101
|
van de Straat B, Russell TL, Staunton KM, Sinka ME, Burkot TR. A global assessment of surveillance methods for dominant malaria vectors. Sci Rep 2021; 11:15337. [PMID: 34321525 PMCID: PMC8319300 DOI: 10.1038/s41598-021-94656-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022] Open
Abstract
The epidemiology of human malaria differs considerably between and within geographic regions due, in part, to variability in mosquito species behaviours. Recently, the WHO emphasised stratifying interventions using local surveillance data to reduce malaria. The usefulness of vector surveillance is entirely dependent on the biases inherent in the sampling methods deployed to monitor mosquito populations. To understand and interpret mosquito surveillance data, the frequency of use of malaria vector collection methods was analysed from a georeferenced vector dataset (> 10,000 data records), extracted from 875 manuscripts across Africa, the Americas and the Asia-Pacific region. Commonly deployed mosquito collection methods tend to target anticipated vector behaviours in a region to maximise sample size (and by default, ignoring other behaviours). Mosquito collection methods targeting both host-seeking and resting behaviours were seldomly deployed concurrently at the same site. A balanced sampling design using multiple methods would improve the understanding of the range of vector behaviours, leading to improved surveillance and more effective vector control.
Collapse
Affiliation(s)
- Bram van de Straat
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Tanya L. Russell
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Kyran M. Staunton
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Marianne E. Sinka
- grid.4991.50000 0004 1936 8948Department of Zoology, University of Oxford, Oxford, UK
| | - Thomas R. Burkot
- grid.1011.10000 0004 0474 1797Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
102
|
Wamaket N, Khamprapa O, Chainarin S, Thamsawet P, Ninsaeng U, Thongsalee S, Suwan V, Sakolvaree J, Takhampunya R, Davidson SA, McCardle PW, Sa-Angchai P, Mukaka M, Kiattibutr K, Khamsiriwatchara A, Nguitragool W, Sattabongkot J, Sirichaisinthop J, Kobylinski KC. Anopheles bionomics in a malaria endemic area of southern Thailand. Parasit Vectors 2021; 14:378. [PMID: 34315509 PMCID: PMC8317318 DOI: 10.1186/s13071-021-04870-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/02/2021] [Indexed: 12/26/2022] Open
Abstract
Background Ivermectin mass drug administration (MDA) could accelerate malaria elimination in the Greater Mekong Subregion. This study was performed to characterize the bionomics of Anopheles in Surat Thani province, Thailand. Methods Mosquitoes were collected via human landing collections between February and October 2019. Anopheles mosquitoes were morphologically identified to species. Primary Anopheles malaria vectors were dissected to assess parity status, and a subset were evaluated for molecular identification and Plasmodium detection. Results A total of 17,348 mosquitoes were collected during the study period; of these, 5777 were Anopheles mosquitoes. Morphological studies identified 15 Anopheles species, of which the most abundant were Anopheles minimus (s.l.) (87.16%, n = 5035), An. dirus s.l. (7.05%, n = 407) and An. barbirostris s.l. (2.86%, n = 165). Molecular identification confirmed that of the An. minimus s.l. mosquitoes collected, 99.80% were An. minimus (s.s.) (n = 484) and 0.2% were An. aconitus (n = 1), of the An. dirus (s.l.) collected, 100% were An. baimaii (n = 348), and of the An. maculatus (s.l.) collected, 93.62% were An. maculatus (s.s.) (n = 44) and 6.38% were An. sawadwongporni (n = 3). No Anopheles mosquito tested was Plasmodium positive (0/879). An average of 11.46 Anopheles were captured per collector per night. There were differences between species in hour of collection (Kruskal–Wallis H-test: χ2 = 80.89, P < 0.0001, n = 5666), with more An. barbirostris (s.l.) and An. maculatus (s.l.) caught earlier compared to An. minimus (s.l.) (P = 0.0001 and P < 0.0001, respectively) and An. dirus (s.l.) (P = 0.0082 and P < 0.001, respectively). The proportion of parous An. minimus (s.l.) captured by hour increased throughout the night (Wald Chi-square: χ2 = 17.31, P = 0.000, odds ratio = 1.0535, 95% confidence interval 1.0279–1.0796, n = 3400). Overall, An. minimus (s.l.) parity was 67.68% (2375/3509) with an intra-cluster correlation of 0.0378. A power calculation determined that an An. minimus (s.l.) parity reduction treatment effect size = 34%, with four clusters per treatment arm and a minimum of 300 mosquitoes dissected per cluster, at an α = 0.05, will provide 82% power to detect a significant difference following ivermectin MDA. Conclusions The study area in Surat Thani province is an ideal location to evaluate the impact of ivermectin MDA on An. minimus parity. Graphical abstract ![]()
Collapse
Affiliation(s)
- Narenrit Wamaket
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand.,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Oranicha Khamprapa
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand.,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Sittinont Chainarin
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand.,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Panisa Thamsawet
- Surat Thani Vector-Borne Diseases Control Center 11.3, Muang, Surat Thani, Thailand
| | - Ubolrat Ninsaeng
- Surat Thani Vector-Borne Diseases Control Center 11.3, Muang, Surat Thani, Thailand
| | - Suttipong Thongsalee
- Surat Thani Vector-Borne Diseases Control Center 11.3, Muang, Surat Thani, Thailand
| | - Veerast Suwan
- Surat Thani Vector-Borne Diseases Control Center 11.3, Muang, Surat Thani, Thailand
| | - Jira Sakolvaree
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Ratree Takhampunya
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Silas A Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Patrick W McCardle
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand
| | - Patiwat Sa-Angchai
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Kirakorn Kiattibutr
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Amnat Khamsiriwatchara
- Center of Excellence for Biomedical and Public Health Informatics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | - Kevin C Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok, Thailand.
| |
Collapse
|
103
|
Pooseesod K, Parker DM, Meemon N, Lawpoolsri S, Singhasivanon P, Sattabongkot J, Cui L, Phuanukoonnon S. Ownership and utilization of bed nets and reasons for use or non-use of bed nets among community members at risk of malaria along the Thai-Myanmar border. Malar J 2021; 20:305. [PMID: 34229653 PMCID: PMC8259116 DOI: 10.1186/s12936-021-03837-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022] Open
Abstract
Background With the goal for malaria elimination in Thailand set for 2024, increased coverage and utilization of bed net, especially insecticide-treated net (ITN) or long-lasting insecticidal net (LLIN) is a key strategy. This study aims to provide the necessary information about bed net ownership and utilization among the population at risk of malaria living along the Thai-Myanmar border in Tak province. Methods A cross-sectional study was conducted using a mixed-method approach in 331 households from 5 hamlets in the villages of the Thai-Myanmar border. The research tools included a questionnaire, bed net inspection, and semi-structured interviews. Logistic regression was used to explore the sociodemographic factors associated with bed net utilization. The qualitative analysis employed a thematic analysis approach. Results This survey found that 98.5% of households had at least one bed net per household, and 74.3% had at least one ITN/LLIN. However, only 30.8% of households reached the standard policy set by the Minister of Public Health of one ITN/LLINs per two persons. Most residents used bed net (92.1% used in the previous night and 80.9% used every day). For those using bed nets, however, 61.9% used ITNs or LLINs the night before and 53.1% used them every day. Nonetheless, the usage rates of bed nets (any type) in the previous night among children and pregnant women were high, reaching 95.3% and 90.0%, respectively. Seven explanatory variables showed statistically significant associations with bed net use every day, including: “not staying overnight in the forest or the field”, “sleeping pattern based on gender”, “sufficient numbers of bed nets to cover all sleeping spaces”, “preference for free bed nets”, “age”, “gender”, and “SES score” showed statistically significant association with bed net use every day. The major reasons for the regular use of bed nets in both household and the forest were to prevent mosquito biting. The reasons for not using bednets in the household were discomfort feelings from heat, perception of unnecessity due to low mosquito density, whereas the reason for not using bed nets in the forest was inconvenience. Conclusion Despite that overall coverage and usage of bed nets was high, only one third reached the standard level specified by the policy. Overnight in the forest, the dissatisfaction with the quality of free bed nets, insufficient number of bed nets, sleeping alone, male gender, age more than 10 years, low socioeconomic status, discomfort from heat, perception of no benefits of bed nets due to low mosquito density, and inconvenience were factors influencing bed net use. Maintaining high coverage and utility rate of bed nets should be a priority for the malaria high-risk population. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03837-5.
Collapse
Affiliation(s)
- Kasama Pooseesod
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand.,Faculty of Public Health, Thammasat University, Bangkok, Thailand
| | - Daniel M Parker
- Department of Population Health & Disease Prevention, Program in Public Health Susan and Henry Samueli College of Health Sciences, University of California, Irvine, USA
| | - Natthani Meemon
- Department of Society and Health, Faculty of Social Sciences and Humanities, Mahidol University, Nakhon Pathom, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand.,Faculty of Tropical Medicine, SEAMEO TROPMED Regional Centre for Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Suparat Phuanukoonnon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand. .,Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
104
|
Speth Z, Kaur G, Mazolewski D, Sisomphou R, Siao DDC, Pooraiiouby R, Vasquez-Gross H, Petereit J, Gulia-Nuss M, Mathew D, Nuss AB. Characterization of Anopheles stephensi Odorant Receptor 8, an Abundant Component of the Mouthpart Chemosensory Transcriptome. INSECTS 2021; 12:593. [PMID: 34208911 PMCID: PMC8304465 DOI: 10.3390/insects12070593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 01/25/2023]
Abstract
Several mosquito species within the genus Anopheles are vectors for human malaria, and the spread of this disease is driven by the propensity of certain species to feed preferentially on humans. The study of olfaction in mosquitoes is important to understand dynamics of host-seeking and host-selection; however, the majority of these studies focus on Anopheles gambiae or An. coluzzii, both vectors of malaria in Sub-Saharan Africa. Other malaria vectors may recognize different chemical cues from potential hosts; therefore, in this study, we investigated An. stephensi, the south Asian malaria mosquito. We specifically focused on the mouthparts (primarily the maxillary palp and labella) that have been much less investigated compared to the antennae but are also important for host-seeking. To provide a broad view of chemoreceptor expression, RNAseq was used to examine the transcriptomes from the mouthparts of host-seeking females, blood-fed females, and males. Notably, AsOr8 had a high transcript abundance in all transcriptomes and was, therefore, cloned and expressed in the Drosophila empty neuron system. This permitted characterization with a panel of odorants that were selected, in part, for their presence in the human odor profile. The responsiveness of AsOr8 to odorants was highly similar to An. gambiae Or8 (AgOr8), except for sulcatone, which was detected by AsOr8 but not AgOr8. Subtle differences in the receptor sensitivity to specific odorants may provide clues to species- or strain-specific approaches to host-seeking and host selection. Further exploration of the profile of An. stephensi chemosensory proteins may yield a better understanding of how different malaria vectors navigate host-finding and host-choice.
Collapse
Affiliation(s)
- Zachary Speth
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Gurlaz Kaur
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Devin Mazolewski
- Cell and Molecular Biology Graduate Program, University of Nevada, Reno, NV 89557, USA; (Z.S.); (G.K.); (D.M.)
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Rayden Sisomphou
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Danielle Denise C. Siao
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Rana Pooraiiouby
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
| | - Hans Vasquez-Gross
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA; (H.V.-G.); (J.P.)
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA; (H.V.-G.); (J.P.)
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;
| | - Dennis Mathew
- Department of Biology, University of Nevada, Reno, NV 89557, USA;
| | - Andrew B. Nuss
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA; (R.S.); (D.D.C.S.); (R.P.)
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|
105
|
Bang WJ, Kim HC, Ryu J, Lee HS, Lee SY, Kim MS, Chong ST, Klein TA, Choi KS. Multiplex PCR assay for the identification of eight Anopheles species belonging to the Hyrcanus, Barbirostris and Lindesayi groups. Malar J 2021; 20:287. [PMID: 34183006 PMCID: PMC8237487 DOI: 10.1186/s12936-021-03808-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Genus Anopheles mosquitoes are the primary vectors of human malaria, which is a serious threat to public health worldwide. To reduce the spread of malaria and identify the malaria infection rates in mosquitoes, accurate species identification is needed. Malaria re-emerged in 1993 in the Republic of Korea (ROK), with numbers peaking in 2004 before decreasing to current levels. Eight Anopheles species (Anopheles sinensis, Anopheles pullus, Anopheles belenrae, Anopheles lesteri, Anopheles kleini, Anopheles sineroides, Anopheles koreicus, Anopheles lindesayi) are distributed throughout Korea. Members of the Anopheles Hyrcanus group currently cannot be identified morphologically. The other species of Anopheles can be identified morphologically, except when specimens are damaged in traps. The purpose of this study was to develop a rapid and accurate method for simultaneous molecular identification of the eight Anopheles species present in the ROK. METHODS Anopheles spp. used in this study were collected near/in the demilitarized zone in ROK, where most malaria cases are reported. DNA from 165 of the Anopheles specimens was used to develop a multiplex PCR assay. The internal transcribed spacer 2 (ITS2) region of each species was sequenced and analysed for molecular identification. RESULTS DNA from a total of 165 Anopheles specimens was identified to species using a multiplex diagnostic system. These included: 20 An. sinensis, 21 An. koreicus, 17 An. lindesayi, 25 An. kleini, 11 An. lesteri, 22 An. sineroides, 23 An. belenrae, and 26 An. pullus. Each species was clearly distinguished by electrophoresis as follows: 1,112 bp for An. sinensis; 925 bp for An. koreicus; 650 bp for An. lindesayi; 527 bp for An. kleini; 436 bp for An. lesteri; 315 bp for An. sineroides; 260 bp for An. belenrae; and, 157 bp for An. pullus. CONCLUSION A multiplex PCR assay was developed to identify Anopheles spp. distributed in ROK. This method can be used to accurately identify Anopheles species that are difficult to identify morphologically to determine species distributions and malaria infection rates.
