101
|
Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings. Curr Environ Health Rep 2017; 4:180-191. [PMID: 28435996 DOI: 10.1007/s40572-017-0134-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review sought to address the potential for air pollutants to impair cognition and mechanisms by which that might occur. RECENT FINDINGS Air pollution has been associated with deficits in cognitive functions across a wide range of epidemiological studies, both with developmental and adult exposures. Studies in animal models are significantly more limited in number, with somewhat inconsistent findings to date for measures of learning, but show more consistent impairments for short-term memory. Potential contributory mechanisms include oxidative stress/inflammation, altered levels of dopamine and/or glutamate, and changes in synaptic plasticity/structure. Epidemiological studies are consistent with adverse effects of air pollutants on cognition, but additional studies and better phenotypic characterization are needed for animal models, including more precise delineation of specific components of cognition that are affected, as well as definitions of critical exposure periods for such effects and the components of air pollution responsible. This would permit development of more circumscribed hypotheses as to potential behavioral and neurobiological mechanisms.
Collapse
|
102
|
Woodward NC, Pakbin P, Saffari A, Shirmohammadi F, Haghani A, Sioutas C, Cacciottolo M, Morgan TE, Finch CE. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons. Neurobiol Aging 2017; 53:48-58. [PMID: 28212893 PMCID: PMC5388507 DOI: 10.1016/j.neurobiolaging.2017.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter <2.5-μm diameter (PM2.5). Rodents exposed to TRAP have shown microglial activation and neuronal atrophy. We further investigated age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young- and middle-aged mice (3 and 18 months female C57BL/6J) were exposed to nanoscale-PM (nPM, <0.2 μm diameter). Young mice showed selective changes in the hippocampal CA1 region, with neurite atrophy (-25%), decreased MBP (-50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (-40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age-ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer's disease. We propose that TRAP-associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages.
Collapse
Affiliation(s)
- Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Payam Pakbin
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arian Saffari
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Farimah Shirmohammadi
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mafalda Cacciottolo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Molecular and Computational Biology, Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
103
|
Woodward NC, Levine MC, Haghani A, Shirmohammadi F, Saffari A, Sioutas C, Morgan TE, Finch CE. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. J Neuroinflammation 2017; 14:84. [PMID: 28410596 PMCID: PMC5391610 DOI: 10.1186/s12974-017-0858-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 12/05/2022] Open
Abstract
Background Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. Methods To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter <0.2 μm), a well-characterized nanoscale particulate matter subfraction of TRAP collected from a local freeway (Morgan et al. Environ Health Perspect 2011; 119,1003–1009, 2011). The nPM was compared with responses to the endotoxin lipopolysaccharide (LPS), a classic TLR4 ligand, using Affymetrix whole genome microarray in rats. Expression patterns were analyzed by significance analysis of microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal tissue from mice chronically exposed to nPM. Results SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4 siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA, and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus. Conclusions These results show TLR4 activation is integral in brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0858-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Morgan C Levine
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Farimah Shirmohammadi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arian Saffari
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
104
|
Gany F, Bari S, Prasad L, Leng J, Lee T, Thurston GD, Gordon T, Acharya S, Zelikoff JT. Perception and reality of particulate matter exposure in New York City taxi drivers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2017; 27:221-226. [PMID: 27168392 PMCID: PMC5547750 DOI: 10.1038/jes.2016.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/22/2016] [Indexed: 05/05/2023]
Abstract
Exposure to fine particulate matter (PM2.5) and black carbon (BC) have been linked to negative health risks, but exposure among professional taxi drivers is understudied. This pilot study measured drivers' knowledge, attitudes, and beliefs (KAB) about air pollution compared with direct measures of exposures. Roadside and in-vehicle levels of PM2.5 and BC were continuously measured over a single shift on each subject, and exposures compared with central site monitoring. One hundred drivers completed an air pollution KAB questionnaire, and seven taxicabs participated in preliminary in-cab air sampling. Taxicab PM2.5 and BC concentrations were elevated compared with nearby central monitoring. Average PM2.5 concentrations per 15-min interval were 4-49 μg/m3. BC levels were also elevated; reaching>10 μg/m3. Fifty-six of the 100 drivers surveyed believed they were more exposed than non-drivers; 81 believed air pollution causes health problems. Air pollution exposures recorded suggest that driver exposures would likely exceed EPA recommendations if experienced for 24 h. Surveys indicated that driver awareness of this was limited. Future studies should focus on reducing exposures and increasing awareness among taxi drivers.
Collapse
Affiliation(s)
- Francesca Gany
- Memorial Sloan-Kettering Cancer Center, Immigrant Health and Cancer Disparities Service, Department of Psychiatry and Behavioral Sciences, Department of Medicine; Weill Cornell Medical College, Department of Public Health; 300 E. 66 St., New York, NY 10065
| | - Sehrish Bari
- Memorial Sloan-Kettering Cancer Center, Immigrant Health and Cancer Disparities Service, Department of Psychiatry and Behavioral Sciences; 300 East 66 St., New York, NY 10065
| | - Lakshmi Prasad
- Memorial Sloan-Kettering Cancer Center, Immigrant Health and Cancer Disparities Service, Department of Psychiatry and Behavioral Sciences; 300 East 66 St., New York, NY 10065
| | - Jennifer Leng
- Memorial Sloan-Kettering Cancer Center, Immigrant Health and Cancer Disparities Service, Department of Psychiatry and Behavioral Sciences, Department of Medicine; Weill Cornell Medical College, Department of Public Health; 300 E. 66 St., New York, NY 10065
| | - Trevor Lee
- Memorial Sloan-Kettering Cancer Center, Immigrant Health and Cancer Disparities Service, Department of Psychiatry and Behavioral Sciences; 300 East 66 St., New York, NY 10065
| | - George D Thurston
- New York University School of Medicine, Department of Environmental Medicine. 57 Old Forge Road, Tuxedo, NY 10987
| | - Terry Gordon
- New York University School of Medicine, Department of Environmental Medicine. 57 Old Forge Road, Tuxedo, NY 10987
| | - Sudha Acharya
- South Asian Council for Social Services, 143-06 45th Avenue, Flushing, NY 11355
| | - Judith T Zelikoff
- New York University School of Medicine, Department of Environmental Medicine. 57 Old Forge Road, Tuxedo, NY 10987
| |
Collapse
|
105
|
Li R, Yang J, Saffari A, Jacobs J, Baek KI, Hough G, Larauche MH, Ma J, Jen N, Moussaoui N, Zhou B, Kang H, Reddy S, Henning SM, Campen MJ, Pisegna J, Li Z, Fogelman AM, Sioutas C, Navab M, Hsiai TK. Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites. Sci Rep 2017; 7:42906. [PMID: 28211537 PMCID: PMC5314329 DOI: 10.1038/srep42906] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Ambient particulate matter (PM) exposure is associated with atherosclerosis and inflammatory bowel disease. Ultrafine particles (UFP, dp < 0.1–0.2 μm) are redox active components of PM. We hypothesized that orally ingested UFP promoted atherogenic lipid metabolites in both the intestine and plasma via altered gut microbiota composition. Low density lipoprotein receptor-null (Ldlr−/−) mice on a high-fat diet were orally administered with vehicle control or UFP (40 μg/mouse/day) for 3 days a week. After 10 weeks, UFP ingested mice developed macrophage and neutrophil infiltration in the intestinal villi, accompanied by elevated cholesterol but reduced coprostanol levels in the cecum, as well as elevated atherogenic lysophosphatidylcholine (LPC 18:1) and lysophosphatidic acids (LPAs) in the intestine and plasma. At the phylum level, Principle Component Analysis revealed significant segregation of microbiota compositions which was validated by Beta diversity analysis. UFP-exposed mice developed increased abundance in Verrocomicrobia but decreased Actinobacteria, Cyanobacteria, and Firmicutes as well as a reduced diversity in microbiome. Spearman’s analysis negatively correlated Actinobacteria with cecal cholesterol, intestinal and plasma LPC18:1, and Firmicutes and Cyanobacteria with plasma LPC 18:1. Thus, ultrafine particles ingestion alters gut microbiota composition, accompanied by increased atherogenic lipid metabolites. These findings implicate the gut-vascular axis in a atherosclerosis model.
Collapse
Affiliation(s)
- Rongsong Li
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jieping Yang
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arian Saffari
- Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Jacobs
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kyung In Baek
- Department of Bioengineering, School of Engineering &Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Greg Hough
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Muriel H Larauche
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jianguo Ma
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Bioengineering, School of Engineering &Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Nelson Jen
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Bioengineering, School of Engineering &Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Nabila Moussaoui
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bill Zhou
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hanul Kang
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Srinivasa Reddy
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Susanne M Henning
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joseph Pisegna
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhaoping Li
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Constantinos Sioutas
- Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Bioengineering, School of Engineering &Applied Science, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
106
|
Cacciottolo M, Wang X, Driscoll I, Woodward N, Saffari A, Reyes J, Serre ML, Vizuete W, Sioutas C, Morgan TE, Gatz M, Chui HC, Shumaker SA, Resnick SM, Espeland MA, Finch CE, Chen JC. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry 2017; 7:e1022. [PMID: 28140404 PMCID: PMC5299391 DOI: 10.1038/tp.2016.280] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 12/13/2022] Open
Abstract
Exposure to particulate matter (PM) in the ambient air and its interactions with APOE alleles may contribute to the acceleration of brain aging and the pathogenesis of Alzheimer's disease (AD). Neurodegenerative effects of particulate air pollutants were examined in a US-wide cohort of older women from the Women's Health Initiative Memory Study (WHIMS) and in experimental mouse models. Residing in places with fine PM exceeding EPA standards increased the risks for global cognitive decline and all-cause dementia respectively by 81 and 92%, with stronger adverse effects in APOE ɛ4/4 carriers. Female EFAD transgenic mice (5xFAD+/-/human APOE ɛ3 or ɛ4+/+) with 225 h exposure to urban nanosized PM (nPM) over 15 weeks showed increased cerebral β-amyloid by thioflavin S for fibrillary amyloid and by immunocytochemistry for Aβ deposits, both exacerbated by APOE ɛ4. Moreover, nPM exposure increased Aβ oligomers, caused selective atrophy of hippocampal CA1 neurites, and decreased the glutamate GluR1 subunit. Wildtype C57BL/6 female mice also showed nPM-induced CA1 atrophy and GluR1 decrease. In vitro nPM exposure of neuroblastoma cells (N2a-APP/swe) increased the pro-amyloidogenic processing of the amyloid precursor protein (APP). We suggest that airborne PM exposure promotes pathological brain aging in older women, with potentially a greater impact in ɛ4 carriers. The underlying mechanisms may involve increased cerebral Aβ production and selective changes in hippocampal CA1 neurons and glutamate receptor subunits.
