101
|
Ceci ML, Mardones-Krsulovic C, Sánchez M, Valdivia LE, Allende ML. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev 2014; 9:22. [PMID: 25326036 PMCID: PMC4214607 DOI: 10.1186/1749-8104-9-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/29/2014] [Indexed: 01/13/2023] Open
Abstract
Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral line (pLL) nerve of zebrafish and follow the fate of both neurons and Schwann cells. Results Using pLL single axon labeling by transient transgene expression, as well as transplantation of glial precursor cells in zebrafish larvae, we individualize different components in this system and characterize their cellular behaviors during the regenerative process. Neurectomy is followed by loss of Schwann cell differentiation markers that is reverted after nerve regrowth. We show that reinnervation of lateral line hair cells in neuromasts during pLL nerve regeneration is a highly dynamic process with promiscuous yet non-random target recognition. Furthermore, Schwann cells are required for directional extension and fasciculation of the regenerating nerve. We provide evidence that these cells and regrowing axons are mutually dependant during early stages of nerve regeneration in the pLL. The role of ErbB signaling in this context is also explored. Conclusion The accessibility of the pLL nerve and the availability of transgenic lines that label this structure and their synaptic targets provides an outstanding in vivo model to study the different events associated with axonal extension, target reinnervation, and the complex cellular interactions between glial cells and injured axons during nerve regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
102
|
Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K, Gross RW, Patti GJ, Milbrandt J. Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat Neurosci 2014; 17:1351-61. [PMID: 25195104 PMCID: PMC4494117 DOI: 10.1038/nn.3809] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/15/2014] [Indexed: 02/06/2023]
Abstract
Schwann cells (SCs) promote axonal integrity independently of myelination by poorly understood mechanisms. Current models suggest that SC metabolism is critical for this support function and that SC metabolic deficits may lead to axonal demise. The LKB1-AMP-activated protein kinase (AMPK) kinase pathway targets several downstream effectors, including mammalian target of rapamycin (mTOR), and is a key metabolic regulator implicated in metabolic diseases. We found through molecular, structural and behavioral characterization of SC-specific mutant mice that LKB1 activity is central to axon stability, whereas AMPK and mTOR in SCs are largely dispensable. The degeneration of axons in LKB1 mutants was most dramatic in unmyelinated small sensory fibers, whereas motor axons were comparatively spared. LKB1 deletion in SCs led to abnormalities in nerve energy and lipid homeostasis and to increased lactate release. The latter acts in a compensatory manner to support distressed axons. LKB1 signaling is essential for SC-mediated axon support, a function that may be dysregulated in diabetic neuropathy.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elisabetta Babetto
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Judith P Golden
- Department of Anesthesiology, Washington University Pain Center, St. Louis, Missouri, USA
| | - Ying-Jr Chen
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Kui Yang
- Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard W Gross
- Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gary J Patti
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Department of Chemistry, Washington University, St. Louis, Missouri, USA. [3] Department of Internal Medicine, Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey Milbrandt
- 1] Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA. [2] Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
103
|
Pooya S, Liu X, Kumar VBS, Anderson J, Imai F, Zhang W, Ciraolo G, Ratner N, Setchell KDR, Yoshida Y, Yutaka Y, Jankowski MP, Dasgupta B. The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun 2014; 5:4993. [PMID: 25256100 DOI: 10.1038/ncomms5993] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/14/2014] [Indexed: 01/04/2023] Open
Abstract
A prerequisite to myelination of peripheral axons by Schwann cells (SCs) is SC differentiation, and recent evidence indicates that reprogramming from a glycolytic to oxidative metabolism occurs during cellular differentiation. Whether this reprogramming is essential for SC differentiation, and the genes that regulate this critical metabolic transition are unknown. Here we show that the tumour suppressor Lkb1 is essential for this metabolic transition and myelination of peripheral axons. Hypomyelination in the Lkb1-mutant nerves and muscle atrophy lead to hindlimb dysfunction and peripheral neuropathy. Lkb1-null SCs failed to optimally activate mitochondrial oxidative metabolism during differentiation. This deficit was caused by Lkb1-regulated diminished production of the mitochondrial Krebs cycle substrate citrate, a precursor to cellular lipids. Consequently, myelin lipids were reduced in Lkb1-mutant mice. Restoring citrate partially rescued Lkb1-mutant SC defects. Thus, Lkb1-mediated metabolic shift during SC differentiation increases mitochondrial metabolism and lipogenesis, necessary for normal myelination.