Collapse
Affiliation(s)
- Woo Jun Bang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Groups, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dokdo and Ulleungdo Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Heung Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, APO AP, 96271-5281, USA
| | - Jihun Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Groups, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dokdo and Ulleungdo Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyeon Seung Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Groups, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dokdo and Ulleungdo Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - So Youn Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Groups, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dokdo and Ulleungdo Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung Soon Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, APO AP, 96271-5281, USA
| | - Sung Tae Chong
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, APO AP, 96271-5281, USA
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, APO AP, 96271-5281, USA
| | - Kwang Shik Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Groups, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Dokdo and Ulleungdo Island, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
106
|
Hocking SE, Divis PCS, Kadir KA, Singh B, Conway DJ. Population Genomic Structure and Recent Evolution of Plasmodium knowlesi, Peninsular Malaysia. Emerg Infect Dis 2021; 26:1749-1758. [PMID: 32687018 PMCID: PMC7392424 DOI: 10.3201/eid2608.190864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most malaria in Malaysia is caused by Plasmodium knowlesi parasites through zoonotic infection from macaque reservoir hosts. We obtained genome sequences from 28 clinical infections in Peninsular Malaysia to clarify the emerging parasite population structure and test for evidence of recent adaptation. The parasites all belonged to a major genetic population of P. knowlesi (cluster 3) with high genomewide divergence from populations occurring in Borneo (clusters 1 and 2). We also observed unexpected local genetic subdivision; most parasites belonged to 2 subpopulations sharing a high level of diversity except at particular genomic regions, the largest being a region of chromosome 12, which showed evidence of recent directional selection. Surprisingly, we observed a third subpopulation comprising P. knowlesi infections that were almost identical to each other throughout much of the genome, indicating separately maintained transmission and recent genetic isolation. Each subpopulation could evolve and present a broader health challenge in Asia.
Collapse
|
107
|
Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, Worku A, Gebresilassie A, Tadesse FG, Gadisa E, Esayas E, Ashine T, Ejeta D, Dugassa S, Yohannes M, Lemma W, Yewhalaw D, Chibsa S, Teka H, Murphy M, Yoshimizu M, Dengela D, Zohdy S, Irish S. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018-2020. Malar J 2021; 20:263. [PMID: 34107943 PMCID: PMC8189708 DOI: 10.1186/s12936-021-03801-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles stephensi, an invasive malaria vector, was first detected in Africa nearly 10 years ago. After the initial finding in Djibouti, it has subsequently been found in Ethiopia, Sudan and Somalia. To better inform policies and vector control decisions, it is important to understand the distribution, bionomics, insecticide susceptibility, and transmission potential of An. stephensi. These aspects were studied as part of routine entomological monitoring in Ethiopia between 2018 and 2020. METHODS Adult mosquitoes were collected using human landing collections, pyrethrum spray catches, CDC light traps, animal-baited tent traps, resting boxes, and manual aspiration from animal shelters. Larvae were collected using hand-held dippers. The source of blood in blood-fed mosquitoes and the presence of sporozoites was assessed through enzyme-linked immunosorbent assays (ELISA). Insecticide susceptibility was assessed for pyrethroids, organophosphates and carbamates. RESULTS Adult An. stephensi were collected with aspiration, black resting boxes, and animal-baited traps collecting the highest numbers of mosquitoes. Although sampling efforts were geographically widespread, An. stephensi larvae were collected in urban and rural sites in eastern Ethiopia, but An. stephensi larvae were not found in western Ethiopian sites. Blood-meal analysis revealed a high proportion of blood meals that were taken from goats, and only a small proportion from humans. Plasmodium vivax was detected in wild-collected An. stephensi. High levels of insecticide resistance were detected to pyrethroids, carbamates and organophosphates. Pre-exposure to piperonyl butoxide increased susceptibility to pyrethroids. Larvae were found to be susceptible to temephos. CONCLUSIONS Understanding the bionomics, insecticide susceptibility and distribution of An. stephensi will improve the quality of a national response in Ethiopia and provide additional information on populations of this invasive species in Africa. Further work is needed to understand the role that An. stephensi will have in Plasmodium transmission and malaria case incidence. While additional data are being collected, national programmes can use the available data to formulate and operationalize national strategies against the threat of An. stephensi.
Collapse
Affiliation(s)
- Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Peter Mumba
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Gedeon Yohannes
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Ephrem Abiy
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sheleme Chibsa
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,United States Agency for International Development (USAID), Addis Ababa, Ethiopia
| | - Hiwot Teka
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,United States Agency for International Development (USAID), Addis Ababa, Ethiopia
| | - Matt Murphy
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melissa Yoshimizu
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,US President's Malaria Initiative, USAID, Washington, DC, USA
| | - Dereje Dengela
- Abt Associates, PMI VectorLink Project, Rockville, MD, USA
| | - Sarah Zohdy
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Entomology Branch Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Seth Irish
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia. .,Entomology Branch Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
108
|
Rodriguez AM, Hambly MG, Jandu S, Simão-Gurge R, Lowder C, Lewis EE, Riffell JA, Luckhart S. Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species. Biomolecules 2021; 11:719. [PMID: 34064869 PMCID: PMC8151525 DOI: 10.3390/biom11050719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
An estimated 229 million people worldwide were impacted by malaria in 2019. The vectors of malaria parasites (Plasmodium spp.) are Anopheles mosquitoes, making their behavior, infection success, and ultimately transmission of great importance. Individuals with severe malaria can exhibit significantly increased blood concentrations of histamine, an allergic mediator in humans and an important insect neuromodulator, potentially delivered to mosquitoes during blood-feeding. To determine whether ingested histamine could alter Anopheles stephensi biology, we provisioned histamine at normal blood levels and at levels consistent with severe malaria and monitored blood-feeding behavior, flight activity, antennal and retinal responses to host stimuli and lifespan of adult female Anopheles stephensi. To determine the effects of ingested histamine on parasite infection success, we quantified midgut oocysts and salivary gland sporozoites in mosquitoes infected with Plasmodium yoelii and Plasmodium falciparum. Our data show that provisioning An. stephensi with histamine at levels consistent with severe malaria can enhance mosquito behaviors and parasite infection success in a manner that would be expected to amplify parasite transmission to and from human hosts. Such knowledge could be used to connect clinical interventions by reducing elevated histamine to mitigate human disease pathology with the delivery of novel lures for improved malaria control.
Collapse
Affiliation(s)
- Anna M. Rodriguez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Sandeep Jandu
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; (S.J.); (J.A.R.)
| | - Raquel Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; (S.J.); (J.A.R.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843-3051, USA
| |
Collapse
|
109
|
Hii J, Hustedt J, Bangs MJ. Residual Malaria Transmission in Select Countries of Asia-Pacific Region: Old Wine in a New Barrel. J Infect Dis 2021; 223:S111-S142. [PMID: 33906222 PMCID: PMC8079134 DOI: 10.1093/infdis/jiab004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Despite substantial reductions in malaria burden and improvement in case management, malaria remains a major public health challenge in the Asia-Pacific region. Residual malaria transmission (RMT) is the fraction of total transmission that persists after achievement of full operational coverage with effective insecticide-treated bed nets (ITNs)/long-lasting insecticidal nets (LLINs) and/or indoor residual spray interventions. There is a critical need to standardize and share best practices for entomological, anthropological, and product development investigative protocols to meet the challenges of RMT and elimination goals. Methods A systematic review was conducted to describe when and where RMT is occurring, while specifically targeting ownership and usage of ITN/LLINs, indoor residual spray application, insecticide susceptibility of vectors, and human and vector biting behavior, with a focus on nighttime activities. Results Sixty-six publications from 1995 to present met the inclusion criteria for closer review. Associations between local vector control coverage and use with behaviors of human and mosquito vectors varied by locality and circumstance. Consequently, the magnitude of RMT is insufficiently studied and analyzed with sparse estimates of individual exposure in communities, insufficient or incomplete observations of ITN/LLIN use, and the local human population movement into and from high-risk areas. Conclusions This review identified significant gaps or deficiencies that require urgent attention, namely, developing standardized procedures and methods to estimate risk exposure beyond the peridomestic setting, analytical approaches to measure key human-vector interactions, and seasonal location-specific agricultural or forest use calendars, and establishing the collection of longitudinal human and vector data close in time and location.
Collapse
Affiliation(s)
- Jeffrey Hii
- Malaria Consortium Asia, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | | | - Michael J Bangs
- Public Health and Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasertart University, Bangkok, Thailand
| |
Collapse
|
110
|
Ghassemi-Khademi T, Oshaghi MA, Vatandoost H, Madjdzadeh SM, Gorouhi MA. Utility of Complete Mitochondrial Genomes in Phylogenetic Classification of the Species of Anopheles (Culicidae: Anophelinae). J Arthropod Borne Dis 2021; 15:1-20. [PMID: 34277853 PMCID: PMC8271240 DOI: 10.18502/jad.v15i1.6483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Among the blood-sucking insects, Anopheles mosquitoes have a very special position, because they transmit parasites of the genus Plasmodium, which cause malaria as one of the main vector-borne disease worldwide. The aim of this review study was to evaluate utility of complete mitochondrial genomes in phylogenetic classification of the species of Anopheles. Methods: The complete mitochondrial genome sequences belonging to 28 species of the genus Anopheles (n=32) were downloaded from NCBI. The phylogenetic trees were constructed using the ML, NJ, ME, and Bayesian inference methods. Results: In general, the results of the present survey revealed that the complete mitochondrial genomes act very accurately in recognition of the taxonomic and phylogenetic status of these species and provide a higher level of support than those based on individual or partial mitochondrial genes so that by using them, we can meticulously reconstruct and modify Anopheles classification. Conclusion: Understanding the taxonomic position of Anopheles, can be a very effective step in better planning for controlling these malaria vectors in the world and will improve our knowledge of their evolutionary biology.
Collapse
Affiliation(s)
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Amin Gorouhi
- Department of Vector Biology and Control, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran.,Research Center of Tropical and Infectious Diseases Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
111
|
Vantaux A, Riehle MM, Piv E, Farley EJ, Chy S, Kim S, Corbett AG, Fehrman RL, Pepey A, Eiglmeier K, Lek D, Siv S, Mueller I, Vernick KD, Witkowski B. Anopheles ecology, genetics and malaria transmission in northern Cambodia. Sci Rep 2021; 11:6458. [PMID: 33742030 PMCID: PMC7979810 DOI: 10.1038/s41598-021-85628-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
In the Greater Mekong Subregion, malaria cases have significantly decreased but little is known about the vectors or mechanisms responsible for residual malaria transmission. We analysed a total of 3920 Anopheles mosquitoes collected during the rainy and dry seasons from four ecological settings in Cambodia (villages, forested areas near villages, rubber tree plantations and forest sites). Using odor-baited traps, 81% of the total samples across all sites were collected in cow baited traps, although 67% of the samples attracted by human baited traps were collected in forest sites. Overall, 20% of collected Anopheles were active during the day, with increased day biting during the dry season. 3131 samples were identified morphologically as 14 different species, and a subset was also identified by DNA amplicon sequencing allowing determination of 29 Anopheles species. The investigation of well characterized insecticide mutations (ace-1, kdr, and rdl genes) indicated that individuals carried mutations associated with response to all the different classes of insecticides. There also appeared to be a non-random association between mosquito species and insecticide resistance with Anopheles peditaeniatus exhibiting nearly fixed mutations. Molecular screening for Plasmodium sp. presence indicated that 3.6% of collected Anopheles were positive, most for P. vivax followed by P. falciparum. These results highlight some of the key mechanisms driving residual human malaria transmission in Cambodia, and illustrate the importance of diverse collection methods, sites and seasons to avoid bias and better characterize Anopheles mosquito ecology in Southeast Asia.
Collapse
Affiliation(s)
- Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Michelle M Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eakpor Piv
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Elise J Farley
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Anneli G Corbett
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rachel L Fehrman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anais Pepey
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control Program, Phnom Penh, Cambodia.,School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Sovannaroth Siv
- National Center for Parasitology, Entomology and Malaria Control Program, Phnom Penh, Cambodia
| | - Ivo Mueller
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris, France
| | - Kenneth D Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
112
|
Dehghankar M, Maleki-Ravasan N, Tahghighi A, Karimian F, Karami M. Bioactivities of rose-scented geranium nanoemulsions against the larvae of Anopheles stephensi and their gut bacteria. PLoS One 2021; 16:e0246470. [PMID: 33556110 PMCID: PMC7870081 DOI: 10.1371/journal.pone.0246470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022] Open
Abstract
Anopheles stephensi with three different biotypes is a major vector of malaria in Asia. It breeds in a wide range of habitats. Therefore, safer and more sustainable methods are needed to control its immature stages rather than chemical pesticides. The larvicidal and antibacterial properties of the Pelargonium roseum essential oil (PREO) formulations were investigated against mysorensis and intermediate forms of An. stephensi in laboratory conditions. A series of nanoemulsions containing different amounts of PREO, equivalent to the calculated LC50 values for each An. stephensi form, and various quantities of surfactants and co-surfactants were developed. The physical and morphological properties of the most lethal formulations were also determined. PREO and its major components, i.e. citronellol (21.34%), L-menthone (6.41%), linalool (4.214%), and geraniol (2.19%), showed potent larvicidal activity against the studied mosquitoes. The LC50/90 values for mysorensis and intermediate forms were computed as 11.44/42.42 ppm and 12.55/47.69 ppm, respectively. The F48/F44 nanoformulations with 94% and 88% lethality for the mysorensis and intermediate forms were designated as optimized formulations. The droplet size, polydispersity index, and zeta-potential for F48/F44 were determined as 172.8/90.95 nm, 0.123/0.183, and -1.08/-2.08 mV, respectively. These results were also confirmed by TEM analysis. Prepared formulations displayed antibacterial activity against larval gut bacteria in the following order of decreasing inhibitory: LC90, optimized nanoemulsions, and LC50. PREO-based formulations were more effective against mysorensis than intermediate. Compared to the crude PREO, the overall larvicidal activity of all nanoformulations boosted by 20% and the optimized formulations by 50%. The sensitivity of insect gut bacteria may be a crucial factor in determining the outcome of the effect of toxins on target insects. The formulations designed in the present study may be a good option as a potent and selective larvicide for An. stephensi.