Collapse
Affiliation(s)
- M Cacciottolo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - X Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - I Driscoll
- Department of Psychology, University of Wisconsin, Milwaukee, WI, USA
| | - N Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - A Saffari
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - J Reyes
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M L Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Sioutas
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - T E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - M Gatz
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H C Chui
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California,, Los Angeles, CA, USA
| | - S A Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - M A Espeland
- Division of Public Health Services, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - C E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J C Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
107
|
Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K, De Matteis S, Forastiere F, Forsberg B, Frampton MW, Grigg J, Heederik D, Kelly FJ, Kuenzli N, Laumbach R, Peters A, Rajagopalan ST, Rich D, Ritz B, Samet JM, Sandstrom T, Sigsgaard T, Sunyer J, Brunekreef B. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 2017; 49:13993003.00419-2016. [PMID: 28077473 DOI: 10.1183/13993003.00419-2016] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
The American Thoracic Society has previously published statements on what constitutes an adverse effect on health of air pollution in 1985 and 2000. We set out to update and broaden these past statements that focused primarily on effects on the respiratory system. Since then, many studies have documented effects of air pollution on other organ systems, such as on the cardiovascular and central nervous systems. In addition, many new biomarkers of effects have been developed and applied in air pollution studies.This current report seeks to integrate the latest science into a general framework for interpreting the adversity of the human health effects of air pollution. Rather than trying to provide a catalogue of what is and what is not an adverse effect of air pollution, we propose a set of considerations that can be applied in forming judgments of the adversity of not only currently documented, but also emerging and future effects of air pollution on human health. These considerations are illustrated by the inclusion of examples for different types of health effects of air pollution.
Collapse
Affiliation(s)
- George D Thurston
- Depts of Environmental Medicine and Population Health, New York University School of Medicine, New York, NY, USA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Sorbonne Universités, UPMC Université Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - John Balmes
- Dept of Medicine, University of California, San Francisco, CA, USA.,School of Public Health, University of California, Berkeley, CA, USA
| | - Robert D Brook
- Dept of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Cromar
- Marron Institute of Urban Management, New York University, New York, NY, USA
| | - Sara De Matteis
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Bertil Forsberg
- Dept of Public Health and Clinical Medicine/Environmental Medicine, Umeå University, Umeå, Sweden
| | - Mark W Frampton
- Pulmonary and Critical Care, Depts of Medicine and Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Queen Mary University of London, London, UK
| | - Dick Heederik
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands
| | - Frank J Kelly
- National Institute for Health Research Health Protection Unit: Health Impact of Environmental Hazards, King's College London, London, UK
| | - Nino Kuenzli
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Robert Laumbach
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Annette Peters
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Epidemiology II, Neuherberg, Germany
| | | | - David Rich
- Depts of Public Health Sciences and Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Beate Ritz
- Center for Occupational and Environmental Health, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Jonathan M Samet
- Dept of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Thomas Sandstrom
- Pulmonary and Critical Care, Depts of Medicine and Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Torben Sigsgaard
- University of Aarhus, Institute of Public Health, Aarhus, Denmark
| | - Jordi Sunyer
- CREAL (Center for Research on Environmental Epidemiology, Barcelona), Pompeu Fabra University, Barcelona, Spain
| | - Bert Brunekreef
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands .,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
108
|
Traffic-Related Air Pollution and Neurodegenerative Diseases: Epidemiological and Experimental Evidence, and Potential Underlying Mechanisms. ADVANCES IN NEUROTOXICOLOGY 2017. [DOI: 10.1016/bs.ant.2017.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
109
|
Tyler CR, Zychowski KE, Sanchez BN, Rivero V, Lucas S, Herbert G, Liu J, Irshad H, McDonald JD, Bleske BE, Campen MJ. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes. Part Fibre Toxicol 2016; 13:64. [PMID: 27906023 PMCID: PMC5131556 DOI: 10.1186/s12989-016-0177-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022] Open
Abstract
Background Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE−/−) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. Results The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE−/− animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE−/− mice including Il-1β, IL-6, Tgf-β and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1β, and Tnf-α. Interestingly, Il-6 and Tgf-β expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-β in the ApoE−/− hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. Conclusions Inflammatory responses the lung and brain were most substantial in ApoE−/− animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and particles is an important determinant of toxic responses. As such, freshly generated UFP, in the presence of combustion-derived gas phase pollutants, may be a greater health hazard than would be predicted from PM concentration, alone, lending support for epidemiological findings of adverse neurological outcomes associated with roadway proximity. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0177-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Katherine E Zychowski
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bethany N Sanchez
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Valeria Rivero
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - June Liu
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | | | - Barry E Bleske
- Department of Pharmacy Practice & Administrative Sciences, The University of New Mexico, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|
110
|
Song X, Yang S, Shao L, Fan J, Liu Y. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1155-63. [PMID: 27450962 DOI: 10.1016/j.scitotenv.2016.07.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/16/2016] [Accepted: 07/16/2016] [Indexed: 05/17/2023]
Abstract
The atmospheric pollution created by coal-dominated industrial cities in China cannot be neglected. This study focuses on the atmospheric PM10 in the typical industrial city of Pingdingshan City in North China. A total of 44 PM10 samples were collected from three different sites (power plant, mining area, and roadside) in Pingdingshan City during the winter of 2013, and were analyzed gravimetrically and chemically. The Pingdingshan PM10 samples were composed of mineral matter (average of 118.0±58.6μg/m(3), 20.6% of the total PM10 concentration), secondary crystalline particles (338.7±122.0μg/m(3), 59.2%), organic matter (77.3±48.5μg/m(3), 13.5%), and elemental carbon (38.0±28.3μg/m(3), 6.6%). Different sources had different proportions of these components in PM10. The power plant pollutant source was characterized by secondary crystalline particles (377.1μg/m(3)), elemental carbon (51.5μg/m(3)), and organic matter (90.6μg/m(3)) due to coal combustion. The mining area pollutant source was characterized by mineral matter (124.0μg/m(3)) due to weathering of waste dumps. The roadside pollutant source was characterized by mineral matter (130.0μg/m(3)) and organic matter (81.0μg/m(3)) due to road dust and vehicle exhaust, respectively. A positive matrix factorization (PMF) analysis was performed for PM10 source apportionment to identify major anthropogenic sources of PM10 in Pingdingshan. Six factors-crustal matter, coal combustion, vehicle exhaust and abrasion, local burning, weathering of waste dumps, and industrial metal smelting-were identified and their contributions to Pingdingshan PM10 were 19.0%, 31.6%, 7.4%, 6.3%, 9.8%, and 25.9%, respectively. Compared to other major cities in China, the source of PM10 in Pingdingshan was characterized by coal combustion, weathering of waste dumps, and industrial metal smelting.
Collapse
Affiliation(s)
- Xiaoyan Song
- School of Resources & Environment, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China
| | - Shushen Yang
- School of Energy & Environment Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Longyi Shao
- College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China.
| | - Jingsen Fan
- Collaborative Innovation Center of the Comprehensive Development and Utilization of Coal Resource, Hebei Province, The Resources Surveying and Researching Laboratory of HeBei Province, Hebei University of Engineering, Handan 056038, China
| | - Yanfei Liu
- College of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, Heilongjiang, China
| |
Collapse
|
111
|
Solaimani P, Saffari A, Sioutas C, Bondy SC, Campbell A. Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons. Neurotoxicology 2016; 58:50-57. [PMID: 27851901 DOI: 10.1016/j.neuro.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022]
Abstract
Exposure to ambient particulate matter (PM) has been associated with the onset of neurodevelopmental and neurodegenerative disorders, but the mechanism of toxicity remains unclear. To gain insight into this neurotoxicity, this study sought to examine global gene expression changes caused by exposure to ambient ultrafine PM. Microarray analysis was performed on primary human neurons derived from fetal brain tissue after a 24h exposure to 20μg/mL of ambient ultrafine particles. We found a majority of the changes in noncoding RNAs, which are involved in epigenetic regulation of gene expression, and thereby could impact the expression of several other protein coding gene targets. Although neurons from biologically different lot numbers were used, we found a significant increase in the expression of metallothionein 1A and 1F in all samples after exposure to particulate matter as confirmed by quantitative PCR. These metallothionein 1 proteins are responsible for neuroprotection after exposure to environmental insult but prolonged induction can be toxic. Epidemiological studies have reported that in utero exposure to ultrafine PM not only leads to neurodevelopmental and behavioral abnormalities, but may also predispose the progeny to neurodegenerative disease later in life by genetic imprinting. Our results pinpoint some of the PM-induced genetic changes that may underlie these findings.
