101
|
Pascal A, Li N, Lechtenberg KJ, Rosenberg J, Airan RD, James ML, Bouley DM, Pauly KB. Histologic evaluation of activation of acute inflammatory response in a mouse model following ultrasound-mediated blood-brain barrier using different acoustic pressures and microbubble doses. Nanotheranostics 2020; 4:210-223. [PMID: 32802731 PMCID: PMC7425053 DOI: 10.7150/ntno.49898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/05/2022] Open
Abstract
Rationale: Localized blood-brain barrier (BBB) opening can be achieved with minimal to no tissue damage by applying pulsed focused ultrasound alongside a low microbubble (MB) dose. However, relatively little is known regarding how varying treatment parameters affect the degree of neuroinflammation following BBB opening. The goal of this study was to evaluate the activation of an inflammatory response following BBB opening as a function of applied acoustic pressure using two different microbubble doses. Methods: Mice were treated with 650 kHz ultrasound using varying acoustic peak negative pressures (PNPs) using two different MB doses, and activation of an inflammatory response, in terms of microglial and astrocyte activation, was assessed one hour following BBB opening using immunohistochemical staining. Harmonic and subharmonic acoustic emissions (AEs) were monitored for all treatments with a passive cavitation detector, and contrast-enhanced magnetic resonance imaging (CE-MRI) was performed following BBB opening to quantify the degree of opening. Hematoxylin and eosin-stained slides were assessed for the presence of microhemorrhage and edema. Results: For each MB dose, BBB opening was achieved with minimal activation of microglia and astrocytes using a PNP of 0.15 MPa. Higher PNPs were associated with increased activation, with greater increases associated with the use of the higher MB dose. Additionally, glial activation was still observed in the absence of histopathological findings. We found that CE-MRI was most strongly correlated with the degree of activation. While acoustic emissions were not predictive of microglial or astrocyte activation, subharmonic AEs were strongly associated with marked and severe histopathological findings. Conclusions: Our study demonstrated that there were mild histologic changes and activation of the acute inflammatory response using PNPs ranging from 0.15 MPa to 0.20 MPa, independent of MB dose. However, when higher PNPs of 0.25 MPa or above were applied, the same applied PNP resulted in more severe and widespread histological findings and activation of the acute inflammatory response when using the higher MB dose. The potential activation of the inflammatory response following ultrasound-mediated BBB opening should be considered when treating patients to maximize therapeutic benefit.
Collapse
Affiliation(s)
- Aurea Pascal
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Kendra J Lechtenberg
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Raag D Airan
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, California 94305, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| | - Donna M Bouley
- Department of Comparative Medicine, Stanford University, Stanford, California 94305, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
102
|
Brown TD, Habibi N, Wu D, Lahann J, Mitragotri S. Effect of Nanoparticle Composition, Size, Shape, and Stiffness on Penetration Across the Blood–Brain Barrier. ACS Biomater Sci Eng 2020; 6:4916-4928. [DOI: 10.1021/acsbiomaterials.0c00743] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tyler D. Brown
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Nahal Habibi
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Debra Wu
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Joerg Lahann
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02318, United States
- Wyss Institute of Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
103
|
Todd N, McDannold N, Borsook D. Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neurosci Biobehav Rev 2020; 115:238-250. [PMID: 32534900 PMCID: PMC7483565 DOI: 10.1016/j.neubiorev.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Focused ultrasound (FUS) is a promising technology for facilitating treatment of brain diseases including chronic pain. Focused ultrasound is a unique modality for delivering therapeutic levels of energy into the body, including the central nervous system (CNS). It is non-invasive and can target spatially localized effects through the intact skull to cortical or subcortical regions of the brain. FUS can achieve three different mechanisms of action in the brain that are relevant for chronic pain treatment: (1) localized thermal ablation of neural tissue; (2) localized and transient disruption of the blood-brain barrier for targeted drug delivery to CNS structures; and (3) inhibition or stimulation of neuronal activity in targeted regions. This review provides an in-depth look at the technology of FUS with emphasis placed on applications to CNS-based treatments of chronic pain. While still in the early stages of clinical translation and with some technical challenges remaining, we suggest that FUS has great potential as a novel approach for manipulating CNS networks involved in pain treatment.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States.
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
104
|
Therapeutic Potentials of Localized Blood-Brain Barrier Disruption by Noninvasive Transcranial Focused Ultrasound: A Technical Review. J Clin Neurophysiol 2020; 37:104-117. [PMID: 32142021 DOI: 10.1097/wnp.0000000000000488] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The demands for region-specific, noninvasive therapies for neurologic/psychiatric conditions are growing. The rise of transcranial focused ultrasound technology has witnessed temporary and reversible disruptions of the blood-brain barrier in the brain with exceptional control over the spatial precisions and depth, all in a noninvasive manner. Starting with small animal studies about a decade ago, the technique is now being explored in nonhuman primates and humans for the assessment of its efficacy and safety. The ability to transfer exogenous/endogenous therapeutic agents, cells, and biomolecules across the blood-brain barrier opens up new therapeutic avenues for various neurologic conditions, with a possibility to modulate the excitability of regional brain function. This review addresses the technical fundamentals, sonication parameters, experimental protocols, and monitoring techniques to examine the efficacy/safety in focused ultrasound-mediated blood-brain barrier disruption and discuss its potential translations to clinical use.
Collapse
|
105
|
TRPV4 promotes acoustic wave-mediated BBB opening via Ca 2+/PKC-δ pathway. J Adv Res 2020; 26:15-28. [PMID: 33133680 PMCID: PMC7584681 DOI: 10.1016/j.jare.2020.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Numerous studies have shown the ability of low-energy acoustic waves such as focused ultrasound or shockwave to transiently open blood-brain barrier (BBB) and facilitate drug delivery to the brain. Preclinical and clinical evidences have well demonstrated the efficacy and safety in treating various brain disorders. However, the molecular mechanisms of acoustic waves on the BBB are still not fully understood. Objectives The present study aimed at exploring the possible molecular mechanisms of acoustic wave stimulation on brains. Methods: Briefly describe the experimental design The left hemisphere of the rat‘s brain was treated with pulsed ultrasound from a commercial focused shockwave or a planar ultrasound device, and the right hemisphere served as a control. One hour after the mechanical wave stimulation or overnight, the rats were sacrificed and the brains were harvested for protein or histological analysis. Agonists and antagonists related to the signal transduction pathways of tight junction proteins were used to investigate the possible intracellular mechanisms. Results Intracellular signal transduction analysis shows calcium influx through transient receptor potential vanilloid 4 (TRPV4) channels, and the activation of PKC-δ pathway to mediate dissociation of ZO-1 and occludin after acoustic wave stimulation. The activation of TRPV4 or PKC-δ signaling further increased the expression level of TRPV4, suggesting a feedback loop to regulate BBB permeability. Moreover, the tight junction proteins dissociation can be reversed by administration of PKC-δ inhibitor and TRPV4 antagonist. Conclusion The present study shows the crucial role of TRPV4 in acoustic wave-mediated BBB permeability, specifically its effect on compromising tight junction proteins, ZO-1 and occludin. Our findings provide a new molecular perspective to explain acoustic wave-mediated BBB opening. Moreover, activation of TRPV4 by agonists may reduce the threshold intensity level of acoustic waves for BBB opening, which may prevent undesirable mechanical damages while maintaining efficient BBB opening.