Collapse
Affiliation(s)
- Shabnam Pooya
- Department of Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Xiaona Liu
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - V B Sameer Kumar
- Department of Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Jane Anderson
- Department of Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Fumiyasu Imai
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Wujuan Zhang
- Department of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Georgianne Ciraolo
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Nancy Ratner
- Department of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Kenneth D R Setchell
- Department of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | - Yoshida Yutaka
- Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Michael P Jankowski
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Biplab Dasgupta
- Department of Oncology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| |
Collapse
|
104
|
Jensen VFH, Mølck AM, Bøgh IB, Lykkesfeldt J. Effect of insulin-induced hypoglycaemia on the peripheral nervous system: focus on adaptive mechanisms, pathogenesis and histopathological changes. J Neuroendocrinol 2014; 26:482-96. [PMID: 24921897 DOI: 10.1111/jne.12170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/22/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022]
Abstract
Insulin-induced hypoglycaemia (IIH) is a common acute side effect in type 1 and type 2 diabetic patients, especially during intensive insulin therapy. The peripheral nervous system (PNS) depends on glucose as its primary energy source during normoglycaemia and, consequently, it may be particularly susceptible to IIH damage. Possible mechanisms for adaption of the PNS to IIH include increased glucose uptake, utilisation of alternative energy substrates and the use of Schwann cell glycogen as a local glucose reserve. However, these potential adaptive mechanisms become insufficient when the hypoglycaemic state exceeds a certain level of severity and duration, resulting in a sensory-motor neuropathy with associated skeletal muscle atrophy. Large myelinated motor fibres appear to be particularly vulnerable. Thus, although the PNS is not an obligate glucose consumer, as is the brain, it appears to be more prone to IIH than the central nervous system when hypoglycaemia is not severe (blood glucose level ≤ 2 mm), possibly reflecting a preferential protection of the brain during periods of inadequate glucose availability. With a primary focus on evidence from experimental animal studies investigating nondiabetic IIH, the present review discusses the effect of IIH on the PNS with a focus on adaptive mechanisms, pathogenesis and histological changes.
Collapse
Affiliation(s)
- V F H Jensen
- Department of Veterinary Disease, Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Diabetes Toxicology and Safety Pharmacology, Novo Nordisk A/S, Maaloev, Denmark
| | | | | | | |
Collapse
|
105
|
Hinder LM, Figueroa-Romero C, Pacut C, Hong Y, Vivekanandan-Giri A, Pennathur S, Feldman EL. Long-chain acyl coenzyme A synthetase 1 overexpression in primary cultured Schwann cells prevents long chain fatty acid-induced oxidative stress and mitochondrial dysfunction. Antioxid Redox Signal 2014; 21:588-600. [PMID: 23991914 PMCID: PMC4086511 DOI: 10.1089/ars.2013.5248] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 08/06/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022]
Abstract