Collapse
Affiliation(s)
- Parrisa Solaimani
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Arian Saffari
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, USA
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
112
|
Mumaw CL, Surace M, Levesque S, Kodavanti UP, Kodavanti PRS, Royland JE, Block ML. Atypical microglial response to biodiesel exhaust in healthy and hypertensive rats. Neurotoxicology 2016; 59:155-163. [PMID: 27777102 DOI: 10.1016/j.neuro.2016.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/26/2022]
Abstract
Accumulating evidence suggests a deleterious role for urban air pollution in central nervous system (CNS) diseases and neurodevelopmental disorders. Microglia, the resident innate immune cells and sentinels in the brain, are a common source of neuroinflammation and are implicated in air pollution-induced CNS effects. While renewable energy, such as soy-based biofuel, is of increasing public interest, there is little information on how soy biofuel may affect the brain, especially in people with preexisting disease conditions. To address this, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were exposed to 100% Soy-based Biodiesel Exhaust (100SBDE; 0, 50, 150 and 500μg/m3) by inhalation, 4h/day for 4 weeks (5 days/week). Ionized calcium-binding adapter molecule-1 (IBA-1) staining of microglia in the substantia nigra revealed significant changes in morphology with 100SBDE exposure in rats from both genotypes, where SHR were less sensitive. Aconitase activity was inhibited in the frontal cortex and cerebellum of WKY rats exposed to 100SBDE. No consistent changes occurred in pro-inflammatory cytokine expression, nitrated protein, or arginase1 expression in brain regions from either rat strain exposed to 100SBDE. However, while IBA-1 mRNA expression was not modified, CX3CR1 mRNA expression was lower in the striatum of 100SBDE exposed rats regardless of genotype, suggesting a downregulation of the fractalkine receptor on microglia in this brain region. Together, these data indicate that while microglia are detecting and responding to 100SBDE exposure with changes in morphology, there is reduced expression of CX3CR1 regardless of genetic background and the activation response is atypical without traditional inflammatory markers of M1 or M2 activation in the brain.
Collapse
Affiliation(s)
- Christen L Mumaw
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Surace
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University Medical Campus, Richmond, VA 23298, USA
| | - Shannon Levesque
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA 23298, USA
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Prasada Rao S Kodavanti
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Joyce E Royland
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Michelle L Block
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
113
|
Argyropoulos G, Besis A, Voutsa D, Samara C, Sowlat MH, Hasheminassab S, Sioutas C. Source apportionment of the redox activity of urban quasi-ultrafine particles (PM0.49) in Thessaloniki following the increased biomass burning due to the economic crisis in Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:124-136. [PMID: 27295587 DOI: 10.1016/j.scitotenv.2016.05.217] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/11/2016] [Accepted: 05/30/2016] [Indexed: 05/27/2023]
Affiliation(s)
| | - Athanasios Besis
- Department of Chemistry, Environmental Pollution Control Laboratory, Greece
| | - Dimitra Voutsa
- Department of Chemistry, Environmental Pollution Control Laboratory, Greece
| | - Constantini Samara
- Department of Chemistry, Environmental Pollution Control Laboratory, Greece.
| | - Mohammad Hossein Sowlat
- University of Southern California, Department of Civil and Environmental Engineering, United States
| | - Sina Hasheminassab
- University of Southern California, Department of Civil and Environmental Engineering, United States
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, United States
| |
Collapse
|
114
|
Casanova R, Wang X, Reyes J, Akita Y, Serre ML, Vizuete W, Chui HC, Driscoll I, Resnick SM, Espeland MA, Chen JC. A Voxel-Based Morphometry Study Reveals Local Brain Structural Alterations Associated with Ambient Fine Particles in Older Women. Front Hum Neurosci 2016; 10:495. [PMID: 27790103 PMCID: PMC5061768 DOI: 10.3389/fnhum.2016.00495] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic diameters < 2.5 μm) has been linked with cognitive deficits in older adults. Using fine-grained voxel-wise analyses, we examined whether PM2.5 exposure also affects brain structure. Methods: Brain MRI data were obtained from 1365 women (aged 71–89) in the Women's Health Initiative Memory Study and local brain volumes were estimated using RAVENS (regional analysis of volumes in normalized space). Based on geocoded residential locations and air monitoring data from the U.S. Environmental Protection Agency, we employed a spatiotemporal model to estimate long-term (3-year average) exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models were fit separately to gray matter (GM) and white matter (WM) maps to analyze associations between brain structure and PM2.5 exposure, with adjustment for potential confounders. Results: Increased PM2.5 exposure was associated with smaller volumes in both cortical GM and subcortical WM areas. For GM, associations were clustered in the bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes. No statistically significant associations were observed between PM2.5 exposure and hippocampal volumes. Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM in older women. While our previous work linked smaller WM volumes to PM2.5, this is the first neuroimaging study reporting associations between air pollution exposure and smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity of airborne particles.
Collapse
Affiliation(s)
- Ramon Casanova
- Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Xinhui Wang
- Department of Preventive Medicine, University of Southern California Los Angeles, CA, USA
| | | | | | - Marc L Serre
- University of North Carolina Chapel Hill, NC, USA
| | | | - Helena C Chui
- Department of Neurology, University of Southern California Los Angeles, CA, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
115
|
Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1537-1546. [PMID: 27187980 PMCID: PMC5047762 DOI: 10.1289/ehp134] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. OBJECTIVE We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. METHODS Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. RESULTS After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. CONCLUSIONS These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. CITATION Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537-1546; http://dx.doi.org/10.1289/EHP134.
Collapse
Affiliation(s)
- Hank Cheng
- Leonard Davis School of Gerontology,
- USC Dornsife College,
| | - Arian Saffari
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | | | - Caleb E. Finch
- Leonard Davis School of Gerontology,
- USC Dornsife College,
| |
Collapse
|
116
|
Uchoa MF, Moser VA, Pike CJ. Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Front Neuroendocrinol 2016; 43:60-82. [PMID: 27651175 PMCID: PMC5123957 DOI: 10.1016/j.yfrne.2016.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution.
Collapse
Affiliation(s)
- Mariana F Uchoa
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - V Alexandra Moser
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
117
|
Power MC, Adar SD, Yanosky JD, Weuve J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. Neurotoxicology 2016; 56:235-253. [PMID: 27328897 PMCID: PMC5048530 DOI: 10.1016/j.neuro.2016.06.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dementia is a devastating condition typically preceded by a long prodromal phase characterized by accumulation of neuropathology and accelerated cognitive decline. A growing number of epidemiologic studies have explored the relation between air pollution exposure and dementia-related outcomes. METHODS We undertook a systematic review, including quality assessment, to interpret the collective findings and describe methodological challenges that may limit study validity. Articles, which were identified according to a registered protocol, had to quantify the association of an air pollution exposure with cognitive function, cognitive decline, a dementia-related neuroimaging feature, or dementia. RESULTS We identified 18 eligible published articles. The quality of most studies was adequate to exemplary. Almost all reported an adverse association between at least one pollutant and one dementia-related outcome. However, relatively few studies considered outcomes that provide the strongest evidence for a causal effect, such as within-person cognitive or pathologic changes. Reassuringly, differential selection would likely bias toward a protective association in most studies, making it unlikely to account for observed adverse associations. Likewise, using a formal sensitivity analysis, we found that unmeasured confounding is also unlikely to explain reported adverse associations. DISCUSSION We also identified several common challenges. First, most studies of incident dementia identified cases from health system records. As dementia in the community is underdiagnosed, this could generate either non-differential or differential misclassification bias. Second, almost all studies used recent air pollution exposures as surrogate measures of long-term exposure. Although this approach may be reasonable if the measured and etiologic exposure windows are separated by a few years, its validity is unknown over longer intervals. Third, comparing the magnitude of associations may not clearly pinpoint which, if any, pollutants are the probable causal agents, because the degree of exposure misclassification differs across pollutants. The epidemiologic evidence, alongside evidence from other lines of research, provides support for a relation of air pollution exposure to dementia. Future studies with improved design, analysis and reporting would fill key evidentiary gaps and provide a solid foundation for recommendations and possible interventions.
Collapse
Affiliation(s)
- Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, 950 New Hampshire Avenue NW, Washington, DC 20052, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Sara D Adar
- Department of Epidemiology, University of Michigan School of Public Health, 1420 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, 90 Hope Drive, Hershey, PA, 17033, USA.
| | - Jennifer Weuve
- Rush Institute for Healthy Aging, Rush University Medical Center, 1645 W. Jackson Boulevard, Suite 675, Chicago, IL 60612, USA; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
118
|
Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model. PLoS One 2016; 11:e0153376. [PMID: 27071057 PMCID: PMC4829199 DOI: 10.1371/journal.pone.0153376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
This study examines the effects of nano-size particulate matter (nPM) exposure in the setting of murine reperfused stroke. Particulate matter is a potent source of inflammation and oxidative stress. These processes are known to influence stroke progression through recruitment of marginally viable penumbral tissue into the ischemic core. nPM was collected in an urban area in central Los Angeles, impacted primarily by traffic emissions. Re-aerosolized nPM or filtered air was then administered to mice through whole body exposure chambers for forty-five cumulative hours. Exposed mice then underwent middle cerebral artery occlusion/ reperfusion. Following cerebral ischemia/ reperfusion, mice exposed to nPM exhibited significantly larger infarct volumes and less favorable neurological deficit scores when compared to mice exposed to filtered air. Mice exposed to nPM also demonstrated increases in markers of inflammation and oxidative stress in the region of the ischemic core. The findings suggest a detrimental effect of urban airborne particulate matter exposure in the setting of acute ischemic stroke.
