101
|
Lima CNC, Kovács EHC, Mirza S, Del Favero-Campbell A, Diaz AP, Quevedo J, Argue BMR, Richards JG, Williams A, Wemmie JA, Magnotta VA, Fiedorowicz JG, Soares JC, Gaine ME, Fries GR. Association between the epigenetic lifespan predictor GrimAge and history of suicide attempt in bipolar disorder. Neuropsychopharmacology 2023; 48:954-962. [PMID: 36878995 PMCID: PMC10156727 DOI: 10.1038/s41386-023-01557-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Bipolar disorder (BD) has been previously associated with premature mortality and aging, including acceleration of epigenetic aging. Suicide attempts (SA) are greatly elevated in BD and are associated with decreased lifespan, biological aging, and poorer clinical outcomes. We investigated the relationship between GrimAge, an epigenetic clock trained on time-to-death and associated with mortality and lifespan, and SA in two independent cohorts of BD individuals (discovery cohort - controls (n = 50), BD individuals with (n = 77, BD/SA) and without (n = 67, BD/non-SA) lifetime history of SA; replication cohort - BD/SA (n = 48) and BD/non-SA (n = 47)). An acceleration index for the GrimAge clock (GrimAgeAccel) was computed from blood DNA methylation (DNAm) and compared between groups with multiple general linear models. Differences in epigenetic aging from the discovery cohort were validated in the independent replication cohort. In the discovery cohort, controls, BD/non-SA, and BD/SA significantly differed on GrimAgeAccel (F = 5.424, p = 0.005), with the highest GrimAgeAccel in BD/SA (p = 0.004, BD/SA vs. controls). Within the BD individuals, BD/non-SA and BD/SA differed on GrimAgeAccel in both cohorts (p = 0.008) after covariate adjustment. Finally, DNAm-based surrogates revealed possible involvement of plasminogen activator inhibitor 1, leptin, and smoking pack-years in driving accelerated epigenetic aging. These findings pair with existing evidence that not only BD, but also SA, may be associated with an accelerated biological aging and provide putative biological mechanisms for morbidity and premature mortality in this population.
Collapse
Affiliation(s)
- Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Emese H C Kovács
- Department of Neuroscience and Pharmacology, The University of Iowa, 51 Newton Rd, 52242, Iowa City, IA, USA
| | - Salahudeen Mirza
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Institute of Child Development, University of Minnesota, 51 E River Rd, 55455, Minneapolis, MN, USA
| | - Alexandra Del Favero-Campbell
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Alexandre Paim Diaz
- Center for the Study and Prevention of Suicide, Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Benney M R Argue
- Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, 180 South Grand Ave, 52242, Iowa City, IA, USA
| | - Jenny Gringer Richards
- Department of Radiology, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Aislinn Williams
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Jess G Fiedorowicz
- University of Ottawa Brain and Mind Research Institute, Ottawa Hospital Research Institute, 501 Smyth, K1H 8L6, Ottawa, ON, Canada
| | - Jair C Soares
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Marie E Gaine
- Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, 180 South Grand Ave, 52242, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA.
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin, 77030, Houston, TX, USA.
| |
Collapse
|
102
|
Jonviea D C, Nusslé S, Bochud M, Gonseth-Nusslé S. Investigating the association of measures of epigenetic age with COVID-19 severity: evidence from secondary analyses of open access data. Swiss Med Wkly 2023; 153:40076. [PMID: 37155825 DOI: 10.57187/smw.2023.40076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Epigenetic modifications may contribute to inter-individual variation that is unexplainable by presently known risk factors for COVID-19 severity (e.g., age, excess weight, or other health conditions). Estimates of youth capital (YC) reflect the difference between an individual's epigenetic - or biological - age and chronological age, and may quantify abnormal aging due to lifestyle or other environmental exposures, providing insights that could inform risk-stratification for severe COVID-19 outcomes. This study aims to thereby a) assess the association between YC and epigenetic signatures of lifestyle exposures with COVID-19 severity, and b) to assess whether the inclusion of these signatures in addition to a signature of COVID-19 severity (EPICOVID) improved the prediction of COVID-19 severity. METHODS This study uses data from two publicly-available studies accessed via the Gene Expression Omnibus (GEO) platform (accession references: GSE168739 and GSE174818). The GSE168739 is a retrospective, cross-sectional study of 407 individuals with confirmed COVID-19 across 14 hospitals in Spain, while the GSE174818 sample is a single-center observational study of individuals admitted to the hospital for COVID-19 symptoms (n = 102). YC was estimated using the (a) Gonseth-Nusslé, (b) Horvath, (c) Hannum, and (d) PhenoAge estimates of epigenetic age. Study-specific definitions of COVID-19 severity were used, including hospitalization status (yes/no) (GSE168739) or vital status at the end of follow-up (alive/dead) (GSE174818). Logistic regression models were used to assess the association between YC, lifestyle exposures, and COVID-19 severity. RESULTS Higher YC as estimated using the Gonseth-Nusslé, Hannum and PhenoAge measures was associated with reduced odds of severe symptoms (OR = 0.95, 95% CI = 0.91-1.00; OR = 0.81, 95% CI = 0.75 - 0.86; and OR = 0.85, 95% CI = 0.81-0.88, respectively) (adjusting for chronological age and sex). In contrast, a one-unit increase in the epigenetic signature for alcohol consumption was associated with 13% increased odds of severe symptoms (OR = 1.13, 95% CI = 1.05-1.23). Compared to the model including only age, sex and the EPICOVID signature, the additional inclusion of PhenoAge and the epigenetic signature for alcohol consumption improved the prediction of COVID-19 severity (AUC = 0.94, 95% CI = 0.91-0.96 versus AUC = 0.95, 95% CI = 0.93-0.97; p = 0.01). In the GSE174818 sample, only PhenoAge was associated with COVID-related mortality (OR = 0.93, 95% CI = 0.87-1.00) (adjusting for age, sex, BMI and Charlson comorbidity index). CONCLUSIONS Epigenetic age is a potentially useful tool in primary prevention, particularly as an incentive towards lifestyle changes that target reducing the risk of severe COVID-19 symptoms. However, additional research is needed to establish potential causal pathways and the directionality of this effect.
Collapse
Affiliation(s)
- Chamberlain Jonviea D
- Department of Epidemiology and Health Systems (DESS), Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | - Murielle Bochud
- Department of Epidemiology and Health Systems (DESS), Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Semira Gonseth-Nusslé
- Department of Epidemiology and Health Systems (DESS), Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Genknowme, Lausanne, Switzerland
| |
Collapse
|
103
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
104
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
105
|
Mavromatis LA, Rosoff DB, Bell AS, Jung J, Wagner J, Lohoff FW. Multi-omic underpinnings of epigenetic aging and human longevity. Nat Commun 2023; 14:2236. [PMID: 37076473 PMCID: PMC10115892 DOI: 10.1038/s41467-023-37729-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/28/2023] [Indexed: 04/21/2023] Open
Abstract
Biological aging is accompanied by increasing morbidity, mortality, and healthcare costs; however, its molecular mechanisms are poorly understood. Here, we use multi-omic methods to integrate genomic, transcriptomic, and metabolomic data and identify biological associations with four measures of epigenetic age acceleration and a human longevity phenotype comprising healthspan, lifespan, and exceptional longevity (multivariate longevity). Using transcriptomic imputation, fine-mapping, and conditional analysis, we identify 22 high confidence associations with epigenetic age acceleration and seven with multivariate longevity. FLOT1, KPNA4, and TMX2 are novel, high confidence genes associated with epigenetic age acceleration. In parallel, cis-instrument Mendelian randomization of the druggable genome associates TPMT and NHLRC1 with epigenetic aging, supporting transcriptomic imputation findings. Metabolomics Mendelian randomization identifies a negative effect of non-high-density lipoprotein cholesterol and associated lipoproteins on multivariate longevity, but not epigenetic age acceleration. Finally, cell-type enrichment analysis implicates immune cells and precursors in epigenetic age acceleration and, more modestly, multivariate longevity. Follow-up Mendelian randomization of immune cell traits suggests lymphocyte subpopulations and lymphocytic surface molecules affect multivariate longevity and epigenetic age acceleration. Our results highlight druggable targets and biological pathways involved in aging and facilitate multi-omic comparisons of epigenetic clocks and human longevity.
Collapse
Affiliation(s)
- Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, University of Oxford, Oxford, UK
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
106
|
Tang B, Li X, Wang Y, Sjölander A, Johnell K, Thambisetty M, Ferrucci L, Reynolds CA, Finkel D, Jylhävä J, Pedersen NL, Hägg S. Longitudinal associations between use of antihypertensive, antidiabetic, and lipid-lowering medications and biological aging. GeroScience 2023:10.1007/s11357-023-00784-8. [PMID: 37032369 PMCID: PMC10400489 DOI: 10.1007/s11357-023-00784-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/26/2023] [Indexed: 04/11/2023] Open
Abstract
Aging is a major risk factor for many chronic diseases. This study aimed to examine the effects of antihypertensive, lipid-lowering, and antidiabetic drugs on biological aging. We included 672 participants and 2746 repeated measurements from the Swedish Adoption/Twin Study of Aging. Self-reported medicine uses were categorized into antidiabetic, antihypertensive, and lipid-lowering drugs. A total of 12 biomarkers for biological aging (BA biomarkers) were included as outcomes. Conditional generalized estimating equations were applied conditioning on individuals to estimate the drug effect on BA biomarker level within the same person when using or not using the drug. Chronological age, body mass index, smoking status, number of multiple medication uses, blood pressure, blood glucose level, and apoB/apoA ratio were adjusted for as covariates in the model. Overall, using antihypertensive drugs was associated with a decrease in one DNA-methylation age (PCGrimAge: beta = - 0.39, 95%CI = - 0.67 to - 0.12). When looking into drug subcategories, calcium channel blockers (CCBs) were associated with a decrease in several DNA-methylation ages (PCHorvathAge beta = - 1.28, 95%CI = - 2.34 to - 0.21; PCSkin&bloodAge beta = - 1.34, 95%CI = - 2.61 to - 0.07; PCPhenoAge beta = - 1.74, 95%CI = - 2.58 to - 0.89; PCGrimAge beta = - 0.57, 95%CI = - 0.96 to - 0.17) and in functional biological ages (functional age index beta = - 2.18, 95%CI = - 3.65 to - 0.71; frailty index beta = - 1.31, 95%CI = - 2.43 to - 0.18). However, the results within other drug subcategories were inconsistent. Calcium channel blockers may decrease biological aging captured by the BA biomarkers measured at epigenetic and functional level. Future studies are warranted to confirm these effects and understand the underlying biological mechanisms.