Collapse
|
106
|
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020; 10:739. [PMID: 32582530 PMCID: PMC7290051 DOI: 10.3389/fonc.2020.00739] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Kurt V. Shaffer
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chaoqun Lin
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
107
|
Todd N, Angolano C, Ferran C, Devor A, Borsook D, McDannold N. Secondary effects on brain physiology caused by focused ultrasound-mediated disruption of the blood-brain barrier. J Control Release 2020; 324:450-459. [PMID: 32470359 DOI: 10.1016/j.jconrel.2020.05.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Focused ultrasound (FUS) combined with microbubbles is a non-invasive method for targeted, reversible disruption of the blood-brain barrier (FUS-BBB opening). This approach holds great promise for improving delivery of therapeutics to the brain. In order to achieve this clinically important goal, the approach necessarily breaks a protective barrier, temporarily, which plays a fundamental role in maintaining a homeostatic environment in the brain. Preclinical and clinical research has identified a set of treatment parameters under which this can be performed safely, whereby the BBB is disrupted to the point of being permeable to normally non-penetrant agents without causing significant acute damage to endothelial or neuronal cells. Much of the early work in this field focused on engineering questions around how to achieve optimal delivery of therapeutics via BBB disruption. However, there is increasing interest in addressing biological questions related to whether and how various aspects of neurophysiology might be affected when this fundamental protective barrier is compromised by the specific mechanisms of FUS-BBB opening. Improving our understanding of these secondary effects is becoming vital now that FUS-BBB opening treatments have entered clinical trials. Such information would help to safely expand FUS-BBB opening protocols into a wider range of drug delivery applications and may even lead to new types of treatments. In this paper, we will critically review our current knowledge of the secondary effects caused by FUS-BBB opening on brain physiology, identify areas that remain understudied, and discuss how a better understanding of these processes can be used to safely advance FUS-BBB opening into a wider range of clinical applications.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Cleide Angolano
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
108
|
Rich MC, Sherwood J, Bartley AF, Whitsitt QA, Lee M, Willoughby WR, Dobrunz LE, Bao Y, Lubin FD, Bolding M. Focused ultrasound blood brain barrier opening mediated delivery of MRI-visible albumin nanoclusters to the rat brain for localized drug delivery with temporal control. J Control Release 2020; 324:172-180. [PMID: 32376461 DOI: 10.1016/j.jconrel.2020.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing need for noninvasive tools to manipulate brain activity with molecular, spatial and temporal specificity. Here we have investigated the use of MRI-visible, albumin-based nanoclusters for noninvasive, localized and temporally specific drug delivery to the rat brain. We demonstrated that IV injected nanoclusters could be deposited into target brain regions via focused ultrasound facilitated blood brain barrier opening. We showed that nanocluster location could be confirmed in vivo with MRI. Additionally, following confirmation of nanocluster delivery, release of the nanocluster payload into brain tissue can be triggered by a second focused ultrasound treatment performed without circulating microbubbles. Release of glutamate from nanoclusters in vivo caused enhanced c-Fos expression, indicating that the loading capacity of the nanoclusters is sufficient to induce neuronal activation. This novel technique for noninvasive stereotactic drug delivery to the brain with temporal specificity could provide a new way to study brain circuits in vivo preclinically with high relevance for clinical translation.
Collapse
Affiliation(s)
- Megan C Rich
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jennifer Sherwood
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA
| | - Aundrea F Bartley
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Quentin A Whitsitt
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Magdelene Lee
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA
| | - W R Willoughby
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lynn E Dobrunz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Yuping Bao
- Department of Chemical and Biological Engineering, University of Alabama at Tuscaloosa, Tuscaloosa, AL 35487, USA.
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Mark Bolding
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
109
|
Wang S, Wu CC, Zhang H, Karakatsani ME, Wang YF, Han Y, Chaudhary KR, Wuu CS, Konofagou E, Cheng SK. Focused ultrasound induced-blood-brain barrier opening in mouse brain receiving radiosurgery dose of radiation enhances local delivery of systemic therapy. Br J Radiol 2020; 93:20190214. [PMID: 31999201 DOI: 10.1259/bjr.20190214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Investigate the temporal effects of focused ultrasound (FUS)-induced blood-brain barrier (BBB) opening in post-radiotherapy mouse brains. METHODS AND MATERIALS C57B6 mice without tumors were used to simulate the scenario after gross total resection (GTR) of brain tumor. Radiation dose of 6 Gy x 5 was delivered to one-hemisphere of the mouse brain. FUS-induced BBB-opening was delivered to the irradiated and non-irradiated brain and was confirmed with MRI. Dynamic MRI was performed to evaluate blood vessel permeability. Two time points were selected: acute (2 days after radiation) and chronic (31 days after radiation). RESULTS BBB opening was achieved after FUS in the irradiated field as compared to the contralateral non-irradiated brain without any decrease in permeability. In the acute group, a trend for higher gadolinium concentration was observed in radiated field. CONCLUSION Localized BBB-opening can be successfully achieved without loss of efficacy by FUS as early as 2 days after radiotherapy. ADVANCES IN KNOWLEDGE Adjuvant radiation after GTR is commonly used for brain tumors. Focused ultrasound facilitated BBB-opening can be achieved without loss of efficacy in the post-irradiated brain as early as 2 days after radiation therapy. This allows for further studies on early application of FUS-mediated BBB-opening.
Collapse
Affiliation(s)
- Shutao Wang
- Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Radiation Oncology, Columbia University Medical Center, New York, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Medical Center, New York, USA
| | - Hairong Zhang
- Department of Biomedical Engineering, Columbia University, New York, USA
| | | | - Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Medical Center, New York, USA
| | - Yang Han
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Kunal R Chaudhary
- Department of Radiation Oncology, Columbia University Medical Center, New York, USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Medical Center, New York, USA
| | - Elisa Konofagou
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Simon K Cheng
- Department of Radiation Oncology, Columbia University Medical Center, New York, USA
| |
Collapse
|
110
|
Duc NM, Keserci B. Emerging clinical applications of high-intensity focused ultrasound. ACTA ACUST UNITED AC 2020; 25:398-409. [PMID: 31287428 DOI: 10.5152/dir.2019.18556] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-intensity focused ultrasound (HIFU) is a minimally-invasive and non-ionizing promising technology and has been assessed for its role in the treatment of not only primary tumors but also metastatic lesions under the guidance of ultrasound or magnetic resonance imaging. Its performance is notably effective in neurologic, genitourinary, hepato-pancreato-biliary, musculoskeletal, oncologic, and other miscellaneous applications. In this article, we reviewed the emerging technology of HIFU and its clinical applications.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Bilgin Keserci
- Department of Radiology, Universiti Sains Malaysia School of Medical Sciences, Kelantan, Malaysia; Department of Radiology, Hospital Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
111
|
Wang X, Li G, Guo J, Zhang Z, Zhang S, Zhu Y, Cheng J, Yu L, Ji Y, Tao J. Kv1.3 Channel as a Key Therapeutic Target for Neuroinflammatory Diseases: State of the Art and Beyond. Front Neurosci 2020; 13:1393. [PMID: 31992966 PMCID: PMC6971160 DOI: 10.3389/fnins.2019.01393] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
It remains a challenge for the effective treatment of neuroinflammatory disease, including multiple sclerosis (MS), stroke, epilepsy, and Alzheimer’s and Parkinson’s disease. The voltage-gated potassium Kv1.3 channel is of interest, which is considered as a novel therapeutic target for treating neuroinflammatory disorders due to its crucial role in subsets of T lymphocytes as well as microglial cells. Toxic animals, such as sea anemones, scorpions, spiders, snakes, and cone snails, can produce a variety of toxins that act on the Kv1.3 channel. The Stichodactyla helianthus K+ channel blocking toxin (ShK) from the sea anemone S. helianthus is proved as a classical blocker of Kv1.3. One of the synthetic analogs ShK-186, being developed as a therapeutic for autoimmune diseases, has successfully completed first-in-man Phase 1 trials. In addition to addressing the recent progress on the studies underlying the pharmacological characterizations of ShK on MS, the review will also explore the possibility for clinical treatment of ShK-like Kv1.3 blocking polypeptides on other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Guoyi Li
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingkang Guo
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Zhiping Zhang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Shuzhang Zhang
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China
| | - Yudan Zhu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiwei Cheng
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Yu
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- Institute of Biomembrane and Biopharmaceutics, Shanghai University, Shanghai, China,Xinhua Translational Institute for Cancer Pain, Shanghai, China
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| |
Collapse
|
112
|
Inserra C, Regnault G, Cleve S, Mauger C, Doinikov AA. Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. III. Case of self-interacting modes n-n. Phys Rev E 2020; 101:013111. [PMID: 32069617 DOI: 10.1103/physreve.101.013111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 11/07/2022]
Abstract
This paper is the continuation of work done in our previous papers [A. A. Doinikov et al., Phys. Rev. E 100, 033104 (2019)2470-004510.1103/PhysRevE.100.033104; Phys. Rev. E 100, 033105 (2019)].2470-004510.1103/PhysRevE.100.033105 The overall aim of the study is to develop a theory for modeling the velocity field of acoustic microstreaming produced by nonspherical oscillations of an acoustically driven gas bubble. In our previous papers, general equations have been derived to describe the velocity field of acoustic microstreaming produced by modes m and n of bubble oscillations. After solving these general equations for some particular cases of modal interactions (cases 0-n, 1-1, and 1-m), in this paper the general equations are solved analytically for the case that acoustic microstreaming results from the self-interaction of an arbitrary surface mode n≥1. Solutions are expressed in terms of complex mode amplitudes, meaning that the mode amplitudes are assumed to be known and serve as input data for the calculation of the velocity field of acoustic microstreaming. No restrictions are imposed on the ratio of the bubble radius to the viscous penetration depth. The self-interaction results in specific streaming patterns: a large-scale cross pattern and small recirculation zones in the vicinity of the bubble interface. Particularly the spatial organization of the recirculation zones is unique for a given surface mode and therefore appears as a signature of the n-n interaction. Experimental streaming patterns related to this interaction are obtained and good agreement is observed with the theoretical model.