Collapse
|
119
|
Cheng H, Davis DA, Hasheminassab S, Sioutas C, Morgan TE, Finch CE. Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFα in vitro. J Neuroinflammation 2016; 13:19. [PMID: 26810976 PMCID: PMC4727336 DOI: 10.1186/s12974-016-0480-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 12/05/2022] Open
Abstract
Background The basis for air pollution-associated neurodegenerative changes in humans is being studied in rodent models. We and others find that the ultrafine particulate matter (PM) derived from vehicular exhaust can induce synaptic dysfunction and inflammatory responses in vivo and in vitro. In particular, a nano-sized subfraction of particulate matter (nPM, PM0.2) from a local urban traffic corridor can induce glial TNFα production in mixed glia (astrocytes and microglia) derived from neonatal rat cerebral cortex. Methods Here, we examine the role of TNFα in neurite dysfunctions induced by nPM in aqueous suspensions at 12 μg/ml. First, we show that the proximal brain gateway to nPM, the olfactory neuroepithelium (OE), rapidly responds to nPM ex vivo, with induction of TNFα, activation of macrophages, and dendritic shrinkage. Cell interactions were further analyzed with mixed glia and neurons from neonatal rat cerebral cortex. Results Microglia contributed more than astrocytes to TNFα induction by nPM. We then showed that the threefold higher TNFα in conditioned media (nPM-CM) from mixed glia was responsible for the inhibition of neurite outgrowth by small interfering RNA (siRNA) TNFα knockdown and by TNFα immunoneutralization. Despite lack of TNFR1 induction by nPM in the OE, experimental blocking of TNFR1 by TNFα receptor blockers restored total neurite length. Conclusions These findings implicate microglia-derived TNFα as a mediator of nPM in air pollution-associated neurodegenerative changes which alter synaptic functions and neuronal growth.
Collapse
Affiliation(s)
- Hank Cheng
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. .,USC Dornsife College, University of Southern California, Los Angeles, CA, 90089, USA.
| | - David A Davis
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Sina Hasheminassab
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Todd E Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Caleb E Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. .,USC Dornsife College, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
120
|
Shirmohammadi F, Hasheminassab S, Saffari A, Schauer JJ, Delfino RJ, Sioutas C. Fine and ultrafine particulate organic carbon in the Los Angeles basin: Trends in sources and composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1083-1096. [PMID: 26473710 PMCID: PMC4656077 DOI: 10.1016/j.scitotenv.2015.09.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/09/2015] [Accepted: 09/25/2015] [Indexed: 04/15/2023]
Abstract
In this study, PM2.5 and PM0.18 (particles with dp<2.5 μm and dp<0.18 μm, respectively) were collected during 2012-2013 in Central Los Angeles (LA) and 2013-2014 in Anaheim. Samples were chemically analyzed for carbonaceous species (elemental and organic carbons) and individual organic compounds. Concentrations of organic compounds were reported and compared with many previous studies in Central LA to quantify the impact of emissions control measurements that have been implemented for vehicular emissions over the past decades in this area. Moreover, a novel hybrid approach of molecular marker-based chemical mass balance (MM-CMB) analysis was conducted, in which a combination of source profiles that were previously obtained from a Positive Matrix Factorization (PMF) model in Central LA, were combined with some traditional source profiles. The model estimated the relative contributions from mobile sources (including gasoline, diesel, and smoking vehicles), wood smoke, primary biogenic sources (including emissions from vegetative detritus, food cooking, and re-suspended soil dust), and anthropogenic secondary organic carbon (SOC). Mobile sources contributed to 0.65 ± 0.25 μg/m(3) and 0.32 ± 0.25 μg/m(3) of PM2.5 OC in Central LA and Anaheim, respectively. Primary biogenic and anthropogenic SOC sources were major contributors to OC concentrations in both size fractions and sites. Un-apportioned OC ("other OC") accounted for an average 8.0 and 26% of PM2.5 OC concentration in Central LA and Anaheim, respectively. A comparison with previous studies in Central LA revealed considerable reduction of EC and OC, along with tracers of mobile sources (e.g. PAHs, hopanes and steranes) as a result of implemented regulations on vehicular emissions. Given the significant reduction of the impacts of mobile sources in the past decade in the LA Basin, the impact of SOC and primary biogenic emissions have a larger relative impact and the new hybrid model allows the impact of these sources to be better quantified.
Collapse
Affiliation(s)
- Farimah Shirmohammadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Sina Hasheminassab
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Arian Saffari
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - James J Schauer
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI, USA
| | - Ralph J Delfino
- University of California, Irvine, Department of Epidemiology, School of Medicine, Irvine, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
121
|
|
122
|
Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2015; 59:140-154. [PMID: 26721665 DOI: 10.1016/j.neuro.2015.12.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/25/2022]
Abstract
Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia.
Collapse
|
123
|
Stapleton PA, Abukabda AB, Hardy SL, Nurkiewicz TR. Xenobiotic pulmonary exposure and systemic cardiovascular response via neurological links. Am J Physiol Heart Circ Physiol 2015; 309:H1609-20. [PMID: 26386111 DOI: 10.1152/ajpheart.00546.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
The cardiovascular response to xenobiotic particle exposure has been increasingly studied over the last two decades, producing an extraordinary scope and depth of research findings. With the flourishing of nanotechnology, the term "xenobiotic particles" has expanded to encompass not only air pollution particulate matter (PM) but also anthropogenic particles, such as engineered nanomaterials (ENMs). Historically, the majority of research in these fields has focused on pulmonary exposure and the adverse physiological effects associated with a host inflammatory response or direct particle-tissue interactions. Because these hypotheses can neither account entirely for the deleterious cardiovascular effects of xenobiotic particle exposure nor their time course, the case for substantial neurological involvement is apparent. Indeed, considerable evidence suggests that not only is neural involvement a significant contributor but also a reality that needs to be investigated more thoroughly when assessing xenobiotic particle toxicities. Therefore, the scope of this review is several-fold. First, we provide a brief overview of the major anatomical components of the central and peripheral nervous systems, giving consideration to the potential biologic targets affected by inhaled particles. Second, the autonomic arcs and mechanisms that may be involved are reviewed. Third, the cardiovascular outcomes following neurological responses are discussed. Lastly, unique problems, future risks, and hurdles associated with xenobiotic particle exposure are discussed. A better understanding of these neural issues may facilitate research that in conjunction with existing research, will ultimately prevent the untoward cardiovascular outcomes associated with PM exposures and/or identify safe ENMs for the advancement of human health.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Alaeddin B Abukabda
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Steven L Hardy
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and
| | - Timothy R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
124
|
Cheung K, Ling ZH, Wang DW, Wang Y, Guo H, Lee B, Li YJ, Chan CK. Characterization and source identification of sub-micron particles at the HKUST Supersite in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:287-296. [PMID: 25965042 DOI: 10.1016/j.scitotenv.2015.04.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 06/04/2023]
Abstract
Particle size distribution measurements were conducted continuously at a 30-second interval using the Fast Mobility Particle Sizer (FMPS) in August, September, November and December of 2011 at a coastal background site in Hong Kong. Concurrent measurements of CO, NOx, O3, SO2 and volatile organic compounds (VOCs) were used to determine the causes of high particle number concentration (PNC) events. In all sampling months, PNC were usually higher in the evening, likely resulting from the arrival of upwind air pollutants as wind direction changed in the late afternoon. On the more polluted days, the PNC were usually higher around noon, particularly in August, similar to the diurnal trend of O3. The mode diameter at noon was smaller than in other time periods in all sampling months, further highlighting the role of secondary formation at this urban background site. A prolonged period of pollution episode occurred in late August. High PNC resulted from the arrival of pollution laden air from the PRD region or super regions. In December, new particle formation followed by subsequent growth accounted for most of the polluted days. Overall, meteorology was the most important parameter affecting particle concentrations and formation at this Hong Kong background site.
Collapse
Affiliation(s)
- K Cheung
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Z H Ling
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China; Department of Atmospheric Sciences, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - D W Wang
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Y Wang
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - H Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China.
| | - B Lee
- Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China
| | - Y J Li
- Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China
| | - C K Chan
- Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
125
|
Fagundes LS, Fleck ADS, Zanchi AC, Saldiva PHN, Rhoden CR. Direct contact with particulate matter increases oxidative stress in different brain structures. Inhal Toxicol 2015; 27:462-7. [PMID: 26327340 DOI: 10.3109/08958378.2015.1060278] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Several experimental and epidemiological studies have demonstrated the neurological adverse effects caused by exposure to air pollution, specifically in relation to pollutant particulate matter (PM). The objective of this study was to investigate the direct effect of PM in increased concentrations in different brain regions, as well as the mechanisms involving its neurotoxicity, by evaluating oxidative stress parameters in vitro. METHODS Olfactory bulb, cerebral cortex, striatum, hippocampus and cerebellum of rats were homogenized and incubated with PM < 2.5 μm of diameter (PM2.5) at concentrations of 3, 5 and 10 µg/mg of tissue. The oxidative damage caused by lipid peroxidation of these structures was determined by testing the thiobarbituric acid reactive species (TBA-RS). In addition, we measured the activity of antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD). RESULTS All PM concentrations were able to damage the cerebellum and hippocampus, strongly enhancing the lipid peroxidation in both structures. PM incubation also decreased the CAT activity of the hippocampus, cerebellum, striatum and olfactory bulb, though it did not generate higher levels of lipid peroxidation in either of the last two structures. PM incubation did not alter any measurement of the cerebral cortex. CONCLUSION The cerebellum and hippocampus seem to be more susceptible than other brain structures to in vitro direct PM exposure assay and the oxidative stress pathway catalyzes the neurotoxic effect of PM exposure, as evidenced by high consumption of CAT and high levels of TBA-RS. Thus, PM direct exposure seems to activate toxic neurological effects.
