101
|
Receptor binding domain based HIV vaccines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:594109. [PMID: 25667925 PMCID: PMC4312573 DOI: 10.1155/2015/594109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/16/2014] [Indexed: 11/17/2022]
Abstract
This paper analyzes the main trend of the development of acquired immunodeficiency syndrome (AIDS) vaccines in recent years. Designing an HIV-1 vaccine that provides robust protection from HIV-1 infection remains a challenge despite many years of effort. Therefore, we describe the receptor binding domain of gp120 as a target for developing AIDS vaccines. And we recommend some measures that could induce efficiently and produce cross-reactive neutralizing antibodies with high binding affinity. Those measures may offer a new way of the research and development of the potent and broad AIDS vaccines.
Collapse
|
102
|
Schell JB, Bahl K, Folta-Stogniew E, Rose N, Buonocore L, Marx PA, Gambhira R, Rose JK. Antigenic requirement for Gag in a vaccine that protects against high-dose mucosal challenge with simian immunodeficiency virus. Virology 2015; 476:405-412. [PMID: 25591175 DOI: 10.1016/j.virol.2014.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 11/28/2022]
Abstract
We reported previously on a vaccine approach that conferred apparent sterilizing immunity to SIVsmE660. The vaccine regimen employed a prime-boost using vectors based on recombinant vesicular stomatitis virus (VSV) and an alphavirus replicon expressing either SIV Gag or SIV Env. In the current study, we tested the ability of vectors expressing only the SIVsmE660 Env protein to protect macaques against the same high-dose mucosal challenge. Animals developed neutralizing antibody levels comparable to or greater than seen in the previous vaccine study. When the vaccinated animals were challenged with the same high-dose of SIVsmE660, all became infected. While average peak viral loads in animals were slightly lower than those of previous controls, the viral set points were not significantly different. These data indicate that Gag, or the combination of Gag and Env are required for the generation of apparent sterilizing immunity to the SIVsmE660 challenge.
Collapse
Affiliation(s)
- John B Schell
- Yale University School of Medicine, New Haven, CT, United States
| | - Kapil Bahl
- Yale University School of Medicine, New Haven, CT, United States
| | - Ewa Folta-Stogniew
- Yale University School of Medicine, New Haven, CT, United States; Keck Biophysical Resource Facility, New Haven, CT, United States
| | - Nina Rose
- Yale University School of Medicine, New Haven, CT, United States
| | - Linda Buonocore
- Yale University School of Medicine, New Haven, CT, United States
| | - Preston A Marx
- Tulane National Primate Research Center, Covington, LA, United States
| | - Ratish Gambhira
- Tulane National Primate Research Center, Covington, LA, United States
| | - John K Rose
- Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
103
|
Yates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA, Williams WT, Alam SM, Ferrari G, Yang ZY, Seaton KE, Berman PW, Alpert MD, Evans DT, O'Connell RJ, Francis D, Sinangil F, Lee C, Nitayaphan S, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Tartaglia J, Pinter A, Zolla-Pazner S, Gilbert PB, Nabel GJ, Michael NL, Kim JH, Montefiori DC, Haynes BF, Tomaras GD. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med 2014; 6:228ra39. [PMID: 24648342 DOI: 10.1126/scitranslmed.3007730] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1-specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1-specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1-specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.
Collapse
|
104
|
Zolla-Pazner S, Edlefsen PT, Rolland M, Kong XP, deCamp A, Gottardo R, Williams C, Tovanabutra S, Sharpe-Cohen S, Mullins JI, deSouza MS, Karasavvas N, Nitayaphan S, Rerks-Ngarm S, Pitisuttihum P, Kaewkungwal J, O'Connell RJ, Robb ML, Michael NL, Kim JH, Gilbert P. Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses. EBioMedicine 2014; 1:37-45. [PMID: 25599085 PMCID: PMC4293639 DOI: 10.1016/j.ebiom.2014.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
To evaluate the role of V3-specific IgG antibodies (Abs) in the RV144 clinical HIV vaccine trial, which reduced HIV-1 infection by 31.2%, the anti-V3 Ab response was assessed. Vaccinees' V3 Abs were highly cross-reactive with cyclic V3 peptides (cV3s) from diverse virus subtypes. Sieve analysis of CRF01_AE breakthrough viruses from 43 vaccine- and 66 placebo-recipients demonstrated an estimated vaccine efficacy of 85% against viruses with amino acids mismatching the vaccine at V3 site 317 (p = 0.004) and 52% against viruses matching the vaccine at V3 site 307 (p = 0.004). This analysis was supported by data showing that vaccinees' plasma Abs were less reactive with I307 when replaced with residues found more often in vaccinees' breakthrough viruses. Simultaneously, viruses with mutations at F317 were less infectious, possibly due to the contribution of F317 to optimal formation of the V3 hydrophobic core. These data suggest that RV144-induced V3-specific Abs imposed immune pressure on infecting viruses and inform efforts to design an HIV vaccine. The RV144 vaccine reduced infection by viruses with isoleucine in V3 position 307. Many vaccine-induced antibodies are cross-reactive and target an epitope including I307. There was selection for breakthrough viruses carrying F317 in V3 (p = 0.004). F317 is needed to maintain optimal infectivity. F317 is a poor or non-contact residue for vaccine induced V3 antibodies.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York Veterans Affairs Harbor Healthcare System, 423 East 23 Street, New York, NY 10010, USA ; New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Morgane Rolland
- Department of Retrovirology, Walter Reed Army Institute of Research, Building 503, Silver Spring, MD 20910, USA
| | - Xiang-Peng Kong
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| | - Constance Williams
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Sodsai Tovanabutra
- Department of Retrovirology, Walter Reed Army Institute of Research, Building 503, Silver Spring, MD 20910, USA
| | - Sandra Sharpe-Cohen
- New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, 358B Rosen Building, Campus box 358070, Seattle, WA 98195
| | - Mark S deSouza
- Thai Red Cross AIDS Research Center 104, Tower 2, Rajdumari Rd. Pathumwan, Bangkok, Thailand, 10330
| | - Nicos Karasavvas
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Sorachai Nitayaphan
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Supachai Rerks-Ngarm
- Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Punnee Pitisuttihum
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Jaranit Kaewkungwal
- Department of Clinical Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Robert J O'Connell
- Armed Forces Research Institute of Medical Science (AFRIMS) Department of Retrovirology Humoral Immunology and Assessment Laboratory, 315/6 Rajvithi Rd. Bangkok, 10400, Thailand
| | - Merlin L Robb
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Nelson L Michael
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Jerome H Kim
- U.S. Army Military HIV Research Program, 6720A Rockledge Dr., Suite 400, Bethesda MD, 20817
| | - Peter Gilbert
- Vaccine and Infectious Disease Division, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M2-C200, Seattle, WA 98109, USA
| |
Collapse
|
105
|
Antibody persistence and T-cell balance: two key factors confronting HIV vaccine development. Proc Natl Acad Sci U S A 2014; 111:15614-21. [PMID: 25349379 DOI: 10.1073/pnas.1413550111] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The quest for a prophylactic AIDS vaccine is ongoing, but it is now clear that the successful vaccine must elicit protective antibody responses. Accordingly, intense efforts are underway to identify immunogens that elicit these responses. Regardless of the mechanism of antibody-mediated protection, be it neutralization, Fc-mediated effector function, or both, antibody persistence and appropriate T-cell help are significant problems confronting the development of a successful AIDS vaccine. Here, we discuss the evidence illustrating the poor persistence of antibody responses to Env, the envelope glycoprotein of HIV-1, and the related problem of CD4(+) T-cell responses that compromise vaccine efficacy by creating excess cellular targets of HIV-1 infection. Finally, we propose solutions to both problems that are applicable to all Env-based AIDS vaccines regardless of the mechanism of antibody-mediated protection.
