. Origin and development of classical dendritic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:1-54. [PMID: 31759429 DOI: 10.1016/bs.ircmb.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Classical dendritic cells (cDCs) are mononuclear phagocytes of hematopoietic origin specialized in the induction and regulation of adaptive immunity. Initially defined by their unique T cell activation potential, it became quickly apparent that cDCs would be difficult to distinguish from other phagocyte lineages, by solely relying on marker-based approaches. Today, cDCs definition increasingly embed their unique ontogenetic features. A growing consensus defines cDCs on multiple criteria including: (1) dependency on the fms-like tyrosine kinase 3 ligand hematopoietic growth factor, (2) development from the common DC bone marrow progenitor, (3) constitutive expression of the transcription factor ZBTB46 and (4) the ability to induce, after adequate stimulation, the activation of naïve T lymphocytes. cDCs are a heterogeneous cell population that contains two main subsets, named type 1 and type 2 cDCs, arising from divergent ontogenetic pathways and populating multiple lymphoid and non-lymphoid tissues. Here, we present recent knowledge on the cellular and molecular pathways controlling the specification and commitment of cDC subsets from murine and human hematopoietic stem cells.
Collapse
Affiliation(s)
- Pierre Guermonprez
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom; Université de Paris, CNRS ERL8252, INSERM1149, Centre for Inflammation Research, Paris, France.
| | - Yohan Gerber-Ferder
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France
| | - Kristine Vaivode
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Pierre Bourdely
- King's College London, Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immmunobiology, London, United Kingdom
| | - Julie Helft
- Institut Curie, PSL Research University, INSERM U932, SiRIC «Translational Immunotherapy Team», Paris, France; Université de Paris, Immunity and Cancer Department, INSERM U932, Institut Curie, Paris, France.
| |
Collapse
|
105
|
Chiaranunt P, Burrows K, Ngai L, Mortha A. Isolation of mononuclear phagocytes from the mouse gut. Methods Enzymol 2019; 632:67-90. [PMID: 32000915 DOI: 10.1016/bs.mie.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intestinal tract is home to trillions of microbes that make up the gut microbiota and is a major source of environmental antigens that can be derived from food, commensal microorganisms, and potential pathogens. Amidst this complex environment, myeloid cells, including macrophages (MPs) and dendritic cells (DCs), are key immunological sentinels that locally maintain both tissue and immune homeostasis. Recent research has revealed substantial functional and developmental heterogeneity within the intestinal DC and MP compartments, with evidence pointing to their regulation by the microbiota. DCs are classically divided into three subsets based on their CD103 and CD11b expression: CD103+CD11b-(XCR1+) cDC1s, CD103+CD11b+ cDC2s, and CD103-CD11b+ cDC2s. Meanwhile, mature gut MPs have recently been classified by their expression of Tim-4 and CD4 into a long-lived, self-maintaining Tim-4+CD4+ population and short-lived, monocyte-derived Tim-4-CD4+ and Tim-4-CD4- populations. In this chapter, we provide experimental procedures to classify and isolate these myeloid subsets from the murine intestinal lamina propria for functional characterization.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
106
|
Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée VP, Mendoza A, Fromme R, Mazutis L, Ariyan C, Leslie C, Pe'er D, Rudensky AY. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell 2019; 179:846-863.e24. [PMID: 31668803 PMCID: PMC6838684 DOI: 10.1016/j.cell.2019.09.035] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) play a critical role in orchestrating adaptive immune responses due to their unique ability to initiate T cell responses and direct their differentiation into effector lineages. Classical DCs have been divided into two subsets, cDC1 and cDC2, based on phenotypic markers and their distinct abilities to prime CD8 and CD4 T cells. While the transcriptional regulation of the cDC1 subset has been well characterized, cDC2 development and function remain poorly understood. By combining transcriptional and chromatin analyses with genetic reporter expression, we identified two principal cDC2 lineages defined by distinct developmental pathways and transcriptional regulators, including T-bet and RORγt, two key transcription factors known to define innate and adaptive lymphocyte subsets. These novel cDC2 lineages were characterized by distinct metabolic and functional programs. Extending our findings to humans revealed conserved DC heterogeneity and the presence of the newly defined cDC2 subsets in human cancer. Single-cell analyses reveal novel dendritic cell subsets Major cDC2 subsets differentially express T-bet and RORγt Distinct pro- and anti-inflammatory potential of T-bet+ and Tbet– cDC2s Transcriptional basis for cDC2 heterogeneity conserved across mouse and human
Collapse
Affiliation(s)
- Chrysothemis C Brown
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.
| | - Herman Gudjonson
- Infection, Inflammation and Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Yuri Pritykin
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Deeksha Deep
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vincent-Philippe Lavallée
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alejandra Mendoza
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachel Fromme
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charlotte Ariyan
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
107
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
108
|
Raynaud-Messina B, Verollet C, Maridonneau-Parini I. The osteoclast, a target cell for microorganisms. Bone 2019; 127:315-323. [PMID: 31233933 DOI: 10.1016/j.bone.2019.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
Abstract
Bone is a highly adaptive tissue with regenerative properties that is subject to numerous diseases. Infection is one of the causes of altered bone homeostasis. Bone infection happens subsequently to bone surgery or to systemic spreading of microorganisms. In addition to osteoblasts, osteoclasts (OCs) also constitute cell targets for pathogens. OCs are multinucleated cells that have the exclusive ability to resorb bone mineral tissue. However, the OC is much more than a bone eater. Beyond its role in the control of bone turnover, the OC is an immune cell that produces and senses inflammatory cytokines, ingests microorganisms and presents antigens. Today, increasing evidence shows that several pathogens use OC as a host cell to grow, generating debilitating bone defects. In this review, we exhaustively inventory the bacteria and viruses that infect OC and report the present knowledge in this topic. We point out that most of the microorganisms enhance the bone resorption activity of OC. We notice that pathogen interactions with the OC require further investigation, in particular to validate the OC as a host cell in vivo and to identify the cellular mechanisms involved in altered bone resorption. Thus, we conclude that the OC is a new cell target for pathogens; this new research area paves the way for new therapeutic strategies in the infections causing bone defects.
Collapse
Affiliation(s)
- Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
109
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
110
|
Abstract
Rapid advances have been made to uncover the mechanisms that regulate dendritic cell (DC) development, and in turn, how models of development can be employed to define dendritic cell function. Models of DC development have been used to define the unique functions of DC subsets during immune responses to distinct pathogens. More recently, models of DC function have expanded to include their homeostatic and inflammatory physiology, modes of communication with various innate and adaptive immune lineages, and specialized functions across different lymphoid organs. New models of DC development call for revisions of previously accepted paradigms with respect to the ontogeny of plasmacytoid DC (pDC) and classical DC (cDC) subsets. By far, development of the cDC1 subset is best understood, and models have now been developed that can separate deficiencies in development from deficiencies in function. Such models are lacking for pDCs and cDC2s, limiting the depth of our understanding of their unique and essential roles during immune responses. If novel immunotherapies aim to harness the functions of human DCs, understanding of DC development will be essential to develop models DC function. Here we review emerging models of DC development and function.
Collapse
Affiliation(s)
- David A Anderson
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States.
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States; Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
111
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
112
|
Synergy of NUP98-HOXA10 Fusion Gene and NrasG12D Mutation Preserves the Stemness of Hematopoietic Stem Cells on Culture Condition. Cells 2019; 8:cells8090951. [PMID: 31443434 PMCID: PMC6770072 DOI: 10.3390/cells8090951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness, differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically, NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture condition, which could be beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells in vitro.
Collapse
|
113
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
114
|
The orphan nuclear receptor NR4A3 controls the differentiation of monocyte-derived dendritic cells following microbial stimulation. Proc Natl Acad Sci U S A 2019; 116:15150-15159. [PMID: 31285338 DOI: 10.1073/pnas.1821296116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to microbial stimulation, monocytes can differentiate into macrophages or monocyte-derived dendritic cells (MoDCs) but the molecular requirements guiding these possible fates are poorly understood. In addition, the physiological importance of MoDCs in the host cellular and immune responses to microbes remains elusive. Here, we demonstrate that the nuclear orphan receptor NR4A3 is required for the proper differentiation of MoDCs but not for other types of DCs. Indeed, the generation of DC-SIGN+ MoDCs in response to LPS was severely impaired in Nr4a3 -/- mice, which resulted in the inability to mount optimal CD8+ T cell responses to gram-negative bacteria. Transcriptomic analyses revealed that NR4A3 is required to skew monocyte differentiation toward MoDCs, at the expense of macrophages, and allows the acquisition of migratory characteristics required for MoDC function. Altogether, our data identify that the NR4A3 transcription factor is required to guide the fate of monocytes toward MoDCs.