Collapse
Affiliation(s)
- Lucas Sagrillo Fagundes
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Alan da Silveira Fleck
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Ana Claudia Zanchi
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| | - Paulo Hilário Nascimento Saldiva
- b Laboratório de Poluição Atmosférica Experimental, Faculdade de Medicina, Universidade de São Paulo-USP , São Paulo , SP , Brazil
| | - Cláudia Ramos Rhoden
- a Laboratório de Estresse Oxidativo e Poluição Atmosférica - Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA , Porto Alegre , RS , Brazil and
| |
Collapse
|
126
|
Woodward N, Finch CE, Morgan TE. Traffic-related air pollution and brain development. AIMS ENVIRONMENTAL SCIENCE 2015; 2:353-373. [PMID: 27099868 PMCID: PMC4835031 DOI: 10.3934/environsci.2015.2.353] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Automotive traffic-related air pollution (TRP) imposes an increasing health burden with global urbanization. Gestational and early child exposure to urban TRP is associated with higher risk of autism spectrum disorders and schizophrenia, as well as low birth weight. While cardio-respiratory effects from exposure are well documented, cognitive effects are only recently becoming widely recognized. This review discusses effects of TRP on brain and cognition in human and animal studies. The mechanisms underlying these epidemiological associations are studied with rodent models of pre- and neonatal exposure to TRP, which show persisting inflammatory changes and altered adult behaviors and cognition. Some behavioral and inflammatory changes show male bias. Rodent models may identify dietary and other interventions for neuroprotection to TRP.
Collapse
Affiliation(s)
- Nicholas Woodward
- Davis School of Gerontology and the Dornsife College, Department of Biological Sciences, University of Southern California, 3715 McClintock Ave, Los Angeles CA 9009-0191, USA
| | - Caleb E. Finch
- Davis School of Gerontology and the Dornsife College, Department of Biological Sciences, University of Southern California, 3715 McClintock Ave, Los Angeles CA 9009-0191, USA
| | - Todd E. Morgan
- Davis School of Gerontology and the Dornsife College, Department of Biological Sciences, University of Southern California, 3715 McClintock Ave, Los Angeles CA 9009-0191, USA
| |
Collapse
|
127
|
Gali NK, Yang F, Jiang SY, Chan KL, Sun L, Ho KF, Ning Z. Spatial and seasonal heterogeneity of atmospheric particles induced reactive oxygen species in urban areas and the role of water-soluble metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 198:86-96. [PMID: 25576744 DOI: 10.1016/j.envpol.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Adverse health effects are associated with exposure to atmospheric particulate matter (PM), which carry various chemical constituents and induce both exogenous and endogenous oxidative stress. This study investigated the spatial and seasonal variability of PM-induced ROS at four sites with different characteristics in Hong Kong. Cytotoxicity, exogenous and endogenous ROS was determined on a dose and time dependent analysis. Large spatial variation of ROS was observed with fine PM at urban site showing highest ROS levels while coarse PM at traffic site ranks the top. No consistent seasonal difference was observed for ROS levels among all sites. The highly heterogeneous distribution of PM-induced ROS demonstrates the differential capability of PM to produce oxidative stress, and the need to use appropriate metrics as surrogates of exposure instead of PM mass in epidemiologic studies. Several transition metals were found associated with ROS by different degree illustrating the complexity of mechanisms involved.
Collapse
Affiliation(s)
- Nirmal Kumar Gali
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Fenhuan Yang
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | | | - Ka Lok Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Li Sun
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Kin-fai Ho
- The Jockey Club, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Zhi Ning
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
128
|
Sunyer J, Esnaola M, Alvarez-Pedrerol M, Forns J, Rivas I, López-Vicente M, Suades-González E, Foraster M, Garcia-Esteban R, Basagaña X, Viana M, Cirach M, Moreno T, Alastuey A, Sebastian-Galles N, Nieuwenhuijsen M, Querol X. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med 2015; 12:e1001792. [PMID: 25734425 PMCID: PMC4348510 DOI: 10.1371/journal.pmed.1001792] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/09/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Air pollution is a suspected developmental neurotoxicant. Many schools are located in close proximity to busy roads, and traffic air pollution peaks when children are at school. We aimed to assess whether exposure of children in primary school to traffic-related air pollutants is associated with impaired cognitive development. METHODS AND FINDINGS We conducted a prospective study of children (n = 2,715, aged 7 to 10 y) from 39 schools in Barcelona (Catalonia, Spain) exposed to high and low traffic-related air pollution, paired by school socioeconomic index; children were tested four times (i.e., to assess the 12-mo developmental trajectories) via computerized tests (n = 10,112). Chronic traffic air pollution (elemental carbon [EC], nitrogen dioxide [NO2], and ultrafine particle number [UFP; 10-700 nm]) was measured twice during 1-wk campaigns both in the courtyard (outdoor) and inside the classroom (indoor) simultaneously in each school pair. Cognitive development was assessed with the n-back and the attentional network tests, in particular, working memory (two-back detectability), superior working memory (three-back detectability), and inattentiveness (hit reaction time standard error). Linear mixed effects models were adjusted for age, sex, maternal education, socioeconomic status, and air pollution exposure at home. Children from highly polluted schools had a smaller growth in cognitive development than children from the paired lowly polluted schools, both in crude and adjusted models (e.g., 7.4% [95% CI 5.6%-8.8%] versus 11.5% [95% CI 8.9%-12.5%] improvement in working memory, p = 0.0024). Cogently, children attending schools with higher levels of EC, NO2, and UFP both indoors and outdoors experienced substantially smaller growth in all the cognitive measurements; for example, a change from the first to the fourth quartile in indoor EC reduced the gain in working memory by 13.0% (95% CI 4.2%-23.1%). Residual confounding for social class could not be discarded completely; however, the associations remained in stratified analyses (e.g., for type of school or high-/low-polluted area) and after additional adjustments (e.g., for commuting, educational quality, or smoking at home), contradicting a potential residual confounding explanation. CONCLUSIONS Children attending schools with higher traffic-related air pollution had a smaller improvement in cognitive development.
Collapse
Affiliation(s)
- Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques–Parc de Salut Mar, Barcelona, Catalonia, Spain
- * E-mail:
| | - Mikel Esnaola
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mar Alvarez-Pedrerol
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Joan Forns
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ioar Rivas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Mònica López-Vicente
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Elisabet Suades-González
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Learning Disabilities Unit (UTAE), Neuropediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Maria Foraster
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Raquel Garcia-Esteban
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Xavier Basagaña
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mar Viana
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Marta Cirach
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | | | - Mark Nieuwenhuijsen
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| |
Collapse
|
129
|
Li R, Navab K, Hough G, Daher N, Zhang M, Mittelstein D, Lee K, Pakbin P, Saffari A, Bhetraratana M, Sulaiman D, Beebe T, Wu L, Jen N, Wine E, Tseng CH, Araujo JA, Fogelman A, Sioutas C, Navab M, Hsiai TK. Effect of exposure to atmospheric ultrafine particles on production of free fatty acids and lipid metabolites in the mouse small intestine. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:34-41. [PMID: 25170928 PMCID: PMC4286268 DOI: 10.1289/ehp.1307036] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/27/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Exposure to ambient ultrafine particulate matter (UFP) is a well-recognized risk factor for cardiovascular and respiratory diseases. However, little is known about the effects of air pollution on gastrointestinal disorders. OBJECTIVE We sought to assess whether exposure to ambient UFP (diameter < 180 nm) increased free fatty acids and lipid metabolites in the mouse small intestine. METHODS Ldlr-null mice were exposed to filtered air (FA) or UFP collected at an urban Los Angeles, California, site that was heavily affected by vehicular emissions; the exposure was carried out for 10 weeks in the presence or absence of D-4F, an apolipoprotein A-I mimetic peptide with antioxidant and anti-inflammation properties on a high-fat or normal chow diet. RESULTS Compared with FA, exposure to UFP significantly increased intestinal hydroxyeicosatetraenoic acids (HETEs), including 15-HETE, 12-HETE, 5-HETE, as well as hydroxyoctadecadienoic acids (HODEs), including 13-HODE and 9-HODE. Arachidonic acid (AA) and prostaglandin D2 (PGD2) as well as some of the lysophosphatidic acids (LPA) in the small intestine were also increased in response to UFP exposure. Administration of D-4F significantly reduced UFP-mediated increase in HETEs, HODEs, AA, PGD2, and LPA. Although exposure to UFP further led to shortened villus length accompanied by prominent macrophage and neutrophil infiltration into the intestinal villi, administration of D-4F mitigated macrophage infiltration. CONCLUSIONS Exposure to UFP promotes lipid metabolism, villus shortening, and inflammatory responses in mouse small intestine, whereas administration of D-4F attenuated these effects. Our findings provide a basis to further assess the mechanisms underlying UFP-mediated lipid metabolism in the digestive system with clinical relevance to gut homeostasis and diseases.