Collapse
Affiliation(s)
- Maryam Dehghankar
- Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Azar Tahghighi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Laboratory of Medicinal Chemistry, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: (NMR); (AT)
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohsen Karami
- Department of Parasitology and Mycology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
113
|
Mayfield HJ, Sturrock H, Arnold BF, Andrade-Pacheco R, Kearns T, Graves P, Naseri T, Thomsen R, Gass K, Lau CL. Supporting elimination of lymphatic filariasis in Samoa by predicting locations of residual infection using machine learning and geostatistics. Sci Rep 2020; 10:20570. [PMID: 33239779 PMCID: PMC7689447 DOI: 10.1038/s41598-020-77519-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022] Open
Abstract
The global elimination of lymphatic filariasis (LF) is a major focus of the World Health Organization. One key challenge is locating residual infections that can perpetuate the transmission cycle. We show how a targeted sampling strategy using predictions from a geospatial model, combining random forests and geostatistics, can improve the sampling efficiency for identifying locations with high infection prevalence. Predictions were made based on the household locations of infected persons identified from previous surveys, and environmental variables relevant to mosquito density. Results show that targeting sampling using model predictions would have allowed 52% of infections to be identified by sampling just 17.7% of households. The odds ratio for identifying an infected individual in a household at a predicted high risk compared to a predicted low risk location was 10.2 (95% CI 4.2-22.8). This study provides evidence that a 'one size fits all' approach is unlikely to yield optimal results when making programmatic decisions based on model predictions. Instead, model assumptions and definitions should be tailored to each situation based on the objective of the surveillance program. When predictions are used in the context of the program objectives, they can result in a dramatic improvement in the efficiency of locating infected individuals.
Collapse
Affiliation(s)
- Helen J Mayfield
- Research School of Population Health, Australian National University, Canberra, Australia.
| | - Hugh Sturrock
- Global Health Group, University of California, San Francisco, San Francisco, USA
| | - Benjamin F Arnold
- Proctor Foundation, University of California, San Francisco, San Francisco, USA
| | | | - Therese Kearns
- Menzies School of Health Research, Charles Darwin University, Brisbane, Australia
| | - Patricia Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
| | | | | | - Katherine Gass
- Neglected Tropical Diseases Support Center, Task Force for Global Heath, Decatur, GA, USA
| | - Colleen L Lau
- Research School of Population Health, Australian National University, Canberra, Australia
| |
Collapse
|
114
|
Sindhania A, Das MK, Sharma G, Surendran SN, Kaushal BR, Lohani HP, Singh OP. Molecular forms of Anopheles subpictus and Anopheles sundaicus in the Indian subcontinent. Malar J 2020; 19:417. [PMID: 33213479 PMCID: PMC7678295 DOI: 10.1186/s12936-020-03492-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Background Anopheles subpictus and Anopheles sundaicus are closely related species, each comprising several sibling species. Ambiguities exist in the classification of these two nominal species and the specific status of members of these species complexes. Identifying fixed molecular forms and mapping their spatial distribution will help in resolving the taxonomic ambiguities and understanding their relative epidemiological significance. Methods DNA sequencing of Internal Transcribed Spacer-2 (ITS2), 28S-rDNA (D1-to-D3 domains) and cytochrome oxidase-II (COII) of morphologically identified specimens of two nominal species, An. subpictus sensu lato (s.l.) and An. sundaicus s.l., collected from the Indian subcontinent, was performed and subjected to genetic distance and molecular phylogenetic analyses. Results Molecular characterization of mosquitoes for rDNA revealed the presence of two molecular forms of An. sundaicus s.l. and three molecular forms of An. subpictus s.l. (provisionally designated as Form A, B and C) in the Indian subcontinent. Phylogenetic analyses revealed two distinct clades: (i) subpictus clade, with a single molecular form of An. subpictus (Form A) prevalent in mainland India and Sri Lanka, and (ii) sundaicus clade, comprising of members of Sundaicus Complex, two molecular forms of An. subpictus s.l. (Form B and C), prevalent in coastal areas or islands in Indian subcontinent, and molecular forms of An. subpictus s.l. reported from Thailand and Indonesia. Based on the number of float-ridges on eggs, all An. subpictus molecular Form B were classified as Species B whereas majority (80%) of the molecular Form A were classified as sibling species C. Fixed intragenomic sequence variation in ITS2 with the presence of two haplotypes was found in molecular Form A throughout its distribution. Conclusion A total of three molecular forms of An. subpictus s.l. and two molecular forms of An. sundaicus s.l. were recorded in the Indian subcontinent. Phylogenetically, two forms of An. subpictus s.l. (Form B and C) prevalent in coastal areas or islands in the Indian subcontinent and molecular forms reported from Southeast Asia are members of Sundaicus Complex. Molecular Form A of An. subpictus is distantly related to all other forms and deserve a distinct specific status.
Collapse
Affiliation(s)
- Ankita Sindhania
- National Institute of Malaria Research, Sector 8 Dwarka, New Delhi, 110077, India
| | - Manoj K Das
- National Institute of Malaria Research, Field Unit, Itki, Ranchi, 835301, India
| | - Gunjan Sharma
- National Institute of Malaria Research, Sector 8 Dwarka, New Delhi, 110077, India
| | | | - B R Kaushal
- Department of Zoology, Kumaun University, Nainital, India
| | | | - Om P Singh
- National Institute of Malaria Research, Sector 8 Dwarka, New Delhi, 110077, India.
| |
Collapse
|
115
|
Marcombe S, Maithaviphet S, Bobichon J, Phommavan N, Nambanya S, Corbel V, Brey PT. New insights into malaria vector bionomics in Lao PDR: a nationwide entomology survey. Malar J 2020; 19:396. [PMID: 33168012 PMCID: PMC7654023 DOI: 10.1186/s12936-020-03453-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Laos, the malaria burden remains high despite a significant reduction of cases during the last decade. In the context of the disease elimination by 2030, a nationwide entomological survey was conducted to better understand the distribution, abundance and behaviour of major malaria vectors (Anopheles spp.) in the country. METHODS Mosquito collections were implemented in ten villages from ten provinces during the rainy and dry seasons of 2014 and 2015 by using human landing catch (HLC) and cow bait collection (CBC) methods. After morphological identification in the field, molecular identification of the sibling species of Anopheles mosquitoes from the Funestus, Leucosphyrus, and Maculatus groups were determined using PCR specific alleles. A screening of Plasmodium falciparum and Plasmodium vivax infections in the vectors was carried out by quantitative PCR assays. RESULTS A total of 14,146 adult mosquitoes representing 25 different Anopheles species were collected and morphologically identified. Molecular identification revealed the presence of 12 sibling species within the main primary vector groups, including Anopheles maculatus, Anopheles rampae, Anopheles sawadwongporni, Anopheles pseudowillmori, Anopheles dravidicus, Anopheles minimus, Anopheles aconitus, Anopheles pampanai, Anopheles harrisoni, Anopheles dirus, Anopheles baimaii, Anopheles nemophilous. Anopheles maculatus and An. minimus were predominant during both the dry and rainy seasons, but showed highly zoophilic preferences (Zoophilic index of 98% and 95%, respectively). Overall, 22% of the total malaria vectors were collected between 10:00 PM and 5:00 AM indoors when people are sleeping. Twenty-seven percent of primary and secondary vectors were collected outdoors before 10:00 PM or after 5:00 AM, times when people are usually awake and outdoors. Only two specimens were positive for P. falciparum, one An. aconitus from Phongsaly and one An. minimus from Vientiane Province CONCLUSIONS: The results indicate that people living in rural areas in Laos are constantly exposed to malaria vectors throughout the year and specifically outdoors. The use of LLINs/IRS remains important but innovative tools and new strategies are needed to address locally, the early and outdoor malaria transmission. Lack of expertise in general entomological methods may further exacerbate the situation.
Collapse
Affiliation(s)
| | - Santi Maithaviphet
- Center for Malariology, Parasitology and Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Julie Bobichon
- Institut Pasteur du Laos, Ministry of Health, Vientiane, Lao PDR
| | | | - Simone Nambanya
- Center for Malariology, Parasitology and Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Vincent Corbel
- Institut de Recherche Pour Le Développement (IRD), Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC, UM1-CNRS 5290-IRD 224), Montpellier, France
| | - Paul T Brey
- Institut Pasteur du Laos, Ministry of Health, Vientiane, Lao PDR
| |
Collapse
|
116
|
Adolfi A, Gantz VM, Jasinskiene N, Lee HF, Hwang K, Terradas G, Bulger EA, Ramaiah A, Bennett JB, Emerson JJ, Marshall JM, Bier E, James AA. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nat Commun 2020; 11:5553. [PMID: 33144570 PMCID: PMC7609566 DOI: 10.1038/s41467-020-19426-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.
Collapse
Affiliation(s)
- Adriana Adolfi
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA
- Liverpool School of Tropical Medicine, Vector Biology Department, L3 5QA, Liverpool, UK
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
| | - Nijole Jasinskiene
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA
| | - Hsu-Feng Lee
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA
| | - Kristy Hwang
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA
| | - Gerard Terradas
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
- Tata Institute for Genetics and Society (TIGS)-UCSD, La Jolla, CA, 92093-0335, USA
| | - Emily A Bulger
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
- Tata Institute for Genetics and Society (TIGS)-UCSD, La Jolla, CA, 92093-0335, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94158, USA
- The Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, USA
- Tata Institute for Genetics and Society (TIGS)-India, Bangalore, KA, 560065, India
| | - Jared B Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, CA, 94720, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697-2525, USA
| | - John M Marshall
- Division of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0349, USA
- Tata Institute for Genetics and Society (TIGS)-UCSD, La Jolla, CA, 92093-0335, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-3900, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-4025, USA.
| |
Collapse
|
117
|
Elumalai K, Mahboob S, Al-Ghanim KA, Al-Misned F, Pandiyan J, Baabu PMK, Krishnappa K, Govindarajan M. Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control. Saudi J Biol Sci 2020; 27:2917-2928. [PMID: 33100847 PMCID: PMC7569148 DOI: 10.1016/j.sjbs.2020.08.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
The entomofaunal survey and its toxicity of Blumea mollis (Asteraceae) leaf aqueous extract-mediated (Bm-LAE) silver nanoparticles (AgNPs) were assessed against selected human vector mosquitoes (HVMs). A total of 1800 individuals of 29 species belongs to 7 genera were identified. Month-wise and Genus-wise abundance of HVMs larval diversity were calculated and one-way ANOVA statistically analyzed the average physico-chemical characteristics. The relationship between physicochemical characteristics and HVMs larvae in KWS was interpreted. The total larval density and container index were 23530.18 and 1961.85 examined against 10 different containers. Various spectroscopic and microscopic investigation characterized Bm-AgNPs. The Bm- AgNPs tested against HVMs larvae, the predominant LC50/LC90 values of 18.17/39.56, 23.45/42.49 and 21.82/40.43 μg/mL were observed on An. subpictus Cx. vishnui and Ae. vittatus, respectively. The findings of this investigation, improperly maintained drainages, containers and unused things in study sites, are engaged to HVMs development. This will be essential for designing and implementing HVMs control. The larval toxic potentiality of Bm- AgNPs had a prompt, inexpensive and compelling synthesis of multi-disperse action against HVMs.
Collapse
Affiliation(s)
- Kuppusamy Elumalai
- Department of Advanced Zoology & Biotechnology, Government Arts College for Men (Autonomous), Chennai 600035, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jeganathan Pandiyan
- Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, India
| | | | - Kaliyamoorthy Krishnappa
- Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
118
|
de Melo ES, Wallau GL. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genet 2020; 16:e1008946. [PMID: 33253164 PMCID: PMC7728395 DOI: 10.1371/journal.pgen.1008946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize basically all eukaryotic species genomes. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, while it varied substantially among Anopheles species (0.13%-19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been extensively exchanged by horizontal transfer (172 TE families of 16 different superfamilies) among mosquitoes in the last 30 million years. Horizontally transferred TEs represents around 7% of the genome in Aedes species and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more than 32,000 genomes, we also uncovered transfers between mosquitoes and two different Phyla-Cnidaria and Nematoda-and two subphyla-Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are frequently exchanged by horizontal transfers among mosquitoes, influencing mosquito's genome size and variability.
