101
|
Feng WL, Yang JL, Xu LG, Zhang GL. The spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil in the terrestrial ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175543. [PMID: 39153619 DOI: 10.1016/j.scitotenv.2024.175543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Carbon(C), nitrogen(N), and phosphorus(P) are crucial elements in the element cycling in the terrestrial ecosystems. In the past decades, the spatial patterns and driving mechanisms of plant and soil ecological stoichiometry have been hot topics in ecological geography. So far, many studies at different spatial and ecological scales have been conducted, but systematic review has not been reported to summarize the research status. In this paper, we tried to fill this gap by reviewing both the spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil at regional to large scale. Additionally, we synthesized researches on the relationships between plant and soil C, N and P stoichiometric characteristics. At the global scale, plant C, N, P stoichiometric characteristics exhibited some trends along latitude and temperature gradient. Plant taxonomic classification was the main factor controlling the spatial variations of plant C, N and P stoichiometric characteristics. Climate factor and soil properties showed varying impacts on the spatial variations of plant C, N, P stoichiometric characteristics across different spatial scales. Soil C, N, P stoichiometric characteristics also varied along climate gradient at large scale. Their spatial variations resulted from the combined effects of climate, topography, soil properties, and vegetation characteristics at regional scale. The spatial pattern of soil C, N, P stoichiometric characteristics and the driving effects from environmental factors could be notably different among different ecosystems and vegetation types. Plant C:N:P was obviously higher than that of soil, and there existed a positive correlation between plant and soil C:N:P. Their trends along longitude and latitude were similar, but this correlation varied significantly among different vegetation types. Finally, based on the issues identified in this paper, we highlighted eight potential research themes for the future studies.
Collapse
Affiliation(s)
- Wen-Lan Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jin-Ling Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Gang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
102
|
Liu Z, Guo S, Wang T, Yan W, Baoyin T, Fry E. Phase-dependent grassland temporal stability is mediated by species and functional group asynchrony: A long-term mowing experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175445. [PMID: 39134279 DOI: 10.1016/j.scitotenv.2024.175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2024] [Accepted: 08/09/2024] [Indexed: 08/18/2024]
Abstract
The temporal stability of grasslands plays a key role in the stable provisioning of multiple ecosystem goods and services for humankind. Despite recent progress, our knowledge on how long-term mowing influences ecosystem stability remains unclear. Using a dataset from an 18-year-long mowing experiment with different treatment intensities (no-mowing, mowing once per year, and mowing twice per year) in grasslands of Inner Mongolia, China, we aimed to determine whether and how long-term mowing influenced grassland temporal stability in a temperate steppe. We found mowing decreased ecosystem stability in the early and intermediate periods (1-12 years of treatment), but increased stability in the later period (13-18 years of treatment), indicating responses of ecosystem stability to long-term mowing were phase dependent. Bivariate correlation and structural equation modeling analyses revealed that the degree of asynchrony both at the species and functional group levels, as well as dominant species stability, played key roles in stabilizing the whole community. In addition, portfolio effects rather than diversity made significant contributions to ecosystem stability. Our results suggest the phase-dependent temporal stability of grassland under long-term mowing is mainly mediated by species and functional group asynchrony. This finding provides a new insight for understanding how dryland grassland responds to long-term anthropogenic perturbations.