Collapse
|
106
|
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 2014; 66:423-37. [PMID: 25341006 DOI: 10.1146/annurev-med-052912-123749] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RV144 remains the only HIV-1 vaccine trial to demonstrate efficacy against HIV-1 acquisition. The prespecified analysis of immune correlates of risk showed that antibodies directed against the V1V2 region of gp120, in particular the IgG1 and IgG3 subclass mediating antibody-dependent cell-mediated cytotoxicity, seem to play a predominant role in protection against HIV-1 acquisition and that plasma envelope (Env)-specific IgA antibodies were directly correlated with risk. RV144 and recent nonhuman primate challenge studies suggest that Env is essential, and perhaps sufficient, to induce protective antibody responses against mucosal HIV-1 acquisition. Follow-up clinical trials are ongoing to further dissect the immune responses elicited by the RV144 ALVAC-HIV and AIDSVAX® B/E regimen. The study of gp120 Env immunogens and immune correlates of risk has resulted in the development of improved antigens. Whether the RV144 immune correlates of risk will generalize to other populations vaccinated with similar immunogens with different modes and intensity of transmission remains to be demonstrated. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand.
Collapse
Affiliation(s)
- Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910; ,
| | | | | |
Collapse
|
107
|
Abstract
Although some success was achieved in recent years in HIV prevention, an effective vaccine remains the means with the most potential of curtailing HIV-1 infections worldwide. Despite multiple failed attempts, a recent HIV vaccine regimen demonstrated modest protection from infection. Although the protective efficacy in this trial was not sufficient to warrant licensure, it spurred renewed optimism in the field and has provided valuable insights for improving future vaccine designs. This review summarizes the pertinent details of vaccine development and discusses ways the field is moving forward to develop a vaccine to prevent HIV infection and disease progression.
Collapse
Affiliation(s)
- Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 908, 20th Street South, CCB 328, Birmingham, AL 35294, USA.
| | - Anju Bansal
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, 845, 19th Street South, BBRB 557, Birmingham, AL 35294, USA
| |
Collapse
|
108
|
Cryptic determinant of α4β7 binding in the V2 loop of HIV-1 gp120. PLoS One 2014; 9:e108446. [PMID: 25265384 PMCID: PMC4180765 DOI: 10.1371/journal.pone.0108446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/21/2014] [Indexed: 11/30/2022] Open
Abstract
The peptide segment of the second variable loop of HIV-1 spanning positions 166–181 harbors two functionally important sites. The first, spanning positions 179–181, engages the human α4β7 integrin receptor which is involved in T-cell gut-homing and may play a role in human immunodeficiency virus (HIV)-host cell interactions. The second, at positions 166–178, is a major target of anti-V2 antibodies elicited by the ALVAC/AIDSVAX vaccine used in the RV144 clinical trial. Notably, these two sites are directly adjacent, but do not overlap. Here, we report the identity of a second determinant of α4β7 binding located at positions 170–172 of the V2 loop. This segment – tripeptide QRV170–172– is located within the second site, yet functionally affects the first site. The absence of this segment abrogates α4β7 binding in peptides bearing the same sequence from position 173–185 as the V2 loops of the RV144 vaccines. However, peptides exhibiting V2 loop sequences from heterologous HIV-1 strains that include this QRV170–172 motif bind the α4β7 receptor on cells. Therefore, the peptide segment at positions 166–178 of the V2 loop of HIV-1 viruses appears to harbor a cryptic determinant of α4β7 binding. Prior studies show that the anti-V2 antibody response elicited by the RV144 vaccine, along with immune pressure inferred from a sieve analysis, is directed to this same region of the V2 loop. Accordingly, the anti-V2 antibodies that apparently reduced the risk of infection in the RV144 trial may have functioned by blocking α4β7-mediated HIV-host cell interactions via this cryptic determinant.
Collapse
|
109
|
Three amino acid residues in the envelope of human immunodeficiency virus type 1 CRF07_BC regulate viral neutralization susceptibility to the human monoclonal neutralizing antibody IgG1b12. Virol Sin 2014; 29:299-307. [PMID: 25273335 DOI: 10.1007/s12250-014-3485-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/11/2014] [Indexed: 01/11/2023] Open
Abstract
The CD4 binding site (CD4bs) of envelope glycoprotein (Env) is an important conserved target for anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies. Neutralizing monoclonal antibodies IgG1 b12 (b12) could recognize conformational epitopes that overlap the CD4bs of Env. Different virus strains, even derived from the same individual, showed distinct neutralization susceptibility to b12. We examined the key amino acid residues affecting b12 neutralization susceptibility using single genome amplification and pseudovirus neutralization assay. Eleven amino acid residues were identified that affect the sensitivity of Env to b12. Through site-directed mutagenesis, an amino acid substitution at position 182 in the V2 region of Env was confirmed to play a key role in regulating the b12 neutralization susceptibility. The introduction of V182L to a resistant strain enhanced its sensitivity to b12 more than twofold. Correspondingly, the introduction of L182V to a sensitive strain reduced its sensitivity to b12 more than tenfold. Amino acid substitution at positions 267 and 346 could both enhance the sensitivity to b12 more than twofold. However, no additive effect was observed when the three site mutageneses were introduced into the same strain, and the sensitivity was equivalent to the single V182L mutation. CRF07_BC is a major circulating recombinant form of HIV-1 prevalent in China. Our data may provide important information for understanding the molecular mechanism regulating the neutralization susceptibility of CRF07_BC viruses to b12 and may be helpful for a vaccine design targeting the CD4bs epitopes.
Collapse
|
110
|
Valentin A, McKinnon K, Li J, Rosati M, Kulkarni V, Pilkington GR, Bear J, Alicea C, Vargas-Inchaustegui DA, Jean Patterson L, Pegu P, Liyanage NPM, Gordon SN, Vaccari M, Wang Y, Hogg AE, Frey B, Sui Y, Reed SG, Sardesai NY, Berzofsky JA, Franchini G, Robert-Guroff M, Felber BK, Pavlakis GN. Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques. Clin Immunol 2014; 155:91-107. [PMID: 25229164 DOI: 10.1016/j.clim.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022]
Abstract
To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.
Collapse
Affiliation(s)
- Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Katherine McKinnon
- FACS Core Facility, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinyao Li
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Diego A Vargas-Inchaustegui
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - L Jean Patterson
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Poonam Pegu
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shari N Gordon
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Monica Vaccari
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yichuan Wang
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alison E Hogg
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Blake Frey
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yongjun Sui
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Steven G Reed
- Infectious Diseases Research Institute, Seattle, WA, USA
| | | | - Jay A Berzofsky
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
111
|
Envelope variants circulating as initial neutralization breadth developed in two HIV-infected subjects stimulate multiclade neutralizing antibodies in rabbits. J Virol 2014; 88:12949-67. [PMID: 25210191 DOI: 10.1128/jvi.01812-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens. IMPORTANCE Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable of generating potent neutralization are likely to be critical constituents in an effective HIV vaccine. However, vaccines tested thus far have elicited only weak antibody responses and very modest, waning protection. We hypothesized that B cells develop broad antibodies by exposure to the evolving viral envelope population and tested this concept using multiple envelopes from two subjects who developed neutralization breadth within a few years of infection. We compared different combinations of envelopes from each subject to identify the most effective immunogens and regimens. In each subject, use of HIV envelopes circulating during the early development and maturation of breadth generated more-potent antibodies that were modestly cross neutralizing. These data suggest a new approach to identifying envelope immunogens that may be more effective in generating protective antibodies in humans.