AIMS High circulating long chain fatty acids (LCFAs) are implicated in diabetic neuropathy (DN) development. Expression of the long-chain acyl-CoA synthetase 1 (Acsl1) gene, a gene required for LCFA metabolic activation, is altered in human and mouse diabetic peripheral nerve. We assessed the significance of Acsl1 upregulation in primary cultured Schwann cells. RESULTS Acsl1 overexpression prevented oxidative stress (nitrotyrosine; hydroxyoctadecadienoic acids [HODEs]) and attenuated cellular injury (TUNEL) in Schwann cells following 12 h exposure to LCFAs (palmitate, linoleate, and oleate, 100 μM). Acsl1 overexpression potentiated the observed increase in medium to long-chain acyl-carnitines following 12 h LCFA exposure. Data are consistent with increased mitochondrial LCFA uptake, largely directed to incomplete beta-oxidation. LCFAs uncoupled mitochondrial oxygen consumption from ATP production. Acsl1 overexpression corrected mitochondrial dysfunction, increasing coupling efficiency and decreasing proton leak. INNOVATION Schwann cell mitochondrial function is critical for peripheral nerve function, but research on Schwann cell mitochondrial dysfunction in response to hyperlipidemia is minimal. We demonstrate that high levels of a physiologically relevant mixture of LCFAs induce Schwann cell injury, but that improved mitochondrial uptake and metabolism attenuate this lipotoxicity. CONCLUSION Acsl1 overexpression improves Schwann cell function and survival following high LCFA exposure in vitro; however, the observed endogenous Acsl1 upregulation in peripheral nerve in response to diabetes is not sufficient to prevent the development of DN in murine models of DN. Therefore, targeted improvement in Schwann cell metabolic disposal of LCFAs may improve DN phenotypes.
Collapse
Affiliation(s)
- Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | | | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Yu Hong
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
106
|
Calcium signalling in sensory neurones and peripheral glia in the context of diabetic neuropathies. Cell Calcium 2014; 56:362-71. [PMID: 25149565 DOI: 10.1016/j.ceca.2014.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 12/14/2022]
Abstract
Peripheral sensory nervous system is comprised of neurones with their axons and neuroglia that includes satellite glial cells in sensory ganglia, myelinating, non-myelinating and perisynaptic Schwann cells. Pathogenesis of peripheral diabetic polyneuropathies is associated with aberrant function of both neurones and glia. Deregulated Ca(2+) homoeostasis and aberrant Ca(2+) signalling in neuronal and glial elements contributes to many forms of neuropathology and is fundamental to neurodegenerative diseases. In diabetes both neurones and glia experience metabolic stress and mitochondrial dysfunction which lead to deregulation of Ca(2+) homeostasis and Ca(2+) signalling, which in their turn lead to pathological cellular reactions contributing to development of diabetic neuropathies. Molecular cascades responsible for Ca(2+) homeostasis and signalling, therefore, can be regarded as potential therapeutic targets.
Collapse
|
107
|
In vivo introduction of transgenes into mouse sciatic nerve cells in situ using viral vectors. Nat Protoc 2014; 9:1160-9. [DOI: 10.1038/nprot.2014.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
108
|
Beirowski B. Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 2013; 7:256. [PMID: 24391540 PMCID: PMC3867696 DOI: 10.3389/fncel.2013.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS).
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
109
|
Samara C, Poirot O, Domènech-Estévez E, Chrast R. Neuronal activity in the hub of extrasynaptic Schwann cell-axon interactions. Front Cell Neurosci 2013; 7:228. [PMID: 24324401 PMCID: PMC3839048 DOI: 10.3389/fncel.2013.00228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs). SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.