Collapse
|
115
|
Cell-autonomous FLT3L shedding via ADAM10 mediates conventional dendritic cell development in mouse spleen. Proc Natl Acad Sci U S A 2019; 116:14714-14723. [PMID: 31262819 DOI: 10.1073/pnas.1818907116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Conventional dendritic cells (cDCs) derive from bone marrow (BM) precursors that undergo cascades of developmental programs to terminally differentiate in peripheral tissues. Pre-cDC1s and pre-cDC2s commit in the BM to each differentiate into CD8α+/CD103+ cDC1s and CD11b+ cDC2s, respectively. Although both cDCs rely on the cytokine FLT3L during development, mechanisms that ensure cDC accessibility to FLT3L have yet to be elucidated. Here, we generated mice that lacked a disintegrin and metalloproteinase (ADAM) 10 in DCs (Itgax-cre × Adam10-fl/fl; ADAM10∆DC) and found that ADAM10 deletion markedly impacted splenic cDC2 development. Pre-cDC2s accumulated in the spleen with transcriptomic alterations that reflected their inability to differentiate and exhibited abrupt failure to survive as terminally differentiated cDC2s. Induced ADAM10 ablation also led to the reduction of terminally differentiated cDC2s, and restoration of Notch signaling, a major pathway downstream of ADAM10, only modestly rescued them. ADAM10∆DC BM failed to generate cDC2s in BM chimeric mice with or without cotransferred ADAM10-sufficient BM, indicating that cDC2 development required cell-autonomous ADAM10. We determined cDC2s to be sources of soluble FLT3L, as supported by decreased serum FLT3L concentration and the retention of membrane-bound FLT3L on cDC2 surfaces in ADAM10∆DC mice, and by demonstrating the release of soluble FLT3L by cDC2 in ex vivo culture supernatants. Through in vitro studies utilizing murine embryonic fibroblasts, we determined FLT3L to be a substrate for ADAM10. These data collectively reveal cDC2s as FLT3L sources and highlight a cell-autonomous mechanism that may enhance FLT3L accessibility for cDC2 development and survival.
Collapse
|
116
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
117
|
Nagy Á, Ősz Á, Budczies J, Krizsán S, Szombath G, Demeter J, Bödör C, Győrffy B. Elevated HOX gene expression in acute myeloid leukemia is associated with NPM1 mutations and poor survival. J Adv Res 2019; 20:105-116. [PMID: 31333881 PMCID: PMC6614546 DOI: 10.1016/j.jare.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic progenitor cells and the most common malignant myeloid disorder in adults. Several gene mutations such as in NPM1 (nucleophosmin 1) are involved in the pathogenesis and progression of AML. The aim of this study was to identify genes whose expression is associated with driver mutations and survival outcome. Genotype data (somatic mutations) and gene expression data including RNA-seq, microarray, and qPCR data were used for the analysis. Multiple datasets were utilized as training sets (GSE6891, TCGA, and GSE1159). A new clinical sample cohort (Semmelweis set) was established for in vitro validation. Wilcoxon analysis was used to identify genes with expression alterations between the mutant and wild type samples. Cox regression analysis was performed to examine the association between gene expression and survival outcome. Data analysis was performed in the R statistical environment. Eighty-five genes were identified with significantly altered expression when comparing NPM1 mutant and wild type patient groups in the GSE6891 set. Additional training sets were used as a filter to condense the six most significant genes associated with NPM1 mutations. Then, the expression changes of these six genes were confirmed in the Semmelweis set: HOXA5 (P = 3.06E-12, FC = 8.3), HOXA10 (P = 2.44E-09, FC = 3.3), HOXB5 (P = 1.86E-13, FC = 37), MEIS1 (P = 9.82E-10, FC = 4.4), PBX3 (P = 1.03E-13, FC = 5.4) and ITM2A (P = 0.004, FC = 0.4). Cox regression analysis showed that higher expression of these genes - with the exception of ITM2A - was associated with worse overall survival. Higher expression of the HOX genes was identified in tumors harboring NPM1 gene mutations by computationally linking genotype and gene expression. In vitro validation of these genes supports their potential therapeutic application in AML.
Collapse
Key Words
- AML, acute myeloid leukemia
- Acute myeloid leukemia
- Clinical samples
- FAB classification, French–American–British classification
- FC, fold change
- Gene expression
- HOX genes
- HOX, homeobox
- HR, hazard ratio
- ITD, internal tandem duplication
- MEIS, myeloid ecotropic viral integration site
- Mutation
- NCBI GEO, National Center for Biotechnology Gene expression Omnibus
- OS, overall survival
- PBX, pre-B-cell leukemia homeobox
- Survival
- TCGA, The Cancer Genome Atlas
- WHO, World Health Organization
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Ádám Nagy
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| | - Ágnes Ősz
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Szilvia Krizsán
- MTA-SE Lendület Molecular Oncohematology Research Group, 1st Department of Pathology, and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergely Szombath
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Demeter
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- MTA-SE Lendület Molecular Oncohematology Research Group, 1st Department of Pathology, and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| |
Collapse
|
118
|
Chrisikos TT, Zhou Y, Slone N, Babcock R, Watowich SS, Li HS. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol Immunol 2019; 110:24-39. [PMID: 29549977 PMCID: PMC6139080 DOI: 10.1016/j.molimm.2018.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/04/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer.
Collapse
Affiliation(s)
- Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Slone
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rachel Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
119
|
Tort Tarrés M, Aschenbrenner F, Maus R, Stolper J, Schuette L, Knudsen L, Lopez Rodriguez E, Jonigk D, Kühnel MP, DeLuca D, Prasse A, Welte T, Gauldie J, Kolb MR, Maus UA. The FMS-like tyrosine kinase-3 ligand/lung dendritic cell axis contributes to regulation of pulmonary fibrosis. Thorax 2019; 74:947-957. [PMID: 31076499 DOI: 10.1136/thoraxjnl-2018-212603] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 11/04/2022]
Abstract
RATIONALE Dendritic cells (DC) accumulate in the lungs of patients with idiopathic lung fibrosis, but their pathogenetic relevance is poorly defined. OBJECTIVES To assess the role of the FMS-like tyrosine kinase-3 ligand (Flt3L)-lung dendritic cell axis in lung fibrosis. MEASUREMENTS AND MAIN RESULTS We demonstrate in a model of adenoviral gene transfer of active TGF-β1 that established lung fibrosis was accompanied by elevated serum Flt3L levels and subsequent accumulation of CD11bpos DC in the lungs of mice. Patients with idiopathic pulmonary fibrosis also demonstrated increased levels of Flt3L protein in serum and lung tissue and accumulation of lung DC in explant subpleural lung tissue specimen. Mice lacking Flt3L showed significantly reduced lung DC along with worsened lung fibrosis and reduced lung function relative to wild-type (WT) mice, which could be inhibited by administration of recombinant Flt3L. Moreover, therapeutic Flt3L increased numbers of CD11bpos DC and improved lung fibrosis in WT mice exposed to AdTGF-β1. In this line, RNA-sequencing analysis of CD11bpos DC revealed significantly enriched differentially expressed genes within extracellular matrix degrading enzyme and matrix metalloprotease gene clusters. In contrast, the CD103pos DC subset did not appear to be involved in pulmonary fibrogenesis. CONCLUSIONS We show that Flt3L protein and numbers of lung DC are upregulated in mice and humans during pulmonary fibrogenesis, and increased mobilisation of lung CD11bpos DC limits the severity of lung fibrosis in mice. The current study helps to inform the development of DC-based immunotherapy as a novel intervention against lung fibrosis in humans.
Collapse
Affiliation(s)
| | | | - Regina Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Stolper
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Lisanne Schuette
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| | - Elena Lopez Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - David DeLuca
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| | - Antje Prasse
- Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany.,Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Jack Gauldie
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | - Martin Rj Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany .,German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| |
Collapse
|
120
|
Baptista AP, Gola A, Huang Y, Milanez-Almeida P, Torabi-Parizi P, Urban JF, Shapiro VS, Gerner MY, Germain RN. The Chemoattractant Receptor Ebi2 Drives Intranodal Naive CD4 + T Cell Peripheralization to Promote Effective Adaptive Immunity. Immunity 2019; 50:1188-1201.e6. [PMID: 31053504 DOI: 10.1016/j.immuni.2019.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 11/30/2022]
Abstract
Lymph nodes (LNs) play critical roles in adaptive immunity by concentrating in one location the antigens, antigen-presenting cells, and antigen-responsive lymphocytes involved in such responses. Recent studies have revealed nonrandom localization of innate and adaptive immune cells within these organs, suggesting that microanatomical positioning optimizes responses involving sparse cooperating cells. Here, we report that the peripheral localization of LN cDC2 dendritic cells specialized for MHC-II antigen presentation is matched by a similarly biased paracortical distribution of CD4+ T cells directed by the chemoattractant receptor Ebi2. In the absence of Ebi2, CD4+ T cells lose their location bias and are delayed in antigen recognition, proliferative expansion, differentiation, direct effector activity, and provision of help for CD8+ T cell-mediated memory responses, limiting host defense and vaccine responses. These findings demonstrate evolutionary selection for distinct niches within the LN that promote cellular responses, emphasizing the critical link between fine-grained tissue organization and host defense.