Collapse
Affiliation(s)
- Bowen Tang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Xia Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Yunzhang Wang
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Arvid Sjölander
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kristina Johnell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Madhav Thambisetty
- Brain Aging and Behavior Section, National Institute on Aging, Baltimore, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, USA
| | | | - Deborah Finkel
- Aging Research Network-Jönköping (ARN-J), School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), University of Tampere, Tampere, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
107
|
Han M, Fang J, Zhang Y, Song X, Jin L, Ma Y. Associations of sleeping, sedentary and physical activity with phenotypic age acceleration: a cross-sectional isotemporal substitution model. BMC Geriatr 2023; 23:165. [PMID: 36959562 PMCID: PMC10035275 DOI: 10.1186/s12877-023-03874-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Physical activity was believed to be associated with reduced aging among adults, while the competing nature of the physical activity and sedentary behavior has mainly been neglected in studies. We aimed to estimate the association of sleeping, sedentary behavior, and physical activity with aging among adults, considering the competing nature between variables of activity status. METHODS A total of 5288 participants who were 20 years or older from the National Health and Nutrition Examination Survey were involved. The questionnaire was used to collect data regarding sociodemographics (age, sex, ethnicity/race, and education), and lifestyle behaviors (smoking, drinking). The Global Physical Activity Questionnaire was used to measure self-reported time for sedentary behavior, walking/bicycling, and moderate-to-vigorous physical activity (MVPA). The sleeping duration was obtained via interview. Phenotypic age acceleration (PhenoAgeAccel) was calculated as an aging index using nine chemistry biomarkers. Isotemporal substitution models using multivariable linear regression to examine the associations of sleeping, sedentary behavior, and physical activity with PhenoAgeAccel, stratified by MVPA (< 150 min/week, ≥ 150 min/week). RESULTS Thirty minutes per day spent on sedentary behavior was positively associated with PhenoAgeAccel (β = 0.07, 95% CI: 0.04, 0.11), and 30 min/day spent on leisure-time MVPA was adversely associated with PhenoAgeAccel (β = - 0.55, 95% CI: - 0.73, - 0.38). Replacing 30 min/day sedentary behaviors with 30 min/day of MVPA (β = -3.98, 95% CI: -6.22, -1.74) or 30 min/day of walking/bicycling (β = -0.89, 95% CI: -1.10, -0.68) was adversely associated with PhenoAgeAccel. Substituting 30 min/day of walking/bicycling for 30 min/day of leisure-time MVPA was positively associated with PhenoAgeAccel (β = 3.09, 95% CI: 0.93, 5.25). CONCLUSION Sedentary behavior was positively associated with aging. Replacing sedentary behaviors with walking/bicycling or MVPA was adversely associated with aging among adults.
Collapse
Affiliation(s)
- Mengying Han
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Liaoning Province, 110122, Shenyang, P.R. China
| | - Jiaxin Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yixin Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Liaoning Province, 110122, Shenyang, P.R. China
| | - Xingxu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, China
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, China.
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Liaoning Province, 110122, Shenyang, P.R. China.
| |
Collapse
|
108
|
Fitzgerald KN, Campbell T, Makarem S, Hodges R. Potential reversal of biological age in women following an 8-week methylation-supportive diet and lifestyle program: a case series. Aging (Albany NY) 2023; 15:1833-1839. [PMID: 36947707 PMCID: PMC10085584 DOI: 10.18632/aging.204602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
Here we report on a case series of six women who completed a methylation-supportive diet and lifestyle program designed to impact DNA methylation and measures of biological aging. The intervention consisted of an 8-week program that included diet, sleep, exercise and relaxation guidance, supplemental probiotics and phytonutrients and nutritional coaching. DNA methylation and biological age analysis (Horvath DNAmAge clock (2013), normalized using the SeSAMe pipeline [a]) was conducted on blood samples at baseline and at the end of the 8-week period. Five of the six participants exhibited a biological age reduction of between 1.22 and 11.01 years from their baseline biological age. There was a statistically significant (p=.039) difference in the participants' mean biological age before (55.83 years) and after (51.23 years) the 8-week diet and lifestyle intervention, with an average decrease of 4.60 years. The average chronological age at the start of the program was 57.9 years and all but one participant had a biological age younger than their chronological age at the start of the program, suggesting that biological age changes were unrelated to disease improvement and instead might be attributed to underlying aging mechanisms.
Collapse
Affiliation(s)
| | - Tish Campbell
- Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | |
Collapse
|
109
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
110
|
Martínez CF, Esposito S, Di Castelnuovo A, Costanzo S, Ruggiero E, De Curtis A, Persichillo M, Hébert JR, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Gialluisi A, Bonaccio M. Association between the Inflammatory Potential of the Diet and Biological Aging: A Cross-Sectional Analysis of 4510 Adults from the Moli-Sani Study Cohort. Nutrients 2023; 15:nu15061503. [PMID: 36986232 PMCID: PMC10056325 DOI: 10.3390/nu15061503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Chronological age (CA) may not accurately reflect the health status of an individual. Rather, biological age (BA) or hypothetical underlying "functional" age has been proposed as a relevant indicator of healthy aging. Observational studies have found that decelerated biological aging or Δage (BA-CA) is associated with a lower risk of disease and mortality. In general, CA is associated with low-grade inflammation, a condition linked to the risk of the incidence of disease and overall cause-specific mortality, and is modulated by diet. To address the hypothesis that diet-related inflammation is associated with Δage, a cross-sectional analysis of data from a sub-cohort from the Moli-sani Study (2005-2010, Italy) was performed. The inflammatory potential of the diet was measured using the Energy-adjusted Dietary Inflammatory Index (E-DIITM) and a novel literature-based dietary inflammation score (DIS). A deep neural network approach based on circulating biomarkers was used to compute BA, and the resulting Δage was fit as the dependent variable. In 4510 participants (men 52.0%), the mean of CA (SD) was 55.6 y (±11.6), BA 54.8 y (±8.6), and Δage -0.77 (±7.7). In a multivariable-adjusted analysis, an increase in E-DIITM and DIS scores led to an increase in Δage (β = 0.22; 95%CI 0.05, 0.38; β = 0.27; 95%CI 0.10, 0.44, respectively). We found interaction for DIS by sex and for E-DIITM by BMI. In conclusion, a pro-inflammatory diet is associated with accelerated biological aging, which likely leads to an increased long-term risk of inflammation-related diseases and mortality.
Collapse
Affiliation(s)
- Claudia F Martínez
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
- Population Health Research Center, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Simona Esposito
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Emilia Ruggiero
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - James R Hébert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
- Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC 29201, USA
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
- Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, 21100 Varese-Como, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli, Italy
| |
Collapse
|
111
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
112
|
Verdone L, Caserta M, Ben-Soussan TD, Venditti S. On the road to resilience: Epigenetic effects of meditation. VITAMINS AND HORMONES 2023; 122:339-376. [PMID: 36863800 DOI: 10.1016/bs.vh.2022.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many environmental and lifestyle related factors may influence the physiology of the brain and body by acting on fundamental molecular pathways, such as the hypothalamus-pituitary-adrenal axis (HPA) and the immune system. For example, stressful conditions created by adverse early-life events, unhealthy habits and low socio-economic status may favor the onset of diseases linked to neuroendocrine dysregulation, inflammation and neuroinflammation. Beside pharmacological treatments used in clinical settings, much attention has been given to complementary treatments such as mind-body techniques involving meditation that rely on the activation of inner resources to regain health. At the molecular level, the effects of both stress and meditation are elicited epigenetically through a set of mechanisms that regulate gene expression as well as the circulating neuroendocrine and immune effectors. Epigenetic mechanisms constantly reshape genome activities in response to external stimuli, representing a molecular interface between organism and environment. In the present work, we aimed to review the current knowledge on the correlation between epigenetics, gene expression, stress and its possible antidote, meditation. After introducing the relationship between brain, physiology, and epigenetics, we will proceed to describe three basic epigenetic mechanisms: chromatin covalent modifications, DNA methylation and non-coding RNAs. Subsequently, we will give an overview of the physiological and molecular aspects related to stress. Finally, we will address the epigenetic effects of meditation on gene expression. The results of the studies reported in this review demonstrate that mindful practices modulate the epigenetic landscape, leading to increased resilience. Therefore, these practices can be considered valuable tools that complement pharmacological treatments when coping with pathologies related to stress.
Collapse
Affiliation(s)
- Loredana Verdone
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Tal Dotan Ben-Soussan
- Cognitive Neurophysiology Laboratory, Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
113
|
DNA methylation age acceleration is associated with risk of diabetes complications. COMMUNICATIONS MEDICINE 2023; 3:21. [PMID: 36765171 PMCID: PMC9918553 DOI: 10.1038/s43856-023-00250-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Patients with Type 2 diabetes mellitus (T2D) are at risk for micro- and macrovascular complications. Implementable risk scores are needed to improve targeted prevention for patients that are particularly susceptible to complications. The epigenetic clock estimates an individual's biological age using DNA methylation profiles. METHODS In this study, we examined older adults of the Berlin Aging Study II that were reexamined on average 7.4 years after baseline assessment as part of the GendAge study. DNA methylation age (DNAmA) and its deviation from chronological age DNAmA acceleration (DNAmAA) were calculated with the 7-CpG clock (available at both timepoints, n = 1,071), Horvath's clock, Hannum's clock, PhenoAge and GrimAge (available at follow-up only, n = 1,067). T2D associated complications were assessed with the Diabetes Complications Severity Index (DCSI). RESULTS We report on a statistically significant association between oral glucose tolerance test results and Hannum and PhenoAge DNAmAA. PhenoAge was also associated with fasting glucose. In contrast, we found no cross-sectional association after covariate adjustment between DNAmAA and a diagnosis of T2D. However, longitudinal analyses showed that every additional year of 7-CpG DNAmAA at baseline increased the odds for developing one or more additional complications or worsening of an already existing complication during the follow-up period by 11% in male participants with T2D. This association persisted after covariate adjustment (OR = 1.11, p = 0.045, n = 56). CONCLUSION Although our results remain to be independently validated, this study shows promising evidence of utility of the 7-CpG clock in identifying patients with diabetes who are at high risk for developing complications.