Collapse
|
112
|
O'Connell RJ, Kim JH, Excler JL. The HIV-1 gp120 V1V2 loop: structure, function and importance for vaccine development. Expert Rev Vaccines 2014; 13:1489-500. [PMID: 25163695 DOI: 10.1586/14760584.2014.951335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the second variable loop (V2) of the HIV-1 gp120 envelope glycoprotein shows substantial sequence diversity between strains, its functional importance imposes critical conservation of structure, and within particular microdomains, of sequence. V2 influences HIV-1 viral entry by contributing to trimer stabilization and co-receptor binding. It is one of 4 key domains targeted by the broadly neutralizing antibodies that arise during HIV-1 infection. HIV-1 uses V1V2 sequence variation and glycosylation to escape neutralizing antibody. In the Thai Phase III HIV-1 vaccine trial, RV144, vaccine-induced IgG against V1V2 inversely correlated with the risk of HIV-1 acquisition, and HIV-1 strains infecting RV144 vaccine recipients differed from those infecting placebo recipients in the V2 domain. Similarly, non-human primate challenge studies demonstrated an inverse correlation between vaccine-induced anti-V2 responses and simian immunodeficiency virus acquisition. We hypothesize that increased magnitude, frequency and duration of vaccine-induced anti-V2 antibody responses should improve efficacy afforded by pox-protein prime-boost HIV vaccine strategies.
Collapse
Affiliation(s)
- Robert J O'Connell
- Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | |
Collapse
|
113
|
Distinct mechanisms regulate exposure of neutralizing epitopes in the V2 and V3 loops of HIV-1 envelope. J Virol 2014; 88:12853-65. [PMID: 25165106 DOI: 10.1128/jvi.02125-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Broadly neutralizing antibodies targeting the HIV-1 envelope (Env) are key components for protection against HIV-1. However, many cross-reactive epitopes are often occluded. This study investigates the mechanisms contributing to the masking of V2i (variable loop V2 integrin) epitopes compared to the accessibility of V3 epitopes. V2i are conformation-dependent epitopes encompassing the integrin α4β7-binding motif on the V1V2 loop of HIV-1 Env gp120. The V2i monoclonal antibodies (MAbs) display extensive cross-reactivity with gp120 monomers from many subtypes but neutralize only few viruses, indicating V2i's cryptic nature. First, we asked whether CD4-induced Env conformational changes affect V2i epitopes similarly to V3. CD4 treatment of BaL and JRFL pseudoviruses increased their neutralization sensitivity to V3 MAbs but not to the V2i MAbs. Second, the contribution of N-glycans in masking V2i versus V3 epitopes was evaluated by testing the neutralization of pseudoviruses produced in the presence of a glycosidase inhibitor, kifunensine. Viruses grown in kifunensine were more sensitive to neutralization by V3 but not V2i MAbs. Finally, we evaluated the time-dependent dynamics of the V2i and V3 epitopes. Extending the time of virus-MAb interaction to 18 h before adding target cells increased virus neutralization by some V2i MAbs and all V3 MAbs tested. Consistent with this, V2i MAb binding to Env on the surface of transfected cells also increased in a time-dependent manner. Hence, V2i and V3 epitopes are highly dynamic, but distinct factors modulate the antibody accessibility of these epitopes. The study reveals the importance of the structural dynamics of V2i and V3 epitopes in determining HIV-1 neutralization by antibodies targeting these sites. IMPORTANCE Conserved neutralizing epitopes are present in the V1V2 and V3 regions of HIV-1 Env, but these epitopes are often occluded from Abs. This study reveals that distinct mechanisms contribute to the masking of V3 epitopes and V2i epitopes in the V1V2 domain. Importantly, V3 MAbs and some V2i MAbs display greater neutralization against relatively resistant HIV-1 isolates when the MAbs interact with the virus for a prolonged period of time. Given their highly immunogenic nature, V3 and V2i epitopes are valuable targets that would augment the efficacy of HIV vaccines.
Collapse
|
114
|
Fouda GG, Cunningham CK, McFarland EJ, Borkowsky W, Muresan P, Pollara J, Song LY, Liebl BE, Whitaker K, Shen X, Vandergrift NA, Overman RG, Yates NL, Moody MA, Fry C, Kim JH, Michael NL, Robb M, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Rerks-Ngarm S, Liao HX, Haynes BF, Montefiori DC, Ferrari G, Tomaras GD, Permar SR. Infant HIV type 1 gp120 vaccination elicits robust and durable anti-V1V2 immunoglobulin G responses and only rare envelope-specific immunoglobulin A responses. J Infect Dis 2014; 211:508-17. [PMID: 25170104 DOI: 10.1093/infdis/jiu444] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Infant responses to vaccines can be impeded by maternal antibodies and immune system immaturity. It is therefore unclear whether human immunodeficiency virus type 1 (HIV-1) vaccination would elicit similar responses in adults and infants. METHOD HIV-1 Env-specific antibody responses were evaluated in 2 completed pediatric vaccine trials. In the Pediatric AIDS Clinical Trials Group (PACTG) 230 protocol, infants were vaccinated with 4 doses of Chiron rgp120 with MF59 (n=48), VaxGen rgp120 with aluminum hydroxide (alum; n=49), or placebo (n=19) between 0 and 20 weeks of age. In PACTG 326, infants received 4 doses of ALVAC-HIV-1/AIDSVAX B/B with alum (n=9) or placebo (n=13) between 0 and 12 weeks of age. RESULTS By 52 weeks of age, the majority of maternally acquired antibodies had waned and vaccine Env-specific immunoglobulin G (IgG) responses in vaccinees were higher than in placebo recipients. Chiron vaccine recipients had higher and more-durable IgG responses than VaxGen vaccine recipients or ALVAC/AIDSVAX vaccinees, with vaccine-elicited IgG responses still detectable in 56% of recipients at 2 years of age. Remarkably, at peak immunogenicity, the concentration of anti-V1V2 IgG, a response associated with a reduced risk of HIV-1 acquisition in the RV144 adult vaccine trial, was 22-fold higher in Chiron vaccine recipients, compared with RV144 vaccinees. CONCLUSION As exemplified by the Chiron vaccine regimen, vaccination of infants against HIV-1 can induce robust, durable Env-specific IgG responses, including anti-V1V2 IgG.
Collapse
Affiliation(s)
| | | | | | | | - Petronella Muresan
- Frontier Science and Technology Research Foundation Statistical and Data Analysis Center, Harvard School of Public Health, Boston, Massachusetts
| | | | - Lin Ye Song
- Statistical and Data Analysis Center, Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | | | | | - Carrie Fry
- Frontier Science and Technology Research Foundation Statistical and Data Analysis Center, Harvard School of Public Health, Boston, Massachusetts
| | - Jerome H Kim
- Military HIV Research Program, Bethesda, Maryland
| | | | - Merlin Robb
- Military HIV Research Program, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Li SS, Gilbert PB, Tomaras GD, Kijak G, Ferrari G, Thomas R, Pyo CW, Zolla-Pazner S, Montefiori D, Liao HX, Nabel G, Pinter A, Evans DT, Gottardo R, Dai JY, Janes H, Morris D, Fong Y, Edlefsen PT, Li F, Frahm N, Alpert MD, Prentice H, Rerks-Ngarm S, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Robb ML, O'Connell RJ, Haynes BF, Michael NL, Kim JH, McElrath MJ, Geraghty DE. FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial. J Clin Invest 2014; 124:3879-90. [PMID: 25105367 DOI: 10.1172/jci75539] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/19/2014] [Indexed: 02/02/2023] Open
Abstract
The phase III RV144 HIV-1 vaccine trial estimated vaccine efficacy (VE) to be 31.2%. This trial demonstrated that the presence of HIV-1-specific IgG-binding Abs to envelope (Env) V1V2 inversely correlated with infection risk, while the presence of Env-specific plasma IgA Abs directly correlated with risk of HIV-1 infection. Moreover, Ab-dependent cellular cytotoxicity responses inversely correlated with risk of infection in vaccine recipients with low IgA; therefore, we hypothesized that vaccine-induced Fc receptor-mediated (FcR-mediated) Ab function is indicative of vaccine protection. We sequenced exons and surrounding areas of FcR-encoding genes and found one FCGR2C tag SNP (rs114945036) that associated with VE against HIV-1 subtype CRF01_AE, with lysine at position 169 (169K) in the V2 loop (CRF01_AE 169K). Individuals carrying CC in this SNP had an estimated VE of 15%, while individuals carrying CT or TT exhibited a VE of 91%. Furthermore, the rs114945036 SNP was highly associated with 3 other FCGR2C SNPs (rs138747765, rs78603008, and rs373013207). Env-specific IgG and IgG3 Abs, IgG avidity, and neutralizing Abs inversely correlated with CRF01_AE 169K HIV-1 infection risk in the CT- or TT-carrying vaccine recipients only. These data suggest a potent role of Fc-γ receptors and Fc-mediated Ab function in conferring protection from transmission risk in the RV144 VE trial.