Collapse
Affiliation(s)
- Elverson Soares de Melo
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
119
|
Rocha EM, Katak RDM, Campos de Oliveira J, Araujo MDS, Carlos BC, Galizi R, Tripet F, Marinotti O, Souza-Neto JA. Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies. Trop Med Infect Dis 2020; 5:E161. [PMID: 33092228 PMCID: PMC7709627 DOI: 10.3390/tropicalmed5040161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
In Brazil, malaria transmission is mostly confined to the Amazon, where substantial progress has been made towards disease control in the past decade. Vector control has been historically considered a fundamental part of the main malaria control programs implemented in Brazil. However, the conventional vector-control tools have been insufficient to control or eliminate local vector populations due to the complexity of the Amazonian rainforest environment and ecological features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination in Brazil and worldwide eradication will require a combination of conventional and new approaches that takes into account the regional specificities of vector populations and malaria transmission dynamics. Here we present an overview on both conventional and novel promising vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and employed, vector-based approaches may improve the implementation of malaria-control programs, particularly in remote or difficult-to-access areas and in regions where existing interventions have been unable to eliminate disease transmission. However, much effort still has to be put into research expanding the knowledge of neotropical malaria vectors to set the steppingstones for the optimization of conventional and development of innovative vector-control tools.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Maisa da Silva Araujo
- Laboratory of Medical Entomology, Oswaldo Cruz Foundation, FIOCRUZ RONDONIA, Porto Velho, RO 76812-245, Brazil;
| | - Bianca Cechetto Carlos
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Roberto Galizi
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | | | - Jayme A. Souza-Neto
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| |
Collapse
|
120
|
Sumarnrote A, Overgaard HJ, Corbel V, Thanispong K, Chareonviriyaphap T, Manguin S. Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand. Parasit Vectors 2020; 13:525. [PMID: 33069255 PMCID: PMC7568835 DOI: 10.1186/s13071-020-04389-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Background Members of the Anopheles hyrcanus group have been incriminated as important malaria vectors. This study aims to identify the species and explore the insecticide susceptibility profile within the Anopheles hyrcanus group in Ubon Ratchathani Province, northeastern Thailand where increasing numbers of malaria cases were reported in 2014. Methods Between 2013 and 2015, five rounds of mosquito collections were conducted using human landing and cattle bait techniques during both the rainy and dry seasons. Anopheles mosquitoes were morphologically identified and their insecticide susceptibility status was investigated. Synergist bioassays were carried out with An. hyrcanus (s.l.) due to their resistance to all insecticides. An ITS2-PCR assay was conducted to identify to species the Hyrcanus group specimens. Results Out of 10,361 Anopheles females collected, representing 18 taxa in 2 subgenera, 71.8% were morphologically identified as belonging to the Hyrcanus Group (subgenus Anopheles), followed by An. barbirostris group (7.9%), An. nivipes (6.5%), An. philippinensis (5.9%) and the other 14 Anopheles species. Specimens of the Hyrcanus Group were more prevalent during the rainy season and were found to be highly zoophilic. Anopheles hyrcanus (s.l.) was active throughout the night, with an early peak of activity between 18:00 h and 21:00 h. ITS2-PCR assay conducted on 603 DNA samples from specimens within the Hyrcanus Group showed the presence of five sisters species. Anopheles peditaeniatus was the most abundant species (90.5%, n = 546), followed by An. nitidus (4.5%, n = 27), An. nigerrimus (4.3%, n = 26), An. argyropus (0.5%, n = 3), and An. sinensis (0.2%, n = 1). All An. hyrcanus (s.l.) specimens that were found resistant to insecticides (deltamethrin 0.05%, permethrin 0.75% and DDT 4% and synergist tests) belonged to An. peditaeniatus. The degree of resistance in An. peditaeniatus to each of these three insecticides was approximately 50%. Addition of PBO (Piperonyl butoxide), but not DEF (S.S.S-tributyl phosphotritioate), seemed to restore susceptibility, indicating a potential role of oxidases as a detoxifying enzyme resistance mechanism. Conclusions A better understanding of mosquito diversity related to host preference, biting activity and insecticide resistance status will facilitate the implementation of locally adapted vector control strategies.![]()
Collapse
Affiliation(s)
- Anchana Sumarnrote
- Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Hans J Overgaard
- Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France.,Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent Corbel
- Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Kanutcharee Thanispong
- Bureau of Vector-borne Disease, Department of Disease control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Sylvie Manguin
- HydroSciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD), CNRS, Université Montpellier, Montpellier, France.
| |
Collapse
|
121
|
Sinka ME, Pironon S, Massey NC, Longbottom J, Hemingway J, Moyes CL, Willis KJ. A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci U S A 2020; 117:24900-24908. [PMID: 32929020 PMCID: PMC7547157 DOI: 10.1073/pnas.2003976117] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In 2012, an unusual outbreak of urban malaria was reported from Djibouti City in the Horn of Africa and increasingly severe outbreaks have been reported annually ever since. Subsequent investigations discovered the presence of an Asian mosquito species; Anopheles stephensi, a species known to thrive in urban environments. Since that first report, An. stephensi has been identified in Ethiopia and Sudan, and this worrying development has prompted the World Health Organization (WHO) to publish a vector alert calling for active mosquito surveillance in the region. Using an up-to-date database of published locational records for An. stephensi across its full range (Asia, Arabian Peninsula, Horn of Africa) and a set of spatial models that identify the environmental conditions that characterize a species' preferred habitat, we provide evidence-based maps predicting the possible locations across Africa where An. stephensi could establish if allowed to spread unchecked. Unsurprisingly, due to this species' close association with man-made habitats, our maps predict a high probability of presence within many urban cities across Africa where our estimates suggest that over 126 million people reside. Our results strongly support the WHO's call for surveillance and targeted vector control and provide a basis for the prioritization of surveillance.
Collapse
Affiliation(s)
- M E Sinka
- Department of Zoology, University of Oxford, Oxford, United Kingdom, OX1 3SZ;
| | - S Pironon
- Biodiversity Informatics and Spatial Analysis Department, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom, TW9 3DS
| | - N C Massey
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom, OX3 7LF
| | - J Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, L3 5QA
| | - J Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, L3 5QA
| | - C L Moyes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom, OX3 7LF
| | - K J Willis
- Department of Zoology, University of Oxford, Oxford, United Kingdom, OX1 3SZ
- Biodiversity Informatics and Spatial Analysis Department, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom, TW9 3DS
| |
Collapse
|
122
|
Davidson JR, Wahid I, Sudirman R, Small ST, Hendershot AL, Baskin RN, Burton TA, Makuru V, Xiao H, Yu X, Troth EV, Olivieri D, Lizarraga S, Hasan H, Arfah A, Yusuf M, Nur N, Syafruddin D, Asih P, Lobo NF. Molecular analysis reveals a high diversity of Anopheles species in Karama, West Sulawesi, Indonesia. Parasit Vectors 2020; 13:379. [PMID: 32727610 PMCID: PMC7392657 DOI: 10.1186/s13071-020-04252-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
Background Understanding local Anopheles species compositions and bionomic traits are vital for an effective malaria vector intervention strategy. Though eight malaria vectors, including species complexes, have been documented across the island of Sulawesi, Indonesia, a comprehensive survey linking morphological and molecular species identification has not been conducted in this global hotspot of biodiversity. Results Eighteen distinct species of Anopheles were molecularly identified in a 1 km2 area in Karama village, West Mamuju Province, Sulawesi. Known species included An. aconitus, An. karwari, An. peditaeniatus, An. vagus, An. barbirostris, An. tessellatus, An. nigerrimus, An. crawfordi, An. maculatus, An. flavirostris and An. kochi. Of the 18 distinct sequence groups identified through both ribosomal DNA internal transcribed spacer region 2, and mitochondrial DNA cytochrome c oxidase subunit 1 loci, 8 could not be identified to species through comparison to published sequences. The comparison of morphological and molecular identities determined that interpretations of local species compositions for primary and expected species in Karama (An. barbirostris and An. vagus) had the highest rate of accuracy (92.1% and 87.6%, respectively) when compared to molecular analysis. However, the remaining distinct sequences molecularly identified to species were identified correctly by morphological methods less frequently, from 0 to 83%. Conclusions Karama, Indonesia has a high diversity of Anopheles spp. The unexpected high number of Anopheles species in a small area points to possible complex transmission dynamics and limitations with vector control based on possible varying behaviors and interactions with both humans and interventions. Morphological identification of Anopheles spp. in this study was more accurate for primary and expected species than secondary or unexpected species. Finally, the inability to identify seven sequence groups to species with consensus sequences implies that future studies employing sequencing are required to clarify species compositions in the Nigerrimus Subgroup, among others, as well as their distribution and vector status. Use of molecular methods in conjunction with morphological investigations for analysis of species composition, population dynamics and bionomic characteristics is directly implicated in understanding drivers of malaria transmission, intervention effectiveness, and the pursuit of malaria elimination. ![]()
Collapse
Affiliation(s)
- Jenna R Davidson
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Isra Wahid
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Rusdiyah Sudirman
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Scott T Small
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Allison L Hendershot
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert N Baskin
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy A Burton
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Victoria Makuru
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Honglin Xiao
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiaoyu Yu
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Emma V Troth
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Daniel Olivieri
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Stephanny Lizarraga
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Hajar Hasan
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Andi Arfah
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Muhammad Yusuf
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Nirwana Nur
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Din Syafruddin
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Puji Asih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
123
|
A Multiplex PCR Based on Mitochondrial COI Sequences for Identification of Members of the Anopheles barbirostris Complex (Diptera: Culicidae) in Thailand and Other Countries in the Region. INSECTS 2020; 11:insects11070409. [PMID: 32630637 PMCID: PMC7412068 DOI: 10.3390/insects11070409] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022]
Abstract
A multiplex-PCR assay based on mitochondrial cytochrome c oxidase subunit I (COI) sequences was developed for identification of five members of the Barbirostris Complex which occur in Thailand: Anopheles barbirostris s.s., An. dissidens, An. saeungae, An. wejchoochotei and An. barbirostris species A3. Anopheles campestris was not included in the assay due to the lack of unequivocal sequences. Allele-specific primers were designed for specific nucleotide segments of COI sequences of each species. Mismatch method and addition of long GC tail were applied for some primers. The assay provided products of 706 bp for An. barbirostris s.s., 238 bp for An. dissidens, 611 bp for An. saeungae, 502 bp for An. wejchoochotei and 365 bp for An. barbirostris A3. The assay was tested using 111 wild-caught female mosquitoes from Bhutan, Cambodia, Indonesia (Sulawesi) and Thailand. The results of the multiplex PCR were in complete agreement with COI sequencing; however, one of three specimens from Bhutan and all 11 specimens from Indonesia were not amplifiable by the assay due to their distinct COI sequences. This, together with the distinct rDNA sequences of these specimens, suggests the presence of at least two additional new species in the Barbirostris Complex.
Collapse
|
124
|
Syafruddin D, Lestari YE, Permana DH, Asih PBS, St. Laurent B, Zubaidah S, Rozi IE, Kosasih S, Shinta, Sukowati S, Hakim L, Haryanto E, Mangunwardoyo W, Bangs MJ, Lobo NF. Anopheles sundaicus complex and the presence of Anopheles epiroticus in Indonesia. PLoS Negl Trop Dis 2020; 14:e0008385. [PMID: 32614914 PMCID: PMC7363104 DOI: 10.1371/journal.pntd.0008385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/15/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
Anopheles sundaicus s.l. is an important malaria vector primarily found in coastal landscapes of western and central Indonesia. The species complex has a wide geographical distribution in South and Southeast Asia and exhibits ecological and behavioural variability over its range. Studies on understanding the distribution of different members in the complex and their bionomics related to malaria transmission might be important guiding more effective vector intervention strategies. Female An. sundaicus s.l. were collected from seven provinces, 12 locations in Indonesia representing Sumatra: North Sumatra, Bangka-Belitung, South Lampung, and Bengkulu; in Java: West Java; and the Lesser Sunda Islands: West Nusa Tenggara and East Nusa Tenggara provinces. Sequencing of ribosomal DNA ITS2 gene fragments and two mitochondrial DNA gene markers, COI and cytb, enabled molecular identification of morphologically indistinguishable members of the complex. Findings allowed inference on the distribution of the An. sundaicus s.l. present in Indonesia and further illustrate the phylogenetic relationships of An. epiroticus within the complex. A total of 370 An. sundaicus s.l specimens were analysed for the ITS2 fragment. The ITS2 sequence alignment revealed two consistent species-specific point mutations, a T>C transition at base 479 and a G>T transversion at base 538 that differentiated five haplotypes: TG, CG, TT, CT, and TY. The TG haplotype matched published An. epiroticus-indicative sequences from Thailand, Vietnam and peninsular Malaysia. The previously described insertion event (base 603) was observed in all identified specimens. Analysis of the COI and cytb genes revealed no consistent nucleotide variations that could definitively distinguish An. epiroticus from other members in the Sundaicus Complex. The findings indicate and support the existence of An. epiroticus in North Sumatra and Bangka-Belitung archipelago. Further studies are recommended to determine the full distributional extent of the Sundaicus complex in Indonesia and investigate the role of these species in malaria transmission.
Collapse
Affiliation(s)
- Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | - Brandyce St. Laurent
- Eck Institute for Global Health, University of Notre Dame, IN, United States of America
| | - Siti Zubaidah
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Ismail E. Rozi
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Sully Kosasih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Shinta
- Health Ecology Research & Development Centre, National Institute of Health, Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Supratman Sukowati
- Health Ecology Research & Development Centre, National Institute of Health, Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Lukman Hakim
- Division of Vector Borne Disease, Ministry of Health, Jakarta, Indonesia
| | - Edhi Haryanto
- Division of Vector Borne Disease, Ministry of Health, Jakarta, Indonesia
| | - Wibowo Mangunwardoyo
- Department of Biology, Faculty of Mathematics and Science, Universitas Indonesia, Depok, Indonesia
| | - Michael J. Bangs
- PT Freeport Indonesia, International SOS, Freeport Medical Services, Kuala Kencana, Papua, Indonesia
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Neil F. Lobo
- Eck Institute for Global Health, University of Notre Dame, IN, United States of America
| |
Collapse
|
125
|
Larsen DA, Martin A, Pollard D, Nielsen CF, Hamainza B, Burns M, Stevenson J, Winters A. Leveraging risk maps of malaria vector abundance to guide control efforts reduces malaria incidence in Eastern Province, Zambia. Sci Rep 2020; 10:10307. [PMID: 32587283 PMCID: PMC7316765 DOI: 10.1038/s41598-020-66968-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 01/30/2023] Open
Abstract
Although transmission of malaria and other mosquito-borne diseases is geographically heterogeneous, in sub-Saharan Africa risk maps are rarely used to determine which communities receive vector control interventions. We compared outcomes in areas receiving different indoor residual spray (IRS) strategies in Eastern Province, Zambia: (1) concentrating IRS interventions within a geographical area, (2) prioritizing communities to receive IRS based on predicted probabilities of Anopheles funestus, and (3) prioritizing communities to receive IRS based on observed malaria incidence at nearby health centers. Here we show that the use of predicted probabilities of An. funestus to guide IRS implementation saw the largest decrease in malaria incidence at health centers, a 13% reduction (95% confidence interval = 5-21%) compared to concentrating IRS geographically and a 37% reduction (95% confidence interval = 30-44%) compared to targeting IRS based on health facility incidence. These results suggest that vector control programs could produce better outcomes by prioritizing IRS according to malaria-vector risk maps.