Collapse
Affiliation(s)
- Antonio P Baptista
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anita Gola
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuefeng Huang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro Milanez-Almeida
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parizad Torabi-Parizi
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | | | - Michael Y Gerner
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
121
|
Li MH, Zhang L, Zhang D, Cao WH, Qi TL, Hao HX, Wang XY, Ran CP, Qu XJ, Liu SA, Lu Y, Shen G, Wu SL, Chang M, Liu RY, Hu LP, Hua WH, Wan G, Cheng J, Xie Y. Plasmacytoid Dendritic Cell Function and Cytokine Network Profiles in Patients with Acute or Chronic Hepatitis B Virus Infection. Chin Med J (Engl) 2019; 131:43-49. [PMID: 29271379 PMCID: PMC5754957 DOI: 10.4103/0366-6999.221275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Plasmacytoid dendritic cells (pDCs) and cytokines play an important role in occurrence and recovery of hepatitis B virus (HBV) infection. The aim of this study was to explore the frequency and function of pDC and serum cytokine network profiles in patients with acute or chronic HBV infection. Methods: The healthy individuals (HI group), hepatitis B envelope antigen (HBeAg)-positive chronic HBV patients in immune tolerance (IT) phase (IT group), HBeAg-positive chronic HBV patients (CHB group), and acute HBV patients (AHB group) were enrolled in this study. The frequency of cluster of differentiation antigen 86 (CD86) + pDC and the counts of CD86 molecular expressed on surface of pDC were tested by flow cytometer. The quantitative determinations of cytokines, including Fms-like tyrosine kinase 3 ligand (Flt-3L), interferon (IFN)-α2, IFN-γ, interleukin (IL)-17A, IL-6, IL-10, transforming growth factor (TGF)-β1 and TGF-β2, were performed using Luminex multiplex technology. Results: In this study, there were 13 patients in HI group, 30 in IT group, 50 in CHB group, and 32 in AHB group. Compared with HI group, HBV infected group (including all patients in IT, CHB and AHB groups) had significantly higher counts of CD86 molecular expressed on the surface of pDC (4596.5 ± 896.5 vs. 7097.7 ± 3124.6; P < 0.001). The counts of CD86 molecular expressed on the surface of pDC in CHB group (7739.2 ± 4125.4) was significantly higher than that of IT group (6393.4 ± 1653.6, P = 0.043). Compared with IT group, the profile of cytokines of Flt-3L, IFN-γ, and IL-17A was decreased, IFN-α2 was significantly increased (P = 0.012) in CHB group. The contents of IL-10, TGF-β1, and TGF-β2 in AHB group were significantly increased compared with IT and CHB groups (all P < 0.05). Conclusions: This study demonstrated that the function of pDC was unaffected in HBV infection. The enhanced function of pDC and IFN-α2 might involve triggering the immune response from IT to hepatitis active phase in HBV infection. Acute patients mainly presented as down-regulation of the immune response by enhanced IL-10 and TGF-β.
Collapse
Affiliation(s)
- Ming-Hui Li
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lu Zhang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Dan Zhang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wei-Hua Cao
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Tian-Lin Qi
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hong-Xiao Hao
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xing-Yue Wang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Chong-Ping Ran
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Jing Qu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shun-Ai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yao Lu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ge Shen
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shu-Ling Wu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Min Chang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ru-Yu Liu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lei-Ping Hu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wen-Hao Hua
- Clinical Test Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Gang Wan
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yao Xie
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
122
|
Guzman E, Pujol M, Ribeca P, Montoya M. Bovine Derived in vitro Cultures Generate Heterogeneous Populations of Antigen Presenting Cells. Front Immunol 2019; 10:612. [PMID: 30984187 PMCID: PMC6450137 DOI: 10.3389/fimmu.2019.00612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Antigen presenting cells (APC) of the mononuclear phagocytic system include dendritic cells (DCs) and macrophages (Macs) which are essential mediators of innate and adaptive immune responses. Many of the biological functions attributed to these cell subsets have been elucidated using models that utilize in vitro-matured cells derived from common progenitors. However, it has recently been shown that monocyte culture systems generate heterogeneous populations of cells, DCs, and Macs. In light of these findings, we analyzed the most commonly used bovine in vitro-derived APC models and compared them to bona fide DCs. Here, we show that bovine monocyte-derived DCs and Macs can be differentiated on the basis of CD11c and MHC class II (MHCII) expression and that in vitro conditions generate a heterologous group of both DCs and Macs with defined and specific biological activities. In addition, skin-migrating macrophages present in the bovine afferent lymph were identified and phenotyped for the first time. RNA sequencing analyses showed that these monophagocytic cells have distinct transcriptomic profiles similar to those described in other species. These results have important implications for the interpretation of data obtained using in vitro systems.
Collapse
Affiliation(s)
| | - Myriam Pujol
- Doctoral Program in Agronomy Forestry and Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | | | - Maria Montoya
- The Pirbright Institute, Woking, United Kingdom.,Centro de Investigaciones Biológicas (CIB - CSIC), Madrid, Spain
| |
Collapse
|
123
|
Iliev DB, Lagos L, Thim HL, Jørgensen SM, Krasnov A, Jørgensen JB. CpGs Induce Differentiation of Atlantic Salmon Mononuclear Phagocytes Into Cells With Dendritic Morphology and a Proinflammatory Transcriptional Profile but an Exhausted Allostimulatory Activity. Front Immunol 2019; 10:378. [PMID: 30918507 PMCID: PMC6424866 DOI: 10.3389/fimmu.2019.00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Due to their ability to present foreign antigens and prime naïve T cells, macrophages, and dendritic cells (DCs) are referred to as professional antigen-presenting cells (APCs). Although activated macrophages may function as APCs, these cells are particularly effective at directly engaging pathogens through phagocytosis, and production of antimicrobial compounds. On the other hand, DCs possess superb antigen-presenting and costimulatory capacity and they are essential for commencement and regulation of adaptive immune responses. In in vitro models, development of mature mammalian DCs from monocytes requires sequential exposure to growth factors (including GM-CSF and IL-4) and proinflammatory stimuli such as toll-like receptor (TLR) ligands. Currently, except for IL-4/13, neither orthologs nor functional analogs of the growth factors which are essential for the differentiation of mammalian DCs (including GM-CSF and FLT3) have been identified in teleosts and data about differentiation of piscine APCs is scant. In the present study, primary salmon mononuclear phagocytes (MPs) stimulated in vitro for 5-7 days with a B-class CpG oligodeoxynucleotides (ODN 2006PS) underwent morphological differentiation and developed "dendritic" morphology, characterized by long, branching pseudopodia. Transcriptional profiling showed that these cells expressed high levels of proinflammatory mediators characteristic for M1 polarized MPs. However, the cells treated with CpGs for 7 days downregulated their surface MHCII molecules as well as their capacity to endocytose ovalbumin and exhibited attenuated allostimulatory activity. This concurred with transcriptional downregulation of costimulatory CD80/86 and upregulation of inhibitory CD274 (B7-H1) genes. Despite their exhausted allostimulatory activity, these cells were still responsive to re-stimulation with gardiquimod (a TLR7/8 ligand) and further upregulated a wide array of immune genes including proinflammatory mediators such as intereukin-1 beta and tumor necrosis factor. Overall, the presented data highlight the disparate effects TLR ligands may have on the proinflammatory status of APCs, on one side, and their antigen-presenting/costimulatory functions, on the other. These findings also indicate that despite the poor phylogenetic conservation of the growth factors involved in the differentiation of DCs, some of the processes that orchestrate the development and the differentiation of professional APCs are conserved between teleosts in mammals.
Collapse
Affiliation(s)
- Dimitar B Iliev
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Gene Regulation, Institute of Molecular Biology 'Roumen Tsanev', Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Leidy Lagos
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hanna L Thim
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | | | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
124
|
Perdomo-Celis F, Medina-Moreno S, Davis H, Bryant J, Zapata JC. HIV Replication in Humanized IL-3/GM-CSF-Transgenic NOG Mice. Pathogens 2019; 8:E33. [PMID: 30871027 PMCID: PMC6470732 DOI: 10.3390/pathogens8010033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/26/2022] Open
Abstract
The development of mouse models that mimic the kinetics of Human Immunodeficiency Virus (HIV) infection is critical for the understanding of the pathogenesis of disease and for the design of novel therapeutic strategies. Here, we describe the dynamics of HIV infection in humanized NOD/Shi-scid-IL2rγnull (NOG) mice bearing the human genes for interleukin (IL)-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) (NOG-EXL mice). The kinetics of viral load, as well as the frequencies of T-cells, B-cells, Natural killer cells (NK), monocytes, and dendritic cells in blood and secondary lymphoid organs were evaluated throughout the time of infection. In comparison with a non-transgenic humanized mouse (NSG) strain, lymphoid and myeloid populations were more efficiently engrafted in humanized NOG-EXL mice, both in peripheral blood and lymphoid tissues. In addition, HIV actively replicated in humanized NOG-EXL mice, and infection induced a decrease in the percentage of CD4⁺ T-cells, inversion of the CD4:CD8 ratio, and changes in some cell populations, such as monocytes and dendritic cells, that recapitulated those found in human natural infection. Thus, the humanized IL-3/GM-CSF-transgenic NOG mouse model is suitable for the study of the dynamics of HIV infection and provides a tool for basic and preclinical studies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín 050010, Colombia.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Harry Davis
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Joseph Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Juan C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
125
|
Cabeza-Cabrerizo M, van Blijswijk J, Wienert S, Heim D, Jenkins RP, Chakravarty P, Rogers N, Frederico B, Acton S, Beerling E, van Rheenen J, Clevers H, Schraml BU, Bajénoff M, Gerner M, Germain RN, Sahai E, Klauschen F, Reis e Sousa C. Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Sci Immunol 2019; 4:eaaw1941. [PMID: 30824528 PMCID: PMC6420147 DOI: 10.1126/sciimmunol.aaw1941] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDCs) are found in all tissues and play a key role in immune surveillance. They comprise two major subsets, cDC1 and cDC2, both derived from circulating precursors of cDCs (pre-cDCs), which exited the bone marrow. We show that, in the steady-state mouse, pre-cDCs entering tissues proliferate to give rise to differentiated cDCs, which themselves have residual proliferative capacity. We use multicolor fate mapping of cDC progenitors to show that this results in clones of sister cDCs, most of which comprise a single cDC1 or cDC2 subtype, suggestive of pre-cDC commitment. Upon infection, a surge in the influx of pre-cDCs into the affected tissue dilutes clones and increases cDC numbers. Our results indicate that tissue cDCs can be organized in a patchwork of closely positioned sister cells of the same subset whose coexistence is perturbed by local infection, when the bone marrow provides additional pre-cDCs to meet increased tissue demand.