Collapse
|
116
|
Gartland AJ, Li S, McNevin J, Tomaras GD, Gottardo R, Janes H, Fong Y, Morris D, Geraghty DE, Kijak GH, Edlefsen PT, Frahm N, Larsen BB, Tovanabutra S, Sanders-Buell E, deCamp AC, Magaret CA, Ahmed H, Goodridge JP, Chen L, Konopa P, Nariya S, Stoddard JN, Wong K, Zhao H, Deng W, Maust BS, Bose M, Howell S, Bates A, Lazzaro M, O'Sullivan A, Lei E, Bradfield A, Ibitamuno G, Assawadarachai V, O'Connell RJ, deSouza MS, Nitayaphan S, Rerks-Ngarm S, Robb ML, Sidney J, Sette A, Zolla-Pazner S, Montefiori D, McElrath MJ, Mullins JI, Kim JH, Gilbert PB, Hertz T. Analysis of HLA A*02 association with vaccine efficacy in the RV144 HIV-1 vaccine trial. J Virol 2014; 88:8242-55. [PMID: 24829343 PMCID: PMC4135964 DOI: 10.1128/jvi.01164-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The RV144 HIV-1 vaccine trial demonstrated partial efficacy of 31% against HIV-1 infection. Studies into possible correlates of protection found that antibodies specific to the V1 and V2 (V1/V2) region of envelope correlated inversely with infection risk and that viruses isolated from trial participants contained genetic signatures of vaccine-induced pressure in the V1/V2 region. We explored the hypothesis that the genetic signatures in V1 and V2 could be partly attributed to selection by vaccine-primed T cells. We performed a T-cell-based sieve analysis of breakthrough viruses in the RV144 trial and found evidence of predicted HLA binding escape that was greater in vaccine versus placebo recipients. The predicted escape depended on class I HLA A*02- and A*11-restricted epitopes in the MN strain rgp120 vaccine immunogen. Though we hypothesized that this was indicative of postacquisition selection pressure, we also found that vaccine efficacy (VE) was greater in A*02-positive (A*02(+)) participants than in A*02(-) participants (VE = 54% versus 3%, P = 0.05). Vaccine efficacy against viruses with a lysine residue at site 169, important to antibody binding and implicated in vaccine-induced immune pressure, was also greater in A*02(+) participants (VE = 74% versus 15%, P = 0.02). Additionally, a reanalysis of vaccine-induced immune responses that focused on those that were shown to correlate with infection risk suggested that the humoral responses may have differed in A*02(+) participants. These exploratory and hypothesis-generating analyses indicate there may be an association between a class I HLA allele and vaccine efficacy, highlighting the importance of considering HLA alleles and host immune genetics in HIV vaccine trials. IMPORTANCE The RV144 trial was the first to show efficacy against HIV-1 infection. Subsequently, much effort has been directed toward understanding the mechanisms of protection. Here, we conducted a T-cell-based sieve analysis, which compared the genetic sequences of viruses isolated from infected vaccine and placebo recipients. Though we hypothesized that the observed sieve effect indicated postacquisition T-cell selection, we also found that vaccine efficacy was greater for participants who expressed HLA A*02, an allele implicated in the sieve analysis. Though HLA alleles have been associated with disease progression and viral load in HIV-1 infection, these data are the first to suggest the association of a class I HLA allele and vaccine efficacy. While these statistical analyses do not provide mechanistic evidence of protection in RV144, they generate testable hypotheses for the HIV vaccine community and they highlight the importance of assessing the impact of host immune genetics in vaccine-induced immunity and protection. (This study has been registered at ClinicalTrials.gov under registration no. NCT00223080.).
Collapse
Affiliation(s)
- Andrew J Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sue Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daryl Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Gustavo H Kijak
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brendan B Larsen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | - Allan C deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Craig A Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hasan Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Philip Konopa
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Snehal Nariya
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Julia N Stoddard
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Kim Wong
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Brandon S Maust
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Shana Howell
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Adam Bates
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Michelle Lazzaro
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | | | - Esther Lei
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Andrea Bradfield
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Grace Ibitamuno
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | | | | | | | | | | | - Merlin L Robb
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Silver Spring, Maryland, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Tomer Hertz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
117
|
Morales JF, Morin TJ, Yu B, Tatsuno GP, O'Rourke SM, Theolis R, Mesa KA, Berman PW. HIV-1 envelope proteins and V1/V2 domain scaffolds with mannose-5 to improve the magnitude and quality of protective antibody responses to HIV-1. J Biol Chem 2014; 289:20526-42. [PMID: 24872420 PMCID: PMC4110267 DOI: 10.1074/jbc.m114.554089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/07/2014] [Indexed: 01/15/2023] Open
Abstract
Two lines of investigation have highlighted the importance of antibodies to the V1/V2 domain of gp120 in providing protection from HIV-1 infection. First, the recent RV144 HIV-1 vaccine trial documented a correlation between non-neutralizing antibodies to the V2 domain and protection. Second, multiple broadly neutralizing monoclonal antibodies to the V1/V2 domain (e.g. PG9) have been isolated from rare infected individuals, termed elite neutralizers. Interestingly, the binding of both types of antibodies appears to depend on the same cluster of amino acids (positions 167–171) adjacent to the junction of the B and C strands of the four-stranded V1/V2 domain β-sheet structure. However, the broadly neutralizing mAb, PG9, additionally depends on mannose-5 glycans at positions 156 and 160 for binding. Because the gp120 vaccine immunogens used in previous HIV-1 vaccine trials were enriched for complex sialic acid-containing glycans, and lacked the high mannose structures required for the binding of PG9-like mAbs, we wondered if these immunogens could be improved by limiting glycosylation to mannose-5 glycans. Here, we describe the PG9 binding activity of monomeric gp120s from multiple strains of HIV-1 produced with mannose-5 glycans. We also describe the properties of glycopeptide scaffolds from the V1/V2 domain also expressed with mannose-5 glycans. The V1/V2 scaffold from the A244 isolate was able to bind the PG9, CH01, and CH03 mAbs with high affinity provided that the proper glycans were present. We further show that immunization with A244 V1/V2 fragments alone, or in a prime/boost regimen with gp120, enhanced the antibody response to sequences in the V1/V2 domain associated with protection in the RV144 trial.