Collapse
|
114
|
Paparazzo E, Lagani V, Geracitano S, Citrigno L, Aceto MA, Malvaso A, Bruno F, Passarino G, Montesanto A. An ELOVL2-Based Epigenetic Clock for Forensic Age Prediction: A Systematic Review. Int J Mol Sci 2023; 24:2254. [PMID: 36768576 PMCID: PMC9916975 DOI: 10.3390/ijms24032254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
The prediction of chronological age from methylation-based biomarkers represents one of the most promising applications in the field of forensic sciences. Age-prediction models developed so far are not easily applicable for forensic caseworkers. Among the several attempts to pursue this objective, the formulation of single-locus models might represent a good strategy. The present work aimed to develop an accurate single-locus model for age prediction exploiting ELOVL2, a gene for which epigenetic alterations are most highly correlated with age. We carried out a systematic review of different published pyrosequencing datasets in which methylation of the ELOVL2 promoter was analysed to formulate age prediction models. Nine of these, with available datasets involving 2298 participants, were selected. We found that irrespective of which model was adopted, a very strong relationship between ELOVL2 methylation levels and age exists. In particular, the model giving the best age-prediction accuracy was the gradient boosting regressor with a prediction error of about 5.5 years. The findings reported here strongly support the use of ELOVL2 for the formulation of a single-locus epigenetic model, but the inclusion of additional, non-redundant markers is a fundamental requirement to apply a molecular model to forensic applications with more robust results.
Collapse
Affiliation(s)
- Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Lagani
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23952, Saudi Arabia
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, Thuwal 23952, Saudi Arabia
| | - Silvana Geracitano
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Luigi Citrigno
- National Research Council (CNR)-Institute for Biomedical Research and Innovation–(IRIB), 87050 Mangone, Italy
| | - Mirella Aurora Aceto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Antonio Malvaso
- Department of Brain and Behavioral Sciences, IRCCS “C. Mondino” Foundation, National Neurological Institute, University of Pavia, 27100 Pavia, Italy
| | - Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
115
|
Peters KJ, Gerber L, Scheu L, Cicciarella R, Zoller JA, Fei Z, Horvath S, Allen SJ, King SL, Connor RC, Rollins LA, Krützen M. An epigenetic DNA methylation clock for age estimates in Indo-Pacific bottlenose dolphins ( Tursiops aduncus). Evol Appl 2023; 16:126-133. [PMID: 36699128 PMCID: PMC9850008 DOI: 10.1111/eva.13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Knowledge of an animal's chronological age is crucial for understanding and predicting population demographics, survival and reproduction, but accurate age determination for many wild animals remains challenging. Previous methods to estimate age require invasive procedures, such as tooth extraction to analyse growth layers, which are difficult to carry out with large, mobile animals such as cetaceans. However, recent advances in epigenetic methods have opened new avenues for precise age determination. These 'epigenetic clocks' present a less invasive alternative and can provide age estimates with unprecedented accuracy. Here, we present a species-specific epigenetic clock based on skin tissue samples for a population of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Shark Bay, Western Australia. We measured methylation levels at 37,492 cytosine-guanine sites (CpG sites) in 165 samples using the mammalian methylation array. Chronological age estimates with an accuracy of ±1 year were available for 68 animals as part of a long-term behavioral study of this population. Using these samples with known age, we built an elastic net model with Leave-One-Out-Cross-Validation, which retained 43 CpG sites, providing an r = 0.86 and median absolute age error (MAE) = 2.1 years (5% of maximum age). This model was more accurate for our data than the previously published methylation clock based on skin samples of common bottlenose dolphins (T. truncatus: r = 0.83, MAE = 2.2) and the multi-species odontocete methylation clock (r = 0.68, MAE = 6.8), highlighting that species-specific clocks can have superior performance over those of multi-species assemblages. We further developed an epigenetic sex estimator, predicting sex with 100% accuracy. As age and sex are critical parameters for the study of animal populations, this clock and sex estimator will provide a useful tool for extracting life history information from skin samples rather than long-term observational data for free-ranging Indo-Pacific bottlenose dolphins worldwide.
Collapse
Affiliation(s)
- Katharina J. Peters
- Evolutionary Genetics Group, Department of AnthropologyUniversity of ZurichZurichSwitzerland
- School of Earth and EnvironmentUniversity of CanterburyChristchurchNew Zealand
- Cetacean Ecology Research Group, School of Natural SciencesMassey UniversityAucklandNew Zealand
- Global Ecology, College of Science and EngineeringFlinders UniversityAdelaide, South AustraliaAustralia
| | - Livia Gerber
- Evolutionary Genetics Group, Department of AnthropologyUniversity of ZurichZurichSwitzerland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydney, New South WalesAustralia
| | - Luca Scheu
- Evolutionary Genetics Group, Department of AnthropologyUniversity of ZurichZurichSwitzerland
| | - Riccardo Cicciarella
- Evolutionary Genetics Group, Department of AnthropologyUniversity of ZurichZurichSwitzerland
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public HealthUniversity of California Los AngelesLos Angeles, CaliforniaUSA
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public HealthUniversity of California Los AngelesLos Angeles, CaliforniaUSA
- Department of StatisticsUniversity of CaliforniaRiverside, CaliforniaUSA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public HealthUniversity of California Los AngelesLos Angeles, CaliforniaUSA
- Department of Human Genetics, David Geffen School of MedicineUniversity of California Los AngelesLos Angeles, CaliforniaUSA
- Altos Labs, San Diego Institute of ScienceSan Diego, CaliforniaUSA
| | - Simon J. Allen
- Evolutionary Genetics Group, Department of AnthropologyUniversity of ZurichZurichSwitzerland
- School of Biological SciencesUniversity of BristolBristolUK
- School of Biological SciencesUniversity of Western AustraliaCrawley, Western AustraliaAustralia
| | - Stephanie L. King
- School of Biological SciencesUniversity of BristolBristolUK
- School of Biological SciencesUniversity of Western AustraliaCrawley, Western AustraliaAustralia
| | | | - Lee Ann Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydney, New South WalesAustralia
| | - Michael Krützen
- Evolutionary Genetics Group, Department of AnthropologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
116
|
Wu L, Pei H, Zhang Y, Zhang X, Feng M, Yuan L, Guo M, Wei Y, Tang Z, Xiang X. Association between Dried Fruit Intake and DNA Methylation: A Multivariable Mendelian Randomization Analysis. J Nutr Health Aging 2023; 27:1132-1139. [PMID: 37997736 DOI: 10.1007/s12603-023-2030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVES Observational studies have reported associations between dried fruit intake and DNA methylation(DNAm). However, inherent flaws in observational study designs make them susceptible to confounding and reverse causality bias. Consequently, it is unclear whether a causal association exists. In the present study, we aimed to investigate the causal associations between dried fruit intake and DNAm. METHODS We performed two-sample Mendelian randomization (MR) using the IEU Open GWAS database aggregated data. Forty-three single nucleotide polymorphisms (SNPs) associated with dried fruit intake as instrumental variables (IVs) were selected as exposure. DNAm outcomes include Gran (estimated granulocyte proportions); AgeAccelGrim(GrimAge acceleration); Hannum (Hannum age acceleration); IEAA(Intrinsic epigenetic age acceleration), AgeAccelPheno( PhenoAge acceleration), and DNAmPAIadjAge (DNAm-estimated plasminogen activator inhibitor-1 levels). We used the MR pleiotropy residual sum and outlier test (MRPRESSO) and Radial-MR test to identify any level of multi-effect outliers and assessed the causal effect estimates(after removing outliers). The primary causal effects were estimated using inverse-variance weighted (IVW) method and undertook sensitivity analyses using MR methods robust to horizontal pleiotropy.The direct effects of dried fruit intake on DNAm were estimated using multivariable mendelian randomization (MVMR). RESULTS Leveraging two-sample MR analysis, we observed statistically significant associations between dried fruit intake with a lower AgeAccelGrim(β=-1.365, 95% confidence intervals [CI] -2.266 to -0.464, PIVW=2.985×10-3) and AgeAccelPheno (β= -1.933, 95% CI -3.068 to -0.798, PIVW=8.371×10-4). By contrast, the effects level on Gran (β=0.008, PIVW=0.430), Hannum(β=-0.430, PIVW=0.357), IEAA(β=-0.184, PIVW=0.700), and DNAmPAIadjAge (β=-1.861, PIVW=0.093) were not statistically significant. MVMR results adjusting for the potential effects of confounders showed that the causal relationship between dried fruit intake and AgeAccelGrim(β= -1.315, 95% CI -2.373 to -0.258, PIVW=1.480×10-2) and AgeAccelPheno(β= -1.595, 95% CI -2.987 to -0.202, PIVW=2.483×10-2) persisted. No significant horizontal polymorphism was found in the sensitivity analysis. CONCLUSION Our MR study suggested that increased dried fruit intake is associated with slower AgeAccelGrim and AgeAccelPheno. It can providing a promising avenue for exploring the beneficial effects of dried fruit intake on lifespan extension.