Collapse
Affiliation(s)
- Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Janneke van Blijswijk
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Stephan Wienert
- Institute of Pathology, Charité University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Daniel Heim
- Institute of Pathology, Charité University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Acton
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | | | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Barbara U Schraml
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marc Bajénoff
- Aix-Marseille University Centre, National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Michael Gerner
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Frederick Klauschen
- Institute of Pathology, Charité University Medicine Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
126
|
Elizondo DM, Brandy NZD, da Silva RLL, Haddock NL, Kacsinta AD, de Moura TR, Lipscomb MW. Allograft Inflammatory Factor-1 Governs Hematopoietic Stem Cell Differentiation Into cDC1 and Monocyte-Derived Dendritic Cells Through IRF8 and RelB in vitro. Front Immunol 2019; 10:173. [PMID: 30800127 PMCID: PMC6375893 DOI: 10.3389/fimmu.2019.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
The multistep differentiation process from hematopoietic stem cells through common myeloid progenitors into committed dendritic cell (DC) subsets remains to be fully addressed. These studies now show that Allograft Inflammatory Factor-1 (AIF1) is required for differentiation of classical DC type 1 (cDC1) subsets and monocyte-derived DC (Mo-DC). Phenotypic studies found that AIF1 expression increased in committed subsets differentiating from common myeloid progenitors (CMP). However, silencing AIF1 expression in hematopoietic stem progenitors restrained the capacity to differentiate into Mo-DC and cDC1 cell subsets under GM-CSF or Flt3-L stimuli conditions, respectively. This was further marked by restrained expression of IRF8, which is critical for development of Mo-DC and cDC1 subsets. As a result, absence of AIF1 restrained the cells at the Lin−CD117+FcγR−CD34+ CMP stage. Further biochemical studies revealed that abrogating AIF1 resulted in inhibition of the NFκB family member RelB expression and p38 MAPK phosphorylation during differentiation of Mo-DC. Lastly, protein binding studies identified that AIF1 interacts with protein kinase C (PKC) to influence downstream signaling pathways. Taken together, this is the first report showing a novel role of AIF1 as a calcium-responsive scaffold protein that supports IRF8 expression and interacts with PKC to drive NFκB-related RelB for successfully differentiating hematopoietic progenitor cells into cDC and Mo-DC subsets under Flt3-L and GM-CSF stimuli, respectively.
Collapse
Affiliation(s)
- Diana M Elizondo
- Department of Biology, Howard University, Washington, DC, United States
| | - Nailah Z D Brandy
- Department of Biology, Howard University, Washington, DC, United States
| | - Ricardo L L da Silva
- Department of Biology, Howard University, Washington, DC, United States.,Laboratório de Imunologia e Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Naomi L Haddock
- Department of Biology, Howard University, Washington, DC, United States.,Immunology Program, Stanford University, Stanford, CA, United States
| | - Apollo D Kacsinta
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, United States
| | - Tatiana R de Moura
- Laboratório de Imunologia e Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | | |
Collapse
|
127
|
Percin GI, Eitler J, Kranz A, Fu J, Pollard JW, Naumann R, Waskow C. CSF1R regulates the dendritic cell pool size in adult mice via embryo-derived tissue-resident macrophages. Nat Commun 2018; 9:5279. [PMID: 30538245 PMCID: PMC6290072 DOI: 10.1038/s41467-018-07685-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/05/2018] [Indexed: 12/14/2022] Open
Abstract
Regulatory mechanisms controlling the pool size of spleen dendritic cells (DC) remain incompletely understood. DCs are continuously replenished from hematopoietic stem cells, and FLT3-mediated signals cell-intrinsically regulate homeostatic expansion of spleen DCs. Here we show that combining FLT3 and CSF1R-deficiencies results in specific and complete abrogation of spleen DCs in vivo. Spatiotemporally controlled CSF1R depletion reveals a cell-extrinsic and non-hematopoietic mechanism for DC pool size regulation. Lack of CSF1R-mediated signals impedes the differentiation of spleen macrophages of embryonic origin, and the resulted macrophage depletion during development or in adult mice results in loss of DCs. Moreover, embryo-derived macrophages are important for the physiologic regeneration of DC after activation-induced depletion in situ. In summary, we show that the differentiation of DC and their regeneration relies on ontogenetically distinct spleen macrophages, thereby providing a novel regulatory principle that may also be important for the differentiation of other hematopoietic cell types.
Collapse
Affiliation(s)
- Gulce Itir Percin
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Jiri Eitler
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Andrea Kranz
- Genomics, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47-49, 01307, Dresden, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47-49, 01307, Dresden, Germany
| | - Jeffrey W Pollard
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road S, Edinburgh, EH16 4TJ, Scotland, UK
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Transgenic Core Facility, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Fetscherstr. 74, 01307, Dresden, Germany.
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging - Fritz-Lipmann-Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany.
- Department of Medicine III, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Faculty of Biological Sciences, Friedrich-Schiller University, Fürstengraben 1, 07743, Jena, Germany.
| |
Collapse
|
128
|
Onai N, Asano J, Kurosaki R, Kuroda S, Ohteki T. Flexible fate commitment of E2-2high common DC progenitors implies tuning in tissue microenvironments. Int Immunol 2018; 29:443-456. [PMID: 29106601 DOI: 10.1093/intimm/dxx058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
The basic helix-loop-helix transcription factor E2-2 is essential for the development of plasmacytoid dendritic cells (pDCs) but not conventional DCs (cDCs). Here, we generated E2-2 reporter mice and demonstrated that an E2-2high fraction among common DC progenitors, which are a major source of pDCs and cDCs in the steady state, strictly gave rise to pDCs in the presence of Flt3 (Fms-like tyrosine kinase receptor-3) ligand ex vivo or in the secondary lymphoid organs when transferred in vivo. However, in the small intestine, some of these E2-2high progenitors differentiated into cDCs that produced retinoic acid. This transdifferentiation was driven by signaling via the common β receptor, a receptor for the cytokines IL-3, IL-5 and GM-CSF, which are abundant in the gut. In the presence of GM-CSF and Flt3 ligand, E2-2high-progenitor-derived cDCs consistently induced Foxp3+ Treg cells ex vivo. Our findings reveal the commitment and flexibility of E2-2high progenitor differentiation and imply that pertinent tuning machinery is present in the gut microenvironment.
Collapse
Affiliation(s)
- Nobuyuki Onai
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan.,Department of Immunology, Kanazawa Medical University, Japan
| | - Jumpei Asano
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Rumiko Kurosaki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Shoko Kuroda
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Japan
| |
Collapse
|
129
|
Klein F, von Muenchow L, Capoferri G, Heiler S, Alberti-Servera L, Rolink H, Engdahl C, Rolink M, Mitrovic M, Cvijetic G, Andersson J, Ceredig R, Tsapogas P, Rolink A. Accumulation of Multipotent Hematopoietic Progenitors in Peripheral Lymphoid Organs of Mice Over-expressing Interleukin-7 and Flt3-Ligand. Front Immunol 2018; 9:2258. [PMID: 30364182 PMCID: PMC6191501 DOI: 10.3389/fimmu.2018.02258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022] Open
Abstract
Interleukin-7 (IL-7) and Flt3-ligand (FL) are two cytokines important for the generation of B cells, as manifested by the impaired B cell development in mice deficient for either cytokine or their respective receptors and by the complete block in B cell differentiation in the absence of both cytokines. IL-7 is an important survival and proliferation factor for B cell progenitors, whereas FL acts on several early developmental stages, prior to B cell commitment. We have generated mice constitutively over-expressing both IL-7 and FL. These double transgenic mice develop splenomegaly and lymphadenopathy characterized by tremendously enlarged lymph nodes even in young animals. Lymphoid, myeloid and dendritic cell numbers are increased compared to mice over-expressing either of the two cytokines alone and the effect on their expansion is synergistic, rather than additive. B cell progenitors, early progenitors with myeloid and lymphoid potential (EPLM), common lymphoid progenitors (CLP) and lineage−, Sca1+, kit+ (LSK) cells are all increased not only in the bone marrow but also in peripheral blood, spleen and even lymph nodes. When transplanted into irradiated wild-type mice, lymph node cells show long-term multilineage reconstitution, further confirming the presence of functional hematopoietic progenitors therein. Our double transgenic mouse model shows that sustained and combined over-expression of IL-7 and FL leads to a massive expansion of most bone marrow hematopoietic progenitors and to their associated presence in peripheral lymphoid organs where they reside and potentially differentiate further, thus leading to the synergistic increase in mature lymphoid and myeloid cell numbers. The present study provides further in vivo evidence for the concerted action of IL-7 and FL on lymphopoiesis and suggests that extramedullary niches, including those in lymph nodes, can support the survival and maintenance of hematopoietic progenitors that under physiological conditions develop exclusively in the bone marrow.