Collapse
Affiliation(s)
- Claude Inserra
- Univ Lyon, Université Lyon 1, Centre Léon Bérard, INSERM, LabTAU, F-69003 Lyon, France
| | - Gabriel Regnault
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, CNRS, LMFA, UMR 5509, F-69134 Écully, France
| | - Sarah Cleve
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, CNRS, LMFA, UMR 5509, F-69134 Écully, France
| | - Cyril Mauger
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, CNRS, LMFA, UMR 5509, F-69134 Écully, France
| | - Alexander A Doinikov
- Univ Lyon, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon I, CNRS, LMFA, UMR 5509, F-69134 Écully, France
| |
Collapse
|
113
|
Omata D, Unga J, Suzuki R, Maruyama K. Lipid-based microbubbles and ultrasound for therapeutic application. Adv Drug Deliv Rev 2020; 154-155:236-244. [PMID: 32659255 DOI: 10.1016/j.addr.2020.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Microbubbles with diagnostic ultrasound have had a long history of use in the medical field. In recent years, the therapeutic application of the combination of microbubbles and ultrasound, called sonoporation, has received increased attention as microbubble oscillation or collapse close to various barriers in the body was recognized to potentially open those barriers, increasing drug transport across them. In this review, we aimed to describe the development of lipid-stabilized microbubbles equipped with functions, such as long circulation and drug loading, and the therapeutic application of sonoporation for tumor-targeted therapy, brain-targeted therapy, and immunotherapy. We also attempted to discuss the current status of the field and potential future developments.
Collapse
|
114
|
Barth RF, Grecula JC. Boron neutron capture therapy at the crossroads - Where do we go from here? Appl Radiat Isot 2019; 160:109029. [PMID: 32351210 DOI: 10.1016/j.apradiso.2019.109029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023]
Abstract
As elegant as is the concept upon which Boron Neutron Capture Therapy (BNCT) is based, unfortunately it has not gained widespread acceptance by the physicians who are treating cancer patients on a daily basis. The question is why? Very simply put, the clinical results obtained in treating patients with high grade gliomas and recurrent tumors of the head and neck region have not been convincing enough to produce more interest in BNCT as a cancer treatment modality. There are a variety of reasons for this, one of the most important of which has been its dependency on nuclear reactors as neutron sources. With the advent of accelerator based neutron sources (ABNS), this hopefully will be addressed. If the results obtained from ongoing and soon to be initiated clinical trials can at least demonstrate equivalency to those obtained with nuclear reactors, this should address the first problem. The second problem relates to boron delivery agents, and despite the considerable efforts of chemists and biologists over the past 50 years, there are only two drugs that currently are being used clinically, sodium borocaptate (BSH) and boronophenylalanine (BPA). It is widely recognized that these two drugs are less than ideal. Perhaps new and more effective boron delivery agents will finally appear on the scene, but barring that, we will address the question of what can be done now to make BNCT a more effective cancer treatment modality.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, OH, 43210, USA.
| | - John C Grecula
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
115
|
Choi H, Lee EH, Han M, An SH, Park J. Diminished Expression of P-glycoprotein Using Focused Ultrasound Is Associated With JNK-Dependent Signaling Pathway in Cerebral Blood Vessels. Front Neurosci 2019; 13:1350. [PMID: 31920511 PMCID: PMC6928061 DOI: 10.3389/fnins.2019.01350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
MRI-guided focused ultrasound (MRgFUS) combined with microbubbles (MBs) is a promising technology that can facilitate drug delivery through a temporarily disrupted blood-brain barrier (BBB) and induce the down-regulation of P-glycoprotein (P-gp) expression on the blood vessels. Despite the increasing evidence regarding the down-regulation of P-gp expression after MRgFUS BBB disruption (BBBD), its underlying molecular events remain unclear. The aim of this study was to evaluate the underlying mechanism of FUS BBBD-mediated P-gp down-regulation. While our results showed down-regulation of P-gp at 24 h post-BBBD in transcriptional and translational levels, restoration to the normal expression appeared at different time points for transcriptional (72 h) and translational (120 h) levels. In addition, the signaling molecule, JNK, was significantly activated in the cerebral blood vessels at 24 h post-BBBD. Although P-gp levels were significantly decreased, the expression levels of proteins involved in the integrity of blood vessels, such as Glut1, ZO-1 and occludin, were not decreased at 24 h post-BBBD. Our study suggests that the JNK signaling pathway is involved in the regulation of FUS-induced P-gp expression, without affecting vessel integrity, and a detailed regulatory mechanism can provide the basis for clinical application of FUS to the treatment of neurological disease.
Collapse
Affiliation(s)
- HyoJin Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Mun Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Sang-Hyun An
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| |
Collapse
|
116
|
Empirical and Theoretical Characterization of the Diffusion Process of Different Gadolinium-Based Nanoparticles within the Brain Tissue after Ultrasound-Induced Permeabilization of the Blood-Brain Barrier. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:6341545. [PMID: 31866799 PMCID: PMC6914891 DOI: 10.1155/2019/6341545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
Low-intensity focused ultrasound (FUS), combined with microbubbles, is able to locally, and noninvasively, open the blood-brain barrier (BBB), allowing nanoparticles to enter the brain. We present here a study on the diffusion process of gadolinium-based MRI contrast agents within the brain extracellular space after ultrasound-induced BBB permeabilization. Three compounds were tested (MultiHance, Gadovist, and Dotarem). We characterized their diffusion through in vivo experimental tests supported by theoretical models. Specifically, by estimation of the free diffusion coefficients from in vitro studies and of apparent diffusion coefficients from in vivo experiments, we have assessed tortuosity in the right striatum of 9 Sprague Dawley rats through a model correctly describing both vascular permeability as a function of time and diffusion processes occurring in the brain tissue. This model takes into account acoustic pressure, particle size, blood pharmacokinetics, and diffusion rates. Our model is able to fully predict the result of a FUS-induced BBB opening experiment at long space and time scales. Recovered values of tortuosity are in agreement with the literature and demonstrate that our improved model allows us to assess that the chosen permeabilization protocol preserves the integrity of the brain tissue.
Collapse
|
117
|
Omata D, Maruyama T, Unga J, Hagiwara F, Munakata L, Kageyama S, Shima T, Suzuki Y, Maruyama K, Suzuki R. Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery. J Control Release 2019; 311-312:65-73. [DOI: 10.1016/j.jconrel.2019.08.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/30/2022]
|
118
|
Karakatsani ME, Blesa J, Konofagou EE. Blood-brain barrier opening with focused ultrasound in experimental models of Parkinson's disease. Mov Disord 2019; 34:1252-1261. [PMID: 31361356 PMCID: PMC7213581 DOI: 10.1002/mds.27804] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease has many symptomatic treatments, but there is no neuroprotective therapy currently available. The evolution of this disease is inexorably progressive, and halting or stopping the neurodegenerative process is a major unmet need. Parkinson's disease motor features at onset are typically limited to 1 body segment, that is, focal signs, and the nigrostriatal degeneration is highly asymmetrical and mainly present in the caudal putamen. Thus, clinically and neurobiologically the process is fairly limited early in its evolution. Tentatively, this would allow the possibility of intervening to halt neurodegeneration at the most vulnerable site. The recent use of new technologies such as focused ultrasound provides interesting prospects. In particular, the possibility of transiently opening the blood-brain barrier to facilitate penetrance of putative neuroprotective agents is a highly attractive approach that could be readily applied to Parkinson's disease. However, because there are currently effective treatments available (ie, dopaminergic pharmacological therapy), more experimental evidence is needed to construct a feasible and practical therapeutic approach to be tested early in the evolution of Parkinson's disease patients. In this review, we provide the current evidence for the application of blood-brain barrier opening in experimental models of Parkinson's disease and discuss its potential clinical applicability. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Elisa Evgenia Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- Department of Radiology, Columbia University, New York, New York, USA
| |
Collapse
|
119
|
Yoon K, Lee W, Chen E, Lee JE, Croce P, Cammalleri A, Foley L, Tsao AL, Yoo SS. Localized Blood-Brain Barrier Opening in Ovine Model Using Image-Guided Transcranial Focused Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2391-2404. [PMID: 31217090 PMCID: PMC6693666 DOI: 10.1016/j.ultrasmedbio.2019.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Transcranial application of focused ultrasound (FUS) combined with vascular introduction of microbubble contrast agents (MBs) has emerged as a non-invasive technique that can temporarily create a localized opening in the blood-brain barrier (BBB). Under image-guidance, we administered FUS to sheep brain after intravenous injection of microbubbles. BBB opening was confirmed by performing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to detect the extravasated gadolinium-based magnetic resonance contrast agents. Through pharmacokinetic analysis as well as independent component analysis of the DCE-MRI data, we observed localized enhancement in BBB permeability at the area that subjected to acoustic pressure of 0.48 MPa (mechanical index = 0.96). On the other hand, application of a higher pressure at 0.58 MPa resulted in localized, minor cerebral hemorrhage. No animals exhibited abnormal behavior during the post-FUS survival periods up to 2 mo. Our data suggest that monitoring for excessive BBB disruption is important for safe translation of the method to humans.