Collapse
Affiliation(s)
| | | | | | - Carrie F Nielsen
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Jennifer Stevenson
- Macha Research Trust, Choma, Zambia
- Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Anna Winters
- Akros Research, Lusaka, Zambia
- University of Montana, Missoula, MT, USA
| |
Collapse
|
126
|
Alahmadi S, Ibrahim R, Messali M, Ali M. Effect of aminopyridinium-based ionic liquids against larvae of Culex pipiens (Diptera: Culicidae). JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1782601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Saeed Alahmadi
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Reda Ibrahim
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mouslim Messali
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Medhat Ali
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
127
|
Rohani A, Fakhriy HA, Suzilah I, Zurainee MN, Najdah WMAW, Ariffin MM, Shakirudin NM, Afiq MSM, Jenarun J, Tanrang Y, Lee HL. Indoor and outdoor residual spraying of a novel formulation of deltamethrin K-Othrine® (Polyzone) for the control of simian malaria in Sabah, Malaysia. PLoS One 2020; 15:e0230860. [PMID: 32413033 PMCID: PMC7228059 DOI: 10.1371/journal.pone.0230860] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/10/2020] [Indexed: 11/19/2022] Open
Abstract
Since 2000, human malaria cases in Malaysia were rapidly reduced with the use of insecticides in Indoor Residual Spray (IRS) and Long-Lasting Insecticide Net (LLIN). Unfortunately, monkey malaria in humans has shown an increase especially in Sabah and Sarawak. The insecticide currently used in IRS is deltamethrin K-Othrine® WG 250 wettable granule, targeting mosquitoes that rest and feed indoor. In Sabah, the primary vector for knowlesi malaria is An. balabacensis a species known to bite outdoor. This study evaluates an alternative method, the Outdoor Residual Spray (ORS) using a novel formulation of deltamethrin K-Othrine® (PolyZone) to examine it suitability to control knowlesi malaria vector in Sabah, compared to the current method. The study was performed at seven villages in Sabah having similar type of houses (wood, bamboo and concrete). Houses were sprayed with deltamethrin K-Othrine® (PolyZone) at two different dosages, 25 mg/m2 and 30 mg/m2 and deltamethrin K-Othrine® WG 250 wettable granule at 25 mg/m2, sprayed indoor and outdoor. Residual activity on different walls was assessed using standard cone bioassay techniques. For larval surveillances, potential breeding sites were surveyed. Larvae were collected and identified, pre and post spraying. Adult survey was done using Human Landing Catch (HLC) performed outdoor and indoor. Detection of malaria parasite in adults was conducted via microscopy and molecular methods. Deltamethrin K-Othrine® (PolyZone) showed higher efficacy when sprayed outdoor. The efficacy was found varied when sprayed on different types of wall surfaces. Deltamethrin K-Othrine® (PolyZone) at 25 mg/m2 was the most effective with regards to ability to high mortality and effective knock down (KD). The vector population was reduced significantly post-spraying and reduction in breeding sites as well. The number of simian malaria infected vector, human and simian malaria transmission were also greatly reduced.
Collapse
Affiliation(s)
- A. Rohani
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - H. Ahmad Fakhriy
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
- Parasitology Department, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - I. Suzilah
- School of Quantitative Sciences, Universiti Utara Malaysia, Sintok Kedah, Malaysia
| | - M. N. Zurainee
- Parasitology Department, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - W. M. A. Wan Najdah
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - M. Mohd Ariffin
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - N. Mohamad Shakirudin
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - M. S. Mohd Afiq
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - J. Jenarun
- Sabah Department of Health, Kementerian Kesihatan Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Y. Tanrang
- Sabah Department of Health, Kementerian Kesihatan Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - H. L. Lee
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
128
|
Ibáñez-Justicia A, Smitz N, den Hartog W, van de Vossenberg B, De Wolf K, Deblauwe I, Van Bortel W, Jacobs F, Vaux AGC, Medlock JM, Stroo A. Detection of Exotic Mosquito Species (Diptera: Culicidae) at International Airports in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103450. [PMID: 32429218 PMCID: PMC7277938 DOI: 10.3390/ijerph17103450] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022]
Abstract
In Europe, the air-borne accidental introduction of exotic mosquito species (EMS) has been demonstrated using mosquito surveillance schemes at Schiphol International Airport (Amsterdam, The Netherlands). Based upon these findings and given the increasing volume of air transport movements per year, the establishment of EMS after introduction via aircraft is being considered a potential risk. Here we present the airport surveillance results performed by the Centre for Monitoring of Vectors of the Netherlands, by the Monitoring of Exotic Mosquitoes (MEMO) project in Belgium, and by the Public Health England project on invasive mosquito surveillance. The findings of our study demonstrate the aircraft mediated transport of EMS into Europe from a wide range of possible areas in the world. Results show accidental introductions of Aedes aegypti and Ae. albopictus, as well as exotic Anopheles and Mansonia specimens. The findings of Ae. albopictus at Schiphol airport are the first evidence of accidental introduction of the species using this pathway in Europe. Furthermore, our results stress the importance of the use of molecular tools to validate the morphology-based species identifications. We recommend monitoring of EMS at airports with special attention to locations with a high movement of cargo and passengers.
Collapse
Affiliation(s)
- Adolfo Ibáñez-Justicia
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Geertjesweg 15, 6706 EA Wageningen, The Netherlands; (W.d.H.); (F.J.); (A.S.)
- Correspondence:
| | - Nathalie Smitz
- Royal Museum for Central Africa (BopCo), Leuvensesteenweg 13–17, 3080 Tervuren, Belgium;
| | - Wietse den Hartog
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Geertjesweg 15, 6706 EA Wageningen, The Netherlands; (W.d.H.); (F.J.); (A.S.)
| | - Bart van de Vossenberg
- Molecular Biology Group, Netherlands Food and Consumer Product Safety Authority, Geertjesweg 15, 6706 EA Wageningen, The Netherlands;
| | - Katrien De Wolf
- Unit of Entomology, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; (K.D.W.); (I.D.); (W.V.B.)
| | - Isra Deblauwe
- Unit of Entomology, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; (K.D.W.); (I.D.); (W.V.B.)
| | - Wim Van Bortel
- Unit of Entomology, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium; (K.D.W.); (I.D.); (W.V.B.)
- Outbreak Research Team, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Frans Jacobs
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Geertjesweg 15, 6706 EA Wageningen, The Netherlands; (W.d.H.); (F.J.); (A.S.)
| | - Alexander G. C. Vaux
- Medical Entomology and Zoonoses Ecology Group, Public Health England (PHE), Porton Down, Salisbury SP4 0JG, UK; (A.G.C.V.); (J.M.M.)
| | - Jolyon M. Medlock
- Medical Entomology and Zoonoses Ecology Group, Public Health England (PHE), Porton Down, Salisbury SP4 0JG, UK; (A.G.C.V.); (J.M.M.)
| | - Arjan Stroo
- Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Geertjesweg 15, 6706 EA Wageningen, The Netherlands; (W.d.H.); (F.J.); (A.S.)
| |
Collapse
|
129
|
Nguela RL, Bigoga JD, Armel TN, Esther T, Line D, Boris NA, Frederic T, Kazi R, Williams P, Mbacham WF, Leke RGF. The effect of improved housing on indoor mosquito density and exposure to malaria in the rural community of Minkoameyos, Centre Region of Cameroon. Malar J 2020; 19:172. [PMID: 32362282 PMCID: PMC7197188 DOI: 10.1186/s12936-020-03232-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study evaluated the effectiveness of improved housing on indoor residual mosquito density and exposure to infected Anophelines in Minkoameyos, a rural community in southern forested Cameroon. METHODS Following the identification of housing factors affecting malaria prevalence in 2013, 218 houses were improved by screening the doors and windows, installing plywood ceilings on open eaves and closing holes on walls and doors. Monthly entomological surveys were conducted in a sample of 21 improved and 21 non-improved houses from November 2014 to October 2015. Mosquitoes sampled from night collections on human volunteers were identified morphologically and their parity status determined. Mosquito infectivity was verified through Plasmodium falciparum CSP ELISA and the average entomological inoculation rates determined. A Reduction Factor (RF), defined as the ratio of the values for mosquitoes collected outdoor to those collected indoor was calculated in improved houses (RFI) and non-improved houses (RFN). An Intervention Effect (IE = RFI/RFN) measured the true effect of the intervention. Chi square test was used to determine variable significance. The threshold for statistical significance was set at P < 0.05. RESULTS A total of 1113 mosquitoes were collected comprising Anopheles sp (58.6%), Culex sp (36.4%), Aedes sp (2.5%), Mansonia sp (2.4%) and Coquillettidia sp (0.2%). Amongst the Anophelines were Anopheles gambiae sensu lato (s.l.) (95.2%), Anopheles funestus (2.9%), Anopheles ziemanni (0.2%), Anopheles brohieri (1.2%) and Anopheles paludis (0.5%). Anopheles gambiae sensu stricto (s.s.) was the only An. gambiae sibling species found. The intervention reduced the indoor Anopheles density by 1.8-fold (RFI = 3.99; RFN = 2.21; P = 0.001). The indoor density of parous Anopheles was reduced by 1.7-fold (RFI = 3.99; RFN = 2.21; P = 0.04) and that of infected Anopheles by 1.8-fold (RFI = 3.26; RFN = 1.78; P = 0.04). Indoor peak biting rates were observed between 02 a.m. to 04 a.m. in non-improved houses and from 02 a.m. to 06 a.m. in improved houses. CONCLUSION Housing improvement contributed to reducing indoor residual anopheline density and malaria transmission. This highlights the need for policy specialists to further evaluate and promote aspects of house design as a complementary control tool that could reduce indoor human-vector contact and malaria transmission in similar epidemiological settings.
Collapse
Affiliation(s)
- Rachel L Nguela
- Malaria Consortium-Cameroon Coalition Against Malaria (MC-CCAM), Bastos, PO Box 4256, Yaoundé, Cameroon.
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon.
- National Reference Unit for Vector Control, The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon.
| | - Jude D Bigoga
- National Reference Unit for Vector Control, The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Tedjou N Armel
- National Reference Unit for Vector Control, The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
| | - Tallah Esther
- Malaria Consortium-Cameroon Coalition Against Malaria (MC-CCAM), Bastos, PO Box 4256, Yaoundé, Cameroon
| | - Dongmo Line
- Malaria Consortium-Cameroon Coalition Against Malaria (MC-CCAM), Bastos, PO Box 4256, Yaoundé, Cameroon
| | - Njeambosay A Boris
- National Reference Unit for Vector Control, The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
| | - Tchouine Frederic
- Malaria Consortium-Cameroon Coalition Against Malaria (MC-CCAM), Bastos, PO Box 4256, Yaoundé, Cameroon
| | - Riksum Kazi
- Architecture for Health in Vulnerable Environments (ARCHIVE Global), New York, USA
| | - Peter Williams
- Architecture for Health in Vulnerable Environments (ARCHIVE Global), New York, USA
| | - Wilfred F Mbacham
- Malaria Consortium-Cameroon Coalition Against Malaria (MC-CCAM), Bastos, PO Box 4256, Yaoundé, Cameroon
- National Reference Unit for Vector Control, The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Rose G F Leke
- Malaria Consortium-Cameroon Coalition Against Malaria (MC-CCAM), Bastos, PO Box 4256, Yaoundé, Cameroon.
- National Reference Unit for Vector Control, The Biotechnology Centre, University of Yaoundé I, Yaoundé, Cameroon.
| |
Collapse
|
130
|
Gao B, Saralamba S, Lubell Y, White LJ, Dondorp AM, Aguas R. Determinants of MDA impact and designing MDAs towards malaria elimination. eLife 2020; 9:e51773. [PMID: 32293559 PMCID: PMC7185997 DOI: 10.7554/elife.51773] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/12/2020] [Indexed: 11/13/2022] Open
Abstract
Malaria remains at the forefront of scientific research and global political and funding agendas. Malaria models have consistently oversimplified how mass interventions are implemented. Here, we present an individual based, spatially explicit model of P. falciparum malaria transmission that includes all the programmatic implementation details of mass drug administration (MDA) campaigns. We uncover how the impact of MDA campaigns is determined by the interaction between implementation logistics, patterns of human mobility and how transmission risk is distributed over space. Our results indicate that malaria elimination is only realistically achievable in settings with very low prevalence and can be hindered by spatial heterogeneities in risk. In highly mobile populations, accelerating MDA implementation increases likelihood of elimination; if populations are more static, deploying less teams would be cost optimal. We conclude that mass drug interventions can be an invaluable tool towards malaria elimination in low endemicity areas, specifically when paired with effective vector control.