Collapse
Affiliation(s)
- Chrysanthi Samara
- Department of Medical Genetics, University of Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
110
|
Saab AS, Tzvetanova ID, Nave KA. The role of myelin and oligodendrocytes in axonal energy metabolism. Curr Opin Neurobiol 2013; 23:1065-72. [PMID: 24094633 DOI: 10.1016/j.conb.2013.09.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022]
Abstract
In vertebrates, the myelination of long axons by oligodendrocytes and Schwann cells enables rapid impulse propagation. However, myelin sheaths are not only passive insulators. Oligodendrocytes are also known to support axonal functions and long-term integrity. Some of the underlying mechanisms have now been identified. It could be shown that oligodendrocytes can survive in vivo by aerobic glycolysis. Myelinating oligodendrocytes release lactate through the monocarboxylate transporter MCT1. Lactate is then utilized by axons for mitochondrial ATP generation. Studying axo-glial signalling and energy metabolism will lead to a better understanding of neurodegenerative diseases, in which axonal energy metabolism fails. These include neurological disorders as diverse as multiple sclerosis, leukodystrophies, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Aiman S Saab
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany
| | | | | |
Collapse
|
111
|
Kim ES, Isoda F, Kurland I, Mobbs CV. Glucose-induced metabolic memory in Schwann cells: prevention by PPAR agonists. Endocrinology 2013; 154:3054-66. [PMID: 23709088 PMCID: PMC5393331 DOI: 10.1210/en.2013-1097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major barrier in reversing diabetic complications is that molecular and pathologic effects of elevated glucose persist despite normalization of glucose, a phenomenon referred to as metabolic memory. In the present studies we have investigated the effects of elevated glucose on Schwann cells, which are implicated in diabetic neuropathy. Using quantitative PCR arrays for glucose and fatty acid metabolism, we have found that chronic (>8 wk) 25 mM high glucose induces a persistent increase in genes that promote glycolysis, while inhibiting those that oppose glycolysis and alternate metabolic pathways such as fatty acid metabolism, the pentose phosphate pathway, and trichloroacetic acid cycle. These sustained effects were associated with decreased peroxisome proliferator-activated receptor (PPAR)γ binding and persistently increased reactive oxygen species, cellular NADH, and altered DNA methylation. Agonists of PPARγ and PPARα prevented select effects of glucose-induced gene expression. These observations suggest that Schwann cells exhibit features of metabolic memory that may be regulated at the transcriptional level. Furthermore, targeting PPAR may prevent metabolic memory and the development of diabetic complications.
Collapse
Affiliation(s)
- Esther S Kim
- Department of Neuroscience, Icahn School of Medicine at Mt Sinai School, New York, New York 10029, USA
| | | | | | | |
Collapse
|
112
|
Campbell GR, Mahad DJ. Metabolic support of axons by oligodendrocytes: Implications for multiple sclerosis. Mult Scler Relat Disord 2013; 3:28-30. [PMID: 25877969 DOI: 10.1016/j.msard.2013.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Graham R Campbell
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Don J Mahad
- Centre for Neuroregeneration, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom.
| |
Collapse
|
113
|
Long L, Huang Y, Wu H, Luan W, Zhang Q, Wen H, Ding T, Wang Y. Dynamic change of Prohibitin2 expression in rat sciatic nerve after crush. Cell Mol Neurobiol 2013; 33:689-98. [PMID: 23568660 DOI: 10.1007/s10571-013-9935-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.
Collapse
Affiliation(s)
- Long Long
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Camacho A, Huang JK, Delint-Ramirez I, Yew Tan C, Fuller M, Lelliott CJ, Vidal-Puig A, Franklin RJM. Peroxisome proliferator-activated receptor gamma-coactivator-1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. Eur J Neurosci 2013; 38:2672-83. [DOI: 10.1111/ejn.12281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Alberto Camacho
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Jeffrey K. Huang
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine; Cambridge; UK
| | - Ilse Delint-Ramirez
- Department of Pharmacology; Faculty of Medicine; Autonomous University of Nuevo León; Monterrey; Mexico
| | - Chong Yew Tan
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Maria Fuller
- Department of Genetics and Molecular Pathology; SA Pathology; Adelaide; SA; Australia
| | | | - Antonio Vidal-Puig
- Metabolic Research Laboratories; Institute of Metabolic Science; Addenbrooke's Treatment Centre; Addenbrooke's Hospital; University of Cambridge; Cambridge; UK
| | - Robin J. M. Franklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Veterinary Medicine; Cambridge; UK
| |
Collapse
|
115
|
Abstract
Early axon loss is a common feature of many neurodegenerative disorders. It renders neurons functionally inactive, or less active if axon branches are lost, in a manner that is often irreversible. In the CNS, there is no long-range axon regeneration and even peripheral nerve axons are unlikely to reinnervate their targets while the cause of the problem persists. In most disorders, axon degeneration precedes cell death so it is not simply a consequence of it, and it is now clear that axons have at least one degeneration mechanism that differs from that of the soma. It is important to understand these degeneration mechanisms and their contribution to axon loss in neurodegenerative disorders. In this way, it should become possible to prevent axon loss as well as cell death. This special edition considers the roles and mechanisms of axon degeneration in amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, hereditary spastic paraplegia, ischemic injury, traumatic brain injury, Alzheimer's disease, glaucoma, Huntington's disease and Parkinson's disease. Using examples from these and other disorders, this introduction considers some of the reasons for axon vulnerability. It also illustrates how molecular genetics and studies of Wallerian degeneration have contributed to our understanding of axon degeneration mechanisms.