Collapse
Affiliation(s)
- Kyungho Yoon
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ji Eun Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Phillip Croce
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda Cammalleri
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lori Foley
- Translational Discovery Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison L Tsao
- Translational Discovery Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
120
|
Zhu G, Jiang B, Tong L, Xie Y, Zaharchuk G, Wintermark M. Applications of Deep Learning to Neuro-Imaging Techniques. Front Neurol 2019; 10:869. [PMID: 31474928 PMCID: PMC6702308 DOI: 10.3389/fneur.2019.00869] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Many clinical applications based on deep learning and pertaining to radiology have been proposed and studied in radiology for classification, risk assessment, segmentation tasks, diagnosis, prognosis, and even prediction of therapy responses. There are many other innovative applications of AI in various technical aspects of medical imaging, particularly applied to the acquisition of images, ranging from removing image artifacts, normalizing/harmonizing images, improving image quality, lowering radiation and contrast dose, and shortening the duration of imaging studies. This article will address this topic and will seek to present an overview of deep learning applied to neuroimaging techniques.
Collapse
Affiliation(s)
| | | | | | | | | | - Max Wintermark
- Neuroradiology Section, Department of Radiology, Stanford Healthcare, Stanford, CA, United States
| |
Collapse
|
121
|
Pap LG, Couldridge A, Arulsamy N, Hulley E. Electrostatic polarization of nonpolar substrates: a study of interactions between simple cations and Mo-bound N 2. Dalton Trans 2019; 48:11004-11017. [PMID: 31232399 DOI: 10.1039/c9dt01606f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a great deal of catalytic studies have focused on covalent interactions between substrates and catalyst centers, recognition of the importance of noncovalent and ionic interactions is driving new approaches to catalyst design. Electrostatic interactions with simple cations (those with little covalency, such as alkali metals) play crucial roles in many catalytic processes, but these effects are challenging to study due to their complicated solvation and speciation behaviour. These effects are particularly difficult to study during cation-mediated reactions with weakly-polar or non-polar substrates. Dinitrogen is one of the most nonpolar substrates known to be affected by electrostatic interactions in both heterogeneous and homogeneous reactions but understanding the significance of these effects requires further exploration. To examine these effects systematically, a new multidentate ligand framework bearing pendent crown ethers has been developed and incorporated into a series of Mo(0)-based dinitrogen complexes. Prepared via both reduction and ligand substitution routes, the strength and impact of cation-N2 interactions have been studied experimentally (IR spectroscopy) and computationally. Although the smallest cation (Li+) has the largest impact on the ground-state heterobimetallic activation of N2, solvation interactions are highly competitive and result in low Li+-(N2)Mo binding affinities. Thus, although smaller cations can have the largest electronic impact on substrates, these interactions are also the least persistent.
Collapse
Affiliation(s)
- Levente G Pap
- Department of Chemistry, University of Wyoming, Dept. 3838, 1000 E. University Avenue, Laramie, Wyoming 82071, USA.
| | - Adam Couldridge
- Department of Chemistry, University of Wyoming, Dept. 3838, 1000 E. University Avenue, Laramie, Wyoming 82071, USA.
| | - Navamoney Arulsamy
- Department of Chemistry, University of Wyoming, Dept. 3838, 1000 E. University Avenue, Laramie, Wyoming 82071, USA.
| | - Elliott Hulley
- Department of Chemistry, University of Wyoming, Dept. 3838, 1000 E. University Avenue, Laramie, Wyoming 82071, USA.
| |
Collapse
|
122
|
Meng Y, Pople CB, Lea-Banks H, Abrahao A, Davidson B, Suppiah S, Vecchio LM, Samuel N, Mahmud F, Hynynen K, Hamani C, Lipsman N. Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. J Control Release 2019; 309:25-36. [PMID: 31326464 DOI: 10.1016/j.jconrel.2019.07.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier, while fundamental in maintaining homeostasis in the central nervous system, is a bottleneck to achieving efficacy for numerous therapeutics. Improved brain penetration is also desirable for reduced dose, cost, and systemic side effects. Transient disruption of the blood-brain barrier with focused ultrasound (FUS) can facilitate drug delivery noninvasively with precise spatial and temporal specificity. FUS technology is transcranial and effective without further drug modifications, key advantages that will accelerate adoption and translation of existing therapeutic pipelines. In this review, we performed a comprehensive literature search to build a database and provide a synthesis of ultrasound parameters and drug characteristics that influence the safety and efficacy profile of FUS to enhance drug delivery.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Christopher B Pople
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Harriet Lea-Banks
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Laura M Vecchio
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Faiza Mahmud
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Research Program, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Research Program, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
123
|
Todd N, Zhang Y, Livingstone M, Borsook D, McDannold N. The neurovascular response is attenuated by focused ultrasound-mediated disruption of the blood-brain barrier. Neuroimage 2019; 201:116010. [PMID: 31302253 DOI: 10.1016/j.neuroimage.2019.116010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Focused ultrasound (FUS)-induced disruption of the blood-brain barrier (BBB) is a non-invasive method to target drug delivery to specific brain areas that is now entering into the clinic. Recent studies have shown that the method has several secondary effects on local physiology and brain function beyond making the vasculature permeable to normally non-BBB penetrant molecules. This study uses functional MRI methods to investigate how FUS BBB opening alters the neurovascular response in the rat brain. Nine rats underwent actual and sham FUS induced BBB opening targeted to the right somatosensory cortex (SI) followed by four runs of bilateral electrical hind paw stimulus-evoked fMRI. The neurovascular response was quantified using measurements of the blood oxygen level dependent (BOLD) signal and cerebral blood flow (CBF). An additional three rats underwent the same FUS-BBB opening followed by stimulus-evoked fMRI with high resolution BOLD imaging and BOLD imaging of a carbogen-breathing gas challenge. BOLD and CBF measurements at two different stimulus durations demonstrate that the neurovascular response to the stimulus is attenuated in both amplitude and duration in the region targeted for FUS-BBB opening. The carbogen results show that the attenuation in response amplitude, but not duration, is still present when the signaling mechanism originates from changes in blood oxygenation instead of stimulus-induced neuronal activity. There is some evidence of non-local effects, including a possible global decrease in baseline CBF. All effects are resolved by 24 h after FUS-BBB opening. Taken together, these results suggest that FUS-BBB opening alters that state of local brain neurovascular physiology in such a way that hinders its ability to respond to demands for increased blood flow to the region. The mechanisms for this effect need to be elucidated.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States.
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
124
|
Christensen CL, Ashmead RE, Choy FYM. Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Diseases 2019; 7:E47. [PMID: 31248000 PMCID: PMC6787741 DOI: 10.3390/diseases7030047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Although individually uncommon, rare diseases collectively account for a considerable proportion of disease impact worldwide. A group of rare genetic diseases called the mucopolysaccharidoses (MPSs) are characterized by accumulation of partially degraded glycosaminoglycans cellularly. MPS results in varied systemic symptoms and in some forms of the disease, neurodegeneration. Lack of treatment options for MPS with neurological involvement necessitates new avenues of therapeutic investigation. Cell and gene therapies provide putative alternatives and when coupled with genome editing technologies may provide long term or curative treatment. Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technology and, more recently, advances in genome editing research, have allowed for the addition of base editors to the repertoire of CRISPR-based editing tools. The latest versions of base editors are highly efficient on-targeting deoxyribonucleic acid (DNA) editors. Here, we describe a number of putative guide ribonucleic acid (RNA) designs for precision correction of known causative mutations for 10 of the MPSs. In this review, we discuss advances in base editing technologies and current techniques for delivery of cell and gene therapies to the site of global degeneration in patients with severe neurological forms of MPS, the central nervous system, including ultrasound-mediated blood-brain barrier disruption.