Collapse
Affiliation(s)
- Javier F. Morales
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Trevor J. Morin
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Bin Yu
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Gwen P. Tatsuno
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Sara M. O'Rourke
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Richard Theolis
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Kathryn A. Mesa
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Phillip W. Berman
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
118
|
Abstract
A vaccine against HIV-1 must prevent infection against genetically diverse virus strains. Two approaches are currently being pursued to elicit antibody-mediated protection: vaccines that induce potent and broadly reactive neutralizing antibodies (bnAbs) or vaccines that induce "conventional antibodies," which are less potent and broadly neutralizing in comparison. Although bnAbs may provide the greatest level of protection, their structural and genetic characteristics make their elicitation through vaccination a major challenge. In contrast, conventional HIV-1 antibodies have been induced by vaccination and correlated with reduced HIV-1 infection in a phase III vaccine trial. Here, I present evidence that both approaches should be pursued with equal vigor.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- New York Veterans Affairs Harbor Healthcare System, New York, NY 10010, USA. New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
119
|
Su B, Moog C. Which Antibody Functions are Important for an HIV Vaccine? Front Immunol 2014; 5:289. [PMID: 24995008 PMCID: PMC4062070 DOI: 10.3389/fimmu.2014.00289] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/03/2014] [Indexed: 01/18/2023] Open
Abstract
HIV antibody (Ab) functions capable of preventing mucosal cell-free or cell-to-cell HIV transmission are critical for the development of effective prophylactic and therapeutic vaccines. In addition to CD4(+) T cells, other potential HIV-target cell types including antigen-presenting cells (APCs) (dendritic cells, macrophages) residing at mucosal sites are infected. Moreover, the interactions between APCs and HIV lead to HIV cell-to-cell transmission. Recently discovered broadly neutralizing antibodies (NAbs) are able to neutralize a broad spectrum of HIV strains, inhibit cell-to-cell transfer, and efficiently protect from infection in the experimentally challenged macaque model. However, the 31% protection observed in the RV144 vaccine trial in the absence of detectable NAbs in blood samples pointed to the possible role of additional Ab inhibitory functions. Increasing evidence suggests that IgG Fcγ receptor (FcγR)-mediated inhibition of Abs present at the mucosal site may play a role in protection against HIV mucosal transmission. Moreover, mucosal IgA Abs may be determinant in protection against HIV sexual transmission. Therefore, defining Ab inhibitory functions that could lead to protection is critical for further HIV vaccine design. Here, we review different inhibitory properties of HIV-specific Abs and discuss their potential role in protection against HIV sexual transmission.
Collapse
Affiliation(s)
- Bin Su
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg , Strasbourg , France
| |
Collapse
|
120
|
Nonneutralizing functional antibodies: a new "old" paradigm for HIV vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1023-36. [PMID: 24920599 DOI: 10.1128/cvi.00230-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Animal and human data from various viral infections and vaccine studies suggest that nonneutralizing antibodies (nNAb) without neutralizing activity in vitro may play an important role in protection against viral infection in vivo. This was illustrated by the recent human immunodeficiency virus (HIV) RV144 vaccine efficacy trial, which demonstrated that HIV-specific IgG-mediated nNAb directed against the V2 loop of HIV type 1 envelope (Env) were inversely correlated with risk for HIV acquisition, while Env-specific plasma IgA-mediated antibodies were directly correlated with risk. However, tier 1 NAb in the subset of responders with a low level of plasma Env-specific IgA correlated with decreased risk. Nonhuman primate simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) challenge studies suggest that Env-mediated antibodies are essential and sufficient for protection. A comparison of immune responses generated in human efficacy trials reveals subtle differences in the fine specificities of the antibody responses, in particular in HIV-specific IgG subclasses. The underlying mechanisms that may have contributed to protection against HIV acquisition in humans, although not fully understood, are possibly mediated by antibody-dependent cell-mediated cytotoxicity (ADCC) and/or other nonneutralizing humoral effector functions, such as antibody-mediated phagocytosis. The presence of such functional nNAb in mucosal tissues and cervico-vaginal and rectal secretions challenges the paradigm that NAb are the predominant immune response conferring protection, although this does not negate the desirability of evoking neutralizing antibodies through vaccination. Instead, NAb and nNAb should be looked upon as complementary or synergistic humoral effector functions. Several HIV vaccine clinical trials to study these antibody responses in various prime-boost modalities in the systemic and mucosal compartments are ongoing. The induction of high-frequency HIV-specific functional nNAb at high titers may represent an attractive hypothesis-testing strategy in future HIV vaccine efficacy trials.
Collapse
|
121
|
Rao M, Peachman KK, Kim J, Gao G, Alving CR, Michael NL, Rao VB. HIV-1 variable loop 2 and its importance in HIV-1 infection and vaccine development. Curr HIV Res 2014; 11:427-38. [PMID: 24191938 DOI: 10.2174/1570162x113116660064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022]
Abstract
A vaccine that can prevent the transmission of HIV-1 at the site of exposure to the host is one of the best hopes to control the HIV-1 pandemic. The trimeric envelope spike consisting of heterodimers, gp120 and gp41, is essential for virus entry and thus has been a key target for HIV-1 vaccine development. However, it has been extremely difficult to identify the types of antibodies required to block the transmission of various HIV-1 strains and the immunogens that can elicit such antibodies due to the high genetic diversity of the HIV-1 envelope. The modest efficacy of the gp120 HIV-1 vaccine used in the RV144 Thai trial, including the studies on the immune correlates of protection, and the discovery of vaccine-induced immune responses to certain signature regions of the envelope have shown that the gp120 variable loop 2 (V2) is an important region. Since there is evidence that the V2 region interacts with the integrin α4β7 receptor of the host cell, and that this interaction might be important for virus capture, induction of antibodies against V2 loop could be postulated as one of the mechanisms to prevent the acquisition of HIV-1. Immunogens that can induce these antibodies should therefore be taken into consideration when designing HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Mangala Rao
- Laboratory of Adjuvant and Antigen Research, USMHRP at the Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Rm 2A08, Sliver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|
122
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
123
|
Derdeyn CA, Moore PL, Morris L. Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Curr Opin HIV AIDS 2014; 9:210-6. [PMID: 24662931 PMCID: PMC4068799 DOI: 10.1097/coh.0000000000000057] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Detailed genetic and structural characterization has revealed that broadly neutralizing antibodies (bnAbs) against HIV-1 have unusually high levels of somatic hypermutation, long CDRH3 domains, and the ability to target one of four sites of vulnerability on the HIV-1 envelope (Env) glycoproteins. A current priority is to understand how bnAbs are generated during natural infection, and translate this information into immunogens that can elicit bnAb following vaccination. RECENT FINDINGS Strain-specific neutralizing antibodies can acquire broad neutralizing capacity when the transmitted/founder Env or a specific Env variant is recognized by an unmutated rearranged germline that has the capacity to develop bnAb-like features. This event could be relatively infrequent, as only certain germlines appear to possess inherent features needed for bnAb activity. Furthermore, the glycosylation pattern and diversity of circulating HIV-1 Envs, as well as the state of the B-cell compartment, may influence the activation and maturation of certain antibody lineages. SUMMARY Collectively, studies over the last year have suggested that the development of HIV-1 Env immunogens that bind and activate bnAb-like germlines is feasible. However, more information about the features of Env variants and the host factors that lead to breadth during natural infection are needed to elicit bnAbs through immunization.