Collapse
Affiliation(s)
- Rongsong Li
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Campbell A, Daher N, Solaimani P, Mendoza K, Sioutas C. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM). Toxicol In Vitro 2014; 28:1290-5. [DOI: 10.1016/j.tiv.2014.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 01/27/2023]
|
131
|
Lung S, Cassee FR, Gosens I, Campbell A. Brain suppression of AP-1 by inhaled diesel exhaust and reversal by cerium oxide nanoparticles. Inhal Toxicol 2014; 26:636-41. [DOI: 10.3109/08958378.2014.948651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
132
|
|
133
|
Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C. Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7576-83. [PMID: 24873754 DOI: 10.1021/es500937x] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An emerging hypothesis in the field of air pollution is that oxidative stress is one of the important pathways leading to adverse health effects of airborne particulate matter (PM). To advance our understanding of sources and chemical elements contributing to aerosol oxidative potential and provide global comparative data, we report here on the biological oxidative potential associated with size-segregated airborne PM in different urban areas of the world, measured by a biological (cell-based) reactive oxygen species (ROS) assay. Our synthesis indicates a generally greater intrinsic PM oxidative potential as well as higher levels of exposure to redox-active PM in developing areas of the world. Moreover, on the basis of our observations, smaller size fractions are generally associated with higher intrinsic ROS activity compared with larger PM size fractions. Another important outcome of our study is the identification of major species and sources that are associated with ROS activity. Water-soluble transition metals (e.g., Fe, Ni, Cu, Cr, Mn, Zn and V) and water-soluble organic carbon (WSOC) showed consistent correlations with the oxidative potential of airborne PM across different urban areas and size ranges. The major PM sources associated with these chemical species include residual/fuel oil combustion, traffic emissions, and secondary organic aerosol formation, indicating that these sources are major drivers of PM-induced oxidative potential. Moreover, comparison of ROS activity levels across different seasons indicated that photochemical aging increases the intrinsic oxidative potential of airborne PM.
Collapse
Affiliation(s)
- Arian Saffari
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, California, United States
| | | | | | | | | |
Collapse
|
134
|
Grahame TJ, Klemm R, Schlesinger RB. Public health and components of particulate matter: the changing assessment of black carbon. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:620-60. [PMID: 25039199 DOI: 10.1080/10962247.2014.912692] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments. In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries. Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models. Natural "interventions"--reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems--demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g, carbonaceous species, may cause harm, aiding interpretation of epidemiological studies. Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the US. EPA rubric for judging possible causality of PM25. mass concentrations, be used to assess which PM2.5. species are most harmful to public health. IMPLICATIONS Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. "Natural intervention" studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.
Collapse
|
135
|
Rafiei S, Riazi GH, Afrasiabi A, Dadras A, Khajeloo M, Shahriary L, Eskandari G, Modaresi SMS. Zinc and copper oxide nanoparticles decrease synaptosomal glutamate uptake: an in vitro study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0458-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
136
|
Viviani B, Boraso M, Marchetti N, Marinovich M. Perspectives on neuroinflammation and excitotoxicity: a neurotoxic conspiracy? Neurotoxicology 2014; 43:10-20. [PMID: 24662010 DOI: 10.1016/j.neuro.2014.03.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 12/16/2022]
Abstract
Emerging evidences underline the ability of several environmental contaminants to induce an inflammatory response within the central nervous system, named neuroinflammation. This can occur as a consequence of a direct action of the neurotoxicant to the CNS and/or as a response secondary to the activation of the peripheral inflammatory response. In both cases, neuroinflammation is driven by the release of several soluble factors among which pro-inflammatory cytokines. IL-1β and TNF-α have been extensively studied for their effects within the CNS and emerged for their role in the modulation of the neuronal response, which allow the immune response to integrate with specific neuronal functions, as neurotransmission and synaptic plasticity. In particular, it has been evidenced a potential detrimental link between these cytokines and the glutamatergic system that seems to be part of increased brain excitability and excitotoxicity occurring in different pathological conditions. Aim of this mini-review will be to present experimental evidence on the way IL-1β and TNF-α impact neurons, focusing on the glutamatergic signalling, to provide a perspective on novel pathways possibly involved in environmental contaminants neurotoxicity.
Collapse
Affiliation(s)
- Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Mariaserena Boraso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Natalia Marchetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marina Marinovich
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
137
|
Finch CE, Beltrán-Sánchez H, Crimmins EM. Uneven futures of human lifespans: reckonings from Gompertz mortality rates, climate change, and air pollution. Gerontology 2013; 60:183-8. [PMID: 24401556 PMCID: PMC4023560 DOI: 10.1159/000357672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/02/2013] [Indexed: 01/13/2023] Open
Abstract
The past 200 years have enabled remarkable increases in human lifespans through improvements in the living environment that have nearly eliminated infections as a cause of death through improved hygiene, public health, medicine, and nutrition. We argue that the limit to lifespan may be approaching. Since 1997, no one has exceeded Jeanne Calment's record of 122.5 years, despite an exponential increase of centenarians. Moreover, the background mortality may be approaching a lower limit. We calculate from Gompertz coefficients that further increases in longevity to approach a life expectancy of 100 years in 21st century cohorts would require 50% slower mortality rate accelerations, which would be a fundamental change in the rate of human aging. Looking into the 21st century, we see further challenges to health and longevity from the continued burning of fossil fuels that contribute to air pollution as well as global warming. Besides increased heat waves to which elderly are vulnerable, global warming is anticipated to increase ozone levels and facilitate the spread of pathogens. We anticipate continuing socioeconomic disparities in life expectancy.
Collapse
Affiliation(s)
- Caleb E Finch
- Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, Calif., USA
| | | | | |
Collapse
|
138
|
Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C. Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM₀.₂₅) particles in the Los Angeles metropolitan area and characterization of their sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:14-23. [PMID: 23800424 DOI: 10.1016/j.envpol.2013.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 05/08/2023]
Abstract
Year-long sampling campaign of quasi-ultrafine particles (PM₀.₂₅) was conducted at 10 distinct locations across the Los Angeles south coast air basin and concentrations of trace elements and metals were quantified at each site using high-resolution inductively coupled plasma sector field mass spectrometry. In order to characterize sources of trace elements and metals, principal component analysis (PCA) was applied to the dataset. The major sources were identified as road dust (influenced by vehicular emissions as well as re-suspended soil), vehicular abrasion, residual oil combustion, cadmium sources and metal plating. These sources altogether accounted for approximately 85% of the total variance of quasi-ultrafine elemental content. The concentrations of elements originating from source and urban locations generally displayed a decline as we proceeded from the coast to the inland. Occasional concentration peaks in the rural receptor sites were also observed, driven by the dominant westerly/southwesterly wind transporting the particles to the receptor areas.
Collapse
Affiliation(s)
- Arian Saffari
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
139
|
Davis DA, Akopian G, Walsh JP, Sioutas C, Morgan TE, Finch CE. Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NȮ pathway in vitro. J Neurochem 2013; 127:509-19. [PMID: 23927064 DOI: 10.1111/jnc.12395] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/27/2013] [Accepted: 07/29/2013] [Indexed: 12/18/2022]
Abstract
Airborne particulate matter (PM) from urban vehicular aerosols altered glutamate receptor functions and induced glial inflammatory responses in rodent models after chronic exposure. Potential neurotoxic mechanisms were analyzed in vitro. In hippocampal slices, 2 h exposure to aqueous nanosized PM (nPM) selectively altered post-synaptic proteins in cornu ammonis area 1 (CA1) neurons: increased GluA1, GluN2A, and GluN2B, but not GluA2, GluN1, or mGlur5; increased post synaptic density 95 and spinophilin, but not synaptophysin, while dentate gyrus (DG) neurons were unresponsive. In hippocampal slices and neurons, MitoSOX red fluorescence was increased by nPM, implying free radical production. Specifically, NȮ production by slices was increased within 15 min of exposure to nPM with dose dependence, 1-10 μg/mL. Correspondingly, CA1 neurons exhibited increased nitrosylation of the GluN2A receptor and dephosphorylation of GluN2B (S1303) and of GluA1 (S831 & S845). Again, DG neurons were unresponsive to nPM. The induction of NȮ and nitrosylation were inhibited by AP5, an NMDA receptor antagonist, which also protects neurite outgrowth in vitro from inhibition by nPM. Membrane injury (EthidiumD-1 uptake) showed parallel specificity. Finally, nPM decreased evoked excitatory post-synaptic currents of CA1 neurons. These findings further document the selective impact of nPM on glutamatergic functions and identify novel responses of NMDA receptor-stimulated NȮ production and nitrosylation reactions during nPM-mediated neurotoxicity. We present three new findings of rapid hippocampal slice responses to nPM (nano-sized particulate matter from urban traffic): increased NȮ production within 15 min; nitrosylation of glutamatergic NMDA receptors; and, reduced excitatory postsynaptic currents in CA1 neurons. AP5 (NMDA receptor antagonist) blocked nPM-mediated NȮ and receptor nitrosylation. Ca(2+) influx is a likely mechanism.