Collapse
|
116
|
Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 2013; 36:439-49. [PMID: 23725712 DOI: 10.1016/j.tins.2013.04.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/20/2013] [Accepted: 04/24/2013] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication affecting more than one third of diabetes mellitus (DM) patients. Although all cellular components participating in peripheral nerve function are exposed to and affected by the metabolic consequences of DM, nodal regions, areas of intense interactions between Schwann cells and axons, may be particularly sensitive to DM-induced alterations. Nodes are enriched in insulin receptors, glucose transporters, Na(+) and K(+) channels, and mitochondria, all implicated in the development and progression of DPN. Latest results particularly reinforce the idea that changes in ion-channel function and energy metabolism, both of which depend on axon-glia crosstalk, are among the important contributors to DPN. These insights provide a basis for new therapeutic approaches aimed at delaying or reversing DPN.
Collapse
Affiliation(s)
- Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | |
Collapse
|
117
|
When Schwann cells conspire with mitochondria, neighboring axons are under attack by glia-derived neurotoxic lipids. Neuron 2013; 77:801-3. [PMID: 23473310 DOI: 10.1016/j.neuron.2013.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this issue of Neuron, Viader et al. (2013) report on the production of toxic lipids by Schwann cells deficient in mitochondrial respiration, which are capable of destroying neighboring axons. This may have implications for understanding the neurobiology and treatment of mitochondrial neuropathies.
Collapse
|
118
|
Höke A, Simpson DM, Freeman R. Challenges in developing novel therapies for peripheral neuropathies: a summary of The Foundation for Peripheral Neuropathy Scientific Symposium 2012. J Peripher Nerv Syst 2013; 18:1-6. [PMID: 23521637 DOI: 10.1111/jns5.12000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Roy Freeman
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center; Boston MA USA
| |
Collapse
|
119
|
Viader A, Sasaki Y, Kim S, Strickland A, Workman CS, Yang K, Gross RW, Milbrandt J. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron 2013; 77:886-98. [PMID: 23473319 PMCID: PMC3594792 DOI: 10.1016/j.neuron.2013.01.012] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2013] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells [SCs]) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy secondary to SC mitochondrial dysfunction (Tfam-SCKOs). We show that disruption of SC mitochondria activates a maladaptive integrated stress response (ISR) through the actions of heme-regulated inhibitor (HRI) kinase, and causes a shift in lipid metabolism away from fatty acid synthesis toward oxidation. These alterations in SC lipid metabolism result in depletion of important myelin lipid components as well as in accumulation of acylcarnitines (ACs), an intermediate of fatty acid β-oxidation. Importantly, we show that ACs are released from SCs and induce axonal degeneration. A maladaptive ISR as well as altered SC lipid metabolism are thus underlying pathological mechanisms in mitochondria-related peripheral neuropathies.