Collapse
Affiliation(s)
- Fabian Klein
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Giuseppina Capoferri
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Stefan Heiler
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Llucia Alberti-Servera
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Hannie Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Corinne Engdahl
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Michael Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Mladen Mitrovic
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Grozdan Cvijetic
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Jan Andersson
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Rhodri Ceredig
- Discipline of Physiology, College of Medicine & Nursing Health Science, National University of Ireland, Galway, Ireland
| | - Panagiotis Tsapogas
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Department of Biomedicine, Developmental and Molecular Immunology, University of Basel, Basel, Switzerland
| |
Collapse
|
130
|
Marinelarena A, Bhattacharya P, Kumar P, Maker AV, Prabhakar BS. Identification of a Novel OX40L + Dendritic Cell Subset That Selectively Expands Regulatory T cells. Sci Rep 2018; 8:14940. [PMID: 30297856 PMCID: PMC6175872 DOI: 10.1038/s41598-018-33307-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
We have previously shown GM-CSF derived bone-marrow dendritic cells (G-BMDCs) can induce the selective expansion of Tregs through the surface-bound molecule OX40L; however, the physiological role of this ex vivo derived DC subset remained to be elucidated. We determined GM-CSF administration to mice induced the generation of in vivo derived OX40L+ DCs, phenotypically similar to ex vivo OX40L+G-BMDCs, in the spleen, brachial lymph nodes and liver. The generation of OX40L+ DCs correlated with increased percentages of functionally suppressive Tregs in the spleen, brachial lymph nodes, and liver of GM-CSF treated mice. DCs from GM-CSF treated mice expanded Tregs in CD4+ T-cell co-cultures in an OX40L dependent manner, suggesting OX40L+ DCs may play a role in peripheral Treg homeostasis. Furthermore, comparing the transcriptome data of OX40L+ DCs to that of all immune cell types revealed OX40L+ DCs to be distinct from steady-state immune cells and, microarray analysis of OX40L+G-BMDCs and OX40L−G-BMDCs revealed higher expression of molecules that are associated with tolerogenic phenotype and could play important roles in the function of OX40L+ DCs. These findings suggest that OX40L+ DCs may represent a unique DC subset induced under inflammatory conditions that may play an essential role in maintaining Treg homeostasis.
Collapse
Affiliation(s)
- Alejandra Marinelarena
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Ajay V Maker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
131
|
Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, Weiser-Smeke AE, Álvarez-Hernández DA, Franyuti-Kelly GA, Tapia-Moreno M, Ibarra A, Gutiérrez-Kobeh L, Vázquez-López R. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Med Sci (Basel) 2018; 6:medsci6040088. [PMID: 30297662 PMCID: PMC6313400 DOI: 10.3390/medsci6040088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are a type of cells derived from bone marrow that represent 1% or less of the total hematopoietic cells of any lymphoid organ or of the total cell count of the blood or epithelia. Dendritic cells comprise a heterogeneous population of cells localized in different tissues where they act as sentinels continuously capturing antigens to present them to T cells. Dendritic cells are uniquely capable of attracting and activating naïve CD4+ and CD8+ T cells to initiate and modulate primary immune responses. They have the ability to coordinate tolerance or immunity depending on their activation status, which is why they are also considered as the orchestrating cells of the immune response. The purpose of this review is to provide a general overview of the current knowledge on ontogeny and subsets of human dendritic cells as well as their function and different biological roles.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Sonia Margarita Tovar-Torres
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - María Sofía Tron-Gómez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Ariane Estrella Weiser-Smeke
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | | | | | - Antonio Ibarra
- Coordinación del Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| |
Collapse
|
132
|
Shalaby KH, Lyons-Cohen MR, Whitehead GS, Thomas SY, Prinz I, Nakano H, Cook DN. Pathogenic T H17 inflammation is sustained in the lungs by conventional dendritic cells and Toll-like receptor 4 signaling. J Allergy Clin Immunol 2018; 142:1229-1242.e6. [PMID: 29154958 PMCID: PMC5951733 DOI: 10.1016/j.jaci.2017.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/21/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mechanisms that elicit mucosal TH17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. OBJECTIVE We sought to understand whether maintenance of lung TH17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of TH17 cells. METHODS Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory TH17 cells, generated in culture with CD4+ T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. TH17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. RESULTS TH17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c+ cells. CD103+ and CD11b+ conventional dendritic cells interacted directly with TH17 cells in situ and revived the clonal expansion of TH17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. CONCLUSION TH17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells.
Collapse
Affiliation(s)
- Karim H Shalaby
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Miranda R Lyons-Cohen
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Gregory S Whitehead
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Seddon Y Thomas
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Immo Prinz
- Institut für Immunologie, Medizinische Hochschule, Hannover, Germany
| | - Hideki Nakano
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Donald N Cook
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC.
| |
Collapse
|
133
|
Zriwil A, Böiers C, Kristiansen TA, Wittmann L, Yuan J, Nerlov C, Sitnicka E, Jacobsen SEW. Direct role of FLT3 in regulation of early lymphoid progenitors. Br J Haematol 2018; 183:588-600. [PMID: 30596405 PMCID: PMC6492191 DOI: 10.1111/bjh.15578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/21/2018] [Indexed: 02/01/2023]
Abstract
Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3fl/fl) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus. Our findings highlight the potential benefit of targeting poor prognosis acute B-cell progenitor leukaemia and ETP leukaemia with recurrent FLT3 mutations using clinical FLT3 inhibitors.
Collapse
Affiliation(s)
- Alya Zriwil
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Trine A Kristiansen
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lilian Wittmann
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ewa Sitnicka
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sten E W Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Wallenberg Institute for Regenerative Medicine, Department of Cell and Molecular Biology, Center for Haematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
134
|
Transcriptional profiling reveals monocyte-related macrophages phenotypically resembling DC in human intestine. Mucosal Immunol 2018; 11:1512-1523. [PMID: 30038215 DOI: 10.1038/s41385-018-0060-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 02/04/2023]
Abstract
The tissue dendritic cell (DC) compartment is heterogeneous, and the ontogeny and functional specialization of human tissue conventional DC (cDC) subsets and their relationship with monocytes is unresolved. Here we identify monocyte-related CSF1R+Flt3- antigen presenting cells (APCs) that constitute about half of the cells classically defined as SIRPα+ DCs in the steady-state human small intestine. CSF1R+Flt3- APCs express calprotectin and very low levels of CD14, are transcriptionally related to monocyte-derived cells, and accumulate during inflammation. CSF1R+Flt3- APCs show typical macrophage characteristics functionally distinct from their Flt3+ cDC counterparts: under steady-state conditions they excel at antigen uptake, have a lower migratory potential, and are inefficient activators of naïve T cells. These results have important implications for the understanding of the ontogenetic and functional heterogeneity within human tissue DCs and their relation to the monocyte lineage.
Collapse
|
135
|
Abo-EL-Sooud K, Hashem MM, Abd ElHakim YM, Kamel GM, Gab-Allaha AQ. Effect of butylated hydroxyl toluene on the immune response of Rift Valley fever vaccine in a murine model. Int Immunopharmacol 2018; 62:165-169. [DOI: 10.1016/j.intimp.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/23/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
|
136
|
Laustsen A, Bak RO, Krapp C, Kjær L, Egedahl JH, Petersen CC, Pillai S, Tang HQ, Uldbjerg N, Porteus M, Roan NR, Nyegaard M, Denton PW, Jakobsen MR. Interferon priming is essential for human CD34+ cell-derived plasmacytoid dendritic cell maturation and function. Nat Commun 2018; 9:3525. [PMID: 30166549 PMCID: PMC6117296 DOI: 10.1038/s41467-018-05816-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are essential for immune competence. Here we show that pDC precursor differentiated from human CD34+ hematopoietic stem and progenitor cells (HSPC) has low surface expression of pDC markers, and has limited induction of type I interferon (IFN) and IL-6 upon TLR7 and TLR9 agonists treatment; by contrast, cGAS or RIG-I agonists-mediated activation is not altered. Importantly, after priming with type I and II IFN, these precursor pDCs attain a phenotype and functional activity similar to that of peripheral blood-derived pDCs. Data from CRISPR/Cas9-mediated genome editing of HSPCs further show that HSPC-pDCs with genetic modifications can be obtained, and that expression of the IFN-α receptor is essential for the optimal function, but dispensable for the differentiation, of HSPC-pDC percursor. Our results thus demonstrate the biological effects of IFNs for regulating pDC function, and provide the means of generating of gene-modified human pDCs.