Collapse
Affiliation(s)
- David A Davis
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
140
|
Calderón-Garcidueñas L, Serrano-Sierra A, Torres-Jardón R, Zhu H, Yuan Y, Smith D, Delgado-Chávez R, Cross JV, Medina-Cortina H, Kavanaugh M, Guilarte TR. The impact of environmental metals in young urbanites' brains. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:503-11. [PMID: 22436577 PMCID: PMC3383886 DOI: 10.1016/j.etp.2012.02.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/16/2012] [Accepted: 02/21/2012] [Indexed: 01/22/2023]
Abstract
Air pollution exposures are linked to cognitive and olfaction deficits, oxidative stress, neuroinflammation and neurodegeneration including frontal hyperphosphorylated tau and diffuse amyloid plaques in Mexico City children and young adults. Mexico City residents are chronically exposed to fine particulate matter (PM(2.5)) concentrations (containing toxic combustion and industrial metals) above the annual standard (15 μg/m(3)) and to contaminated water and soil. Here, we sought to address the brain-region-specific effects of metals and key neuroinflammatory and DNA repair responses in two air pollution targets: frontal lobe and olfactory bulb from 12 controls vs. 47 Mexico City children and young adults average age 33.06±4.8 SE years. Inductively coupled plasma mass spectrometry (metal analysis) and real time PCR (for COX2, IL1β and DNA repair genes) in target tissues. Mexico City residents had higher concentrations of metals associated with PM: manganese (p=0.003), nickel and chromium (p=0.02) along with higher frontal COX2 mRNA (p=0.008) and IL1β (p=0.0002) and COX2 (p=0.005) olfactory bulb indicating neuroinflammation. Frontal metals correlated with olfactory bulb DNA repair genes and with frontal and hippocampal inflammatory genes. Frontal manganese, cobalt and selenium increased with age in exposed subjects. Together, these findings suggest PM-metal neurotoxicity causes brain damage in young urbanites, the olfactory bulb is a target of air pollution and participates in the neuroinflammatory response and since metal concentrations vary significantly in Mexico City urban sub-areas, place of residency has to be integrated with the risk for CNS detrimental effects particularly in children.
Collapse
|
141
|
Ambient ultrafine particles reduce endothelial nitric oxide production via S-glutathionylation of eNOS. Biochem Biophys Res Commun 2013; 436:462-6. [PMID: 23751346 DOI: 10.1016/j.bbrc.2013.05.127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023]
Abstract
Exposure to airborne particulate pollutants is intimately linked to vascular oxidative stress and inflammatory responses with clinical relevance to atherosclerosis. Particulate matter (PM) has been reported to induce endothelial dysfunction and atherosclerosis. Here, we tested whether ambient ultrafine particles (UFP, diameter <200 nm) modulate eNOS activity in terms of nitric oxide (NO) production via protein S-glutathionylation. Treatment of human aortic endothelial cells (HAEC) with UFP significantly reduced NO production. UFP-mediated reduction in NO production was restored in the presence of JNK inhibitor (SP600125), NADPH oxidase inhibitor (Apocynin), anti-oxidant (N-acetyl cysteine), and superoxide dismutase mimetics (Tempol and MnTMPyP). UFP exposure increased the GSSG/GSH ratio and eNOS S-glutathionylation, whereas over-expression of Glutaredoxin-1 (to inhibit S-glutathionylation) restored UFP-mediated reduction in NO production by nearly 80%. Thus, our findings suggest that eNOS S-glutathionylation is a potential mechanism underlying ambient UFP-induced reduction of NO production.
Collapse
|
142
|
Davis DA, Bortolato M, Godar SC, Sander TK, Iwata N, Pakbin P, Shih JC, Berhane K, McConnell R, Sioutas C, Finch CE, Morgan TE. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS One 2013; 8:e64128. [PMID: 23734187 PMCID: PMC3667185 DOI: 10.1371/journal.pone.0064128] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM). In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m3) or control filtered ambient air for 10 weeks (3×5 hour exposures per week), encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml) to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.
Collapse
Affiliation(s)
- David A. Davis
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, United States of America
| | - Sean C. Godar
- School of Pharmacy, USC, Los Angeles, California, United States of America
| | - Thomas K. Sander
- Dornsife College of Letters, Arts and Sciences, USC, Los Angeles, California, United States of America
| | - Nahoko Iwata
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| | - Payam Pakbin
- Viterbi School of Engineering, USC, Los Angeles, California, United States of America
| | - Jean C. Shih
- School of Pharmacy, USC, Los Angeles, California, United States of America
| | - Kiros Berhane
- Keck School of Medicine, USC, Los Angeles, California, United States of America
| | - Rob McConnell
- Keck School of Medicine, USC, Los Angeles, California, United States of America
| | - Constantinos Sioutas
- Viterbi School of Engineering, USC, Los Angeles, California, United States of America
| | - Caleb E. Finch
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
- Dept. of Neurobiology, Dornsife College, USC, Los Angeles, California, United States of America
- * E-mail:
| | - Todd E. Morgan
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| |
Collapse
|
143
|
Li R, Navab M, Pakbin P, Ning Z, Navab K, Hough G, Morgan TE, Finch CE, Araujo JA, Fogelman AM, Sioutas C, Hsiai T. Ambient ultrafine particles alter lipid metabolism and HDL anti-oxidant capacity in LDLR-null mice. J Lipid Res 2013; 54:1608-1615. [PMID: 23564731 DOI: 10.1194/jlr.m035014] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Exposure to ambient particulate matter (PM) is a risk factor for cardiovascular diseases. The redox-active ultrafine particles (UFPs) promote vascular oxidative stress and inflammatory responses. We hypothesized that UFPs modulated lipid metabolism and anti-oxidant capacity of high density lipoprotein (HDL) with an implication in atherosclerotic lesion size. Fat-fed low density lipoprotein receptor-null (LDLR⁻/⁻ mice were exposed to filtered air (FA) or UFPs for 10 weeks with or without administering an apolipoprotein A-I mimetic peptide made of D-amino acids, D-4F. LDLR⁻/⁻ mice exposed to UFPs developed a reduced plasma HDL level (P < 0.01), paraoxonase activity (P < 0.01), and HDL anti-oxidant capacity (P < 0.05); but increased LDL oxidation, free oxidized fatty acids, triglycerides, serum amyloid A (P < 0.05), and tumor necrosis factor α (P < 0.05), accompanied by a 62% increase in the atherosclerotic lesion ratio of the en face aortic staining and a 220% increase in the cross-sectional lesion area of the aortic sinus (P < 0.001). D-4F administration significantly attenuated these changes. UFP exposure promoted pro-atherogenic lipid metabolism and reduced HDL anti-oxidant capacity in fat-fed LDLR⁻/⁻ mice, associated with a greater atherosclerotic lesion size compared with FA-exposed animals. D-4F attenuated UFP-mediated pro-atherogenic effects, suggesting the role of lipid oxidation underlying UFP-mediated atherosclerosis.
Collapse
Affiliation(s)
- Rongsong Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA; Division of Cardiology, Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA; and
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA; and
| | - Payam Pakbin
- Department of Civil Engineering and Environmental Science, and University of Southern California, Los Angeles, CA
| | - Zhi Ning
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Kaveh Navab
- Division of Cardiology, Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA; and
| | - Greg Hough
- Division of Cardiology, Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA; and
| | - Todd E Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Caleb E Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA; and
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA; and
| | - Constantinos Sioutas
- Department of Civil Engineering and Environmental Science, and University of Southern California, Los Angeles, CA
| | - Tzung Hsiai
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA; Division of Cardiology, Department of Medicine, University of California, Los Angeles School of Medicine, Los Angeles, CA; and.
| |
Collapse
|
144
|
Levesque S, Taetzsch T, Lull ME, Johnson JA, McGraw C, Block ML. The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function. J Neurochem 2013; 125:756-65. [PMID: 23470120 DOI: 10.1111/jnc.12231] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/04/2023]
Abstract
Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson's disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (< 0.22 μM; 50 μg/mL), ultrafine carbon black (ufCB, 50 μg/mL), or DEP extracts (eDEP; from 50 μg/mL DEP), and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced ameboid microglia morphology, increased H2 O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2 O2 production in microglia. However, pre-treatment with the MAC1/CD11b inhibitor antibody blocked microglial H2 O2 production in response to DEP. MAC1(-/-) mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2 O2 production and loss of DA neuron function.
Collapse
Affiliation(s)
- Shannon Levesque
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
145
|
Elliott CT, Henderson SB, Wan V. Time series analysis of fine particulate matter and asthma reliever dispensations in populations affected by forest fires. Environ Health 2013; 12:11. [PMID: 23356966 PMCID: PMC3582455 DOI: 10.1186/1476-069x-12-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/10/2013] [Indexed: 05/15/2023]
Abstract
BACKGROUND Several studies have evaluated the association between forest fire smoke and acute exacerbations of respiratory diseases, but few have examined effects on pharmaceutical dispensations. We examine the associations between daily fine particulate matter (PM2.5) and pharmaceutical dispensations for salbutamol in forest fire-affected and non-fire-affected populations in British Columbia (BC), Canada. METHODS We estimated PM2.5 exposure for populations in administrative health areas using measurements from central monitors. Remote sensing data on fires were used to classify the populations as fire-affected or non-fire-affected, and to identify extreme fire days. Daily counts of salbutamol dispensations between 2003 and 2010 were extracted from the BC PharmaNet database. We estimated rate ratios (RR) and 95% confidence intervals (CIs) for each population during all fire seasons and on extreme fire days, adjusted for temperature, humidity, and temporal trends. Overall effects for fire-affected and non-fire-affected populations were estimated via meta-regression. RESULTS Fire season PM2.5 was positively associated with salbutamol dispensations in all fire-affected populations, with a meta-regression RR (95% CI) of 1.06 (1.04-1.07) for a 10 ug/m3 increase. Fire season PM2.5 was not significantly associated with salbutamol dispensations in non-fire-affected populations, with a meta-regression RR of 1.00 (0.98-1.01). On extreme fire days PM2.5 was positively associated with salbutamol dispensations in both population types, with a global meta-regression RR of 1.07 (1.04 - 1.09). CONCLUSIONS Salbutamol dispensations were clearly associated with fire-related PM2.5. Significant associations were observed in smaller populations (range: 8,000 to 170,000 persons, median: 26,000) than those reported previously, suggesting that salbutamol dispensations may be a valuable outcome for public health surveillance during fire events.