Collapse
Affiliation(s)
- Zhiying Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shuying Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tianqi Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenbin Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Taogetao Baoyin
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Ellen Fry
- Department of Biology, Edge Hill University, Lancashire L39 4QP, United Kingdom
| |
Collapse
|
103
|
Jakovljević M, Đuretanović S, Kojadinović N, Nikolić M, Petrović A, Simović P, Simić V. Assessing spirlin Alburnoides bipunctatus (Bloch, 1782) as an early indicator of climate change and anthropogenic stressors using ecological modeling and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175723. [PMID: 39181248 DOI: 10.1016/j.scitotenv.2024.175723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Combining single-species ecological modeling with advanced machine learning to investigate the long-term population dynamics of the rheophilic fish spirlin offers a powerful approach to understanding environmental changes and climate shifts in aquatic ecosystems. A new ESHIPPOClim model was developed by integrating climate change assessment into the ESHIPPO model. The model identifies spirlin as a potential early indicator of environmental changes, highlighting the interactive effects of climate change and anthropogenic stressors on fish populations and freshwater ecosystems. The ESHIPPOClim model reveals that 28.57 % of the spirlin's data indicates high resilience and ecological responsiveness, with 34.92 % showing medium-high adaptability, suggesting its substantial ability to withstand environmental stressors. With 36.51 % of the data in medium level and no data in the low category, spirlin may serve as a sentinel species, providing early warnings of environmental stressors before they severely impact other species or ecosystems. The results of uniform manifold approximation and projection (UMAP) and a decision tree show that pollution has the highest impact on the population dynamics of spirlin, followed by annual water temperature, overexploitation, and invasive species. Despite the obtained key drivers, higher abundance, dominance, and frequency values were detected in habitats with higher HIPPO stressors and climate change effects. Integrating state-of-the-art machine learning models has enhanced the predictive power of the ESHIPPOClim model, achieving approximately 90 % accuracy in identifying spirlin as an early indicator of climate change and anthropogenic stressors. The ESHIPPOClim model offers a holistic approach with broad practical applications using a simplified three-point scale, adaptable to various fish species, communities, and regions. The ecological modeling supported with advanced machine learning could serve as a foundation for rapid and cost-effective management of aquatic ecosystems, revealing the adaptability potential of fish species, which is crucial in rapidly changing environments.
Collapse
Affiliation(s)
- Marija Jakovljević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia.
| | - Simona Đuretanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Nataša Kojadinović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Marijana Nikolić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Ana Petrović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Predrag Simović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Vladica Simić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| |
Collapse
|
104
|
Bas DA, Sabbe K, van der Wal D, Dasseville R, Van Pelt D, Meire P. High-resolution temporal NDVI data reveal contrasting intratidal, spring-neap and seasonal biomass dynamics in euglenoid- and diatom-dominated biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175676. [PMID: 39179048 DOI: 10.1016/j.scitotenv.2024.175676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Intertidal microphytobenthos (MPB) are a major contributor to primary production in estuarine ecosystems. While their biomass is highly variable at multiple spatial and temporal scales, the underlying drivers are as yet little understood. Both in situ sampling and remote-sensing techniques often lack the temporal resolution or coverage to simultaneously capture short-term (intratidal to daily) and longer-term (weekly to annual) biomass changes. Our field setup with in-situ NDVI sensors allowed us to study MPB surface biomass variability at high temporal resolution (10 mins) for up to two years in a freshwater euglenoid dominated mudflat, and a brackish and a marine diatom dominated mudflat. MPB biomass showed marked periodicities at multiple temporal scales: seasonal, spring-neap and intratidal. The diatom-dominated MPB community showed a seasonal biomass peak in winter, while the euglenoid-dominated community showed biomass peaks during spring and summer, probably caused by underlying divergent responses to mainly irradiance, temperature and wind-induced resuspension, and macrobenthos grazing. Spring-neap periodicity likely resulted from differential migratory responses of the MPB communities to variation in timing and duration of daylight exposure. In the freshwater community, upward migration only occurred when exposure duration was sufficiently long (≥4 h). In the diatom-dominated community, morning daylight exposure resulted in highest NDVI values. This study highlights the differences in MPB biomass dynamics between MPB communities within estuarine ecosystems, and underscores the great potential of high-resolution temporal NDVI monitoring for more accurate estimates of MPB biomass and primary production.
Collapse
Affiliation(s)
- Dorian A Bas
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium; Protistology & Aquatic Ecology, Departement of biology, Ghent University, Ghent, Belgium.