Collapse
Affiliation(s)
- Andreu Viader
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Sungsu Kim
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Cayce S. Workman
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Richard W. Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
120
|
Abstract
There has been considerable progress during the past 24 years in the molecular genetics of mitochondrial DNA and related nuclear DNA mutations, and more than 100 nerve biopsies from hereditary neuropathies related to mitochondrial cytopathy have been accurately examined. Neuropathies were first reported in diseases related to point mutations of mitochondrial DNA, but they proved to be a prominent feature of the phenotype in mitochondrial disorders caused by defects in nuclear DNA, particularly in 3 genes: polymerase gamma 1 (POLG1), mitofusin 2 (MFN2), and ganglioside-induced differentiation-associated protein 1 (GDAP1). Most patients have sensory-motor neuropathy, sometimes associated with ophthalmoplegia, ataxia, seizures, parkinsonism, myopathy, or visceral disorders. Some cases are caused by consanguinity, but most are sporadic with various phenotypes mimicking a wide range of other etiologies. Histochemistry on muscle biopsy, as well as identification of crystalloid inclusions at electron microscopy, may provide a diagnostic clue to mitochondriopathy, but nerve biopsy is often less informative. Nevertheless, enlarged mitochondria containing distorted or amputated cristae are highly suggestive, particularly when located in the Schwann cell cytoplasm. Also noticeable are clusters of regenerating myelinated fibers surrounded by concentric Schwann cell processes, and such onion bulb-like formations are frequently observed in neuropathies caused by GDAP1 mutations.
Collapse
|
121
|
Abstract
The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.
Collapse
Affiliation(s)
- Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
122
|
|
123
|
Namazi H. Re: Karsidag S, Akcal A, Sahin S, et al. Neurophysiological and morphological responses to treatment with acetyl-L-carnitine in a sciatic nerve injury model: preliminary data. J Hand Surg Eur. 2012, 37: 529-536. J Hand Surg Eur Vol 2012; 37:584. [PMID: 22753396 DOI: 10.1177/1753193412448279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H. Namazi
- Shiraz University of Medical Sciences, Department of Orthopaedic Surgery, Shahid Chamran Hospital, Shiraz, Iran
| |
Collapse
|
124
|
Wang L, Pytel P, Feltri ML, Wrabetz L, Roos RP. Selective knockdown of mutant SOD1 in Schwann cells ameliorates disease in G85R mutant SOD1 transgenic mice. Neurobiol Dis 2012; 48:52-7. [PMID: 22668777 DOI: 10.1016/j.nbd.2012.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/09/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022] Open
Abstract
Mutants of superoxide dismutase type 1 (mtSOD1) that have full dismutase activity (e.g., G37R) as well as none (e.g., G85R) cause familial amyotrophic lateral sclerosis (FALS), indicating that mtSOD1-induced FALS results from a toxicity rather than loss in SOD1 enzymatic activity. Still, it has remained unclear whether mtSOD1 dismutase activity can influence disease. A previous study demonstrated that Cre-mediated knockdown of G37R expression in Schwann cells (SCs) of G37R transgenic mice shortened the late phase of disease and survival. These results suggested that the neuroprotective effect of G37R expressed in SCs was greater than its toxicity, presumably because its dismutase activity counteracted reactive oxygen species (ROS). In order to further investigate this, we knocked down G85R in SCs by crossing G85R(flox) mice with myelin-protein-zero (P(0)):Cre mice, which express Cre recombinase in SCs. Knockdown of G85R in SCs of G85R mice delayed disease onset and extended survival indicating that G85R expression in SCs is neurotoxic. These results demonstrate differences in the effect on disease of dismutase active vs. inactive mtSOD1 suggesting that both a loss as well as gain in function of mtSOD1 influence FALS pathogenesis. The results suggest that mtSOD1-induced FALS treatment may have to be adjusted depending on the cell type targeted and particular mtSOD1 involved.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Neurology, The University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
125
|
Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012; 485:517-21. [PMID: 22622581 DOI: 10.1038/nature11007] [Citation(s) in RCA: 996] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 03/02/2012] [Indexed: 11/09/2022]
Abstract
Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon-glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon-glia metabolic coupling serves a physiological function.