Collapse
Affiliation(s)
- Cynthia A. Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Program of Research, Durban, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Program of Research, Durban, South Africa
| |
Collapse
|
124
|
Utachee P, Isarangkura-na-ayuthaya P, Tokunaga K, Ikuta K, Takeda N, Kameoka M. Impact of amino acid substitutions in the V2 and C2 regions of human immunodeficiency virus type 1 CRF01_AE envelope glycoprotein gp120 on viral neutralization susceptibility to broadly neutralizing antibodies specific for the CD4 binding site. Retrovirology 2014; 11:32. [PMID: 24758333 PMCID: PMC4003292 DOI: 10.1186/1742-4690-11-32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/09/2014] [Indexed: 01/15/2023] Open
Abstract
Background The CD4 binding site (CD4bs) of envelope glycoprotein (Env) gp120 is a functionally conserved, important target of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies. Two neutralizing human monoclonal antibodies, IgG1 b12 (b12) and VRC01, are broadly reactive neutralizing antibodies which recognize conformational epitopes that overlap the CD4bs of Env gp120; however, many CRF01_AE viruses are resistant to neutralization mediated by these antibodies. We examined the mechanism underlying the b12 resistance of the viruses using CRF01_AE Env (AE-Env)-recombinant viruses in this study. Results Our results showed that an amino acid substitution at position 185 in the V2 region of gp120 played a crucial role in regulating the b12 susceptibility of AE-Env-recombinant viruses by cooperating with 2 previously reported potential N-linked glycosylation (PNLG) sites at positions 186 (N186) and 197 (N197) in the V2 and C2 regions of Env gp120. The amino acid residue at position 185 and 2 PNLG sites were responsible for the b12 resistance of 21 of 23 (>91%) AE-Env clones tested. Namely, the introduction of aspartic acid at position 185 (D185) conferred b12 susceptibility of 12 resistant AE-Env clones in the absence of N186 and/or N197, while the introduction of glycine at position 185 (G185) reduced the b12 susceptibility of 9 susceptible AE-Env clones in the absence of N186 and/or N197. In addition, these amino acid mutations altered the VRC01 susceptibility of many AE-Env clones. Conclusions We propose that the V2 and C2 regions of AE-Env gp120 contain the major determinants of viral resistance to CD4bs antibodies. CRF01_AE is a major circulating recombinant form of HIV-1 prevalent in Southeast Asia. Our data may provide important information to understand the molecular mechanism regulating the neutralization susceptibility of CRF01_AE viruses to CD4bs antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | - Masanori Kameoka
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand.
| |
Collapse
|
125
|
Excler JL, Robb ML, Kim JH. HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother 2014; 10:1734-46. [PMID: 24637946 DOI: 10.4161/hv.28462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Merlin L Robb
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Jerome H Kim
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA
| |
Collapse
|
126
|
Abstract
PURPOSE OF REVIEW The genetic characterization of HIV-1 breakthrough infections in vaccine and placebo recipients offers new ways to assess vaccine efficacy trials. Statistical and sequence analysis methods provide opportunities to mine the mechanisms behind the effect of an HIV vaccine. RECENT FINDINGS The release of results from two HIV-1 vaccine efficacy trials, Step/HVTN-502 (HIV Vaccine Trials Network-502) and RV144, led to numerous studies in the last 5 years, including efforts to sequence HIV-1 breakthrough infections and compare viral characteristics between the vaccine and placebo groups. Novel genetic and statistical analysis methods uncovered features that distinguished founder viruses isolated from vaccinees from those isolated from placebo recipients, and identified HIV-1 genetic targets of vaccine-induced immune responses. SUMMARY Studies of HIV-1 breakthrough infections in vaccine efficacy trials can provide an independent confirmation to correlates of risk studies, as they take advantage of vaccine/placebo comparisons, whereas correlates of risk analyses are limited to vaccine recipients. Through the identification of viral determinants impacted by vaccine-mediated host immune responses, sieve analyses can shed light on potential mechanisms of vaccine protection.
Collapse
|
127
|
Zolla-Pazner S, deCamp A, Gilbert PB, Williams C, Yates NL, Williams WT, Howington R, Fong Y, Morris DE, Soderberg KA, Irene C, Reichman C, Pinter A, Parks R, Pitisuttithum P, Kaewkungwal J, Rerks-Ngarm S, Nitayaphan S, Andrews C, O’Connell RJ, Yang ZY, Nabel GJ, Kim JH, Michael NL, Montefiori DC, Liao HX, Haynes BF, Tomaras GD. Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. PLoS One 2014; 9:e87572. [PMID: 24504509 PMCID: PMC3913641 DOI: 10.1371/journal.pone.0087572] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008-0.05; estimated odds ratios of 0.53-0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection. TRIAL REGISTRATION ClinicalTrials.gov NCT00223080.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- Department of Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
- New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Constance Williams
- New York University School of Medicine, New York, New York, United States of America
| | - Nicole L. Yates
- Duke University, Durham, North Carolina, United States of America
| | | | - Robert Howington
- Duke University, Durham, North Carolina, United States of America
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daryl E. Morris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Carmela Irene
- Public Health Research Institute, University of Medicine and Dentistry, Newark, New Jersey, United States of America
| | - Charles Reichman
- Public Health Research Institute, University of Medicine and Dentistry, Newark, New Jersey, United States of America
| | - Abraham Pinter
- Public Health Research Institute, University of Medicine and Dentistry, Newark, New Jersey, United States of America
| | - Robert Parks
- Duke University, Durham, North Carolina, United States of America
| | | | | | | | | | - Charla Andrews
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Robert J. O’Connell
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Zhi-yong Yang
- Virology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gary J. Nabel
- Virology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jerome H. Kim
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | - Hua-Xin Liao
- Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke University, Durham, North Carolina, United States of America
| | | |
Collapse
|
128
|
Functional implications of the binding mode of a human conformation-dependent V2 monoclonal antibody against HIV. J Virol 2014; 88:4100-12. [PMID: 24478429 DOI: 10.1128/jvi.03153-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Data from the RV144 HIV vaccine trial indicated that gp120 V2 antibodies were associated with a lower risk of infection; thus, the mapping of V2 epitopes can contribute to the design of an effective HIV vaccine. We solved the crystal structure of human monoclonal antibody (MAb) 2158, which targets a conformational V2 epitope overlapping the α4β7 integrin binding site, and constructed a full-length model of V1V2. Comparison of computational energy stability to experimental enzyme-linked immunosorbent assay (ELISA) results identified a hydrophobic core that stabilizes the V2 region for optimal 2158 binding, as well as residues that directly mediate side chain interactions with MAb 2158. These data define the binding surface recognized by MAb 2158 and offer a structural explanation for why a mismatched mutation at position 181 (I181X) in the V2 loop was associated with a higher vaccine efficiency in the RV144 clinical vaccine trial. IMPORTANCE Correlate analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the second variable region (V2) of HIV-1 gp120 was responsible for the modest protection observed in the trial. V2 is a highly variable and immunogenic region, and structural information on its antigenic landscape will be important for rational design of an effective HIV-1 vaccine. Using X-ray crystallography, computational design tools, and mutagenesis assays, we carried out a detailed and systematic investigation of the epitope recognition of human V2 MAb 2158 and demonstrated that its epitope region overlaps the integrin binding site within V2. In addition, we propose a structure-based mechanism for mismatching of the isoleucine at position 181 and the increased vaccine efficacy seen in the RV144 vaccine trial.