| | - Koen Sabbe
- Protistology & Aquatic Ecology, Departement of biology, Ghent University, Ghent, Belgium
| | - Daphne van der Wal
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, Netherlands; Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands
| | - Renaat Dasseville
- Protistology & Aquatic Ecology, Departement of biology, Ghent University, Ghent, Belgium
| | - Dimitri Van Pelt
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Patrick Meire
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
105
|
Ray T, Fichtner A, Kunz M, Proß T, Bradler PM, Bruelheide H, Georgi L, Haider S, Hildebrand M, Potvin C, Schnabel F, Trogisch S, von Oheimb G. Diversity-enhanced canopy space occupation and leaf functional diversity jointly promote overyielding in tropical tree communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175438. [PMID: 39134282 DOI: 10.1016/j.scitotenv.2024.175438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Understanding the mechanisms that drive biodiversity-productivity relationships is critical for guiding forest restoration. Although complementarity among trees in the canopy space has been suggested as a key mechanism for greater productivity in mixed-species tree communities, empirical evidence remains limited. Here, we used data from a tropical tree diversity experiment to disentangle the effects of tree species richness and community functional characteristics (community-weighted mean and functional diversity of leaf traits) on canopy space filling, and how these effects are related to overyielding. We found that canopy space filling was largely explained by species identity effects rather than tree diversity effects. Communities with a high abundance of species with a conservative resource-use strategy were those with most densely packed canopies. Across monocultures and mixtures, a higher canopy space filling translated into an enhanced wood productivity. Importantly, most communities (83 %) produced more wood volume than the average of their constituent species in monoculture (i.e. most communities overyielded). Our results show that overyielding increased with leaf functional diversity and positive net biodiversity effects on canopy space filling, which mainly arose due to a high taxonomic diversity. These findings suggest that both taxonomic diversity-enhanced canopy space filling and canopy leaf diversity are important drivers for overyielding in mixed-species forests. Consequently, restoration initiatives should promote stands with functionally diverse canopies by selecting tree species with large interspecific differences in leaf nutrition, as well as leaf and branch morphology to optimize carbon capture in young forest stands.
Collapse
Affiliation(s)
- Tama Ray
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Matthias Kunz
- Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
| | - Tobias Proß
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia M Bradler
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany; Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Louis Georgi
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany
| | - Sylvia Haider
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | | | - Catherine Potvin
- Department of Biology, McGill University, 1205 Dr Penfield, Montréal, Québec H3A 1B1, Canada; Smithsonian Tropical Research Institute, Panama, Panama
| | - Florian Schnabel
- Chair of Silviculture, Institute of Forest Sciences, University of Freiburg, Tennenbacherstr. 4, 79085 Freiburg, Germany
| | - Stefan Trogisch
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, TUD Dresden University of Technology, Tharandt, Germany
| |
Collapse
|
106
|
Reynolds SD, Franklin CE, Norman BM, Richardson AJ, Everett JD, Schoeman DS, White CR, Lawson CL, Pierce SJ, Rohner CA, Bach SS, Comezzi FG, Diamant S, Jaidah MY, Robinson DP, Dwyer RG. Effects of climate warming on energetics and habitat of the world's largest marine ectotherm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175832. [PMID: 39197762 DOI: 10.1016/j.scitotenv.2024.175832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Responses of organisms to climate warming are variable and complex. Effects on species distributions are already evident and mean global surface ocean temperatures are likely to warm by up to 4.1 °C by 2100, substantially impacting the physiology and distributions of ectotherms. The largest marine ectotherm, the whale shark Rhincodon typus, broadly prefers sea surface temperatures (SST) ranging from 23 to 30 °C. Whole-species distribution models have projected a poleward range shift under future scenarios of climate change, but these models do not consider intraspecific variation or phenotypic plasticity in thermal limits when modelling species responses, and the impact of climate warming on the energetic requirements of whale sharks is unknown. Using a dataset of 111 whale shark movement tracks from aggregation sites in five countries across the Indian Ocean and the latest Earth-system modelling produced from Coupled Model Intercomparison Project Phase 6 for the Intergovernmental Panel on Climate Change, we examined how SST and total zooplankton biomass, their main food source, may change in the future, and what this means for the energetic balance and extent of suitable habitat for whale sharks. Earth System Models, under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP3-7.0 and SSP5-8.5), project that by 2100 mean SST in four regions where whale shark aggregations are found will increase by up to 4.9 °C relative to the present, while zooplankton biomass will decrease. This reduction in zooplankton is projected to be accompanied by an increase in the energetic requirements of whale sharks because warmer water temperatures will increase their metabolic rate. We found marked differences in projected changes in the extent of suitable habitat when comparing a whole-species distribution model to one including regional variation. This suggests that the conventional approach of combining data from different regions within a species' distribution could underestimate the amount of local adaptation in populations, although parameterising local models could also suffer from having insufficient data and lead to model mis-specification or highly uncertain estimates. Our study highlights the need for further research into whale shark thermal tolerances and energetics, the complexities involved in projecting species responses to climate change, and the potential importance of considering intraspecific variation when building species distribution models.