Collapse
Affiliation(s)
- Ursula Fünfschilling
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012; 59:3-9. [PMID: 22537849 DOI: 10.1016/j.cyto.2012.03.027] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/07/2012] [Accepted: 03/29/2012] [Indexed: 11/23/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), a dose-limiting neurotoxic effect of chemotherapy, is the most common reason for early cessation of cancer treatment. This can result in an increased risk of recurrence and decreased survival rate. Inflammatory cascade activation, proinflammatory cytokine upregulation, and neuro-immune communication pathways play essential roles in the initiation and progression of CIPN. Most notably, TNF-α, IL-1β, IL-6, and CCL2 are involved in neuropathic pain. Further elucidation of the role of these cytokines could lead to their development and use as biomarkers for predicting the onset of painful peripheral neuropathy and early axonal damage. In this review, we provide evidence for the involvement of cytokines in CIPN, the possible underlying mechanisms, and their use as potential therapeutic targets and biomarkers to prevent and improve the painful peripheral neuropathy related to chemotherapeutic agents.
Collapse
|
127
|
Abstract
In developing peripheral nerves, differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years, there has been an increased understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination, together with a growing appreciation of some of the signaling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal postnatal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signaling in both the longitudinal and radial growth of the myelinating Schwann cell.
Collapse
|
128
|
Chowdhury SKR, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 2012; 51:56-65. [PMID: 22446165 DOI: 10.1016/j.nbd.2012.03.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/22/2012] [Accepted: 03/01/2012] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy is a neurological complication of diabetes that causes significant morbidity and, because of the obesity-driven rise in incidence of type 2 diabetes, is becoming a major international health problem. Mitochondrial phenotype is abnormal in sensory neurons in diabetes and may contribute to the etiology of diabetic neuropathy where a distal dying-back neurodegenerative process is a key component contributing to fiber loss. This review summarizes the major features of mitochondrial dysfunction in neurons and Schwann cells in human diabetic patients and in experimental animal models (primarily exhibiting type 1 diabetes). This article attempts to relate these findings to the development of critical neuropathological hallmarks of the disease. Recent work reveals that hyperglycemia in diabetes triggers nutrient excess in neurons that, in turn, mediates a phenotypic change in mitochondrial biology through alteration of the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signaling axis. This vital energy sensing metabolic pathway modulates mitochondrial function, biogenesis and regeneration. The bioenergetic phenotype of mitochondria in diabetic neurons is aberrant due to deleterious alterations in expression and activity of respiratory chain components as a direct consequence of abnormal AMPK/PGC-1α signaling. Utilization of innovative respirometry equipment to analyze mitochondrial function of cultured adult sensory neurons from diabetic rodents shows that the outcome for cellular bioenergetics is a reduced adaptability to fluctuations in ATP demand. The diabetes-induced maladaptive process is hypothesized to result in exhaustion of the ATP supply in the distal nerve compartment and induction of nerve fiber dissolution. The role of mitochondrial dysfunction in the etiology of diabetic neuropathy is compared with other types of neuropathy with a distal dying-back pathology such as Friedreich ataxia, Charcot-Marie-Tooth disease type 2 and human immunodeficiency virus-associated distal-symmetric neuropathy.
Collapse
Affiliation(s)
- Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | | | | |
Collapse
|
129
|
Pereira JA, Lebrun-Julien F, Suter U. Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci 2011; 35:123-34. [PMID: 22192173 DOI: 10.1016/j.tins.2011.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022]
Abstract
Glial cells and neurons are engaged in a continuous and highly regulated bidirectional dialog. A remarkable example is the control of myelination. Oligodendrocytes in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS) wrap their plasma membranes around axons to organize myelinated nerve fibers that allow rapid saltatory conduction. The functionality of this system is critical, as revealed by numerous neurological diseases that result from deregulation of the system, including multiple sclerosis and peripheral neuropathies. In this review we focus on PNS myelination and present a conceptual framework that integrates crucial signaling mechanisms with basic SC biology. We will highlight signaling hubs and overarching molecular mechanisms, including genetic, epigenetic, and post-translational controls, which together regulate the interplay between SCs and axons, extracellular signals, and the transcriptional network.