Collapse
|
129
|
Abstract
A global human immunodeficiency virus-1 (HIV-1) vaccine will have to elicit immune responses capable of providing protection against a tremendous diversity of HIV-1 variants. In this review, we first describe the current state of the HIV-1 vaccine field, outlining the immune responses that are desired in a global HIV-1 vaccine. In particular, we emphasize the likely importance of Env-specific neutralizing and non-neutralizing antibodies for protection against HIV-1 acquisition and the likely importance of effector Gag-specific T lymphocytes for virologic control. We then highlight four strategies for developing a global HIV-1 vaccine. The first approach is to design specific vaccines for each geographic region that include antigens tailor-made to match local circulating HIV-1 strains. The second approach is to design a vaccine that will elicit Env-specific antibodies capable of broadly neutralizing all HIV-1 subtypes. The third approach is to design a vaccine that will elicit cellular immune responses that are focused on highly conserved HIV-1 sequences. The fourth approach is to design a vaccine to elicit highly diverse HIV-1-specific responses. Finally, we emphasize the importance of conducting clinical efficacy trials as the only way to determine which strategies will provide optimal protection against HIV-1 in humans.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
130
|
Goepfert PA, Elizaga ML, Seaton K, Tomaras GD, Montefiori DC, Sato A, Hural J, DeRosa SC, Kalams SA, McElrath MJ, Keefer MC, Baden LR, Lama JR, Sanchez J, Mulligan MJ, Buchbinder SP, Hammer SM, Koblin BA, Pensiero M, Butler C, Moss B, Robinson HL. Specificity and 6-month durability of immune responses induced by DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis 2014; 210:99-110. [PMID: 24403557 DOI: 10.1093/infdis/jiu003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Clade B DNA and recombinant modified vaccinia Ankara (MVA) vaccines producing virus-like particles displaying trimeric membrane-bound envelope glycoprotein (Env) were tested in a phase 2a trial in human immunodeficiency virus (HIV)-uninfected adults for safety, immunogenicity, and 6-month durability of immune responses. METHODS A total of 299 individuals received 2 doses of JS7 DNA vaccine and 2 doses of MVA/HIV62B at 0, 2, 4, and 6 months, respectively (the DDMM regimen); 3 doses of MVA/HIV62B at 0, 2, and 6 months (the MMM regimen); or placebo injections. RESULTS At peak response, 93.2% of the DDMM group and 98.4% of the MMM group had binding antibodies for Env. These binding antibodies were more frequent and of higher magnitude for the transmembrane subunit (gp41) than the receptor-binding subunit (gp120) of Env. For both regimens, response rates were higher for CD4(+) T cells (66.4% in the DDMM group and 43.1% in the MMM group) than for CD8(+) T cells (21.8% in the DDMM group and 14.9% in the MMM group). Responding CD4(+) and CD8(+) T cells were biased toward Gag, and >70% produced 2 or 3 of the 4 cytokines evaluated (ie, interferon γ, interleukin 2, tumor necrosis factor α, and granzyme B). Six months after vaccination, the magnitudes of antibodies and T-cell responses had decreased by <3-fold. CONCLUSIONS DDMM and MMM vaccinations with virus-like particle-expressing immunogens elicited durable antibody and T-cell responses.
Collapse
Affiliation(s)
| | - Marnie L Elizaga
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Kelly Seaton
- Laboratory for AIDS Vaccine Research and Development, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Georgia D Tomaras
- Laboratory for AIDS Vaccine Research and Development, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - David C Montefiori
- Laboratory for AIDS Vaccine Research and Development, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Alicia Sato
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center
| | - Stephen C DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center University of Washington, Seattle, Washington
| | - Spyros A Kalams
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center University of Washington, Seattle, Washington
| | - Michael C Keefer
- University of Rochester School of Medicine and Dentistry, Rochester
| | - Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Javier R Lama
- Asociacion Civil IMPACTA Salud y Educacion, Lima, Peru
| | - Jorge Sanchez
- Asociacion Civil IMPACTA Salud y Educacion, Lima, Peru
| | | | | | | | | | | | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
131
|
Bauer G, Anderson JS. Stem cell transplantation in the context of HIV--how can we cure HIV infection? Expert Rev Clin Immunol 2013; 10:107-16. [PMID: 24308835 DOI: 10.1586/1744666x.2014.861326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
All HIV target cells are derived from hematopoietic stem cells. More than two decades ago, a hypothesis was postulated that a cure for HIV may be possible by performing a transplant with HIV-resistant hematopoietic stem cells that would allow for an HIV-resistant immune system to arise. HIV-resistant stem cells could be generated by genetically modifying them with gene therapy vectors transferring anti-HIV genes. First attempts of stem cell gene therapy for HIV were carried out in the USA in the 1990s demonstrating safety, but also little efficacy at that time. The first demonstration that the postulated hypothesis was correct was the cure of an HIV-infected individual in Berlin in 2009 who received an allogeneic bone marrow transplant from a donor who lacked the CCR5 chemokine receptor, a naturally arising mutation rendering HIV target cells resistant to infection with macrophage tropic strains of HIV. In 2013, reports were published about a possible cure of HIV-infected individuals who received allogeneic bone marrow transplants with cells not resistant to HIV. We will review these stem cell transplant procedures and discuss their utility to provide a cure for HIV infection, including efficacious future stem cell gene therapy applications.
Collapse
Affiliation(s)
- Gerhard Bauer
- University of California Davis, Stem Cell Program, School of Medicine, 2921 Stockton Blvd., Sacramento, CA 95817, USA
| | | |
Collapse
|
132
|
Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS One 2013; 8:e75665. [PMID: 24086607 PMCID: PMC3784573 DOI: 10.1371/journal.pone.0075665] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/19/2013] [Indexed: 11/26/2022] Open
Abstract
Neutralizing and non-neutralizing antibodies to linear epitopes on HIV-1 envelope glycoproteins have potential to mediate antiviral effector functions that could be beneficial to vaccine-induced protection. Here, plasma IgG responses were assessed in three HIV-1 gp120 vaccine efficacy trials (RV144, Vax003, Vax004) and in HIV-1-infected individuals by using arrays of overlapping peptides spanning the entire consensus gp160 of all major genetic subtypes and circulating recombinant forms (CRFs) of the virus. In RV144, where 31.2% efficacy against HIV-1 infection was seen, dominant responses targeted the C1, V2, V3 and C5 regions of gp120. An analysis of RV144 case-control samples showed that IgG to V2 CRF01_AE significantly inversely correlated with infection risk (OR= 0.54, p=0.0042), as did the response to other V2 subtypes (OR=0.60-0.63, p=0.016-0.025). The response to V3 CRF01_AE also inversely correlated with infection risk but only in vaccine recipients who had lower levels of other antibodies, especially Env-specific plasma IgA (OR=0.49, p=0.007) and neutralizing antibodies (OR=0.5, p=0.008). Responses to C1 and C5 showed no significant correlation with infection risk. In Vax003 and Vax004, where no significant protection was seen, serum IgG responses targeted the same epitopes as in RV144 with the exception of an additional C1 reactivity in Vax003 and infrequent V2 reactivity in Vax004. In HIV-1 infected subjects, dominant responses targeted the V3 and C5 regions of gp120, as well as the immunodominant domain, heptad repeat 1 (HR-1) and membrane proximal external region (MPER) of gp41. These results highlight the presence of several dominant linear B cell epitopes on the HIV-1 envelope glycoproteins. They also generate the hypothesis that IgG to linear epitopes in the V2 and V3 regions of gp120 are part of a complex interplay of immune responses that contributed to protection in RV144.
Collapse
|
133
|
Abstract
PURPOSE OF REVIEW Considerable HIV-1 vaccine development efforts have been deployed over the past decade. Put into perspective, the results from efficacy trials and the identification of correlates of risk have opened large and unforeseen avenues for vaccine development. RECENT FINDINGS The Thai efficacy trial, RV144, provided the first evidence that HIV-1 vaccine protection against HIV-1 acquisition could be achieved. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop inversely correlated with a decreased risk of infection, whereas Env-specific IgA directly correlated with risk. Further clinical trials will focus on testing new envelope subunit proteins formulated with adjuvants capable of inducing higher and more durable functional antibody responses (both binding and broadly neutralizing antibodies). Moreover, vector-based vaccine regimens that can induce cell-mediated immune responses in addition to humoral responses remain a priority. SUMMARY Future efficacy trials will focus on prevention of HIV-1 transmission in heterosexual population in Africa and MSM in Asia. The recent successes leading to novel directions in HIV-1 vaccine development are a result of collaboration and commitment among vaccine manufacturers, funders, scientists and civil society stakeholders. Sustained and broad collaborative efforts are required to advance new vaccine strategies for higher levels of efficacy.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program (MHRP), Bethesda, Maryland 20817, USA.
| | | | | |
Collapse
|
134
|
Schiffner T, Kong L, Duncan CJA, Back JW, Benschop JJ, Shen X, Huang PS, Stewart-Jones GB, DeStefano J, Seaman MS, Tomaras GD, Montefiori DC, Schief WR, Sattentau QJ. Immune focusing and enhanced neutralization induced by HIV-1 gp140 chemical cross-linking. J Virol 2013; 87:10163-72. [PMID: 23843636 PMCID: PMC3754013 DOI: 10.1128/jvi.01161-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/04/2013] [Indexed: 11/20/2022] Open
Abstract
Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design.