Collapse
Affiliation(s)
- Bo Gao
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Sompob Saralamba
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Yoel Lubell
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Lisa J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Ricardo Aguas
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| |
Collapse
|
131
|
Chaumeau V, Wisisakun P, Sawasdichai S, Kankew P, Htoo GN, Saithanmettajit S, Aryalamloed S, Lee NY, Delmas G, Nosten F. Longevity of the insecticidal effect of three pyrethroid formulations applied to outdoor vegetation on a laboratory-adapted colony of the Southeast Asian malaria vector Anopheles dirus. PLoS One 2020; 15:e0231251. [PMID: 32287300 PMCID: PMC7156039 DOI: 10.1371/journal.pone.0231251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/19/2020] [Indexed: 11/24/2022] Open
Abstract
Outdoor residual spraying is proposed for the control of exophilic mosquitoes. However, the residual effect of insecticide mists applied to outdoor resting habitats of mosquitoes is not well characterized. The objective of this study was to assess the longevity of the residual insecticidal effect of three pyrethroid formulations applied to outdoor vegetation against the Southeast Asian malaria vector Anopheles dirus. Lambda-cyhalothrin capsule suspension, deltamethrin emulsifiable concentrate and bifenthrin wettable powder were sprayed on dense bamboo bushes on the Thailand-Myanmar border during the dry season 2018. The duration and magnitude of the residual insecticidal effect were assessed weekly with a standard cone assay, using freshly collected insecticide-treated bamboo leaves and a laboratory-adapted colony of Anopheles dirus sensu stricto susceptible to pyrethroids. The experiment was repeated during the rainy season to assess the persistence of the lambda-cyhalothrin formulation after natural rains and artificial washings. During the dry season (cumulative rainfall = 28 mm in 111 days), mortality and knockdown (KD) rates were >80% for 60 days with bifenthrin and 90 days with lambda-cyhalothrin and deltamethrin. The 50% knockdown time (TKD50) was <15 min with lambda-cyhalothrin and deltamethrin, and <30 min with bifenthrin. During the rainy season (cumulative rainfall = 465 mm in 51 days), mortality and KD rates were >80% for 42 days and TKD50 was <15 min with lambda-cyhalothrin. Additional artificial washing of the testing material with 10L of tap water before performing the cone tests had no significant effect on the residual insecticidal effect of this formulation. Long-lasting residual insecticidal effect can be obtained when spraying pyrethroid insecticides on the outdoor resting habitats of malaria vectors.
Collapse
Affiliation(s)
- Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, United Kingdom
| | - Praphan Wisisakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Prasan Kankew
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Gay Nay Htoo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Somsak Saithanmettajit
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sarang Aryalamloed
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Naw Yu Lee
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, United Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, United Kingdom
| |
Collapse
|
132
|
Githinji EK, Irungu LW, Ndegwa PN, Machani MG, Amito RO, Kemei BJ, Murima PN, Ombui GM, Wanjoya AK, Mbogo CM, Mathenge EM. Impact of Insecticide Resistance on P. falciparum Vectors' Biting, Feeding, and Resting Behaviour in Selected Clusters in Teso North and South Subcounties in Busia County, Western Kenya. J Parasitol Res 2020; 2020:9423682. [PMID: 32328298 PMCID: PMC7168709 DOI: 10.1155/2020/9423682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/31/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Behavioural resistance to insecticides restrains the efficacy of vector control tools against mosquito-transmitted diseases. The current study is aimed at determining the impact of insecticide resistance on major malaria vectors' biting, feeding, and resting behaviour in areas with and areas without insecticide resistance in Teso North and Teso South, Busia County, Western Kenya. METHODS Mosquito larvae were sampled using a dipper, reared into 3-5-day-old female mosquitoes [4944] which were exposed to 0.75% permethrin and 0.05% deltamethrin using World Health Organization tube assay method. Blood meal, species identification, and kdr Eastgene PCRs were also performed on adult mosquitoes sampled using mosquito collection methods [3448]. Biting, feeding, resting, and exiting behaviours of field-collected mosquitoes from five selected clusters were analysed. RESULTS The lowest Kdr genotypic frequency (SS) proportion was found in female Anophelines collected in Kengatunyi at 58% while Rwatama had the highest genotypic frequency at 93%, thus susceptible and resistant clusters, respectively. The peak hour for mosquito seeking a human bite was between 0300 and 0400 hrs in the resistant cluster and 0400-0500 hrs in the susceptible cluster. The heterozygous mosquitoes maintained the known 2100-2200 hrs peak hour. There was a higher proportion of homozygous susceptible vectors (86.4%) seeking humans indoor than outdoor bitters (78.3%). Mosquito blood meals of human origin were 60% and 87% in susceptible Kengatunyi and resistant Rwatama cluster, respectively. There was significant difference between homozygous-resistant vectors feeding on human blood compared to homozygous susceptible mosquitoes (p ≤ 0.05). The proportion of bovine blood was highest in the susceptible cluster. A higher proportion of homozygous-resistant anophelines were feeding and resting indoors. No heterozygous mosquito was found resting indoor while 4.2% of the mosquitoes were caught while exiting the house through the window. Discussion. A shift in resistant Anopheles gambiae sl highest peak hour of aggressiveness from 2100-2200 hrs to 0300-0400 hrs is a key change in its biting pattern. Due to the development of resistance, mosquitoes no longer have to compete against the time the human host enters into the formerly lethal chemical and or physical barrier in the form of long-lasting insecticide-treated net. No heterozygous LS mosquito rested indoors possibly due to disadvantages of heterozygosity which could have increased their fitness costs as well as energy costs in the presence of the insecticidal agents in the treated nets. Conclusions and recommendations. Out of bed biting by female mosquitoes and partial susceptibility may contribute to residual malaria transmission. Insecticide-resistant vectors have become more endophagic and anthropophillic. Hence, insecticidal nets, zooprophylaxis, and novel repellents are still useful chemical, biological, and physical barriers against human blood questing female mosquitoes. Further studies should be done on genetic changes in mosquitoes and their effects on changing mosquito behaviour.
Collapse
Affiliation(s)
- Edward K Githinji
- Eastern and Southern Africa Centre for International Parasite Control (ESACIPAC) KEMRI, P.O Box 54840 - 00200, Nairobi, Kenya
- University of Nairobi, P.O Box 30197 - 00200, Nairobi, Kenya
| | - Lucy W Irungu
- University of Nairobi, P.O Box 30197 - 00200, Nairobi, Kenya
- Machakos University, Machakos Campus, P.O. BOX 136 - 90100, Machakos, Kenya
| | - Paul N Ndegwa
- University of Nairobi, P.O Box 30197 - 00200, Nairobi, Kenya
| | - Maxwell G Machani
- Centre for Global Health Research (CGHR) KEMRI, PO Box 1578 - 40100, Kisumu, Nyanza, Kenya
| | - Richard O Amito
- Centre for Global Health Research (CGHR) KEMRI, PO Box 1578 - 40100, Kisumu, Nyanza, Kenya
| | - Brigid J Kemei
- Centre for Global Health Research (CGHR) KEMRI, PO Box 1578 - 40100, Kisumu, Nyanza, Kenya
| | - Paul N Murima
- Vector-borne Disease Control Unit, Ministry of Health, Nairobi, Afya House, Cathedral Road, P.O. Box 30016 - 00100, Nairobi, Kenya
| | - Geoffrey M Ombui
- Jomo Kenyatta University of Agriculture and Training JKUAT Juja, P.O. Box 62 000 - 00200, Nairobi, Kenya
| | - Antony K Wanjoya
- Jomo Kenyatta University of Agriculture and Training JKUAT Juja, P.O. Box 62 000 - 00200, Nairobi, Kenya
| | - Charles M Mbogo
- KEMRI-Wellcome Trust Research Programme, P.O Box 43640 - 00100, 197 Lenana Place, Nairobi, Kenya
| | - Evan M Mathenge
- Eastern and Southern Africa Centre for International Parasite Control (ESACIPAC) KEMRI, P.O Box 54840 - 00200, Nairobi, Kenya
| |
Collapse
|
133
|
Chaves LSM, Fry J, Malik A, Geschke A, Sallum MAM, Lenzen M. Global consumption and international trade in deforestation-associated commodities could influence malaria risk. Nat Commun 2020; 11:1258. [PMID: 32152272 PMCID: PMC7062889 DOI: 10.1038/s41467-020-14954-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
Deforestation can increase the transmission of malaria. Here, we build upon the existing link between malaria risk and deforestation by investigating how the global demand for commodities that increase deforestation can also increase malaria risk. We use a database of trade relationships to link the consumption of deforestation-implicated commodities in developed countries to estimates of country-level malaria risk in developing countries. We estimate that about 20% of the malaria risk in deforestation hotspots is driven by the international trade of deforestation-implicated export commodities, such as timber, wood products, tobacco, cocoa, coffee and cotton. By linking malaria risk to final consumers of commodities, we contribute information to support demand-side policy measures to complement existing malaria control interventions, with co-benefits for reducing deforestation and forest disturbance.
Collapse
Affiliation(s)
- Leonardo Suveges Moreira Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
- ISA, School of Physics A28, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Jacob Fry
- ISA, School of Physics A28, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Arunima Malik
- ISA, School of Physics A28, The University of Sydney, Sydney, NSW, 2006, Australia
- Discipline of Accounting, The University of Sydney Business School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Arne Geschke
- ISA, School of Physics A28, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Manfred Lenzen
- ISA, School of Physics A28, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
134
|
Wang Y, Cheng P, Jiao B, Song X, Wang H, Wang H, Wang H, Huang X, Liu H, Gong M. Investigation of mosquito larval habitats and insecticide resistance in an area with a high incidence of mosquito-borne diseases in Jining, Shandong Province. PLoS One 2020; 15:e0229764. [PMID: 32130263 PMCID: PMC7055894 DOI: 10.1371/journal.pone.0229764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To investigate mosquito larval habitats and resistance to common insecticides in areas with high incidence rates of mosquito-borne diseases in Jining, Shandong Province, and to provide a scientific basis for the future prevention and control of mosquito-borne diseases and the rational use of insecticides. METHODS AND RESULTS From June to September 2018, mosquito habitat characteristics and species compositions in Jintun town were studied through a cross-sectional survey. Larvae and pupae were collected in different habitats using the standard dipping technique. A total of 7,815 mosquitoes, comprising 7 species from 4 genera, were collected. Among them, Culex pipiens pallens (n = 5,336, 68.28%) was the local dominant species and found in all four habitats (rice paddies, irrigation channels, water containers, drainage ditches). There were 1,708 Cx. tritaeniorhynchus (21.85%), 399 Anopheles sinensis (5.11%), 213 Armigeres subalbatus (2.72%), 124 Aedes albopictus (1.59%), and 35 other (Cx. bitaeniorhynchus and Cx. halifaxii) (0.45%) mosquito samples collected. Spearman correlation analysis was employed to evaluate the relationship between larval density and the physicochemical characteristics of the breeding habitat. It was found that the larval density of Cx. tritaeniorhynchus correlated positively with water depth (r = 0.927 p = 0.003), the larval density of An. sinensis correlated positively with dissolved oxygen (DO) (r = 0.775 p = 0.041) and the larval density of Cx. p. pallens correlated positively with ammonia nitrogen (r = 0.527 p = 0.002). Resistance bioassays were carried out on the dominant populations of Cx. p. pallens: mosquitoes presented very high resistance to cypermethrin and deltamethrin, moderate resistance to dichlorvos (DDVP), and low resistance to Bacillus thuringiensis israelensis (Bti), with decreased susceptibility to propoxur. CONCLUSION We showed that mosquito species vary across habitat type and that the mosquito larval density correlated positively with certain physicochemical characteristics in different habitats. In addition, Cx. p. pallens developed different levels of resistance to five insecticides. Vector monitoring should be strengthened after an epidemic, and further research should be conducted to scientifically prevent and kill mosquitoes.
Collapse
Affiliation(s)
- Yang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan,
Shandong Province, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Boyan Jiao
- Jining Center for Disease Control and Prevention, Jining, Shandong Province, China
| | - Xiao Song
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan,
Shandong Province, China
| | - Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan,
Shandong Province, China
| | - Haifang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Huaiwei Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Xiaodan Huang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Hongmei Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong Province, China
| |
Collapse
|
135
|
Balkew M, Mumba P, Dengela D, Yohannes G, Getachew D, Yared S, Chibsa S, Murphy M, George K, Lopez K, Janies D, Choi SH, Spear J, Irish SR, Carter TE. Geographical distribution of Anopheles stephensi in eastern Ethiopia. Parasit Vectors 2020; 13:35. [PMID: 31959237 PMCID: PMC6971998 DOI: 10.1186/s13071-020-3904-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/09/2020] [Indexed: 01/29/2023] Open
Abstract
Background The recent detection of the South Asian malaria vector Anopheles stephensi in Ethiopia and other regions in the Horn of Africa has raised concerns about its potential impact on malaria transmission. We report here the findings of a survey for this species in eastern Ethiopia using both morphological and molecular methods for species identification. Methods Adult and larval/pupal collections were conducted at ten sites in eastern Ethiopia and Anopheles specimens were identified using standard morphological keys and genetic analysis. Results In total, 2231 morphologically identified An. stephensi were collected. A molecular approach incorporating both PCR endpoint assay and sequencing of portions of the internal transcribed spacer 2 (ITS2) and cytochrome c oxidase subunit 1 (cox1) loci confirmed the identity of the An. stephensi in most cases (119/124 of the morphologically identified An. stephensi confirmed molecularly). Additionally, we observed Aedes aegypti larvae and pupae at many of the An. stephensi larval habitats. Conclusions Our findings show that An. stephensi is widely distributed in eastern Ethiopia and highlight the need for further surveillance in the southern, western and northern parts of the country and throughout the Horn of Africa.