Collapse
Affiliation(s)
- A Laustsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - R O Bak
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000, Aarhus C, Denmark
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - C Krapp
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - L Kjær
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - J H Egedahl
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
- Department of Urology, University of California, San Francisco, CA, 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - C C Petersen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - S Pillai
- University of California, San Francisco, Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, 94118-4417, CA, USA
| | - H Q Tang
- Department of Obstetrics and Gynaecology, Aarhus University Hospital Skejby, Aarhus, 8200, Denmark
| | - N Uldbjerg
- Department of Obstetrics and Gynaecology, Aarhus University Hospital Skejby, Aarhus, 8200, Denmark
| | - M Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - N R Roan
- Department of Urology, University of California, San Francisco, CA, 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - M Nyegaard
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark
| | - P W Denton
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, 8200, Denmark
- Department of Clinical Medicine, Aarhus University Hospital Skejby, Aarhus, 8200, Denmark
| | - M R Jakobsen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000, Aarhus C, Denmark.
| |
Collapse
|
137
|
Pigni M, Ashok D, Stevanin M, Acha-Orbea H. Establishment and Characterization of a Functionally Competent Type 2 Conventional Dendritic Cell Line. Front Immunol 2018; 9:1912. [PMID: 30197645 PMCID: PMC6117413 DOI: 10.3389/fimmu.2018.01912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen presenting cells and possess an incomparable ability to activate and instruct T cells, which makes them one of the cornerstones in the regulation of the cross-talk between innate and adaptive immunity. Therefore, a deep understanding of DC biology lays the foundations to describe and to harness the mechanisms that regulate the development of the adaptive response, with clear implications in a vast array of fields such as the study of autoimmune diseases and the development of new vaccines. However, the great difficulty to obtain large quantities of viable non-activated DCs for experimentation have considerably hindered the progress of DC research. Several strategies have been proposed to overcome these limitations by promoting an increase of DC abundance in vivo, by inducing DC development from DC progenitors in vitro and by generating stable DC lines. In the past years, we have described a method to derive immortalized stable DC lines, named MutuDCs, from the spleens of Mushi1 mice, a transgenic mouse strain that express the simian virus 40 Large T-oncogene in the DCs. The comparison of these DC lines with the vast variety of DC subsets described in vivo has shown that all the MutuDC lines that we have generated so far have phenotypic and functional features of type 1 conventional DCs (cDC1s). With the purpose of deriving DC lines with characteristics of type 2 conventional DCs (cDC2s), we bred a new Batf3-/- Mushi1 murine line in which the development of the cDC1 subset is severely defective. The new MutuDC line that we generated from Batf3-/- Mushi1 mice was phenotypically and functionally characterized in this work. Our results demonstrated that all the tested characteristics of this new cell line, including the expression of subset-determining transcription factors, the profile of cytokine production and the ability to present antigens, are comparable with the features of splenic CD4- cDC2s. Therefore, we concluded that our new cell line, that we named CD4- MutuDC2 line, represents a valuable model for the CD4- cDC2 subset.
Collapse
Affiliation(s)
| | | | | | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne, Épalinges, Switzerland
| |
Collapse
|
138
|
Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M, Combes AJ, Nelson AE, Loo K, Kumar R, Rosenblum MD, Alvarado MD, Wolf DM, Bogunovic D, Bhardwaj N, Daud AI, Ha PK, Ryan WR, Pollack JL, Samad B, Asthana S, Chan V, Krummel MF. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med 2018; 24:1178-1191. [PMID: 29942093 PMCID: PMC6475503 DOI: 10.1038/s41591-018-0085-8] [Citation(s) in RCA: 726] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Intratumoral stimulatory dendritic cells (SDCs) play an important role in stimulating cytotoxic T cells and driving immune responses against cancer. Understanding the mechanisms that regulate their abundance in the tumor microenvironment (TME) could unveil new therapeutic opportunities. We find that in human melanoma, SDC abundance is associated with intratumoral expression of the gene encoding the cytokine FLT3LG. FLT3LG is predominantly produced by lymphocytes, notably natural killer (NK) cells in mouse and human tumors. NK cells stably form conjugates with SDCs in the mouse TME, and genetic and cellular ablation of NK cells in mice demonstrates their importance in positively regulating SDC abundance in tumor through production of FLT3L. Although anti-PD-1 'checkpoint' immunotherapy for cancer largely targets T cells, we find that NK cell frequency correlates with protective SDCs in human cancers, with patient responsiveness to anti-PD-1 immunotherapy, and with increased overall survival. Our studies reveal that innate immune SDCs and NK cells cluster together as an excellent prognostic tool for T cell-directed immunotherapy and that these innate cells are necessary for enhanced T cell tumor responses, suggesting this axis as a target for new therapies.
Collapse
Affiliation(s)
- Kevin C Barry
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Joy Hsu
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Miranda L Broz
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Francisco J Cueto
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mikhail Binnewies
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Alexis J Combes
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Amanda E Nelson
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly Loo
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
- Melanoma Clinical Research Unit, University of California San Francisco, San Francisco, CA, USA
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Raj Kumar
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Michael D Alvarado
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adil I Daud
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Patrick K Ha
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | - William R Ryan
- Department of Otolaryngology, University of California San Francisco, San Francisco, CA, USA
| | | | - Bushra Samad
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Saurabh Asthana
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Vincent Chan
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- UCSF Immunoprofiler Initiative, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
139
|
Qiu T, Li M, Tanner MA, Yang Y, Sowers JR, Korthuis RJ, Hill MA. Depletion of dendritic cells in perivascular adipose tissue improves arterial relaxation responses in type 2 diabetic mice. Metabolism 2018; 85:76-89. [PMID: 29530798 PMCID: PMC6062442 DOI: 10.1016/j.metabol.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/19/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Accumulation of multiple subtypes of immune cells in perivascular adipose tissue (PVAT) has been proposed to cause vascular inflammation and dysfunction in type 2 diabetes (T2DM). This study was designed to investigate specific roles for dendritic cells in PVAT in the development of vascular inflammation and impaired PVAT-mediated vasorelaxation in T2DM. METHODS AND RESULTS Studies were performed using db/db mice (model of T2DM) and their Db heterozygote (DbHET), lean and normoglycemic controls. Dendritic cell depletion was performed by cross-breeding DbHet with Flt3l-/- (null for ligand for FMS-kinase tyrosine kinase) mice. Using PCR, it was found that the majority of dendritic cells (CD11c+) were located in PVAT rather than the vascular wall. Flow cytometry similarly showed greater dendritic cell accumulation in adipose tissue from db/db mice than DbHET controls. Adipose tissue from db/db mice displayed increased mRNA levels of proinflammatory cytokines TNF-α and IL-6 and decreased mRNA levels of the anti-inflammatory mediator adiponectin, compared to DbHET mice. Depletion of dendritic cells in dbFlt3l-/dbFlt3l- (confirmed by flow cytometry) reduced TNF-α and IL-6 mRNA levels in diabetic adipose tissue without influencing adiponection expression. Moreover, in mesenteric arteries, dendritic cell depletion improved the ability of PVAT to augment acetylcholine-induced vasorelaxation and anti-contractile activity. CONCLUSIONS In a murine model of T2DM, dendritic cells accumulated predominantly in PVAT, as opposed to the vessel wall, per se. Accumulation of dendritic cells in PVAT was associated with overproduction of pro-inflammatory cytokines, which contributed to an impaired ability of PVAT to augment vasorelaxation and exert anti-contractile activity in T2DM.
Collapse
Affiliation(s)
- Tianyi Qiu
- Dalton Cardiovascular Research Center, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA
| | - Min Li
- Dalton Cardiovascular Research Center, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA
| | - Miles A Tanner
- Dalton Cardiovascular Research Center, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA
| | - Ronald J Korthuis
- Dalton Cardiovascular Research Center, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri and Truman VA Medical Center, Columbia, MO 65211, USA.
| |
Collapse
|
140
|
Huang Y, Xu H, Miller T, Wen Y, Ildstad ST. Fms-Like Tyrosine Kinase 3-Ligand Contributes to the Development and Function of the Subpopulation of CD8α + Plasmacytoid Precursor Dendritic Cells in CD8 + /TCR - Facilitating Cells. Stem Cells 2018; 36:1567-1577. [PMID: 30004616 DOI: 10.1002/stem.2887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/25/2018] [Accepted: 06/13/2018] [Indexed: 11/06/2022]
Abstract
Facilitating cells (FC) are a CD8+ TCR- bone marrow subpopulation that enhance engraftment of purified hematopoietic stem cells (HSC) and induce antigen-specific CD4+ CD25+ FoxP3+ regulatory T cell (Treg) in vivo. The major subpopulation in FC resembles plasmacytoid precursor dendritic cells (p-preDC) both phenotypically and functionally. Here, we report that the number of FC was significantly reduced in Fms-like tyrosine kinase 3-ligand-knockout (Flt3-L-KO) mice. Specifically, there was a selective decrease in the B220+ CD11c+ CD11b- p-preDC FC subpopulation. The p-preDC FC subpopulation in FC total is restored after Flt3-L administration to Flt3-L-KO mice. FC from Flt3-L-KO donors exhibit impaired facilitation of allogeneic HSC engraftment in ablatively conditioned mice (B6 → NOD) as well as in mice conditioned with reduced intensity conditioning (B6 → BALB/c). In addition, the number of CD4+ CD25+ Foxp3+ Treg from Flt3-L-KO mice is significantly decreased. This was associated with the expression of chemokine receptor CXCR3+ or CCR5+ on Treg. Treg from the spleen of Flt3-L-KO mice showed impaired facilitation of engraftment of allogeneic HSC compared to wild-type Treg. Flt3-L treatment significantly expanded Treg, and restored their facilitating function. These results suggest that Flt3-L is an important growth factor in the development and homeostasis of p-preDC FC and in the role of FC inducing generation of Treg. Flt3-L provides potent immunoregulatory properties that may be clinically useful to improve tolerance induction and enhance the function of allogeneic cell therapies. Stem Cells 2018;36:1567-1577.