Collapse
Affiliation(s)
- Chloe L Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Rhea E Ashmead
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| | - Francis Y M Choy
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
125
|
Triarico S, Maurizi P, Mastrangelo S, Attinà G, Capozza MA, Ruggiero A. Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers (Basel) 2019; 11:cancers11060824. [PMID: 31200562 PMCID: PMC6627959 DOI: 10.3390/cancers11060824] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) may be considered as a sanctuary site, protected from systemic chemotherapy by the meninges, the cerebrospinal fluid (CSF) and the blood-brain barrier (BBB). Consequently, parenchymal and CSF exposure of most antineoplastic agents following intravenous (IV) administration is lower than systemic exposure. In this review, we describe the different strategies developed to improve delivery of antineoplastic agents into the brain in primary and metastatic CNS tumors. We observed that several methods, such as BBB disruption (BBBD), intra-arterial (IA) and intracavitary chemotherapy, are not routinely used because of their invasiveness and potentially serious adverse effects. Conversely, intrathecal (IT) chemotherapy has been safely and widely practiced in the treatment of pediatric primary and metastatic tumors, replacing the neurotoxic cranial irradiation for the treatment of childhood lymphoma and acute lymphoblastic leukemia (ALL). IT chemotherapy may be achieved through lumbar puncture (LP) or across the Ommaya intraventricular reservoir, which are both described in this review. Additionally, we overviewed pharmacokinetics and toxic aspects of the main IT antineoplastic drugs employed for primary or metastatic childhood CNS tumors (such as methotrexate, cytosine arabinoside, hydrocortisone), with a concise focus on new and less used IT antineoplastic agents.
Collapse
Affiliation(s)
- Silvia Triarico
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Michele Antonio Capozza
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
126
|
Lee EJ, Fomenko A, Lozano AM. Magnetic Resonance-Guided Focused Ultrasound : Current Status and Future Perspectives in Thermal Ablation and Blood-Brain Barrier Opening. J Korean Neurosurg Soc 2018; 62:10-26. [PMID: 30630292 PMCID: PMC6328789 DOI: 10.3340/jkns.2018.0180] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is an emerging new technology with considerable potential to treat various neurological diseases. With refinement of ultrasound transducer technology and integration with magnetic resonance imaging guidance, transcranial sonication of precise cerebral targets has become a therapeutic option. Intensity is a key determinant of ultrasound effects. High-intensity focused ultrasound can produce targeted lesions via thermal ablation of tissue. MRgFUS-mediated stereotactic ablation is non-invasive, incision-free, and confers immediate therapeutic effects. Since the US Food and Drug Administration approval of MRgFUS in 2016 for unilateral thalamotomy in medication-refractory essential tremor, studies on novel indications such as Parkinson's disease, psychiatric disease, and brain tumors are underway. MRgFUS is also used in the context of blood-brain barrier (BBB) opening at low intensities, in combination with intravenously-administered microbubbles. Preclinical studies show that MRgFUS-mediated BBB opening safely enhances the delivery of targeted chemotherapeutic agents to the brain and improves tumor control as well as survival. In addition, BBB opening has been shown to activate the innate immune system in animal models of Alzheimer's disease. Amyloid plaque clearance and promotion of neurogenesis in these studies suggest that MRgFUS-mediated BBB opening may be a new paradigm for neurodegenerative disease treatment in the future. Here, we review the current status of preclinical and clinical trials of MRgFUS-mediated thermal ablation and BBB opening, described their mechanisms of action, and discuss future prospects.
Collapse
Affiliation(s)
- Eun Jung Lee
- Toronto Western Research Institute, University Health Network, Toronto, Canada
| | - Anton Fomenko
- Toronto Western Research Institute, University Health Network, Toronto, Canada
| | - Andres M Lozano
- Toronto Western Research Institute, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
127
|
Penetration of the blood-brain barrier by peripheral neuropeptides: new approaches to enhancing transport and endogenous expression. Cell Tissue Res 2018; 375:287-293. [PMID: 30535799 DOI: 10.1007/s00441-018-2959-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022]
Abstract
The blood-brain barrier (BBB) is a structural and functional barrier between the interstitial fluid of the brain and the blood; the barrier maintains the precisely controlled biochemical environment that is necessary for neural function. This constellation of endothelial cells, macrophages, pericytes, and astrocytes forms the neurovascular unit which is the structural and functional unit of the blood-brain barrier. Peptides enter and exit the CNS by transport systems expressed by the capillary endothelial cells of the neurovascular unit. Limiting the transport of peptides and proteins into the brain are efflux transporters like P-gp are transmembrane proteins present on the luminal side of the cerebral capillary endothelium and their function is to promote transit and excretion of drugs from the brain to the blood. Nanocarrier systems have been developed to exploit transport systems for enhanced BBB transport. Recent approaches for enhancing endogenous peptide expression are discussed.
Collapse
|
128
|
Qian J, Wang L, Li Q, Sha D, Wang J, Zhang J, Xu P, Fan G. Ultrasound-targeted microbubble enhances migration and therapeutic efficacy of marrow mesenchymal stem cell on rat middle cerebral artery occlusion stroke model. J Cell Biochem 2018; 120:3315-3322. [PMID: 30537289 DOI: 10.1002/jcb.27600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 01/10/2023]
Abstract
To investigate the role of ultrasound-targeted microbubbles in the homing effect of bone marrow-derived mesenchymal stem cells (BMSCs) and in the therapeutic efficacy of BMSCs on the ischemic stroke. A middle cerebral artery occlusion (MCAO) model was induced by plug wire preparation. Seventy-two hours after MCAO, the treatment of BMSCs with ultrasound-targeted microbubble was assessed via modified neurological severity score (mNSS), infarct volumes, and cerebral edema. In addition, immunofluorescence was performed to analyze the homing effect of BMSCs with ultrasound-targeted microbubble. We find that BMSCs with ultrasound-targeted microbubble (BMMSCs with ultrasound-targeted microbubble [USMM] group) could significantly ameliorate mNSS, infarct volumes, and cerebral edema of MCAO compared with phosphate buffer saline group, BMSCs alone group (BMSC group), and BMSCs with Ultrasound group (Ultrasound group). Immunofluorescence analysis demonstrated that ultrasound-targeted microbubbles promoted the accumulation of BMSCs in rat MCAO brains. Our findings demonstrated that ultrasound-targeted microbubble could be an effective approach for the accumulation of BMSCs on ischemic stroke, and further improved the therapeutic efficacy of BMSCs on MCAO.
Collapse
Affiliation(s)
- Jian Qian
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Luna Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Qiming Li
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Dujuan Sha
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Jun Zhang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Peng Xu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Guofeng Fan
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| |
Collapse
|
129
|
Abstract
Despite an overall improvement in survival rates for cancer, certain resistant forms of the disease still impose a significant burden on patients and healthcare systems. Standard chemotherapy in these cases is often ineffective and/or gives rise to severe side effects. Targeted delivery of chemotherapeutics could improve both tumour response and patient experience. Hence, there is an urgent need to develop effective methods for this. Ultrasound is an established technique in both diagnosis and therapy. Its use in conjunction with microbubbles is being actively researched for the targeted delivery of small-molecule drugs. In this review, we cover the methods by which ultrasound and microbubbles can be used to overcome tumour barriers to cancer therapy.
Collapse
|
130
|
Zhang H, Wang T, Qiu W, Han Y, Sun Q, Zeng J, Yan F, Zheng H, Li Z, Gao M. Monitoring the Opening and Recovery of the Blood-Brain Barrier with Noninvasive Molecular Imaging by Biodegradable Ultrasmall Cu 2- xSe Nanoparticles. NANO LETTERS 2018; 18:4985-4992. [PMID: 29995426 DOI: 10.1021/acs.nanolett.8b01818] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The reversible and controllable opening and recovery of the blood-brain barrier (BBB) is crucial for the treatment of brain diseases, and it is a big challenge to noninvasively monitor these processes. In this article, dual-modal photoacoustic imaging and single-photon-emission computed tomography imaging based on ultrasmall Cu2- xSe nanoparticles (3.0 nm) were used to noninvasively monitor the opening and recovery of the BBB induced by focused ultrasound in living mice. The ultrasmall Cu2- xSe nanoparticles were modified with poly(ethylene glycol) to exhibit a long blood circulation time. Both small size and long blood circulation time enable them to efficiently penetrate into the brain with the assistance of ultrasound, which resulted in a strong signal at the sonicated site and allowed for photoacoustic and single-photon emission computed tomography imaging monitoring the recovery of the opened BBB. The results of biodistribution, blood routine examination, and histological staining indicate that the accumulated Cu2- xSe nanoparticles could be excreted from the brain and other major organs after 15 days without causing side effects. By the combination of the advantages of noninvasive molecular imaging and focused ultrasound, the ultrasmall biocompatible Cu2- xSe nanoparticles holds great potential for the diagnosis and therapeutic treatment of brain diseases.