Collapse
Affiliation(s)
- L Wu
- Xiqiao Xiang. Department of PET Imaging Center, Shanghai Jiaotong University Affiliated Sixth People Hospital South Campus. Shanghai, 201499, China. E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Ortiz-Rodríguez MA, Martínez-Salazar MF, Antunez-Bautista PK, Jiménez-Osorio AS. Strategies for the study of neuroepigenetics and aging with a translational approach. AGING AND HEALTH RESEARCH 2023. [DOI: 10.1016/j.ahr.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
118
|
Dutta S, Duttaroy AK. Gut Microbiome and Its Metabolites in Ageing. EVIDENCE-BASED FUNCTIONAL FOODS FOR PREVENTION OF AGE-RELATED DISEASES 2023:183-204. [DOI: 10.1007/978-981-99-0534-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
119
|
Roach JC, Rapozo MK, Hara J, Glusman G, Lovejoy J, Shankle WR, Hood L. A Remotely Coached Multimodal Lifestyle Intervention for Alzheimer's Disease Ameliorates Functional and Cognitive Outcomes. J Alzheimers Dis 2023; 96:591-607. [PMID: 37840487 DOI: 10.3233/jad-230403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Comprehensive treatment of Alzheimer's disease and related dementias (ADRD) requires not only pharmacologic treatment but also management of existing medical conditions and lifestyle modifications including diet, cognitive training, and exercise. Personalized, multimodal therapies are needed to best prevent and treat Alzheimer's disease (AD). OBJECTIVE The Coaching for Cognition in Alzheimer's (COCOA) trial was a prospective randomized controlled trial to test the hypothesis that a remotely coached multimodal lifestyle intervention would improve early-stage AD. METHODS Participants with early-stage AD were randomized into two arms. Arm 1 (N = 24) received standard of care. Arm 2 (N = 31) additionally received telephonic personalized coaching for multiple lifestyle interventions. The primary outcome was a test of the hypothesis that the Memory Performance Index (MPI) change over time would be better in the intervention arm than in the control arm. The Functional Assessment Staging Test was assessed for a secondary outcome. COCOA collected psychometric, clinical, lifestyle, genomic, proteomic, metabolomic, and microbiome data at multiple timepoints (dynamic dense data) across two years for each participant. RESULTS The intervention arm ameliorated 2.1 [1.0] MPI points (mean [SD], p = 0.016) compared to the control over the two-year intervention. No important adverse events or side effects were observed. CONCLUSION Multimodal lifestyle interventions are effective for ameliorating cognitive decline and have a larger effect size than pharmacological interventions. Dietary changes and exercise are likely to be beneficial components of multimodal interventions in many individuals. Remote coaching is an effective intervention for early stage ADRD. Remote interventions were effective during the COVID pandemic.
Collapse
Affiliation(s)
| | | | - Junko Hara
- Pickup Family Neurosciences Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, USA
| | | | | | - William R Shankle
- Pickup Family Neurosciences Institute, Hoag Memorial Hospital Presbyterian, Newport Beach, CA, USA
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
- Shankle Clinic, Newport Beach, CA, USA
- EMBIC Corporation, Newport Beach, CA, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA
| |
Collapse
|
120
|
Buckley MT, Sun ED, George BM, Liu L, Schaum N, Xu L, Reyes JM, Goodell MA, Weissman IL, Wyss-Coray T, Rando TA, Brunet A. Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain. NATURE AGING 2023; 3:121-137. [PMID: 37118510 PMCID: PMC10154228 DOI: 10.1038/s43587-022-00335-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The diversity of cell types is a challenge for quantifying aging and its reversal. Here we develop 'aging clocks' based on single-cell transcriptomics to characterize cell-type-specific aging and rejuvenation. We generated single-cell transcriptomes from the subventricular zone neurogenic region of 28 mice, tiling ages from young to old. We trained single-cell-based regression models to predict chronological age and biological age (neural stem cell proliferation capacity). These aging clocks are generalizable to independent cohorts of mice, other regions of the brains, and other species. To determine if these aging clocks could quantify transcriptomic rejuvenation, we generated single-cell transcriptomic datasets of neurogenic regions for two interventions-heterochronic parabiosis and exercise. Aging clocks revealed that heterochronic parabiosis and exercise reverse transcriptomic aging in neurogenic regions, but in different ways. This study represents the first development of high-resolution aging clocks from single-cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.
Collapse
Affiliation(s)
- Matthew T Buckley
- Department of Genetics, Stanford University, Stanford, CA, USA
- Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Benson M George
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lucy Xu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jaime M Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA.
| |
Collapse
|
121
|
Lima CNC, Fries GR. Epigenetic aging in psychiatry: clinical implications and therapeutic opportunities. Neuropsychopharmacology 2023; 48:247-248. [PMID: 35869283 PMCID: PMC9700672 DOI: 10.1038/s41386-022-01390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
122
|
O’Shea DM, Galvin JE. Female APOE ɛ4 Carriers with Slow Rates of Biological Aging Have Better Memory Performances Compared to Female ɛ4 Carriers with Accelerated Aging. J Alzheimers Dis 2023; 92:1269-1282. [PMID: 36872781 PMCID: PMC10535361 DOI: 10.3233/jad-221145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
BACKGROUND Evidence suggests that APOE ɛ4 carriers have worse memory performances compared to APOE ɛ4 non-carriers and effects may vary by sex and age. Estimates of biological age, using DNA methylation may enhance understanding of the associations between sex and APOE ɛ4 on cognition. OBJECTIVE To investigate whether associations between APOE ɛ4 status and memory vary according to rates of biological aging, using a DNA methylation age biomarker, in older men and women without dementia. METHODS Data were obtained from 1,771 adults enrolled in the 2016 wave of the Health and Retirement Study. A series of ANCOVAs were used to test the interaction effects of APOE ɛ4 status and aging rates (defined as 1 standard deviation below (i.e., slow rate), or above (i.e., fast rate) their sex-specific mean rate of aging on a composite measure of verbal learning and memory. RESULTS APOE ɛ4 female carriers with slow rates of GrimAge had significantly better memory performances compared to fast and average aging APOE ɛ4 female carriers. There was no effect of aging group rate on memory in the female non-carriers and no significant differences in memory according to age rate in either male APOE ɛ4 carriers or non-carriers. CONCLUSION Slower rates of aging in female APOE ɛ4 carriers may buffer against the negative effects of the ɛ4 allele on memory. However, longitudinal studies with larger sample sizes are needed to evaluate risk of dementia/memory impairment based on rates of aging in female APOE ɛ4 carriers.
Collapse
Affiliation(s)
- Deirdre M. O’Shea
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| | - James E. Galvin
- Department of Neurology, Comprehensive Center for Brain Health, University of Miami Miller School of Medicine, Boca Raton, FL, USA
| |
Collapse
|
123
|
Soloski MJ, Poulain M, Pes GM. Does the trained immune system play an important role in the extreme longevity that is seen in the Sardinian blue zone? FRONTIERS IN AGING 2022; 3:1069415. [PMID: 36601618 PMCID: PMC9806115 DOI: 10.3389/fragi.2022.1069415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Villages in the island of Sardinia in the Mediterranean that display exceptional longevity are clustered within a defined mountainous region. Because of their unique location we hypothesize that these villages had a unique infectious disease exposure relevant to the observed successful longevity. These highland villages had a significant exposure to malaria in the first half of the 20th century after which malaria was eliminated due to vector control mechanisms. In addition, there is likely a high incidence of Helicobacter pylori infections among shepherds in Sardinia, the primary occupation of many living in the LBZ, as well as helminth infections among children. This suggests that individuals living in the LBZ had a unique infectious disease exposure. Specifically, we hypothesize that the continued high exposure of residents in the LBZ to these infectious agents prior to the 1950s lead to the generation of a uniquely trained (or imprinted) immune system. Once some of these diseases were eliminated in the latter half of the century, individuals within the LBZ were equipped with a trained immune system that was uniquely capable of not only responding effectively to common infections but also responding in a manner that maximized maintaining tissue health. In addition, there are lifestyle factors that also favor such a trained immune system. This hypothesis may help explain the slow progression of chronic immune mediated diseases as well as other chronic non-transmissible age-related diseases seen in the Sardinian LBZ and serve as a template for future studies that support or refute this hypothesis.
Collapse
Affiliation(s)
- Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Mark J. Soloski,
| | - Michel Poulain
- IACCHOS Université Catholique de Louvain, Estonian Institute for Population Studies, Tallinn University, Tallinn, Estonia
| | - Giovanni M. Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
| |
Collapse
|
124
|
Deryabin PI, Borodkina AV. Epigenetic clocks provide clues to the mystery of uterine ageing. Hum Reprod Update 2022; 29:259-271. [PMID: 36515535 DOI: 10.1093/humupd/dmac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rising maternal ages and age-related fertility decline are a global challenge for modern reproductive medicine. Clinicians and researchers pay specific attention to ovarian ageing and hormonal insufficiency in this regard. However, uterine ageing is often left out of the picture, with the majority of reproductive clinicians being close to unanimous on the absence of age-related functional decline in the uterine tissues. Therefore, most existing techniques to treat an age-related decline in implantation rates are based primarily on hormonal supplementation and oocyte donation. Solving the issue of uterine ageing might lead to an adjustment to these methods. OBJECTIVE AND RATIONALE A focus on uterine ageing and the possibility of slowing it emerged with the development of the information theory of ageing, which identifies genomic instability and erosion of the epigenetic landscape as important drivers of age-related decline in the functionality of most cells and tissues. Age-related smoothing of this landscape and a decline in tissue function can be assessed by measuring the ticking of epigenetic clocks. Within this review, we explore whether the uterus experiences age-related alterations using this elegant approach. We analyse existing data on epigenetic clocks in the endometrium, highlight approaches to improve the accuracy of the clocks in this cycling tissue, speculate on the endometrial pathologies whose progression might be predicted by the altered speed of epigenetic clocks and discuss the possibilities of slowing down the ticking of these clocks. SEARCH METHODS Data for this review were identified by searches of Medline, PubMed and Google Scholar. References from relevant articles using the search terms 'ageing', 'maternal age', 'female reproduction', 'uterus', 'endometrium', 'implantation', 'decidualization', 'epigenetic clock', 'biological age', 'DNA methylation', 'fertility' and 'infertility' were selected. A total of 95 articles published in English between 1985 and 2022 were included, six of which describe the use of the epigenetic clock to evaluate uterine/endometrium ageing. OUTCOMES Application of the Horvath and DNAm PhenoAge epigenetic clocks demonstrated a poor correlation with chronological age in the endometrium. Several approaches were suggested to enhance the predictive power of epigenetic clocks for the endometrium. The first was to increase the number of samples in the training dataset, as for the Zang clock, or to use more sophisticated clock-building algorithms, as for the AltumAge clock. The second method is to adjust the clocks according to the dynamic nature of the endometrium. Using either approach revealed a strong correlation with chronological age in the endometrium, providing solid evidence for age-related functional decline in this tissue. Furthermore, age acceleration/deceleration, as estimated by epigenetic clocks, might be a promising tool to predict or to gain insights into the origin of various endometrial pathologies, including recurrent implantation failure, cancer and endometriosis. Finally, there are several strategies to slow down or even reverse epigenetic clocks that might be applied to reduce the risk of age-related uterine impairments. WIDER IMPLICATIONS The uterine factor should be considered, along with ovarian issues, to correct for the decline in female fertility with age. Epigenetic clocks can be tested to gain a deeper understanding of various endometrial disorders.