Collapse
Affiliation(s)
- Yiming Huang
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky, USA
| | - Hong Xu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky, USA
| | - Thomas Miller
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky, USA
| | - Yujie Wen
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky, USA
| | - Suzanne T Ildstad
- Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
141
|
van Leeuwen-Kerkhoff N, Lundberg K, Westers TM, Kordasti S, Bontkes HJ, Lindstedt M, de Gruijl TD, van de Loosdrecht AA. Human Bone Marrow-Derived Myeloid Dendritic Cells Show an Immature Transcriptional and Functional Profile Compared to Their Peripheral Blood Counterparts and Separate from Slan+ Non-Classical Monocytes. Front Immunol 2018; 9:1619. [PMID: 30061890 PMCID: PMC6055354 DOI: 10.3389/fimmu.2018.01619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
The human bone marrow (BM) gives rise to all distinct blood cell lineages, including CD1c+ (cDC2) and CD141+ (cDC1) myeloid dendritic cells (DC) and monocytes. These cell subsets are also present in peripheral blood (PB) and lymphoid tissues. However, the difference between the BM and PB compartment in terms of differentiation state and immunological role of DC is not yet known. The BM may represent both a site for development as well as a possible effector site and so far, little is known in this light with respect to different DC subsets. Using genome-wide transcriptional profiling we found clear differences between the BM and PB compartment and a location-dependent clustering for cDC2 and cDC1 was demonstrated. DC subsets from BM clustered together and separate from the corresponding subsets from PB, which similarly formed a cluster. In BM, a common proliferating and immature differentiating state was observed for the two DC subsets, whereas DC from the PB showed a more immune-activated mature profile. In contrast, BM-derived slan+ non-classical monocytes were closely related to their PB counterparts and not to DC subsets, implying a homogenous prolife irrespective of anatomical localization. Additional functional tests confirmed these transcriptional findings. DC-like functions were prominently exhibited by PB DC. They surpassed BM DC in maturation capacity, cytokine production, and induction of CD4+ and CD8+ T cell proliferation. This first study on myeloid DC in healthy human BM offers new information on steady state DC biology and could potentially serve as a starting point for further research on these immune cells in healthy conditions as well as in diseases.
Collapse
Affiliation(s)
| | | | - Theresia M Westers
- Cancer Center Amsterdam, Department of Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Shahram Kordasti
- Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Hetty J Bontkes
- Department of Pathology, VU University Medical Center, Amsterdam, Netherlands
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Tanja D de Gruijl
- Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Arjan A van de Loosdrecht
- Cancer Center Amsterdam, Department of Hematology, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
142
|
Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R, Tussiwand R. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat Immunol 2018; 19:711-722. [PMID: 29925996 PMCID: PMC7614340 DOI: 10.1038/s41590-018-0136-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are an immune subset devoted to the production of high amounts of type 1 interferons in response to viral infections. Whereas conventional dendritic cells (cDCs) originate mostly from a common dendritic cell progenitor (CDP), pDCs have been shown to develop from both CDPs and common lymphoid progenitors. Here, we found that pDCs developed predominantly from IL-7R+ lymphoid progenitor cells. Expression of SiglecH and Ly6D defined pDC lineage commitment along the lymphoid branch. Transcriptional characterization of SiglecH+Ly6D+ precursors indicated that pDC development requires high expression of the transcription factor IRF8, whereas pDC identity relies on TCF4. RNA sequencing of IL-7R+ lymphoid and CDP-derived pDCs mirrored the heterogeneity of mature pDCs observed in single-cell analysis. Both mature pDC subsets are able to secrete type 1 interferons, but only myeloid-derived pDCs share with cDCs their ability to process and present antigen.
Collapse
Affiliation(s)
| | - Llucia Alberti-Servera
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Human Genetics and VIB Center for the Biology of Disease, Leuven, Belgium
| | - Anna Eremin
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
143
|
Su YL, Banerjee S, White SV, Kortylewski M. STAT3 in Tumor-Associated Myeloid Cells: Multitasking to Disrupt Immunity. Int J Mol Sci 2018; 19:ijms19061803. [PMID: 29921770 PMCID: PMC6032252 DOI: 10.3390/ijms19061803] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid immune cells, such as dendritic cells, monocytes, and macrophages, play a central role in the generation of immune responses and thus are often either disabled or even hijacked by tumors. These new tolerogenic activities of tumor-associated myeloid cells are controlled by an oncogenic transcription factor, signal transducer and activator of transcription 3 (STAT3). STAT3 multitasks to ensure tumors escape immune detection by impairing antigen presentation and reducing production of immunostimulatory molecules while augmenting the release of tolerogenic mediators, thereby reducing innate and adaptive antitumor immunity. Tumor-associated myeloid cells and STAT3 signaling in this compartment are now commonly recognized as an attractive cellular target for improving efficacy of standard therapies and immunotherapies. Hereby, we review the importance and functional complexity of STAT3 signaling in this immune cell compartment as well as potential strategies for cancer therapy.
Collapse
Affiliation(s)
- Yu-Lin Su
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, 91010 CA, USA.
| | - Shuvomoy Banerjee
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, 91010 CA, USA.
| | - Seok Voon White
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, 91010 CA, USA.
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, 91010 CA, USA.
| |
Collapse
|
144
|
Sheng J, Chen Q, Soncin I, Ng SL, Karjalainen K, Ruedl C. A Discrete Subset of Monocyte-Derived Cells among Typical Conventional Type 2 Dendritic Cells Can Efficiently Cross-Present. Cell Rep 2018; 21:1203-1214. [PMID: 29091760 DOI: 10.1016/j.celrep.2017.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/26/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Mϕs) share close developmental pathways and functional features, leading to blurring of the boundaries between these two cell lineages. However, a deeper understanding of DC and Mϕ ontogeny and more refined phenotypic and functional characterizations have helped to delineate pre-DC-derived conventional DCs (cDCs), including cDC1s and cDC2s, from monocyte-derived Mϕs. Here, we further refine DC/Mϕ cell classification and report that classically defined cDC2s contain a discrete population of monocyte-derived migratory antigen-presenting cells with Mϕ phenotype but functional DC features, including cross-presentation.
Collapse
Affiliation(s)
- Jianpeng Sheng
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Qi Chen
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Irene Soncin
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - See Liang Ng
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Klaus Karjalainen
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Christiane Ruedl
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
145
|
Aranda F, Chaba K, Bloy N, Garcia P, Bordenave C, Martins I, Stoll G, Tesniere A, Kroemer G, Senovilla L. Immune effectors responsible for the elimination of hyperploid cancer cells. Oncoimmunology 2018; 7:e1463947. [PMID: 30221060 DOI: 10.1080/2162402x.2018.1463947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/04/2018] [Accepted: 04/07/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system avoids oncogenesis and slows down tumor progression through a mechanism called immunosurveillance. Nevertheless, some malignant cells manage to escape from immune control and form clinically detectable tumors. Tetraploidy, which consists in the intrinsically unstable duplication of the genome, is considered as a (pre)-cancerous event that can result in aneuploidy and contribute to oncogenesis. We previously described the fact that tetraploid cells can be eliminated by the immune system. Here, we investigate the role of different innate and acquired immune effectors by inoculating hyperploid cancer cells into wild type or mice bearing different immunodeficient genotypes (Cd1d-/-, FcRn-/-, Flt3l-/-, Foxn1nu/nu, MyD88-/-, Nlrp3-/-, Ighmtm1Cgn, Rag2-/-), followed by the monitoring of tumor incidence, growth and final ploidy status. Our results suggest that multiple different immune effectors including B, NK, NKT and T cells, as well as innate immune responses involving the interleukine-1 receptor and the Toll-like receptor systems participate to the immunoselection against hyperploid cells. Hence, optimal anticancer immunosurveillance likely involves the contribution of multiple arms of the immune system.