Collapse
Affiliation(s)
- Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , PR China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , PR China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , PR China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , PR China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , PR China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , PR China
| | - Fei Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , PR China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , PR China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , PR China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , PR China
| |
Collapse
|
131
|
Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett 2018; 726:133664. [PMID: 29966749 DOI: 10.1016/j.neulet.2018.06.033] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic interface between the peripheral blood supply and the cerebral parenchyma, controlling the transport of material to and from the brain. Tight junctions between the endothelial cells of the cerebral microvasculature limit the passage of large, negatively charged molecules via paracellular diffusion whereas transcellular transportation across the endothelial cell is controlled by a number of mechanisms including transporter proteins, endocytosis, and diffusion. Here, we review the evidence that perturbation of these processes may underlie the development of psychiatric disorders including schizophrenia, autism spectrum disorder (ASD), and affective disorders. Increased permeability of the BBB appears to be a common factor in these disorders, leading to increased infiltration of peripheral material into the brain culminating in neuroinflammation and oxidative stress. However, although there is no common mechanism underpinning BBB dysfunction even within each particular disorder, the tight junction protein claudin-5 may be a clinically relevant target given that both clinical and pre-clinical research has linked it to schizophrenia, ASD, and depression. Additionally, we discuss the clinical significance of the BBB in diagnosis (genetic markers, dynamic contrast-enhanced-magnetic resonance imaging, and blood biomarkers) and in treatment (drug delivery).
Collapse
|
132
|
Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun (Lond) 2018; 38:36. [PMID: 29914575 PMCID: PMC6006699 DOI: 10.1186/s40880-018-0280-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary therapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope boron-10 is irradiated with neutrons to produce high-energy alpha particles and recoiling lithium-7 nuclei. In this Commentary we will focus on a number of papers that were presented at a Symposium entitled "Current Clinical Status of Boron Neutron Capture Therapy and Paths to the Future", which was held in September 2017 at the China National Convention Center in Beijing. Results were presented by clinicians from Japan, Finland, the United States, the China mainland and Taiwan, China who have been working in the multiple disciplines that are required for carrying out clinical BNCT. The main focus was on the treatment of patients with malignant brain tumors, recurrent tumors of the head and neck region, and cutaneous melanomas. The results obtained in treating these patients were reported in detail and, although most of the patients with brain tumors and head and neck cancer were not cured, there was evidence of some clinical efficacy. Although there are a number of problems that must be addressed, further clinical studies to evaluate the efficacy of BNCT are warranted. First, despite considerable effort by numerous investigators over the past 40 years, there still are only two boron-containing drugs in clinical use, L-boronophenylalanine (BPA) and sodium borocaptate (BSH). Therefore, until new and more effective boron delivery agents are developed, efforts should be directed to improving the dosing and delivery of BPA and BSH. Second, due to a variety of reasons, nuclear reactor-based BNCT has ended except for its use in the China mainland and Taiwan. Therefore, the future of BNCT depends upon the results of the ongoing Phase II clinical trials that are being carried out in Japan and the soon to be initiated trials that will be carried out in Finland. If the results obtained from these clinical trials are sufficiently promising, then BNCT will have a clear path to the future, especially for patients with the therapeutically challenging malignancies that in the past have been treated with reactor-based BNCT.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Zizhu Zhang
- Beijing Capture Technology Company, Ltd., Beijing, 102445 P. R. China
| | - Tong Liu
- Beijing Capture Technology Company, Ltd., Beijing, 102445 P. R. China
| |
Collapse
|
133
|
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018; 38:35. [PMID: 29914561 PMCID: PMC6006782 DOI: 10.1186/s40880-018-0299-7] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 P. R. China
| | - Weilian Yang
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
- Present Address: Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004 P. R. China
| |
Collapse
|
134
|
de Leon A, Perera R, Nittayacharn P, Cooley M, Jung O, Exner AA. Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy. Adv Cancer Res 2018; 139:57-84. [PMID: 29941107 DOI: 10.1016/bs.acr.2018.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasound is the second most utilized imaging modality in the world because it is widely accessible, robust, and safe. Aside from its extensive use in diagnostic imaging, ultrasound has also been frequently utilized in therapeutic applications. Particularly, when combined with appropriate delivery systems, ultrasound provides a flexible platform for simultaneous real-time imaging and triggered release, enabling precise, on-demand drug delivery to target sites. This chapter will discuss the basics of ultrasound including its mechanism of action and how it can be used to trigger the release of encapsulated drug either through thermal or cavitation effects. Fundamentals of ultrasound contrast agents, how they enhance ultrasound signals, and how they can be modified to function as carriers for triggered and targeted release of drugs will also be discussed.
Collapse
Affiliation(s)
- Al de Leon
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Reshani Perera
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Pinunta Nittayacharn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michaela Cooley
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
| | - Olive Jung
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
135
|
Alli S, Figueiredo CA, Golbourn B, Sabha N, Wu MY, Bondoc A, Luck A, Coluccia D, Maslink C, Smith C, Wurdak H, Hynynen K, O'Reilly M, Rutka JT. Brainstem blood brain barrier disruption using focused ultrasound: A demonstration of feasibility and enhanced doxorubicin delivery. J Control Release 2018; 281:29-41. [PMID: 29753957 DOI: 10.1016/j.jconrel.2018.05.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/04/2018] [Accepted: 05/06/2018] [Indexed: 12/29/2022]
Abstract
Magnetic Resonance Image-guided Focused Ultrasound (MRgFUS) has been used to achieve transient blood brain barrier (BBB) opening without tissue injury. Delivery of a targeted ultrasonic wave causes an interaction between administered microbubbles and the capillary bed resulting in enhanced vessel permeability. The use of MRgFUS in the brainstem has not previously been shown but could provide value in the treatment of tumours such as Diffuse Intrinsic Pontine Glioma (DIPG) where the intact BBB has contributed to the limited success of chemotherapy. Our primary objective was to determine whether the use of MRgFUS in this eloquent brain region could be performed without histological injury and functional deficits. Our secondary objective was to select an effective chemotherapeutic against patient derived DIPG cell lines and demonstrate enhanced brainstem delivery when combined with MRgFUS in vivo. Female Sprague Dawley rats were randomised to one of four groups: 1) Microbubble administration but no MRgFUS treatment; 2) MRgFUS only; 3) MRgFUS + microbubbles; and 4) MRgFUS + microbubbles + cisplatin. Physiological assessment was performed by monitoring of heart and respiratory rates. Motor function and co-ordination were evaluated by Rotarod and grip strength testing. Histological analysis for haemorrhage (H&E), neuronal nuclei (NeuN) and apoptosis (cleaved Caspase-3) was also performed. A drug screen of eight chemotherapy agents was conducted in three patient-derived DIPG cell lines (SU-DIPG IV, SU-DIPG XIII and SU-DIPG XVII). Doxorubicin was identified as an effective agent. NOD/SCID/GAMMA (NSG) mice were subsequently administered with 5 mg/kg of intravenous doxorubicin at the time of one of the following: 1) Microbubbles but no MRgFUS; 2) MRgFUS only; 3) MRgFUS + microbubbles and 4) no intervention. Brain specimens were extracted at 2 h and doxorubicin quantification was conducted using liquid chromatography mass spectrometry (LC/MS). BBB opening was confirmed by contrast enhancement on T1-weighted MR imaging and positive Evans blue staining of the brainstem. Normal cardiorespiratory parameters were preserved. Grip strength and Rotarod testing demonstrating no decline in performance across all groups. Histological analysis showed no evidence of haemorrhage, neuronal loss or increased apoptosis. Doxorubicin demonstrated cytotoxicity against all three cell lines and is known to have poor BBB permeability. Quantities measured in the brainstem of NSG mice were highest in the group receiving MRgFUS and microbubbles (431.5 ng/g). This was significantly higher than in mice who received no intervention (7.6 ng/g). Our data demonstrates both the preservation of histological and functional integrity of the brainstem following MRgFUS for BBB opening and the ability to significantly enhance drug delivery to the region, giving promise to the treatment of brainstem-specific conditions.