Collapse
Affiliation(s)
- Catherine T Elliott
- British Columbia Center for Disease Control, Environmental Health Services, BC Centre for Disease Control, Main Floor, 655 12th Ave W, Vancouver, BC, V5Z 4R4, Canada
- University of British Columbia School of Population and Public Health, 2206 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Sarah B Henderson
- British Columbia Center for Disease Control, Environmental Health Services, BC Centre for Disease Control, Main Floor, 655 12th Ave W, Vancouver, BC, V5Z 4R4, Canada
- University of British Columbia School of Population and Public Health, 2206 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Victoria Wan
- British Columbia Center for Disease Control, Environmental Health Services, BC Centre for Disease Control, Main Floor, 655 12th Ave W, Vancouver, BC, V5Z 4R4, Canada
| |
Collapse
|
146
|
Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction. Redox Biol 2013; 1:183-9. [PMID: 24024152 PMCID: PMC3757680 DOI: 10.1016/j.redox.2013.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/01/2022] Open
Abstract
Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE) is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM) as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM). Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1) cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals.
Collapse
Key Words
- Air pollution
- ER, endoplasmic reticulum
- Electrophile response element
- EpRE, electrophile response element
- GCL, glutamate cysteine ligase
- GCLC, catalytic subunit of GCL
- GCLM, modifier subunit of GCL
- Glutamate cysteine ligase
- HBE1, human bronchial epithelial cells
- HO-1, heme oxygenase
- Nrf1
- Nrf1, nuclear factor-erythroid 2 p45 subunit-related factor 1
- Nrf2
- Nrf2, nuclear factor-erythroid 2 p45 subunit-related factor 2
- Phase II genes
- nPM, nanoparticulate air pollution
Collapse
|
147
|
Kam W, Delfino RJ, Schauer JJ, Sioutas C. A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:234-243. [PMID: 24592440 DOI: 10.1039/c2em30495c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
According to the U.S. Census Bureau, 570000+ commuters in Los Angeles travel for over 60 minutes to work. Studies have shown that a substantial portion of particulate matter (PM) exposure can occur during this commute. This study represents the integration of the results from five commute environments in Los Angeles. Personal PM exposures are discussed for the: (1) METRO gold line, a ground-level light-rail route, (2) METRO red line, a subway line, (3) the 110, a high volume freeway with low heavy-duty vehicle (HDV) fraction, (4) the 710, a major corridor for HDVs from the Port of Los Angeles, and (5) Wilshire/Sunset Boulevards, major surface streets. Chemical analysis including total and water-soluble metals and trace elements, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs) was performed. The focus of this study is to compare the composition and estimated lung cancer risk of PM2.5 (dp < 2.5 μm) for the five differential commute environments. Metals associated with stainless steel, notably Fe, Cr, and Mn, were elevated for the red line (subway), most likely from abrasion processes between the rail and brakes; elements associated with tire and brake wear and oil additives (Ca, Ti, Sn, Sb, and Pb) were elevated on roadways. Elemental concentrations on the gold line (light-rail) were the lowest. For water-solubility, metals observed on the red line (subway) were the least soluble. PAHs are primarily derived from vehicular emissions. Overall, the 710 exhibited high levels of PAHs (3.0 ng m−3), most likely due to its high volume of HDVs, while the red and gold lines exhibited low PAH concentrations (0.6 and 0.8 ng m−3 for red and gold lines, respectively). Lastly, lung cancer risk due to inhalation of PAHs was calculated based on a commuter lifetime (45 years for 2 hours per workday). Results showed that lung cancer risk for the 710 is 3.8 and 4.5 times higher than the light-rail (gold line) and subway (red line), respectively. With low levels of both metal and PAH pollutants, our results indicate that commuting on the light-rail (gold line) may have potential health benefits when compared to driving on freeways and busy roadways.
Collapse
|
148
|
Saffari A, Daher N, Samara C, Voutsa D, Kouras A, Manoli E, Karagkiozidou O, Vlachokostas C, Moussiopoulos N, Shafer MM, Schauer JJ, Sioutas C. Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13313-20. [PMID: 24187932 DOI: 10.1021/es403847h] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recent economic crisis in Greece resulted in a serious wintertime air pollution episode in Thessaloniki. This air quality deterioration was mostly due to the increased price of fuel oil, conventionally used as a source of energy for domestic heating, which encouraged the residents to burn the less expensive wood/biomass during the cold season. A wintertime sampling campaign for fine particles (PM2.5) was conducted in Thessaloniki during the winters of 2012 and 2013 in an effort to quantify the extent to which the ambient air was impacted by the increased wood smoke emissions. The results indicated a 30% increase in the PM2.5 mass concentration as well as a 2-5-fold increase in the concentration of wood smoke tracers, including potassium, levoglucosan, mannosan, and galactosan. The concentrations of fuel oil tracers (e.g., Ni and V), on the other hand, declined by 20-30% during 2013 compared with 2012. Moreover, a distinct diurnal variation was observed for wood smoke tracers, with significantly higher concentrations in the evening period compared with the morning. Correlation analysis indicated a strong association between reactive oxygen species (ROS) activity and the concentrations of levoglucosan, galactosan, and potassium, underscoring the potential impact of wood smoke on PM-induced toxicity during the winter months in Thessaloniki.
Collapse
Affiliation(s)
- Arian Saffari
- Department of Civil and Environmental Engineering, University of Southern California , 3620 South Vermont Avenue, Los Angeles, California 90089, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Li R, Mittelstein D, Kam W, Pakbin P, Du Y, Tintut Y, Navab M, Sioutas C, Hsiai T. Atmospheric ultrafine particles promote vascular calcification via the NF-κB signaling pathway. Am J Physiol Cell Physiol 2012; 304:C362-9. [PMID: 23242187 DOI: 10.1152/ajpcell.00322.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exposure to atmospheric fine particulate matter (PM(2.5)) is a modifiable risk factor of cardiovascular disease. Ultrafine particles (UFP, diameter <0.1 μm), a subfraction of PM(2.5), promote vascular oxidative stress and inflammatory responses. Epidemiologic studies suggest that PM exposure promotes vascular calcification. Here, we assessed whether UFP exposure promotes vascular calcification via NF-κB signaling. UFP exposure at 50 μg/ml increased alkaline phosphatase (ALP) activity by 4.4 ± 0.2-fold on day 3 (n = 3, P < 0.001) and matrix calcification by 3.5 ± 1.7-fold on day 10 (n = 4, P < 0.05) in calcifying vascular cells (CVC), a subpopulation of vascular smooth muscle cells with osteoblastic potential. Treatment of CVC with conditioned media derived from UFP-treated macrophages (UFP-CM) also led to an increase in ALP activities and matrix calcification. Furthermore, both UFP and UFP-CM significantly increased NF-κB activity, and cotreatment with an NF-κB inhibitor, JSH23, attenuated both UFP- and UFP-CM-induced ALP activity and calcification. When low-density lipoprotein receptor-null mice were exposed to UFP at 359.5 μg/m(3) for 10 wk, NF-κB activation and vascular calcification were detected in the regions of aortic roots compared with control filtered air-exposed mice. These findings suggest that UFP promotes vascular calcification via activating NF-κB signaling.
Collapse
Affiliation(s)
- Rongsong Li
- Biomedical Engineering and Cardiovascular Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Hudda N, Eckel SP, Knibbs LD, Sioutas C, Delfino RJ, Fruin SA. Linking In-Vehicle Ultrafine Particle Exposures to On-Road Concentrations. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2012; 59:578-586. [PMID: 23888122 PMCID: PMC3718189 DOI: 10.1016/j.atmosenv.2012.05.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For traffic-related pollutants like ultrafine particles (UFP, Dp < 100 nm), a significant fraction of overall exposure occurs within or close to the transit microenvironment. Therefore, understanding exposure to these pollutants in such microenvironments is crucial to accurately assessing overall UFP exposure. The aim of this study was to develop models for predicting in-cabin UFP concentrations if roadway concentrations are known, taking into account vehicle characteristics, ventilation settings, driving conditions and air exchange rates (AER). Particle concentrations and AER were measured in 43 and 73 vehicles, respectively, under various ventilation settings and driving speeds. Multiple linear regression (MLR) and generalized estimating equation (GEE) regression models were used to identify and quantify the factors that determine inside-to-outside (I/O) UFP ratios and AERs across a full range of vehicle types and ages. AER was the most significant determinant of UFP I/O ratios, and was strongly influenced by ventilation setting (recirculation or outside air intake). Inclusion of ventilation fan speed, vehicle age or mileage, and driving speed explained greater than 79% of the variability in measured UFP I/O ratios.
Collapse
Affiliation(s)
- Neelakshi Hudda
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089
| | - Sandrah P. Eckel
- Keck School of Medicine, Biostatistics Division, University of Southern California, Los Angeles, CA 90033
| | - Luke D. Knibbs
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089
| | - Ralph J. Delfino
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA 92617
| | - Scott A. Fruin
- Keck School of Medicine, Environmental Health Division, University of Southern California, Los Angeles, CA 90033
- Corresponding Author Present Address: Department of Preventive Medicine, Environmental Health Sciences, University of Southern California, 2001 North Soto Street, Los Angeles, CA 90089-9013 Phone: 323-442-2870 Fax: 323-442-3272
| |
Collapse
|