Collapse
Affiliation(s)
- T. Schiffner
- The Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - L. Kong
- The Sir William Dunn School of Pathology, Oxford, United Kingdom
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - C. J. A. Duncan
- The Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - J. W. Back
- Pepscan Therapeutics, Lelystad, The Netherlands
| | | | - X. Shen
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - P. S. Huang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - G. B. Stewart-Jones
- The Weatherall Institute of Molecular Medicine, The John Radcliffe Hospital, Oxford, United Kingdom
| | - J. DeStefano
- International AIDS Vaccine Initiative, Brooklyn, New York, USA
| | - M. S. Seaman
- Division of Viral Pathogenesis, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - G. D. Tomaras
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - D. C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - W. R. Schief
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, USA
| | - Q. J. Sattentau
- The Sir William Dunn School of Pathology, Oxford, United Kingdom
| |
Collapse
|
135
|
Translational research insights from completed HIV vaccine efficacy trials. J Acquir Immune Defic Syndr 2013; 63 Suppl 2:S150-4. [PMID: 23764628 DOI: 10.1097/qai.0b013e31829a3985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of a safe and effective HIV vaccine remains a challenge. The modest efficacy seen in the RV144 vaccine trial represented an important milestone for the field. Results from all efficacy studies done to date have generated new information, which has advanced the HIV vaccine field in important ways. In this article, we review the translational research insights from the vaccine efficacy trials completed and fully analyzed to date. We also describe the recent advances in the search for broadly neutralizing antibodies and discuss potential approaches to circumvent the challenge posed by the enormous diversity of HIV-1. The experience from the past 5 years highlights the importance of conducting efficacy studies that continue to move us closer toward the goal of a safe, effective, durable, and universal HIV preventive vaccine.
Collapse
|
136
|
An HIV Vaccine for South-East Asia-Opportunities and Challenges. Vaccines (Basel) 2013; 1:348-66. [PMID: 26344118 PMCID: PMC4494230 DOI: 10.3390/vaccines1030348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/25/2013] [Accepted: 08/05/2013] [Indexed: 11/17/2022] Open
Abstract
Recent advances in HIV vaccine development along with a better understanding of the immune correlates of risk have emerged from the RV144 efficacy trial conducted in Thailand. Epidemiological data suggest that CRF01_AE is still predominant in South-East Asia and is spreading in China with a growing number of circulating recombinant forms due to increasing human contact, particularly in large urban centers, tourist locations and in sites of common infrastructure. A vaccine countering CRF01_AE is a priority for the region. An Asia HIV vaccine against expanding B/E or BCE recombinant forms should be actively pursued. A major challenge that remains is the conduct of efficacy trials in heterosexual populations in this region. Men who have sex with men represent the main target population for future efficacy trials in Asia. Coupling HIV vaccines with other prevention modalities in efficacy trials might also be envisaged. These new avenues will only be made possible through the conduct of large-scale efficacy trials, interdisciplinary teams, international collaborations, and strong political and community commitments.
Collapse
|
137
|
Mayr LM, Cohen S, Spurrier B, Kong XP, Zolla-Pazner S. Epitope mapping of conformational V2-specific anti-HIV human monoclonal antibodies reveals an immunodominant site in V2. PLoS One 2013; 8:e70859. [PMID: 23923028 PMCID: PMC3726596 DOI: 10.1371/journal.pone.0070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
In the case-control study of the RV144 vaccine trial, the levels of antibodies to the V1V2 region of the gp120 envelope glycoprotein were found to correlate inversely with risk of HIV infection. This recent demonstration of the potential role of V1V2 as a vaccine target has catapulted this region into the focus of HIV-1 research. We previously described seven human monoclonal antibodies (mAbs) derived from HIV-infected individuals that are directed against conformational epitopes in the V1V2 domain. In this study, using lysates of SF162 pseudoviruses carrying V1V2 mutations, we mapped the epitopes of these seven mAbs. All tested mAbs demonstrated a similar binding pattern in which three mutations (F176A, Y177T, and D180L) abrogated binding of at least six of the seven mAbs to ≤15% of SF162 wildtype binding. Binding of six or all of the mAbs was reduced to ≤50% of wildtype by single substitutions at seven positions (168, 180, 181, 183, 184, 191, and 193), while one change, V181I, increased the binding of all mAbs. When mapped onto a model of V2, our results suggest that the epitope of the conformational V2 mAbs is located mostly in the disordered region of the available crystal structure of V1V2, overlapping and surrounding the α4β7 binding site on V2.
Collapse
Affiliation(s)
- Luzia M. Mayr
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Sandra Cohen
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Brett Spurrier
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare System, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
138
|
Abstract
The development of an effective vaccine has been hindered by the enormous diversity of human immunodeficiency virus-1 (HIV-1) and its ability to escape a myriad of host immune responses. In addition, conserved vulnerable regions on the HIV-1 envelope glycoprotein are often poorly immunogenic and elicit broadly neutralizing antibody responses (BNAbs) in a minority of HIV-1-infected individuals and only after several years of infection. All of the known BNAbs demonstrate high levels of somatic mutations and often display other unusual traits, such as a long heavy chain complementarity determining region 3 (CDRH3) and autoreactivity that can be limited by host tolerance controls. Nonetheless, the demonstration that HIV-1-infected individuals can make potent BNAbs is encouraging, and recent progress in isolating such antibodies and mapping their immune pathways of development is providing new strategies for vaccination.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
139
|
|
140
|
Nakamura GR, Fonseca DPAJ, O'Rourke SM, Vollrath AL, Berman PW. Monoclonal antibodies to the V2 domain of MN-rgp120: fine mapping of epitopes and inhibition of α4β7 binding. PLoS One 2012; 7:e39045. [PMID: 22720026 PMCID: PMC3374778 DOI: 10.1371/journal.pone.0039045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 05/17/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recombinant gp120 (MN-rgp120) was a major component of the AIDSVAX B/E vaccine used in the RV144 trial. This was the first clinical trial to show that vaccination could prevent HIV infection in humans. A recent RV144 correlates of protection study found that protection correlated with the presence of antibodies to the V2 domain. It has been proposed that antibodies to the α4β7 binding site in the V2 domain might prevent HIV-1 infection by blocking the ability of virions to recognize α4β7 on activated T-cells. In this study we investigated the specificity of monoclonal antibodies (MAbs) to the V2 domain of MN-rgp120 and examined the possibility that these antibodies could inhibit the binding of MN-rgp120 to the α4β7 integrin. METHODOLOGY/PRINCIPAL FINDINGS Nine MAbs to the V2 domain were isolated from mice immunized with recombinant envelope proteins. The ability of these MAbs to inhibit HIV infection, block the binding of gp120 to CD4, and block the binding of MN-rgp120 to the α4β7 integrin was measured. Mutational analysis showed that eight of the MAbs recognized two immunodominant clusters of amino acids (166-168 and 178-183) located at either end of the C strand within the four-strand anti-parallel sheet structure comprising the V1/V2 domain. CONCLUSIONS/SIGNIFICANCE These studies showed that the antigenic structure of the V2 domain is exceedingly complex and that MAbs isolated from mice immunized with MN-rgp120 exhibited a high level of strain specificity compared to MAbs to the V2 domain isolated from HIV-infected humans. We found that immunization with MN-rgp120 readily elicits antibodies to the V2 domain and some of these were able to block the binding of MN-rgp120 to the α4β7 integrin.
Collapse
Affiliation(s)
- Gerald R. Nakamura
- Antibody Engineering Department, Genentech, Incorporated, South San Francisco, California, United States of America
| | - Dora P. A. J. Fonseca
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara M. O'Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Aaron L. Vollrath
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|