Collapse
Affiliation(s)
- Saira Alli
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada; The Leeds Institute of Cancer and Pathology, University of Toronto, Canada
| | - Carlyn A Figueiredo
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada; The Division of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Canada
| | - Brian Golbourn
- The Division of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Canada
| | - Nesrin Sabha
- Program for Genetics and Genome Biology, Hospital for Sick Children, Chile
| | - Megan Yijun Wu
- The Division of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Canada
| | - Andrew Bondoc
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Amanda Luck
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Daniel Coluccia
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Colin Maslink
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Christian Smith
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada
| | - Heiko Wurdak
- The Leeds Institute of Cancer and Pathology, University of Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Meaghan O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Department of Medical Biophysics, University of Toronto, Canada
| | - James T Rutka
- Division of Neurosurgery, The Arthur and Sonia Labatt Brain Tumour Research Centre, Canada; The Division of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Canada; Department of Surgery, University of Toronto, Canada.
| |
Collapse
|
136
|
Abstract
Although blood-based liquid biopsies have emerged as a promising non-invasive method to detect biomarkers in various cancers, limited progress has been made for brain tumors. One major obstacle is the blood-brain barrier (BBB), which hinders efficient passage of tumor biomarkers into the peripheral circulation. The objective of this study was to determine whether FUS in combination with microbubbles can enhance the release of biomarkers from the brain tumor to the blood circulation. Two glioblastoma tumor models (U87 and GL261), developed by intracranial injection of respective enhanced green fluorescent protein (eGFP)-transduced glioblastoma cells, were treated by FUS in the presence of systemically injected microbubbles. Effect of FUS on plasma eGFP mRNA levels was determined using quantitative polymerase chain reaction. eGFP mRNA were only detectable in the FUS-treated U87 mice and undetectable in the untreated U87 mice (maximum cycle number set to 40). This finding was replicated in GL261 mice across three different acoustic pressures. The circulating levels of eGFP mRNA were 1,500-4,800 fold higher in the FUS-treated GL261 mice than that of the untreated mice for the three acoustic pressures. This study demonstrated the feasibility of FUS-enabled brain tumor liquid biopsies in two different murine glioma models across different acoustic pressures.
Collapse
|
137
|
He Q, Liu J, Liang J, Liu X, Li W, Liu Z, Ding Z, Tuo D. Towards Improvements for Penetrating the Blood-Brain Barrier-Recent Progress from a Material and Pharmaceutical Perspective. Cells 2018; 7:cells7040024. [PMID: 29570659 PMCID: PMC5946101 DOI: 10.3390/cells7040024] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
The blood–brain barrier (BBB) is a critical biological structure that prevents damage to the brain and maintains its bathing microenvironment. However, this barrier is also the obstacle to deliver beneficial drugs to treat CNS (central nervous system) diseases. Many efforts have been made for improvement of delivering drugs across the BBB in recent years to treat CNS diseases. In this review, the anatomical and functional structure of the BBB is comprehensively discussed. The mechanisms of BBB penetration are summarized, and the methods and effects on increasing BBB permeability are investigated in detail. It also elaborates on the physical, chemical, biological and nanocarrier aspects to improve drug delivery penetration to the brain and introduces some specific drug delivery effects on BBB permeability.
Collapse
Affiliation(s)
- Quanguo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Jun Liu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Jing Liang
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Xiaopeng Liu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Wen Li
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Zhi Liu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Ziyu Ding
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Du Tuo
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
138
|
Meng Y, Voisin MR, Suppiah S, Kalia SK, Kalia LV, Hamani C, Lipsman N. Is there a role for MR-guided focused ultrasound in Parkinson's disease? Mov Disord 2018; 33:575-579. [PMID: 29476631 DOI: 10.1002/mds.27308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 01/17/2023] Open
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mathew R Voisin
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Ave Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
139
|
Qosa H, Volpe DA. The development of biological therapies for neurological diseases: moving on from previous failures. Expert Opin Drug Discov 2018; 13:283-293. [PMID: 29394876 DOI: 10.1080/17460441.2018.1437142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although years of research have expanded the use of biologics for several clinical conditions, such development has not yet occurred in the treatment of neurological diseases. With the advancement of biologic technologies, there is promise for these therapeutics as novel therapeutic approaches for neurological diseases. Areas covered: In this article, the authors review the therapeutic potential of different types of biologics for the treatment of neurological diseases. Preclinical and clinical studies that investigate the efficacy and safety of biologics in the treatment of neurological diseases, namely Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, and stroke, were reviewed. Moreover, the authors describe the key challenges in the development of therapeutically safe and effective biologics for the treatment of neurological diseases. Expert opinion: Several biologics have shown promise in the treatment of neurological diseases. However, the complexity of the CNS, as well as a limited understanding of disease progression, and restricted access of biologics to the CNS has limited successful development. Therefore, more research needs to be conducted to overcome these hurdles before developing effective and safe biologics for neurological diseases. The emergence of new technologies for the design, production and delivery of biologics will accelerate translating biologics to the clinic.
Collapse
Affiliation(s)
- Hisham Qosa
- a Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences , Center for Drug Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Donna A Volpe
- a Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences , Center for Drug Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| |
Collapse
|
140
|
Airan RD, Foss CA, Ellens NPK, Wang Y, Mease RC, Farahani K, Pomper MG. MR-Guided Delivery of Hydrophilic Molecular Imaging Agents Across the Blood-Brain Barrier Through Focused Ultrasound. Mol Imaging Biol 2017; 19:24-30. [PMID: 27481359 DOI: 10.1007/s11307-016-0985-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE A wide variety of hydrophilic imaging and therapeutic agents are unable to gain access to the central nervous system (CNS) due to the blood-brain barrier (BBB). In particular, unless a particular transporter exists that may transport the agent across the BBB, most agents that are larger than 500 Da or that are hydrophilic will be excluded by the BBB. Glutamate carboxypeptidase II (GCPII), also known as the prostate-specific membrane antigen (PSMA) in the periphery, has been implicated in various neuropsychiatric conditions. As all agents that target GCPII are hydrophilic and thereby excluded from the CNS, we used GCPII as a platform for demonstrating our MR-guided focused ultrasound (MRgFUS) technique for delivery of GCPII/PSMA-specific imaging agents to the brain. PROCEDURES Female rats underwent MRgFUS-mediated opening of the BBB. After opening of the BBB, either a radio- or fluorescently labeled ureido-based ligand for GCPII/PSMA was administered intravenously. Brain uptake was assessed for 2-(3-{1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid ([18F]DCFPyL) and YC-27, two compounds known to bind GCPII/PSMA with high affinity, using positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging, respectively. Specificity of ligand binding to GCPII/PSMA in the brain was determined with co-administration of a molar excess of ZJ-43, a compound of the same chemical class but different structure from either [18F]DCFPyL or YC-27, which competes for GCPII/PSMA binding. RESULTS Dynamic PET imaging using [18F]DCFPyL demonstrated that target uptake reached a plateau by ∼1 h after radiotracer administration, with target/background ratios continuing to increase throughout the course of imaging, from a ratio of ∼4:1 at 45 min to ∼7:1 by 80 min. NIRF imaging likewise demonstrated delivery of YC-27 to the brain, with clear visualization of tracer in the brain at 24 h. Tissue uptake of both ligands was greatly diminished by ZJ-43 co-administration, establishing specificity of binding of each to GCPII/PSMA. On gross and histological examination, animals showed no evidence for hemorrhage or other deleterious consequences of MRgFUS. CONCLUSIONS MRgFUS provided safe opening of the BBB to enable specific delivery of two hydrophilic agents to target tissues within the brain. This platform might facilitate imaging and therapy using a variety of agents that have heretofore been excluded from the CNS.