Collapse
Affiliation(s)
- Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia.
| | - Peter Mumba
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Dereje Dengela
- Abt Associates, PMI VectorLink Project, Rockville, MD, USA
| | - Gedeon Yohannes
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | | | | | - Sheleme Chibsa
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,United States Agency for International Development (USAID), Addis Ababa, Ethiopia
| | - Matthew Murphy
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kristen George
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Bureau for Global Health, Office of Infectious Disease, Malaria Division, USAID, Arlington, VA, USA
| | - Karen Lopez
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Daniel Janies
- University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | | - Seth R Irish
- US President's Malaria Initiative (PMI), Addis Ababa, Ethiopia.,Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
136
|
Sukkanon C, Karpkird T, Saeung M, Leepasert T, Panthawong A, Suwonkerd W, Bangs MJ, Chareonviriyaphap T. Excito-repellency Activity of Andrographis paniculata (Lamiales: Acanthaceae) Against Colonized Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:192-203. [PMID: 31550361 DOI: 10.1093/jme/tjz139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Excito-repellency activity of plant extracts have been increasingly studied as mosquito repellents. In this study, the crude extract of Andrographis paniculata was evaluated for its noncontact repellency, contact excitation (irritancy + repellency), and knockdown/toxicity response against five colonized mosquitoes; Aedes aegypti (L.), Aedes albopictus (Skuse), Anopheles dirus Peyton & Harrison, Anopheles epiroticus Linton & Harbach, and Culex quinquefasciatus Say (Diptera: Culicidae) using an excito-repellency assay system under laboratory-controlled conditions. The escape responses were observed at four different concentrations (0.5-5.0% w/v) with A. paniculata showing strong spatial repellency against Ae. albopictus (96.7% escape) and Ae. aegypti (71.7% escape) at the 2.5% and 0.5% concentrations, respectively. At 0.5% and 5.0% concentrations, the greatest repellency was seen for An. dirus (48.2% escape) and Cx. quinquefasciatus (59.7% escape), respectively. Comparatively, low repellency action was observed against An. epiroticus (1.6-15.0% escape). Escape in contact assays (before adjustment) was generally less pronounced compared to noncontact spatial repellency, with Ae. albopictus showing highest percent escape (71.4% escape) in the contact assay at 1.0% concentration. After adjusting for spatial repellency, escape due to contact irritancy alone was either not present or an insignificant contribution to the overall avoidance response for all species. No knockdown or mortality at 24-h postexposure was observed in any trials. These findings indicate that the A. paniculata crude extract is more active against day-biting mosquitoes; however, this may be a reflection of the time of testing. This study demonstrates compelling evidence that A. paniculata extract performs primarily as a spatial repellent. Further investigations exploring the use A. paniculata as a potential active ingredient in repellent products are needed.
Collapse
Affiliation(s)
- Chutipong Sukkanon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Thitinun Karpkird
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Manop Saeung
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Theerachart Leepasert
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Amonrat Panthawong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Wannapa Suwonkerd
- Office of Disease Prevention and Control #1, Ministry of Public Health, Chiang Mai, Thailand
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Public Health & Malaria Control Department, PT Freeport Indonesia/International SOS, Kuala Kencana, Papua, Indonesia
| | | |
Collapse
|
137
|
Martin NJ, Nam VS, Lover AA, Phong TV, Tu TC, Mendenhall IH. The impact of transfluthrin on the spatial repellency of the primary malaria mosquito vectors in Vietnam: Anopheles dirus and Anopheles minimus. Malar J 2020; 19:9. [PMID: 31906969 PMCID: PMC6945573 DOI: 10.1186/s12936-019-3092-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/25/2019] [Indexed: 11/28/2022] Open
Abstract
Background The complexity of mosquito-borne diseases poses a major challenge to global health efforts to mitigate their impact on people residing in sub-tropical and tropical regions, to travellers and deployed military personnel. To supplement drug- and vaccine-based disease control programmes, other strategies are urgently needed, including the direct control of disease vectors. Modern vector control research generally focuses on identifying novel active ingredients and/or innovative methods to reduce human-mosquito interactions. These efforts include the evaluation of spatial repellents, which are compounds capable of altering mosquito feeding behaviour without direct contact with the chemical source. Methods This project examined the impact of airborne transfluthrin from impregnated textile materials on two important malaria vectors, Anopheles dirus and Anopheles minimus. Repellency was measured by movement within taxis cages within a semi-field environment at the National Institute of Hygiene and Epidemiology in Hanoi, Vietnam. Knockdown and mortality were measured in adult mosquito bioassay cages. Metered-volume air samples were collected at a sub-set of points in the mosquito exposure trial. Results Significant differences in knockdown/mortality were observed along a gradient from the exposure source with higher rates of knockdown/mortality at 2 m and 4 m when compared with the furthest distance (16 m). Knockdown/mortality was also greater at floor level and 1.5 m when compared to 3 m above the floor. Repellency was not significantly different except when comparing 2 m and 16 m taxis cages. Importantly, the two species reacted differently to transfluthrin, with An. minimus being more susceptible to knockdown and mortality. The measured concentrations of airborne transfluthrin ranged from below the limit of detection to 1.32 ng/L, however there were a limited number of evaluable samples complicating interpretation of these results. Conclusions This study, measuring repellency, knockdown and mortality in two malaria vectors in Vietnam demonstrates that both species are sensitive to airborne transfluthrin. The differences in magnitude of response between the two species requires further study before use in large-scale vector control programmes to delineate how spatial repellency would impact the development of insecticide resistance and the disruption of biting behaviour.
Collapse
Affiliation(s)
| | - Vu S Nam
- National Institute of Hygiene and Entomology, Ministry of Health, Hanoi, Vietnam
| | - Andrew A Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Tran V Phong
- National Institute of Hygiene and Entomology, Ministry of Health, Hanoi, Vietnam
| | - Tran C Tu
- National Institute of Hygiene and Entomology, Ministry of Health, Hanoi, Vietnam
| | - Ian H Mendenhall
- Duke-NUS Medical School, Programme in Emerging Infectious Diseases, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
138
|
Ali M, Ibrahim R, Alahmadi S, Alsharif SM, Mansour F, Elshazly H, Shawer D. Ovicidal, pupicidal and bactericidal effects of aminopyridinium-based ionic liquids on Culex pipiens and certain human pathogenic bacteria. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1836909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Medhat Ali
- Department of Biology, College of Science, Taibah University, Medina, KSA
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Reda Ibrahim
- Department of Biology, College of Science, Taibah University, Medina, KSA
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Saeed Alahmadi
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Sultan M. Alsharif
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Fatimah Mansour
- Department of Biology, College of Science, Taibah University, Medina, KSA
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences & Arts – Scientific Departments, Qassim University, Buraidah, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Dalia Shawer
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
139
|
Charon J, Grigg MJ, Eden JS, Piera KA, Rana H, William T, Rose K, Davenport MP, Anstey NM, Holmes EC. Novel RNA viruses associated with Plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease. PLoS Pathog 2019; 15:e1008216. [PMID: 31887217 PMCID: PMC6953888 DOI: 10.1371/journal.ppat.1008216] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/10/2020] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Eukaryotes of the genus Plasmodium cause malaria, a parasitic disease responsible for substantial morbidity and mortality in humans. Yet, the nature and abundance of any viruses carried by these divergent eukaryotic parasites is unknown. We investigated the Plasmodium virome by performing a meta-transcriptomic analysis of blood samples taken from patients suffering from malaria and infected with P. vivax, P. falciparum or P. knowlesi. This resulted in the identification of a narnavirus-like sequence, encoding an RNA polymerase and restricted to P. vivax samples, as well as an associated viral segment of unknown function. These data, confirmed by PCR, are indicative of a novel RNA virus that we term Matryoshka RNA virus 1 (MaRNAV-1) to reflect its analogy to a "Russian doll": a virus, infecting a parasite, infecting an animal. Additional screening revealed that MaRNAV-1 was abundant in geographically diverse P. vivax derived from humans and mosquitoes, strongly supporting its association with this parasite, and not in any of the other Plasmodium samples analyzed here nor Anopheles mosquitoes in the absence of Plasmodium. Notably, related bi-segmented narnavirus-like sequences (MaRNAV-2) were retrieved from Australian birds infected with a Leucocytozoon—a genus of eukaryotic parasites that group with Plasmodium in the Apicomplexa subclass hematozoa. Together, these data support the establishment of two new phylogenetically divergent and genomically distinct viral species associated with protists, including the first virus likely infecting Plasmodium parasites. As well as broadening our understanding of the diversity and evolutionary history of the eukaryotic virosphere, the restriction to P. vivax may be of importance in understanding P. vivax-specific biology in humans and mosquitoes, and how viral co-infection might alter host responses at each stage of the P. vivax life-cycle. While parasites are a major cause of human disease, they can themselves be infected by viruses. We asked whether three of the major malaria-causing parasites in humans—Plasmodium vivax, P. falciparum and P. knowlesi—were also infected by viruses. To this end we performed total RNA-Sequencing (“meta-transcriptomics”) on human blood samples infected with these Plasmodium species. This resulted in the discovery of an abundant bi-segmented virus—Matryoshka RNA virus 1 (MaRNAV-1)—in all P. vivax samples tested (but no other Plasmodium species) that contains a replicase segment related to those of narnaviruses, arguably the simplest type of RNA viruses discovered to date. By screening for MaRNAV-1 in a larger set of Plasmodium species we revealed a strong specificity between this virus and P. vivax, as well as the presence of a related virus—MaRNAV-2—in avian Leucocytozoon hematozoa parasites. This is the first discovery of a Plasmodium-associated virus and will assist in revealing the deep evolutionary history of RNA viruses and our understanding of Plasmodium biology and disease processes.
Collapse
Affiliation(s)
- Justine Charon
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Kim A. Piera
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Hafsa Rana
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Timothy William
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre – Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
- Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Miles P. Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Disease Society Kota Kinabalu Sabah – Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
140
|
Ome-Kaius M, Kattenberg JH, Zaloumis S, Siba M, Kiniboro B, Jally S, Razook Z, Mantila D, Sui D, Ginny J, Rosanas-Urgell A, Karl S, Obadia T, Barry A, Rogerson SJ, Laman M, Tisch D, Felger I, Kazura JW, Mueller I, Robinson LJ. Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children. BMC Med 2019; 17:220. [PMID: 31813381 PMCID: PMC6900859 DOI: 10.1186/s12916-019-1456-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION As malaria transmission declines, understanding the differential impact of intensified control on Plasmodium falciparum relative to Plasmodium vivax and identifying key drivers of ongoing transmission is essential to guide future interventions. METHODS Three longitudinal child cohorts were conducted in Papua New Guinea before (2006/2007), during (2008) and after scale-up of control interventions (2013). In each cohort, children aged 1-5 years were actively monitored for infection and illness. Incidence of malaria episodes, molecular force of blood-stage infections (molFOB) and population-averaged prevalence of infections were compared across the cohorts to investigate the impact of intensified control in young children and the key risk factors for malaria infection and illness in 2013. RESULTS Between 2006 and 2008, P. falciparum infection prevalence, molFOB, and clinical malaria episodes reduced by 47%, 59% and 69%, respectively, and a further 49%, 29% and 75% from 2008 to 2013 (prevalence 41.6% to 22.1% to 11.2%; molFOB: 3.4 to 1.4 to 1.0 clones/child/year; clinical episodes incidence rate (IR) 2.6 to 0.8 to IR 0.2 episodes/child/year). P. vivax clinical episodes declined at rates comparable to P. falciparum between 2006, 2008 and 2013 (IR 2.5 to 1.1 to 0.2), while P. vivax molFOB (2006, 9.8; 2008, 12.1) and prevalence (2006, 59.6%; 2008, 65.0%) remained high in 2008. However, in 2013, P. vivax molFOB (1.2) and prevalence (19.7%) had also substantially declined. In 2013, 89% of P. falciparum and 93% of P. vivax infections were asymptomatic, 62% and 47%, respectively, were sub-microscopic. Area of residence was the major determinant of malaria infection and illness. CONCLUSION Intensified vector control and routine case management had a differential impact on rates of P. falciparum and P. vivax infections but not clinical malaria episodes in young children. This suggests comparable reductions in new mosquito-derived infections but a delayed impact on P. vivax relapsing infections due to a previously acquired reservoir of hypnozoites. This demonstrates the need to strengthen implementation of P. vivax radical cure to maximise impact of control in co-endemic areas. The high heterogeneity of malaria in 2013 highlights the importance of surveillance and targeted interventions to accelerate towards elimination.
Collapse
Affiliation(s)
- Maria Ome-Kaius
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Johanna Helena Kattenberg
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Institute of Tropical Medicine, Antwerp, Belgium
| | - Sophie Zaloumis
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Matthew Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Benson Kiniboro
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Shadrach Jally
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Zahra Razook
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Daisy Mantila
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Desmond Sui
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Jason Ginny
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | | | - Stephan Karl
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea.,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - Alyssa Barry
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | | | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Institut Pasteur, Paris, France
| | - Leanne J Robinson
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea. .,Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, Australia. .,Burnet Institute, Melbourne, Australia.
| |
Collapse
|
141
|
González Jiménez M, Babayan SA, Khazaeli P, Doyle M, Walton F, Reedy E, Glew T, Viana M, Ranford-Cartwright L, Niang A, Siria DJ, Okumu FO, Diabaté A, Ferguson HM, Baldini F, Wynne K. Prediction of mosquito species and population age structure using mid-infrared spectroscopy and supervised machine learning. Wellcome Open Res 2019; 4:76. [PMID: 31544155 PMCID: PMC6753605 DOI: 10.12688/wellcomeopenres.15201.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 11/20/2022] Open
Abstract
Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis, using laboratory colonies. Mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with wild mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.