Collapse
Affiliation(s)
- Pavel I Deryabin
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Aleksandra V Borodkina
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
125
|
Jiang R, Hauser ER, Kwee LC, Shah SH, Regan JA, Huebner JL, Kraus VB, Kraus WE, Ward-Caviness CK. The association of accelerated epigenetic age with all-cause mortality in cardiac catheterization patients as mediated by vascular and cardiometabolic outcomes. Clin Epigenetics 2022; 14:165. [PMID: 36461124 PMCID: PMC9719253 DOI: 10.1186/s13148-022-01380-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Epigenetic age is a DNA methylation-based biomarker of aging that is accurate across the lifespan and a range of cell types. The difference between epigenetic age and chronological age, termed age acceleration (AA), is a strong predictor of lifespan and healthspan. The predictive capabilities of AA for all-cause mortality have been evaluated in the general population; however, its utility is less well evaluated in those with chronic conditions. Additionally, the pathophysiologic pathways whereby AA predicts mortality are unclear. We hypothesized that AA predicts mortality in individuals with underlying cardiovascular disease; and the association between AA and mortality is mediated, in part, by vascular and cardiometabolic measures. METHODS We evaluated 562 participants in an urban, three-county area of central North Carolina from the CATHGEN cohort, all of whom received a cardiac catheterization procedure. We analyzed three AA biomarkers, Horvath epigenetic age acceleration (HAA), phenotypic age acceleration (PhenoAA), and Grim age acceleration (GrimAA), by Cox regression models, to assess whether AAs were associated with all-cause mortality. We also evaluated if these associations were mediated by vascular and cardiometabolic outcomes, including left ventricular ejection fraction (LVEF), blood cholesterol concentrations, angiopoietin-2 (ANG2) protein concentration, peripheral artery disease, coronary artery disease, diabetes, and hypertension. The total effect, direct effect, indirect effect, and percentage mediated were estimated using pathway mediation tests with a regression adjustment approach. RESULTS PhenoAA (HR = 1.05, P < 0.0001), GrimAA (HR = 1.10, P < 0.0001) and HAA (HR = 1.03, P = 0.01) were all associated with all-cause mortality. The association of mortality and PhenoAA was partially mediated by ANG2, a marker of vascular function (19.8%, P = 0.016), and by diabetes (8.2%, P = 0.043). The GrimAA-mortality association was mediated by ANG2 (12.3%, P = 0.014), and showed weaker evidence for mediation by LVEF (5.3%, P = 0.065). CONCLUSIONS Epigenetic age acceleration remains strongly predictive of mortality even in individuals already burdened with cardiovascular disease. Mortality associations were mediated by ANG2, which regulates endothelial permeability and angiogenic functions, suggesting that specific vascular pathophysiology may link accelerated epigenetic aging with increased mortality risks.
Collapse
Affiliation(s)
- Rong Jiang
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC USA
| | - Elizabeth R. Hauser
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC USA
| | - Lydia Coulter Kwee
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
| | - Svati H. Shah
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Cardiology, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC USA
| | - Jessica A. Regan
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Cardiology, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC USA
| | - Janet L. Huebner
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
| | - Virginia B. Kraus
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC USA
| | - William E. Kraus
- grid.26009.3d0000 0004 1936 7961Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Division of Cardiology, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC USA
| | - Cavin K. Ward-Caviness
- grid.418698.a0000 0001 2146 2763Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC USA
| |
Collapse
|
126
|
de Lima Camillo LP, Lapierre LR, Singh R. A pan-tissue DNA-methylation epigenetic clock based on deep learning. NPJ AGING 2022. [PMCID: PMC9158789 DOI: 10.1038/s41514-022-00085-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractSeveral age predictors based on DNA methylation, dubbed epigenetic clocks, have been created in recent years, with the vast majority based on regularized linear regression. This study explores the improvement in the performance and interpretation of epigenetic clocks using deep learning. First, we gathered 142 publicly available data sets from several human tissues to develop AltumAge, a neural network framework that is a highly accurate and precise age predictor. Compared to ElasticNet, AltumAge performs better for within-data set and cross-data set age prediction, being particularly more generalizable in older ages and new tissue types. We then used deep learning interpretation methods to learn which methylation sites contributed to the final model predictions. We observe that while most important CpG sites are linearly related to age, some highly-interacting CpG sites can influence the relevance of such relationships. Using chromatin annotations, we show that the CpG sites with the highest contribution to the model predictions were related to gene regulatory regions in the genome, including proximity to CTCF binding sites. We also found age-related KEGG pathways for genes containing these CpG sites. Lastly, we performed downstream analyses of AltumAge to explore its applicability and compare its age acceleration with Horvath’s 2013 model. We show that our neural network approach predicts higher age acceleration for tumors, for cells that exhibit age-related changes in vitro, such as immune and mitochondrial dysfunction, and for samples from patients with multiple sclerosis, type 2 diabetes, and HIV, among other conditions. Altogether, our neural network approach provides significant improvement and flexibility compared to current epigenetic clocks for both performance and model interpretability.
Collapse
|
127
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
128
|
Dhar P, Moodithaya SS, Patil P. Epigenetic alterations-The silent indicator for early aging and age-associated health-risks. Aging Med (Milton) 2022; 5:287-293. [PMID: 36606271 PMCID: PMC9805292 DOI: 10.1002/agm2.12236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Aging is the process of gradual physiological deterioration till death and this process perpetually reduce the functionality of an individual. To address the rationale and provide geriatric care, the constant target of geroscience is to identify reliable biomarkers for aging. Over the past decades, diversified advancements in epigenetic studies crescively support the fact that the accumulation of epigenetic changes accompanies the process of aging. A growing number of studies have suggested that alterations occur through three fundamental mechanisms like methylation of DNA, histone protein modification, and production of non-coding microRNAs. Each of these changes occurs silently and provokes alterations in the circumstantial expression of genetic material without altering the underlying gene sequences. The changes in gene expression due to epigenetic alterations are suggested to be the cause of early aging and the onset of age-related health risks. This review would attempt to give an integrated overview of epigenetic changes related to aging and age-associated health risks. This review also discussed epigenomes influencing early aging and factors modulating it. Since epigenetic changes are reversible, early identification of epigenetic markers can be a hope for future geriatric medicine. Finally, this review emphasizes the identification of blood-based epigenetic biomarkers in order to enlighten the future scope for therapeutic intervention to slow down the aging process.
Collapse
Affiliation(s)
- Poulami Dhar
- Department of PhysiologyK. S. Hegde Medical Academy, NITTE (Deemed to be University)MangaloreIndia
| | - Shailaja S. Moodithaya
- Department of PhysiologyK. S. Hegde Medical Academy, NITTE (Deemed to be University)MangaloreIndia
| | - Prakash Patil
- Central Research LaboratoryK. S. Hegde Medical Academy, NITTE (Deemed to be University)MangaloreIndia
| |
Collapse
|
129
|
An evaluation of aging measures: from biomarkers to clocks. Biogerontology 2022; 24:303-328. [PMID: 36418661 DOI: 10.1007/s10522-022-09997-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
With the increasing number of aged population and growing burden of healthy aging demands, a rational standard for evaluation aging is in urgent need. The advancement of medical testing technology and the prospering of artificial intelligence make it possible to evaluate the biological status of aging from a more comprehensive view. In this review, we introduced common aging biomarkers and concluded several famous aging clocks. Aging biomarkers reflect changes in the organism at a molecular or cellular level over time while aging clocks tend to be more of a generalization of the overall state of the organism. We expect to construct a framework for aging evaluation measurement from both micro and macro perspectives. Especially, population-specific aging clocks and multi-omics aging clocks may better fit the demands to evaluate aging in a comprehensive and multidimensional manner and make a detailed classification to represent different aging rates at tissue/organ levels. This framework will promisingly provide a crucial basis for disease diagnosis and intervention assessment in geroscience.
Collapse
|
130
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
131
|
Bogaards FA, Gehrmann T, Beekman M, van den Akker EB, van de Rest O, Hangelbroek RWJ, Noordam R, Mooijaart SP, de Groot LCPGM, Reinders MJT, Slagboom PE. PLIS: A metabolomic response monitor to a lifestyle intervention study in older adults. FASEB J 2022; 36:e22578. [PMID: 36183353 DOI: 10.1096/fj.202201037r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
The response to lifestyle intervention studies is often heterogeneous, especially in older adults. Subtle responses that may represent a health gain for individuals are not always detected by classical health variables, stressing the need for novel biomarkers that detect intermediate changes in metabolic, inflammatory, and immunity-related health. Here, our aim was to develop and validate a molecular multivariate biomarker maximally sensitive to the individual effect of a lifestyle intervention; the Personalized Lifestyle Intervention Status (PLIS). We used 1 H-NMR fasting blood metabolite measurements from before and after the 13-week combined physical and nutritional Growing Old TOgether (GOTO) lifestyle intervention study in combination with a fivefold cross-validation and a bootstrapping method to train a separate PLIS score for men and women. The PLIS scores consisted of 14 and four metabolites for females and males, respectively. Performance of the PLIS score in tracking health gain was illustrated by association of the sex-specific PLIS scores with several classical metabolic health markers, such as BMI, trunk fat%, fasting HDL cholesterol, and fasting insulin, the primary outcome of the GOTO study. We also showed that the baseline PLIS score indicated which participants respond positively to the intervention. Finally, we explored PLIS in an independent physical activity lifestyle intervention study, showing similar, albeit remarkably weaker, associations of PLIS with classical metabolic health markers. To conclude, we found that the sex-specific PLIS score was able to track the individual short-term metabolic health gain of the GOTO lifestyle intervention study. The methodology used to train the PLIS score potentially provides a useful instrument to track personal responses and predict the participant's health benefit in lifestyle interventions similar to the GOTO study.