Collapse
Affiliation(s)
- Fernando Aranda
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Kariman Chaba
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Pauline Garcia
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Chloé Bordenave
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Martins
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Gautier Stoll
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Antoine Tesniere
- Ilumens Simulation Department, Paris Descartes University, Paris, France.,Surgical Intensive Care Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Guido Kroemer
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Senovilla
- INSERM U1138-Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
146
|
Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, Guo Q, Sun L, Yin X, Zhang Y, Li X. Roles of STAT3 in leukemia (Review). Int J Oncol 2018; 53:7-20. [PMID: 29749432 DOI: 10.3892/ijo.2018.4386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Leukemia is a type of hematopoietic malignancy, and the incidence rate in the United States and European Union increases by an average of 0.6 to 0.7% annually. The incidence rate in China is approximately 5.17/100,000 individuals, and the mortality rate is 3.94/100,000 individuals. Leukemia is the most common tumor affecting children and adults under 35 years of age, and is one of the major diseases leading to the death of adolescents. Signal transducer and activator of transcription 3 (STAT3) is a vital regulatory factor of signal transduction and transcriptional activation, and once activated, the phosphorylated form of STAT3 (p-STAT3) is transferred into the nucleus to regulate the transcription of target genes, and plays important roles in cell proliferation, differentiation, apoptosis and other physiological processes. An increasing number of studies have confirmed that the abnormal activation of STAT3 is involved in the development of tumors. In this review, the roles of STAT3 in the pathogenesis, diagnosis, treatment and prognosis of leukemia are discussed in the aspects of cell proliferation, differentiation and apoptosis, with the aim to further clarify the roles of STAT3 in leukemia, and shed light into possible novel targets and strategies for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yin Shi
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xintao Qu
- Department of Bone and Joint Surgery Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xunqiang Yin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yunhong Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
147
|
Li MH, Zhang D, Zhang L, Qu XJ, Lu Y, Shen G, Wu SL, Chang M, Liu RY, Hu LP, Hao HX, Hua WH, Song SJ, Wan G, Liu SA, Xie Y. Ratios of T-helper 2 Cells to T-helper 1 Cells and Cytokine Levels in Patients with Hepatitis B. Chin Med J (Engl) 2018; 130:1810-1815. [PMID: 28748854 PMCID: PMC5547833 DOI: 10.4103/0366-6999.211541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B is an immune response-mediated disease. The aim of this study was to explore the differences of ratios of T-helper (Th) 2 cells to Th1 cells and cytokine levels in acute hepatitis B (AHB) patients and chronic hepatitis B virus (HBV)-infected patients in immune-tolerance and immune-active phases. METHODS Thirty chronic HBV-infected patients in the immune-tolerant phase (IT group) and 50 chronic hepatitis B patients in the immune-active (clearance) phase (IC group), 32 AHB patients (AHB group), and 13 healthy individuals (HI group) were enrolled in the study. Th cell proportions in peripheral blood, cytokine levels in plasma, and serum levels of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen were detected. RESULTS The Th1 cell percentage and Th2/Th1 ratio in the HBV infection group (including IT, IC, and AHB groups) were significantly different from those in HI group (24.10% ± 8.66% and 1.72 ± 0.61 vs. 15.16% ± 4.34% and 2.40 ± 0.74, respectively; all P < 0.001). However, there were no differences in the Th1 cell percentages and Th2/Th1 ratios among the IT, IC, and AHB groups. In HBV infection group, the median levels of Flt3 ligand (Flt3L), interferon (IFN)-γ, and interleukin (IL)-17A were significantly lower than those in HI group (29.26 pg/ml, 33.72 pg/ml, and 12.27 pg/ml vs. 108.54 pg/ml, 66.48 pg/ml, and 35.96 pg/ml, respectively; all P < 0.05). IFN-α2, IL-10, and transforming growth factor (TGF)-β2 median levels in hepatitis group (including patients in AHB and IC groups) were significantly higher than those in IT group (40.14 pg/ml, 13.58 pg/ml, and 557.41 pg/ml vs. 16.74 pg/ml, 6.80 pg/ml, and 419.01 pg/ml, respectively; all P < 0.05), while patients in hepatitis group had significant lower Flt3L level than IT patients (30.77 vs. 59.96 pg/ml, P = 0.021). Compared with IC group, patients in AHB group had significant higher median levels of IL-10, TGF-β1, and TGF-β2 (22.77 pg/ml, 10,447.00 pg/ml, and 782.28 pg/ml vs. 8.66 pg/ml, 3755.50 pg/ml, and 482.87 pg/ml, respectively; all P < 0.05). CONCLUSIONS Compared with chronic HBV-infected patients in immune-tolerance phase, chronic HBV-infected patients in immune-active phase and AHB patients had similar Th2/Th1 ratios, significantly higher levels of IFN-α2, IL-10, and TGF-β. AHB patients had significantly higher IL-10 and TGF-β levels than chronic HBV-infected patients in immune-active phase.
Collapse
Affiliation(s)
- Ming-Hui Li
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Dan Zhang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lu Zhang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Jing Qu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yao Lu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ge Shen
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shu-Ling Wu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Min Chang
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ru-Yu Liu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lei-Ping Hu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hong-Xiao Hao
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wen-Hao Hua
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shu-Jing Song
- Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Gang Wan
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shun-Ai Liu
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yao Xie
- Liver Diseases Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
148
|
Salvermoser J, van Blijswijk J, Papaioannou NE, Rambichler S, Pasztoi M, Pakalniškytė D, Rogers NC, Keppler SJ, Straub T, Reis e Sousa C, Schraml BU. Clec9a-Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells In Vivo. Front Immunol 2018; 9:699. [PMID: 29713321 PMCID: PMC5911463 DOI: 10.3389/fimmu.2018.00699] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired.
Collapse
Affiliation(s)
- Johanna Salvermoser
- Walter-Brendel-Centre for Experimental Medicine, University Hospital, LMU Munich, Planegg Martinsried, Germany.,Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| | | | | | - Stephan Rambichler
- Walter-Brendel-Centre for Experimental Medicine, University Hospital, LMU Munich, Planegg Martinsried, Germany.,Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| | - Maria Pasztoi
- Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| | - Dalia Pakalniškytė
- Walter-Brendel-Centre for Experimental Medicine, University Hospital, LMU Munich, Planegg Martinsried, Germany.,Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Selina J Keppler
- Technische Universität München, Klinikum Rechts der Isar, Institut für Klinische Chemie und Pathobiochemie, Munich, Germany
| | - Tobias Straub
- Biomedical Center, LMU Munich, Planegg Martinsried, Germany.,Core Facility Bioinformatics, Biomedical Center (BMC), LMU Munich, Planegg Martinsried, Germany
| | | | - Barbara U Schraml
- Walter-Brendel-Centre for Experimental Medicine, University Hospital, LMU Munich, Planegg Martinsried, Germany.,Biomedical Center, LMU Munich, Planegg Martinsried, Germany
| |
Collapse
|
149
|
Stabile H, Fionda C, Santoni A, Gismondi A. Impact of bone marrow-derived signals on NK cell development and functional maturation. Cytokine Growth Factor Rev 2018; 42:13-19. [PMID: 29622473 DOI: 10.1016/j.cytogfr.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cells are cytotoxic members of type I innate lymphocytes (ILC1) with a prominent role in anti-tumor and anti-viral immune responses. Despite the increasing insight into NK cell biology, the steps and stages leading to mature circulating NK cells require further investigation. Natural killer cell development and functional maturation are complex and multi-stage processes that occur predominantly in the bone marrow (BM) and originate from haematopoietic stem cells CD34+ (HSC). Within the BM, NK cell precursor (NKP) and NK cell development intermediates reside in specialized niches that are characterized by particular cellular components that provide signals required for their maturation. These signals consist of soluble factors or direct cellular-contact interactions mediated by cytokines and growth factors with complementary, as well as overlapping roles in distinct developmental steps. Emerging evidence highlights the plasticity of the early phase of NK cell development, and the capacity of different signal combinations to redirect precursor lineage commitment through other innate cell populations. Here, we summarize the role of signals known to guide NK cell differentiation with a particular focus on the cytokines and the receptor/ligand pairs playing a critical role in these processes. A comprehensive understanding of the mechanisms underlying NK cell development will elucidate their roles in pathological conditions and will improve protocols for NK cell therapeutic application.
Collapse
Affiliation(s)
- Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur -Italia, 00161 Rome, Italy; IRCCS, Neuromed, Pozzilli, 86077 IS, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Italy
| |
Collapse
|
150
|
Durai V, Bagadia P, Briseño CG, Theisen DJ, Iwata A, Davidson JT, Gargaro M, Fremont DH, Murphy TL, Murphy KM. Altered compensatory cytokine signaling underlies the discrepancy between Flt3-/- and Flt3l-/- mice. J Exp Med 2018; 215:1417-1435. [PMID: 29572360 PMCID: PMC5940266 DOI: 10.1084/jem.20171784] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/10/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022] Open
Abstract
The receptor Flt3 and its ligand Flt3L are both critical for dendritic cell (DC) development, but DC deficiency is more severe in Flt3l-/- mice than in Flt3-/- mice. This has led to speculation that Flt3L binds to another receptor that also supports DC development. However, we found that Flt3L administration does not generate DCs in Flt3-/- mice, arguing against a second receptor. Instead, Flt3-/- DC progenitors matured in response to macrophage colony-stimulating factor (M-CSF) or stem cell factor, and deletion of Csf1r in Flt3-/- mice further reduced DC development, indicating that these cytokines could compensate for Flt3. Surprisingly, Flt3-/- DC progenitors displayed enhanced M-CSF signaling, suggesting that loss of Flt3 increased responsiveness to other cytokines. In agreement, deletion of Flt3 in Flt3l-/- mice paradoxically rescued their severe DC deficiency. Thus, multiple cytokines can support DC development, and the discrepancy between Flt3-/- and Flt3l-/- mice results from the increased sensitivity of Flt3-/- progenitors to these cytokines.
Collapse
Affiliation(s)
- Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Derek J Theisen
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Arifumi Iwata
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Jesse T Davidson
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Marco Gargaro
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO .,Howard Hughes Medical Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO
| |
Collapse
|