Collapse
Affiliation(s)
| | - Simon A. Babayan
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pegah Khazaeli
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Margaret Doyle
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Finlay Walton
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Elliott Reedy
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas Glew
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mafalda Viana
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Abdoulaye Niang
- Department of Medical Biology and Public Health, Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Doreen J. Siria
- Environmental Health & Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, PO Box 53, Ifakara, Tanzania
| | - Fredros O. Okumu
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- Environmental Health & Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, PO Box 53, Ifakara, Tanzania
| | - Abdoulaye Diabaté
- Department of Medical Biology and Public Health, Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Heather M. Ferguson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
142
|
González Jiménez M, Babayan SA, Khazaeli P, Doyle M, Walton F, Reedy E, Glew T, Viana M, Ranford-Cartwright L, Niang A, Siria DJ, Okumu FO, Diabaté A, Ferguson HM, Baldini F, Wynne K. Prediction of mosquito species and population age structure using mid-infrared spectroscopy and supervised machine learning. Wellcome Open Res 2019; 4:76. [PMID: 31544155 PMCID: PMC6753605 DOI: 10.12688/wellcomeopenres.15201.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 01/14/2023] Open
Abstract
Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis, using laboratory colonies. Mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with wild mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.
Collapse
Affiliation(s)
| | - Simon A. Babayan
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Pegah Khazaeli
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Margaret Doyle
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Finlay Walton
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Elliott Reedy
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas Glew
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mafalda Viana
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lisa Ranford-Cartwright
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Abdoulaye Niang
- Department of Medical Biology and Public Health, Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Doreen J. Siria
- Environmental Health & Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, PO Box 53, Ifakara, Tanzania
| | - Fredros O. Okumu
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- Environmental Health & Ecological Sciences Department, Ifakara Health Institute, Off Mlabani Passage, PO Box 53, Ifakara, Tanzania
| | - Abdoulaye Diabaté
- Department of Medical Biology and Public Health, Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Heather M. Ferguson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
143
|
Imrie L, Le Bihan T, O'Toole Á, Hickner PV, Dunn WA, Weise B, Rund SSC. Genome annotation improvements from cross-phyla proteogenomics and time-of-day differences in malaria mosquito proteins using untargeted quantitative proteomics. PLoS One 2019; 14:e0220225. [PMID: 31356616 PMCID: PMC6663012 DOI: 10.1371/journal.pone.0220225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
The malaria mosquito, Anopheles stephensi, and other mosquitoes modulate their biology to match the time-of-day. In the present work, we used a non-hypothesis driven approach (untargeted proteomics) to identify proteins in mosquito tissue, and then quantified the relative abundance of the identified proteins from An. stephensi bodies. Using these quantified protein levels, we then analyzed the data for proteins that were only detectable at certain times-of-the day, highlighting the need to consider time-of-day in experimental design. Further, we extended our time-of-day analysis to look for proteins which cycle in a rhythmic 24-hour ("circadian") manner, identifying 31 rhythmic proteins. Finally, to maximize the utility of our data, we performed a proteogenomic analysis to improve the genome annotation of An. stephensi. We compare peptides that were detected using mass spectrometry but are 'missing' from the An. stephensi predicted proteome, to reference proteomes from 38 other primarily human disease vector species. We found 239 such peptide matches and reveal that genome annotation can be improved using proteogenomic analysis from taxonomically diverse reference proteomes. Examination of 'missing' peptides revealed reading frame errors, errors in gene-calling, overlapping gene models, and suspected gaps in the genome assembly.
Collapse
Affiliation(s)
- Lisa Imrie
- SynthSys–Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thierry Le Bihan
- SynthSys–Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Rapid Novor, Kitchener, Ontario, Canada
| | - Áine O'Toole
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul V. Hickner
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - W. Augustine Dunn
- Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Benjamin Weise
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel S. C. Rund
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
144
|
Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ. Effect of different habitat types on abundance and biting times of Anopheles balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, Malaysia. Parasit Vectors 2019; 12:364. [PMID: 31345256 PMCID: PMC6659233 DOI: 10.1186/s13071-019-3627-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types. RESULTS A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species. CONCLUSIONS The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.
Collapse
Affiliation(s)
- Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Benny O Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
145
|
Garjito TA, Widiastuti U, Mujiyono M, Prihatin MT, Widiarti W, Setyaningsih R, Alfiah S, Widartono BS, Syafruddin D, Satoto TBT, Gavotte L, Bangs MJ, Manguin S, Frutos R. Genetic homogeneity of Anopheles maculatus in Indonesia and origin of a novel species present in Central Java. Parasit Vectors 2019; 12:351. [PMID: 31307517 PMCID: PMC6631912 DOI: 10.1186/s13071-019-3598-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Background Anopheles maculatus (s.s.) is an important vector of malaria in Indonesia. Previously it was considered the only member of the Maculatus Group present in Indonesia. A novel species was recently identified in the Kulon Progo District in Central Java. Until recently, few investigations have been conducted looking at An. maculatus genetic diversity in Indonesia, including allopatric island populations. Methods Indonesian An. maculatus (s.l.) samples were collected in several locations in Java, Lesser Sunda Island group, Sumatra and in Kulon Progo (Yogyakarta, central Java) where a novel species has been identified. Samples from a 30-year-old colony of the Kulon Progo population were also included in the analysis. Maximum-likelihood analysis established the phylogenies of the ITS2 (nuclear) and cox1 (mitochondrial) markers. Putative times of separation were based on cox1 genetic distances. Results Two species of the Maculatus Group are present in Indonesia. The novel sibling species is more closely related to Anopheles dispar than to An. maculatus (s.s.). Anopheles maculatus (s.s.) samples are homogeneous based on the ITS2 sequences. Indonesian samples and An. dispar belong to the same cox1 maternal lineage and differ from all other known members of the Maculatus Group. Divergence time between the different populations found in Java was estimated using an established cox1 mutation rate. Conclusions A novel species within the Maculatus Group, most closely related to An. dispar, is confirmed present in the Kulon Progo area of Central Java. The divergence of this species from An. maculatus (s.s.) is explained by the stable refugia in the Kulon Progo area during the quaternary period of intense volcanic activity throughout most of Java. This novel species awaits detailed morphological description before applying a formal species name. For the interim, it is proposed that the Kulon Progo population be designated An. maculatus var. menoreh to distinguish it from An. maculatus (s.s.). Electronic supplementary material The online version of this article (10.1186/s13071-019-3598-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia. .,University of Montpellier, Montpellier, France. .,HydroSciences Montpellier (UMR-HSM), Institut de Recherche pour le Développement (IRD France), CNRS, Montpellier, France.
| | - Umi Widiastuti
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Mujiyono Mujiyono
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Mega Tyas Prihatin
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Widiarti Widiarti
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Riyani Setyaningsih
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Siti Alfiah
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Barandi Sapta Widartono
- Department of Geographical Information System, Faculty of Geography, Gadjah Mada University, Yogyakarta, Indonesia
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Tri Baskoro Tunggul Satoto
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | | | - Michael J Bangs
- Public Health & Malaria Control, International SOS/PT. Freeport Indonesia, Kuala Kencana, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Sylvie Manguin
- University of Montpellier, Montpellier, France.,HydroSciences Montpellier (UMR-HSM), Institut de Recherche pour le Développement (IRD France), CNRS, Montpellier, France
| | - Roger Frutos
- University of Montpellier, Montpellier, France.,IES, University of Montpellier, CNRS, Montpellier, France.,Cirad, UMR 17, Intertryp, Montpellier, France
| |
Collapse
|
146
|
Waite JL, Suh E, Lynch PA, Thomas MB. Exploring the lower thermal limits for development of the human malaria parasite, Plasmodium falciparum. Biol Lett 2019; 15:20190275. [PMID: 31238857 PMCID: PMC6597502 DOI: 10.1098/rsbl.2019.0275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rate of malaria transmission is strongly determined by parasite development time in the mosquito, known as the extrinsic incubation period (EIP), since the quicker parasites develop, the greater the chance that the vector will survive long enough for the parasite to complete development and be transmitted. EIP is known to be temperature-dependent but this relationship is surprisingly poorly characterized. There is a single degree-day model for EIP of Plasmodium falciparum that derives from a limited number of poorly controlled studies conducted almost a century ago. Here, we show that the established degree-day model greatly underestimates the rate of development of P. falciparum in both Anopheles stephensi and An. gambiae mosquitoes at temperatures in the range of 17–20°C. We also show that realistic daily temperature fluctuation further speeds parasite development. These novel results challenge one of the longest standing models in malaria biology and have potentially important implications for understanding the impacts of future climate change.
Collapse
Affiliation(s)
- Jessica L Waite
- 1 Center for Infectious Disease Dynamics and Department of Entomology, The Pennsylvania State University , University Park, PA 16802 , USA
| | - Eunho Suh
- 1 Center for Infectious Disease Dynamics and Department of Entomology, The Pennsylvania State University , University Park, PA 16802 , USA
| | - Penelope A Lynch
- 2 College of Life and Environmental Sciences, University of Exeter , Penryn Campus, Cornwall TR10 9FE , UK
| | - Matthew B Thomas
- 1 Center for Infectious Disease Dynamics and Department of Entomology, The Pennsylvania State University , University Park, PA 16802 , USA
| |
Collapse
|
147
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [PMID: 31206035 PMCID: PMC6544137 DOI: 10.12688/wellcomeopenres.14761.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border.
Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors.
Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of
Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for
P. falciparum and
P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for
P. falciparum and
P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre Hospitalier Universitaire de Montpellier, Montpellier, 34295, France.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Bénédicte Fustec
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Saw Nay Hsel
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Céline Montazeau
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Saw Naw Nyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Selma Metaane
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Prapan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Phabele Phatharakokordbun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Nittipha Kwansomboon
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Dominique Cerqueira
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| | | | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France
| |
Collapse
|
148
|
Tananchai C, Manguin S, Bangs MJ, Chareonviriyaphap T. Malaria Vectors and Species Complexes in Thailand: Implications for Vector Control. Trends Parasitol 2019; 35:544-558. [PMID: 31182384 DOI: 10.1016/j.pt.2019.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 11/18/2022]
Abstract
There are seven Anopheles species incriminated as important (primary) malaria vectors in Thailand. These vectors belong to species complexes or are in closely related groups that are difficult to separate morphologically. Precise species identification, using molecular methods, enables control operations to target only important vectors and to increase understanding of their specific ecological requirements, bionomic characteristics, and behavioral traits. This review focuses on adult mosquito behavior, vector transmission capacity, and geographical distribution of malaria vectors in Thailand identified using genetic and molecular identification methods between 1994 and 2019. A better understanding of Anopheles biodiversity, biology, behavior, vector capacity, and distribution in Thailand and neighboring countries in the Greater Mekong Subregion (GMS) will facilitate more effective and efficient vector-control strategies and consequently contribute to a further decrease in the malaria burden.
Collapse
Affiliation(s)
- Chatchai Tananchai
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Sylvie Manguin
- HydroSciences Montpellier (UMR-HSM), Institut de Recherche pour le Développement France (IRD), CNRS, Université Montpellier, Montpellier, France
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; Public Health and Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua 99920, Indonesia
| | | |
Collapse
|
149
|
A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasit Vectors 2019; 12:223. [PMID: 31088534 PMCID: PMC6515612 DOI: 10.1186/s13071-019-3494-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/06/2019] [Indexed: 11/25/2022] Open
Abstract
Background The Barbirostris Complex comprises six formally described species that cannot be differentiated based on morphology alone. Out of these six species, two have been reported as putative malaria vectors, An. campestris and An. wejchoochotei. Five species are present in Thailand, An. barbirostris, An. campestris, An. dissidens, An. saeungae and An. wejchoochotei, while An. vanderwulpi occurs in Indonesia. As these species cannot be accurately differentiated by morphological characters, there is a crucial lack of information on their bionomics and role in the transmission of malaria and filariasis agents. Results For differentiating the six species, an allele-specific amplification (AS-PCR) based on the second internal transcribed spacer (ITS2) sequence was developed. From 862 mosquitoes in the Barbirostris Complex collected in 23 provinces throughout Thailand, the AS-PCR was able to identify five species and its validation was undertaken on 185 specimens. Conclusions This multiplex-PCR assay is potentially able to definitely identify all six species of the Barbirostris Complex and was validated on five species present in Thailand.
Collapse
|
150
|
Chaumeau V, Fustec B, Nay Hsel S, Montazeau C, Naw Nyo S, Metaane S, Sawasdichai S, Kittiphanakun P, Phatharakokordbun P, Kwansomboon N, Andolina C, Cerqueira D, Chareonviriyaphap T, Nosten FH, Corbel V. Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Res 2019; 3:109. [DOI: 10.12688/wellcomeopenres.14761.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The Thailand-Myanmar borderland is an area endemic for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological determinants of malaria transmission. Methods: Entomological investigations were conducted during 24 months in four villages located in Kayin state, on the Myanmar side of the Thailand-Myanmar border. Anopheles mosquitoes were identified by morphology, and molecular assays were used in order to discriminate between closely related sibling species of malaria vectors. Plasmodium infection rate was determined using quantitative real-time PCR. Results: The diversity of Anopheles mosquitoes was very high and multiple species were identified as malaria vectors. The intensity of human-vector contact (mean human-biting rate= 369 bites/person/month) compensates for the low infection rate in naturally infected populations of malaria vectors (mean sporozoite index= 0.04 and 0.17 % for P. falciparum and P. vivax respectively), yielding intermediary level of transmission intensity (mean entomological inoculation rate= 0.13 and 0.64 infective bites/person/month for P. falciparum and P. vivax, respectively). Only 36% of the infected mosquitoes were collected indoors between 09:00 pm and 05:00 am, suggesting that mosquito bed-nets would fail to prevent most of the infective bites in the study area. Conclusion: This study provided a unique opportunity to describe the entomology of malaria in low transmission settings of Southeast Asia. Our data are important in the context of malaria elimination in the Greater Mekong Subregion.
Collapse
|