Collapse
Affiliation(s)
- Fatih A Bogaards
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands.,Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Thies Gehrmann
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Ben van den Akker
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Computational Biology Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Ondine van de Rest
- Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Roland W J Hangelbroek
- Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond Noordam
- Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon P Mooijaart
- Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden, The Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
132
|
Li A, Koch Z, Ideker T. Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging. J Intern Med 2022; 292:733-744. [PMID: 35726002 DOI: 10.1111/joim.13533] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Numerous studies have shown that epigenetic age-an individual's degree of aging based on patterns of DNA methylation-can be computed and is associated with an array of factors including diet, lifestyle, genetics, and disease. One can expect that still further associations will emerge with additional aging research, but to what end? Prediction of age was an important first step, but-in our view-the focus must shift from chasing increasingly accurate age computations to understanding the links between the epigenome and the mechanisms and physiological changes of aging. Here, we outline emerging areas of epigenetic aging research that prioritize biological understanding and clinical application. First, we survey recent progress in epigenetic clocks, which are beginning to predict not only chronological age but aging outcomes such as all-cause mortality and onset of disease, or which integrate aging signals across multiple biological processes. Second, we discuss research that exemplifies how investigation of the epigenome is building a mechanistic theory of aging and informing clinical practice. Such examples include identifying methylation sites and the genes most strongly predictive of aging-a subset of which have shown strong potential as biomarkers of neurodegenerative disease and cancer; relating epigenetic clock predictions to hallmarks of aging; and using longitudinal studies of DNA methylation to characterize human disease, resulting in the discovery of epigenetic indications of type 1 diabetes and the propensity for psychotic experiences.
Collapse
Affiliation(s)
- Adam Li
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Zane Koch
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
133
|
Epigenetic clock: A promising biomarker and practical tool in aging. Ageing Res Rev 2022; 81:101743. [PMID: 36206857 DOI: 10.1016/j.arr.2022.101743] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 01/31/2023]
Abstract
As a complicated process, aging is characterized by various changes at the cellular, subcellular and nuclear levels, one of which is epigenetic aging. With increasing awareness of the critical role that epigenetic alternations play in aging, DNA methylation patterns have been employed as a measure of biological age, currently referred to as the epigenetic clock. This review provides a comprehensive overview of the epigenetic clock as a biomarker of aging and a useful tool to manage healthy aging. In this burgeoning scientific field, various kinds of epigenetic clocks continue to emerge, including Horvath's clock, Hannum's clock, DNA PhenoAge, and DNA GrimAge. We hereby present the most classic epigenetic clocks, as well as their differences. Correlations of epigenetic age with morbidity, mortality and other factors suggest the potential of epigenetic clocks for risk prediction and identification in the context of aging. In particular, we summarize studies on promising age-reversing interventions, with epigenetic clocks employed as a practical tool in the efficacy evaluation. We also discuss how the lack of higher-quality information poses a major challenge, and offer some suggestions to address existing obstacles. Hopefully, our review will help provide an appropriate understanding of the epigenetic clocks, thereby enabling novel insights into the aging process and how it can be manipulated to promote healthy aging.
Collapse
|
134
|
Frasca D. Several areas of overlap between obesity and aging indicate obesity as a biomarker of accelerated aging of human B cell function and antibody responses. Immun Ageing 2022; 19:48. [PMID: 36289515 PMCID: PMC9598013 DOI: 10.1186/s12979-022-00301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Aging and obesity are high risk factors for several conditions and diseases. They are both associated with systemic inflammation and they are both ameliorated by a healthy life style, suggesting that they may share cellular and molecular pathways and underlying mechanisms. A close relationship between aging and obesity is also supported by the observation that the aging overweight/obese population is increasing worldwide, and mechanisms involved will be presented here. A focus of our work is to evaluate if obesity may be considered a good biomarker of accelerated aging of human antibody responses. We will summarize our published results showing the effects of obesity in accelerating age defects in the peripheral B cell pool and how these lead to dysfunctional humoral immunity.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3153, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
135
|
Pérez RF, Tejedor JR, Fernández AF, Fraga MF. Aging and cancer epigenetics: Where do the paths fork? Aging Cell 2022; 21:e13709. [PMID: 36103298 PMCID: PMC9577950 DOI: 10.1111/acel.13709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Aging and cancer are clearly associated processes, at both the epidemiological and molecular level. Epigenetic mechanisms are good candidates to explain the molecular links between the two phenomena, but recent reports have also revealed considerable differences, particularly regarding the loss of DNA methylation in the two processes. The large-scale generation and availability of genome-wide epigenetic data now permits systematic studies to be undertaken which may help clarify the similarities and differences between aging and cancer epigenetic alterations. In addition, the development of epigenetic clocks provides a new dimension in which to investigate diseases at the molecular level. Here, we examine current and future questions about the roles of DNA methylation mechanisms as causal factors in the processes of aging and cancer so that we may better understand if and how aging-associated epigenetic alterations lead to tumorigenesis. It seems certain that comprehending the molecular mechanisms underlying epigenetic clocks, especially with regard to somatic stem cell aging, combined with applying single-cell epigenetic-age profiling technologies to aging and cancer cohorts, and the integration of existing and upcoming epigenetic evidence within the genetic damage models of aging will prove to be crucial to improving understanding of these two interrelated phenomena.
Collapse
Affiliation(s)
- Raúl Fernández Pérez
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Juan Ramón Tejedor
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Agustín Fernández Fernández
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| | - Mario Fernández Fraga
- Cancer Epigenetics and Nanomedicine LaboratoryNanomaterials and Nanotechnology Research Center (CINN‐CSIC)El EntregoSpain
- Health Research Institute of Asturias (ISPA‐FINBA)Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (BOS)University of OviedoOviedoSpain
- Rare Diseases CIBER (CIBERER)Carlos III Health Institute (ISCIII)MadridSpain
| |
Collapse
|
136
|
Galkin F, Kochetov K, Koldasbayeva D, Faria M, Fung HH, Chen AX, Zhavoronkov A. Psychological factors substantially contribute to biological aging: evidence from the aging rate in Chinese older adults. Aging (Albany NY) 2022; 14:7206-7222. [PMID: 36170009 PMCID: PMC9550255 DOI: 10.18632/aging.204264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
We have developed a deep learning aging clock using blood test data from the China Health and Retirement Longitudinal Study, which has a mean absolute error of 5.68 years. We used the aging clock to demonstrate the connection between the physical and psychological aspects of aging. The clock detects accelerated aging in people with heart, liver, and lung conditions. We demonstrate that psychological factors, such as feeling unhappy or being lonely, add up to 1.65 years to one's biological age, and the aggregate effect exceeds the effects of biological sex, living area, marital status, and smoking status. We conclude that the psychological component should not be ignored in aging studies due to its significant impact on biological age.
Collapse
Affiliation(s)
- Fedor Galkin
- Deep Longevity Limited, Hong Kong, People's Republic of China
| | - Kirill Kochetov
- Deep Longevity Limited, Hong Kong, People's Republic of China
| | | | - Manuel Faria
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Helene H. Fung
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Amber X. Chen
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Alex Zhavoronkov
- Deep Longevity Limited, Hong Kong, People's Republic of China
- Insilico Medicine, Hong Kong, People's Republic of China
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
137
|
Siddiqui R, Mungroo MR, Alharbi AM, Alfahemi H, Khan NA. The Use of Gut Microbial Modulation Strategies as Interventional Strategies for Ageing. Microorganisms 2022; 10:microorganisms10091869. [PMID: 36144471 PMCID: PMC9506335 DOI: 10.3390/microorganisms10091869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbial composition codevelops with the host from birth and is influenced by several factors, including drug use, radiation, psychological stress, dietary changes and physical stress. Importantly, gut microbial dysbiosis has been clearly associated with several diseases, including cancer, rheumatoid arthritis and Clostridium difficile-associated diarrhoea, and is known to affect human health and performance. Herein, we discuss that a shift in the gut microbiota with age and reversal of age-related modulation of the gut microbiota could be a major contributor to the incidence of numerous age-related diseases or overall human performance. In addition, it is suggested that the gut microbiome of long-lived animals such as reptiles should be investigated for their unique properties and contribution to the potent defense system of these species could be extrapolated for the benefit of human health. A range of techniques can be used to modulate the gut microbiota to have higher abundance of “beneficial” microbes that have been linked with health and longevity.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Ridwane Mungroo
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
138
|
Woldeamanuel YW, Shrivastava S, Vila-Pueyo M. Editorial: Lifestyle modifications to manage migraine. Front Neurol 2022; 13:966424. [PMID: 36105771 PMCID: PMC9465452 DOI: 10.3389/fneur.2022.966424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yohannes W. Woldeamanuel
- Division of Headache & Facial Pain, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Yohannes W. Woldeamanuel
| | | | - Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Department of Medicine, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
139
|
Thompson M, Hill BL, Rakocz N, Chiang JN, Geschwind D, Sankararaman S, Hofer I, Cannesson M, Zaitlen N, Halperin E. Methylation risk scores are associated with a collection of phenotypes within electronic health record systems. NPJ Genom Med 2022; 7:50. [PMID: 36008412 PMCID: PMC9411568 DOI: 10.1038/s41525-022-00320-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 07/18/2022] [Indexed: 12/20/2022] Open
Abstract
Inference of clinical phenotypes is a fundamental task in precision medicine, and has therefore been heavily investigated in recent years in the context of electronic health records (EHR) using a large arsenal of machine learning techniques, as well as in the context of genetics using polygenic risk scores (PRS). In this work, we considered the epigenetic analog of PRS, methylation risk scores (MRS), a linear combination of methylation states. We measured methylation across a large cohort (n = 831) of diverse samples in the UCLA Health biobank, for which both genetic and complete EHR data are available. We constructed MRS for 607 phenotypes spanning diagnoses, clinical lab tests, and medication prescriptions. When added to a baseline set of predictive features, MRS significantly improved the imputation of 139 outcomes, whereas the PRS improved only 22 (median improvement for methylation 10.74%, 141.52%, and 15.46% in medications, labs, and diagnosis codes, respectively, whereas genotypes only improved the labs at a median increase of 18.42%). We added significant MRS to state-of-the-art EHR imputation methods that leverage the entire set of medical records, and found that including MRS as a medical feature in the algorithm significantly improves EHR imputation in 37% of lab tests examined (median R2 increase 47.6%). Finally, we replicated several MRS in multiple external studies of methylation (minimum p-value of 2.72 × 10-7) and replicated 22 of 30 tested MRS internally in two separate cohorts of different ethnicity. Our publicly available results and weights show promise for methylation risk scores as clinical and scientific tools.