Collapse
Affiliation(s)
- Jorge A Pereira
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
130
|
Estacion M, Han C, Choi JS, Hoeijmakers JGJ, Lauria G, Drenth JPH, Gerrits MM, Dib-Hajj SD, Faber CG, Merkies ISJ, Waxman SG. Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function variant of NaV1.7. Mol Pain 2011; 7:92. [PMID: 22136189 PMCID: PMC3248882 DOI: 10.1186/1744-8069-7-92] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sodium channel NaV1.7 is preferentially expressed within dorsal root ganglia (DRG), trigeminal ganglia and sympathetic ganglion neurons and their fine-diamter axons, where it acts as a threshold channel, amplifying stimuli such as generator potentials in nociceptors. Gain-of-function mutations and variants (single amino acid substitutions) of NaV1.7 have been linked to three pain syndromes: Inherited Erythromelalgia (IEM), Paroxysmal Extreme Pain Disorder (PEPD), and Small Fiber Neuropathy (SFN). IEM is characterized clinically by burning pain and redness that is usually focused on the distal extremities, precipitated by mild warmth and relieved by cooling, and is caused by mutations that hyperpolarize activation, slow deactivation, and enhance the channel ramp response. PEPD is characterized by perirectal, periocular or perimandibular pain, often triggered by defecation or lower body stimulation, and is caused by mutations that severely impair fast-inactivation. SFN presents a clinical picture dominated by neuropathic pain and autonomic symptoms; gain-of-function variants have been reported to be present in approximately 30% of patients with biopsy-confirmed idiopathic SFN, and functional testing has shown altered fast-inactivation, slow-inactivation or resurgent current. In this paper we describe three patients who house the NaV1.7/I228M variant. METHODS We have used clinical assessment of patients, quantitative sensory testing and skin biopsy to study these patients, including two siblings in one family, in whom genomic screening demonstrated the I228M NaV1.7 variant. Electrophysiology (voltage-clamp and current-clamp) was used to test functional effects of the variant channel. RESULTS We report three different clinical presentations of the I228M NaV1.7 variant: presentation with severe facial pain, presentation with distal (feet, hands) pain, and presentation with scalp discomfort in three patients housing this NaV1.7 variant, two of which are from a single family. We also demonstrate that the NaV1.7/I228M variant impairs slow-inactivation, and produces hyperexcitability in both trigeminal ganglion and DRG neurons. CONCLUSION Our results demonstrate intra- and interfamily phenotypic diversity in pain syndromes produced by a gain-of-function variant of NaV1.7.
Collapse
Affiliation(s)
- Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| | - Chongyang Han
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| | - Jin-Sung Choi
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
- College of Pharmacy, Catholic University of Korea, Bucheon, South Korea
| | - Janneke GJ Hoeijmakers
- Department of Neurology, University Medical Center Maastricht, Maastricht, the Netherlands
| | - Giuseppe Lauria
- Neuromuscular Diseases Unit, IRCCS Foundation, "Carlo Besta", Milan, Italy
| | - Joost PH Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, University Medical Center Maastricht, Maastricht, the Netherlands
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| | - Catharina G Faber
- Department of Neurology, University Medical Center Maastricht, Maastricht, the Netherlands
| | - Ingemar SJ Merkies
- Department of Neurology, University Medical Center Maastricht, Maastricht, the Netherlands
- Department of Neurology, Spaarne Hospital, Hoofddorp, the Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, and Center for Neuroscience and Regeneration Research, Veterans Affairs Medical Center, West Haven, CT 06516, USA
| |
Collapse
|