Collapse
Affiliation(s)
- Raag D Airan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nicholas P K Ellens
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yuchuan Wang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Keyvan Farahani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
141
|
Meng Y, Suppiah S, Mithani K, Solomon B, Schwartz ML, Lipsman N. Current and emerging brain applications of MR-guided focused ultrasound. J Ther Ultrasound 2017; 5:26. [PMID: 29034095 PMCID: PMC5629772 DOI: 10.1186/s40349-017-0105-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022] Open
Abstract
MRI guided focused ultrasound is an emerging technique that uses acoustic energy to noninvasively treat intracranial disorders. At high frequencies, it can be used to raise tissue temperatures and ablate discrete brain targets with sub-millimeter accuracy. This application is currently under investigation for a broad range of clinical applications, including brain tumors, movement disorders, and psychiatric conditions. At low frequencies MRI guided focused ultrasound can be used to modulate neuronal activity and in conjunction with injected microbubbles, can open the blood-brain barrier to enhance the delivery of therapeutic compounds. The last decade has seen dramatic advances in the science of MRI guided focused ultrasound, helping elucidate both its mechanisms and potential in pre-clinical models, and its translational promise across myriad clinical applications. This review provides an update of current and emerging MRI guided focused ultrasound applications for intracranial disorders and describes future directions and challenges for the field.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON Canada
| | - Karim Mithani
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| | - Benjamin Solomon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON Canada
| | - Nir Lipsman
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, ON Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON Canada
| |
Collapse
|
142
|
Bastiancich C, Bianco J, Vanvarenberg K, Ucakar B, Joudiou N, Gallez B, Bastiat G, Lagarce F, Préat V, Danhier F. Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection. J Control Release 2017; 264:45-54. [DOI: 10.1016/j.jconrel.2017.08.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022]
|
143
|
Effect of low-frequency but high-intensity noise exposure on swine brain blood barrier permeability and its mechanism of injury. Neurosci Lett 2017; 662:122-128. [PMID: 28941872 DOI: 10.1016/j.neulet.2017.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Vibroacousitic disease (VAD) is caused by excessive exposure to low-frequency but high-intensity noise. The integrity of the brain blood barrier (BBB) is essential for the brain. The study aimed to investigate the effect of noise exposure on the BBB. METHODS Healthy male Bama swine were exposed to 50, 70, 100, and 120Hz, 140dB noise for 30min. After exposure, CT brain imaging and ex vivo fluorescent imaging of parenchymal EB leakage were performed (each group consisted of N=3 swine). The human cerebral microvascular endothelial cells were exposed to 70Hz, 140dB noise for 5min. RESULTS The BBB permeability assay showed that 50, 70, and 100Hz with 140dB noise exposure accelerated BBB permeability, and the BBB opening at 70Hz was most serious and reversible. Additionally, CT images demonstrated that the noise-induced opening of the BBB caused no intracerebral hemorrhage. This noise-induced BBB opening was related to the downregulation of zo-1 and occludin. Finally, cysteinyl leukotriene receptor 1 (CysLT1 receptor) was found to regulate noise-induced tight junction defects in vitro. CONCLUSIONS In conclusion, noise exposure accelerates the formation of a high-permeability BBB with leaky tight junctions through a CysLT1-mediated mechanism, which warrants additional research.
Collapse
|
144
|
The role of non-endothelial cells on the penetration of nanoparticles through the blood brain barrier. Prog Neurobiol 2017; 159:39-49. [PMID: 28899762 DOI: 10.1016/j.pneurobio.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 12/26/2022]
Abstract
The blood brain barrier (BBB) is a well-established cell-based membrane that circumvents the central nervous system (CNS), protecting it from harmful substances. Due to its robustness and cell integrity, it is also an outstanding opponent when it comes to the delivery of several therapeutic agents to the brain, which requires the crossing through its highly-organized structure. This regulation and cell-cell communications occur mostly between astrocytes, pericytes and endothelial cells. Therefore, alternative ways to deliver drugs to the CNS, overcoming the BBB are required, to improve the efficacy of brain target drugs. Nanoparticles emerge here as a promising drug delivery strategy, due to their ability of high drug loading and the capability to exploit specific delivery pathways that most drugs are unable to when administered freely, increasing their bioavailability in the CNS. Thus, further attempts to assess the possible influence of non-endothelial may have on the BBB translocation of nanoparticles are here revised. Furthermore, the use of macrophages and/or monocytes as nanoparticle delivery cells are also approached. Lastly, the temporarily disruption of the overall organization and normal structure of the BBB to promote the penetration of nanoparticles aimed at the CNS is described, as a synergistic path.
Collapse
|
145
|
Li H, Chen G. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron 2017; 91:728-738. [PMID: 27537482 DOI: 10.1016/j.neuron.2016.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair.
Collapse
Affiliation(s)
- Hedong Li
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
146
|
Apoptotic and genotoxic effects of low-intensity ultrasound on healthy and leukemic human peripheral mononuclear blood cells. J Med Ultrason (2001) 2017; 45:31-39. [DOI: 10.1007/s10396-017-0805-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/05/2017] [Indexed: 12/31/2022]
|
147
|
Freskgård PO, Urich E. Antibody therapies in CNS diseases. Neuropharmacology 2017; 120:38-55. [DOI: 10.1016/j.neuropharm.2016.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/05/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
|
148
|
Tresadern G, Rombouts FJR, Oehlrich D, Macdonald G, Trabanco AA. Industrial medicinal chemistry insights: neuroscience hit generation at Janssen. Drug Discov Today 2017; 22:1478-1488. [PMID: 28669605 DOI: 10.1016/j.drudis.2017.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022]
Abstract
The role of medicinal chemistry has changed over the past 10 years. Chemistry had become one step in a process; funneling the output of high-throughput screening (HTS) on to the next stage. The goal to identify the ideal clinical compound remains, but the means to achieve this have changed. Modern medicinal chemistry is responsible for integrating innovation throughout early drug discovery, including new screening paradigms, computational approaches, novel synthetic chemistry, gene-family screening, investigating routes of delivery, and so on. In this Foundation Review, we show how a successful medicinal chemistry team has a broad impact and requires multidisciplinary expertise in these areas.
Collapse
Affiliation(s)
- Gary Tresadern
- Discovery Sciences, Janssen Research & Development, C/ Jarama 75A, 45007 Toledo, Spain.
| | - Frederik J R Rombouts
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Daniel Oehlrich
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gregor Macdonald
- Neuroscience Medicinal Chemistry, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Andres A Trabanco
- Neuroscience Medicinal Chemistry, Janssen Research & Development, C/ Jarama 75A, 45007 Toledo, Spain.
| |
Collapse
|
149
|
Abstract
Access to the CNS and delivery of therapeutics across the blood-brain barrier remains a challenge for most treatments of major neurological diseases such as AD or PD. Focused ultrasound represents a potential approach for overcoming these barriers to treating AD and PD and perhaps other neurological diseases. Ultrasound (US) is best known for its imaging capabilities of organs in the periphery, but various arrangements of the transducers producing the acoustic signal allow the energy to be precisely focused (F) within the skull. Using FUS in combination with MRI and contrast agents further enhances accuracy by providing clear information on location. Varying the acoustic power allows FUS to be used in applications ranging from imaging, stimulation of brain circuits, to ablation of tissue. In several transgenic mouse models of AD, the use of FUS with microbubbles reduces plaque load and improves cognition and suggests the need to investigate this technology for plaque removal in AD. In PD, FUS is being explored as a way to non-invasively ablate the brain areas responsible for the tremor and dyskinesia associated with the disease, but has yet to be utilized for non-invasive delivery of putative therapeutics. The FUS approach also greatly increases the range of possible CNS therapeutics as it overcomes the issues of BBB penetration. In this review we discuss how the characteristics and various applications of FUS may advance the therapeutics available for treating or preventing neurodegenerative disorders with an emphasis on treating AD and PD.
Collapse
Affiliation(s)
- Diane B Miller
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505.
| | - James P O'Callaghan
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505.
| |
Collapse
|
150
|
McDannold N, Zhang Y, Vykhodtseva N. The Effects of Oxygen on Ultrasound-Induced Blood-Brain Barrier Disruption in Mice. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:469-475. [PMID: 27789044 PMCID: PMC5191922 DOI: 10.1016/j.ultrasmedbio.2016.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Numerous researchers are investigating the use of microbubble-enhanced ultrasound to disrupt the blood-brain barrier (BBB) and deliver drugs to the brain. This study investigated the impact of using oxygen as a carrier gas for anesthesia on microbubble activity and BBB disruption. Targets in mice were sonicated in combination with administration of Optison microbubbles (100 μL/kg) under isoflurane anesthesia with either oxygen or medical air. A 690-kHz focused ultrasound transducer applied 10-ms bursts at peak pressure amplitudes of 0.46-0.54 MPa (n = 2) or 0.34-0.36 MPa (n = 5). After sonication of two locations in one hemisphere, the carrier gas for the anesthesia was changed and the sonications were repeated in the contralateral hemisphere. The BBB disruption, measured via contrast-enhanced magnetic resonance imaging, was significantly greater (p < 0.001) with medical air than with oxygen. Harmonic emissions were also greater with air (p < 0.001), while the decay rate of the harmonic emissions was 1.5 times faster with oxygen. A good correlation (R2, 0.46) was observed between the harmonic emissions strength and magnetic resonance imaging signal enhancement. At 0.46-0.54 MPa, both the occurrence and strength of wideband emissions were greater with medical air. However, at lower peak pressure amplitudes of 0.34-0.36 MPa, the strength and probability for wideband emissions were higher with oxygen. Little or no effects were observed in histology at 0.34-0.36 MPa. These findings show that use of oxygen as a carrier gas can result in a substantial diminution of BBB disruption. These results should be taken into account when comparing studies from different researchers and in translating this method to humans.
Collapse
Affiliation(s)
- Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia Vykhodtseva
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|