Collapse
Affiliation(s)
- Mike Thompson
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA.
| | - Brian L Hill
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA.
| | - Nadav Rakocz
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel Geschwind
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Sriram Sankararaman
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Ira Hofer
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Maxime Cannesson
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noah Zaitlen
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Eran Halperin
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
140
|
Effect of a 3-Week Multidisciplinary Body Weight Reduction Program on the Epigenetic Age Acceleration in Obese Adults. J Clin Med 2022; 11:jcm11164677. [PMID: 36012914 PMCID: PMC9410133 DOI: 10.3390/jcm11164677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and aging share common molecular and cellular mechanisms underlying the pathophysiology of cardiovascular diseases (CVD), which occur frequently in both conditions. DNA methylation (DNAm) age, a biomarker of the epigenetic clock, has been proposed as a more accurate predictor of biological aging than chronological age. A positive difference between an individual’s chronological age and DNAm age is referred to as epigenetic age acceleration. The objective of the present study was to evaluate the effects of a 3-week in-hospital body weight reduction program (BWRP) on the epigenetic age acceleration, as well as on other cardiometabolic outcomes, in a cohort of 72 obese adults (F/M: 43/29; (chronological) age: 51.5 ± 14.5 yrs; BMI: 46.5 ± 6.3 kg/m2). At the end of the BWRP, when considering the entire population, BMI decreased, and changes in body composition were observed. The BWRP also produced beneficial metabolic effects as demonstrated by decreases in glucose, insulin, HOMA-IR, total cholesterol, and LDL cholesterol. A post-BWRP improvement in cardiovascular function was also evident (i.e., decreases in systolic and diastolic blood pressures and heart rate). The BWRP reduced some markers of systemic inflammation, particularly C-reactive protein (CRP). Finally, vascular age (VA) and Framingham risk score (FRS) were reduced after the BWRP. When considering the entire population, DNAm age and epigenetic age acceleration did not differ after the BWRP. However, when subdividing the population into two groups based on each subject’s epigenetic age acceleration (i.e., ≤0 yrs or >0 yrs), the BWRP reduced the epigenetic age acceleration only in obese subjects with a value > 0 yrs (thus biologically older than expected). Among all the single demographic, lifestyle, biochemical, and clinical characteristics investigated, only some markers of systemic inflammation, such as CRP, were associated with the epigenetic age acceleration. Moreover, chronological age was correlated with DNAm age and VA; finally, there was a correlation between DNAm age and VA. In conclusion, a 3-week BWRP is capable of reducing the epigenetic age acceleration in obese adults, being the BWRP-induced rejuvenation evident in subjects with an epigenetic age acceleration > 0 yrs. Based on the BWRP-induced decrease in CRP levels, chronic systemic inflammation seems to play a role in mediating obesity-related epigenetic remodeling and biological aging. Thus, due to the strong association of CVD risk with the epigenetic clock and morbidity/mortality, any effort should be made to reduce the low-grade chronic inflammatory state in obesity.
Collapse
|
141
|
Johnson AA, English BW, Shokhirev MN, Sinclair DA, Cuellar TL. Human age reversal: Fact or fiction? Aging Cell 2022; 21:e13664. [PMID: 35778957 PMCID: PMC9381899 DOI: 10.1111/acel.13664] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
Although chronological age correlates with various age-related diseases and conditions, it does not adequately reflect an individual's functional capacity, well-being, or mortality risk. In contrast, biological age provides information about overall health and indicates how rapidly or slowly a person is aging. Estimates of biological age are thought to be provided by aging clocks, which are computational models (e.g., elastic net) that use a set of inputs (e.g., DNA methylation sites) to make a prediction. In the past decade, aging clock studies have shown that several age-related diseases, social variables, and mental health conditions associate with an increase in predicted biological age relative to chronological age. This phenomenon of age acceleration is linked to a higher risk of premature mortality. More recent research has demonstrated that predicted biological age is sensitive to specific interventions. Human trials have reported that caloric restriction, a plant-based diet, lifestyle changes involving exercise, a drug regime including metformin, and vitamin D3 supplementation are all capable of slowing down or reversing an aging clock. Non-interventional studies have connected high-quality sleep, physical activity, a healthy diet, and other factors to age deceleration. Specific molecules have been associated with the reduction or reversal of predicted biological age, such as the antihypertensive drug doxazosin or the metabolite alpha-ketoglutarate. Although rigorous clinical trials are needed to validate these initial findings, existing data suggest that aging clocks are malleable in humans. Additional research is warranted to better understand these computational models and the clinical significance of lowering or reversing their outputs.
Collapse
Affiliation(s)
- Adiv A. Johnson
- Longevity Sciences, Inc. (dba Tally Health)GreenwichConnecticutUSA
| | - Bradley W. English
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging ResearchHarvard Medical SchoolBostonMassachusettsUSA
| | | | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging ResearchHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
142
|
Erichsen L, Thimm C, Santourlidis S. Methyl Group Metabolism in Differentiation, Aging, and Cancer. Int J Mol Sci 2022; 23:8378. [PMID: 35955511 PMCID: PMC9369357 DOI: 10.3390/ijms23158378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Methyl group metabolism belongs to a relatively understudied field of research. Its importance lies in the fact that methyl group metabolic pathways are crucial for the successful conversion of dietary nutrients into the basic building blocks to carry out any cellular methylation reaction. Methyl groups play essential roles in numerous cellular functions such as DNA methylation, nucleotide- and protein biosynthesis. Especially, DNA methylation is responsible for organizing the genome into transcriptionally silent and active regions. Ultimately, it is this proper annotation that determines the quality of expression patterns required to ensure and shape the phenotypic integrity and function of a highly specialized cell type. Life is characterized by constantly changing environmental conditions, which are addressed by changes in DNA methylation. This relationship is increasingly coming into focus as it is of fundamental importance for differentiation, aging, and cancer. The stability and permanence of these metabolic processes, fueling the supplementation of methyl groups, seem to be important criteria to prevent deficiencies and erosion of the methylome. Alterations in the metabolic processes can lead to epigenetic and genetic perturbations, causative for diverse disorders, accelerated aging, and various age-related diseases. In recent decades, the intake of methyl group compounds has changed significantly due to, e.g., environmental pollution and food additives. Based on the current knowledge, this review provides a brief overview of the highly interconnected relationship between nutrition, metabolism, changes in epigenetic modifications, cancer, and aging. One goal is to provide an impetus to additionally investigate changes in DNA methylation as a possible consequence of an impaired methyl group metabolism.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany;
| |
Collapse
|
143
|
Mamalaki E, Charisis S, Anastasiou CA, Ntanasi E, Georgiadi K, Balomenos V, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Sakka P, Scarmeas N, Yannakoulia M. The Longitudinal Association of Lifestyle with Cognitive Health and Dementia Risk: Findings from the HELIAD Study. Nutrients 2022; 14:nu14142818. [PMID: 35889774 PMCID: PMC9320599 DOI: 10.3390/nu14142818] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the current study was to investigate whether a Total Lifestyle Index (TLI), including adherence to the Mediterranean diet, sleep duration, physical activity and engagement in activities of daily living, is associated with cognitive health over time and dementia risk, in a representative cohort of older people. A total of 1018 non-demented community-dwelling older adults ≥65 years old (60% women) from the HELIAD study were included. A comprehensive neurological and neuropsychological assessment was conducted at baseline and at the 3-year follow-up evaluating cognitive functioning, and a dementia diagnosis was set. Diet, physical activity, sleep duration and engagement in activities of daily living were assessed using standard, validated questionnaires at baseline. Sixty-one participants developed dementia at follow-up; participants who developed dementia were older and had fewer years of education compared with participants with normal cognition. With the exception of sleep duration, participants with normal cognition at follow-up scored higher in the individual lifestyle factors compared to those who developed dementia. Regarding TLI, values were lower for participants with dementia compared with those with normal cognition. Each additional unit of the TLI was associated with 0.5% of a standard deviation less decline per year of the Global Cognition score, whereas for each additional unit of the TLI, the risk for dementia was reduced by 0.2% per year (p < 0.05). Our results suggest that greater adherence to a healthy lifestyle pattern is associated with a slower decline of cognitive function and reduced dementia risk.
Collapse
Affiliation(s)
- Eirini Mamalaki
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.M.); (C.A.A.)
| | - Sokratis Charisis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.C.); (E.N.); (N.S.)
- UT Health San Antonio, Department of Neurology, San Antonio, TX 78229, USA
| | - Costas A. Anastasiou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.M.); (C.A.A.)
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.C.); (E.N.); (N.S.)
| | - Kyriaki Georgiadi
- Department of Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.G.); (V.B.)
| | - Vassilis Balomenos
- Department of Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.G.); (V.B.)
| | - Mary H. Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | | | - Paraskevi Sakka
- Athens Association of Alzheimer’s Disease and Related Disorders, 11636 Marousi, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece; (S.C.); (E.N.); (N.S.)
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, the Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.M.); (C.A.A.)
- Correspondence: ; Tel.: +30-210-9549175
| |
Collapse
|
144
|
Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022; 18:433-448. [PMID: 35513492 DOI: 10.1038/s41574-022-00671-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
145
|
Higgins-Chen AT, Thrush KL, Wang Y, Minteer CJ, Kuo PL, Wang M, Niimi P, Sturm G, Lin J, Moore AZ, Bandinelli S, Vinkers CH, Vermetten E, Rutten BPF, Geuze E, Okhuijsen-Pfeifer C, van der Horst MZ, Schreiter S, Gutwinski S, Luykx JJ, Picard M, Ferrucci L, Crimmins EM, Boks MP, Hägg S, Hu-Seliger TT, Levine ME. A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking. NATURE AGING 2022; 2:644-661. [PMID: 36277076 PMCID: PMC9586209 DOI: 10.1038/s43587-022-00248-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/08/2022] [Indexed: 01/09/2023]
Abstract
Epigenetic clocks are widely used aging biomarkers calculated from DNA methylation data, but this data can be surprisingly unreliable. Here we show technical noise produces deviations up to 9 years between replicates for six prominent epigenetic clocks, limiting their utility. We present a computational solution to bolster reliability, calculating principal components from CpG-level data as input for biological age prediction. Our retrained principal-component versions of six clocks show agreement between most replicates within 1.5 years, improved detection of clock associations and intervention effects, and reliable longitudinal trajectories in vivo and in vitro. This method entails only one additional step compared to traditional clocks, requires no replicates or prior knowledge of CpG reliabilities for training, and can be applied to any existing or future epigenetic biomarker. The high reliability of principal component-based clocks is critical for applications to personalized medicine, longitudinal tracking, in vitro studies, and clinical trials of aging interventions.
Collapse
Affiliation(s)
- Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Kyra L Thrush
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Pei-Lun Kuo
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Meng Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Peter Niimi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Gabriel Sturm
- Departments of Psychiatry and Neurology, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
- New York State Psychiatric Institute, New York, NY United States
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States
| | - Ann Zenobia Moore
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | | | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eric Vermetten
- Department Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart P F Rutten
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elbert Geuze
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
- Brain Research & Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
| | - Cynthia Okhuijsen-Pfeifer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Marte Z van der Horst
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
- Second Opinion Outpatient Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Stefanie Schreiter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Gutwinski
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
- Second Opinion Outpatient Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Martin Picard
- Departments of Psychiatry and Neurology, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, United States
- New York State Psychiatric Institute, New York, NY United States
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Morgan E Levine
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
146
|
Reale A, Tagliatesta S, Zardo G, Zampieri M. Counteracting aged DNA methylation states to combat ageing and age-related diseases. Mech Ageing Dev 2022; 206:111695. [PMID: 35760211 DOI: 10.1016/j.mad.2022.111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
DNA methylation (DNAm) overwrites information about multiple extrinsic factors on the genome. Age is one of these factors. Age causes characteristic DNAm changes that are thought to be not only major drivers of normal ageing but also precursors to diseases, cancer being one of these. Although there is still much to learn about the relationship between ageing, age-related diseases and DNAm, we now know how to interpret some of the effects caused by age in the form of changes in methylation marks at specific loci. In fact, these changes form the basis of the so called "epigenetic clocks", which translate the genomic methylation profile into an "epigenetic age". Epigenetic age does not only estimate chronological age but can also predict the risk of chronic diseases and mortality. Epigenetic age is believed to be one of the most accurate metrics of biological age. Initial evidence has recently been gathered pointing to the possibility that the rate of epigenetic ageing can be slowed down or even reversed. In this review, we discuss some of the most relevant advances in this field. Expected outcome is that this approach can provide insights into how to preserve health and reduce the impact of ageing diseases in humans.
Collapse
Affiliation(s)
- Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Stefano Tagliatesta
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00161 Rome, Italy.
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
147
|
O’Shea DM, Maynard T, Tremont G. DNA Methylation "GrimAge" Acceleration Mediates Sex/Gender Differences in Verbal Memory and Processing Speed: Findings From the Health and Retirement Study. J Gerontol A Biol Sci Med Sci 2022; 77:2402-2412. [PMID: 35715888 PMCID: PMC9799212 DOI: 10.1093/gerona/glac133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 01/20/2023] Open
Abstract
Whether sex/gender differences in rates of biological aging mediate sex/gender differences in cognition in older adults has not been fully examined. The aim of the current study was to investigate this association. Data from up to 1 928 participants (mean age = 75, standard deviation = 7.04, female = 57%) who took part in the 2016 Harmonized Cognitive Assessment Protocol and Venous Blood Study; substudies of the Health and Retirement Study were included in the current study. The residuals from 4 age-adjusted epigenetic clocks (Horvath, Hannum, PhenoAge, and GrimAge) were used to measure biological age acceleration. Sex/gender differences in cognition were tested using a series of analyses of covariance. Mediation analyses tested whether the measures of age acceleration accounted for these sex/gender differences, controlling for age, education, smoking status, and white blood cell count. Women outperformed men on measures of verbal learning, verbal memory, visual scanning, and processing speed. No other significant sex/gender differences were identified. Results from mediation analyses revealed that women's slower rates of GrimAge fully accounted for their faster processing speeds and partially accounted for their better performances on verbal learning, verbal memory, and visual scanning measures. None of the other measures of age acceleration were significant mediators. Accounting for sex/gender differences in biological aging may differentiate between cognitive sex/gender differences that are driven by universal (ie, age-related) versus sex-specific mechanisms. More broadly, these findings support the growing evidence that the GrimAge clock outperforms other clocks in predicting cognitive outcomes.
Collapse
Affiliation(s)
- Deirdre M O’Shea
- Address correspondence to: Deirdre M. O’Shea, PhD, Department of Psychiatry & Human Behavior, Warren Alpert Medical School, Brown University, 593 Eddy Street Building, 7th Floor, Providence, RI 02903, USA. E-mail:
| | | | - Geoffrey Tremont
- Department of Psychiatry & Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island,USA,Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
148
|
The increasing importance of the gut microbiome in acne vulgaris. Folia Microbiol (Praha) 2022; 67:825-835. [PMID: 35711021 DOI: 10.1007/s12223-022-00982-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Acne is a frequently presented dermatological condition brought about by an interplay among inflammation, increased sebum production, hyperkeratinisation, and predominantly Propionibacterium acnes (renamed as Cutibacterium acnes) proliferation, leading to debilitating psychological scars. However, it has been shown that it is the loss of microbial diversity in the skin and the imbalance among C. acnes phylotypes that brings about acne rather than the C. acnes species as a whole. Interestingly, recent evidence suggests that other microorganisms may be implicated, such as the fungi Malassezia and the bacteria Cutibacterium granulosum. A plethora of scientific evidence suggests that the gut microbiome is implicated in the overall health and physiology of the host; studies show that the gut microbiome of acne patients is distinct and depicts less microbial diversity compared to individuals without acne. Herein, using the key terms: acne, C. acnes, IGF-1, sebum, and gut microbiome, we carried out a review of the literature, using Google Scholar and PubMed, and discussed the role of the gut and skin microbiome in relation to acne, as a narrative review. The role of hormones, diet, sebum, and stress in relation to the gut microbiome was also investigated. Therapeutic implications and the use of pre-/postbiotics are also deliberated upon. In this light, future research should investigate the relationship between the gut microbiome and the agreed upon factors of acne pathology, potentially leading to the discovery of novel acne treatments with milder side effects.
Collapse
|
149
|
Komaki S, Ohmomo H, Hachiya T, Sutoh Y, Ono K, Furukawa R, Umekage S, Otsuka-Yamasaki Y, Minabe S, Takashima A, Tanno K, Sasaki M, Shimizu A. Evaluation of short-term epigenetic age fluctuation. Clin Epigenetics 2022; 14:76. [PMID: 35681206 PMCID: PMC9185970 DOI: 10.1186/s13148-022-01293-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Considerable effort has been spent on lowering and maintaining the epigenetic age. However, the extent to which epigenetic age fluctuates under normal conditions is poorly understood. Therefore, we analyzed methylation data from monocytes and peripheral blood mononuclear cells collected from two Japanese men. The ranges of the Pan-tissue, Skin and blood, and DNAm PhenoAge epigenetic age during 3 months were ≥ 5.62, ≥ 3.04, and ≥ 8.23 years, and the maximum daily changes were 5.21, 3.20, and 6.53 years, respectively. These fluctuations were not suppressed by correcting for cell-type composition. Although the underlying biological mechanism remains unclear, there was a nonnegligible degree of age fluctuation which should inform personalized clinical applications.
Collapse
Affiliation(s)
- Shohei Komaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Hideki Ohmomo
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan.,Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kanako Ono
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Ryohei Furukawa
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan.,Department of Biology, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan
| | - So Umekage
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Yayoi Otsuka-Yamasaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Shiori Minabe
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Akira Takashima
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan
| | - Kozo Tanno
- Division of Clinical Research and Epidemiology, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan.,Department of Hygiene and Preventive Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan.,Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate, 028-3694, Japan. .,Division of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan.
| |
Collapse
|
150
|
Koemel NA, Skilton MR. Epigenetic Aging in Early Life: Role of Maternal and Early Childhood Nutrition. Curr Nutr Rep 2022; 11:318-328. [PMID: 35192186 PMCID: PMC9174131 DOI: 10.1007/s13668-022-00402-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Early life presents a pivotal period during which nutritional exposures are more likely to cause epigenetic modifications, which may impact an individual's health during adulthood. This article reviews the current evidence regarding maternal and early childhood nutritional exposures and their role in epigenetic aging. RECENT FINDINGS Maternal and early life consumption of diets higher in fiber, antioxidants, polyphenols, B vitamins, vitamin D, and ω-3 fatty acids is associated with slower epigenetic aging. Conversely, diets higher in glycemic load, fat, saturated fat, and ω-6 fatty acids demonstrate a positive association with epigenetic aging. Maternal and early life nutrition directly and indirectly influences epigenetic aging via changes in one-carbon metabolism, cardiometabolic health, and the microbiome. Clinical trials are warranted to determine the specific foods, dietary patterns, and dietary supplements that will normalize or lower epigenetic aging across the life course.
Collapse
Affiliation(s)
- Nicholas A. Koemel
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michael R. Skilton
- The Boden Initiative, Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Sydney Institute for Women, Children and Their Families, Sydney Local Health District, Sydney, Australia
| |
Collapse
|