Collapse
Affiliation(s)
- Samantha D Reynolds
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia; ECOCEAN Inc., 162/3 Powell Rd, Coogee, WA, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA, Australia.
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Bradley M Norman
- ECOCEAN Inc., 162/3 Powell Rd, Coogee, WA, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Anthony J Richardson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia; Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, Brisbane, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, QLD, AUSTRALIA
| | - Jason D Everett
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia; CSIRO Environment, Queensland Biosciences Precinct, St Lucia, QLD, AUSTRALIA; Centre for Marine Science and Innovation, University of New South Wales, Sydney, NSW, Australia
| | - David S Schoeman
- Ocean Futures Research Cluster, School of Science, Technology, and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia; Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| | - Craig R White
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, VIC, Australia
| | - Christopher L Lawson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Simon J Pierce
- Marine Megafauna Foundation, West Palm Beach, FL, USA; School of Science, Technology and Engineering, The University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | | | - Steffen S Bach
- Ramboll, Copenhagen, Denmark; Qatar Whale Shark Research Project, Doha, Qatar
| | - Francesco G Comezzi
- Department of Natural Resources and Environment Tasmania, Marine Resources, Hobart, Tasmania, Australia
| | - Stella Diamant
- Marine Megafauna Foundation, West Palm Beach, FL, USA; Madagascar Whale Shark Project, Nosy Be, Madagascar
| | | | - David P Robinson
- Qatar Whale Shark Research Project, Doha, Qatar; Sundive Research, Byron Bay, New South Wales, Australia
| | - Ross G Dwyer
- School of Science, Technology and Engineering, The University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
107
|
Yang Y, Li C, Yang L, Zhu H, Xie Z, Falandysz J, Weber R, Qin L, Liu G. Linking industrial emissions and dietary exposure to human burdens of polychlorinated naphthalenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175733. [PMID: 39181249 DOI: 10.1016/j.scitotenv.2024.175733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Relationships between toxic pollutant emissions during industrial processes and toxic pollutant dietary intakes and adverse health burdens have not yet been quantitatively clarified. Polychlorinated naphthalenes (PCNs) are typical industrial pollutants that are carcinogenic and of increasing concern. In this study, we established an interpretable machine learning model for quantifying the contributions of industrial emissions and dietary intakes of PCNs to health effects. We used the SHapley Additive exPlanations model to achieve individualized interpretability, enabling us to evaluate the specific contributions of individual feature values towards PCNs concentration levels. A strong relationship between PCN dietary intake and body burden was found using a robust large-scale PCN diet survey database for China containing the results of the analyses of 17,280 dietary samples and 4480 breast milk samples. Industrial emissions and dietary intake contributed 12 % and 52 %, respectively, of the PCN burden in breast milk. The model quantified the contributions of food consumption and industrial emissions to PCN exposure, which will be useful for performing accurate health risk assessments and developing reduction strategies of PCNs.
Collapse
Affiliation(s)
- Yujue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hao Zhu
- Tulane University, 205 Richardson, New Orleans, LA 70118, USA
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Jerzy Falandysz
- Department of Toxicology, Medical University of Lodz, Muszyńskiego 1, 90-15 Łódź, Poland
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd 73527, Germany
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
| |
Collapse
|
108
|
Reijers VC, van Rees F, van der Heide T, Oost AP, Ruessink G, Koffijberg K, Camphuysen KCJ, Penning E, Hijner N, Govers LL. Birds influence vegetation coverage and structure on sandy biogeomorphic islands in the Dutch Wadden Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175254. [PMID: 39111441 DOI: 10.1016/j.scitotenv.2024.175254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Small uninhabited islands form important roosting and breeding habitats for many coastal birds. Previous studies have demonstrated that guano can promote ecosystem productivity and functionality on island ecosystems. Here, we assess the role of external nutrient input by coastal birds on the vegetation structure and coverage on sandy biogeomorphic islands, where island-forming processes depend on vegetation-sedimentation feedbacks. As a first step, we investigated whether breeding birds affect vegetation productivity on sandy back-barrier islands in the Wadden Sea. Using a combination of bird observations and plant stable isotope (δ15N) analyses, we demonstrate that (i) breeding birds transport large quantities of nutrients via their faecal outputs to these islands annually and that (ii) this external nitrogen source influences vegetation development on these sandy, nutrient-limited, islands. Based on these results we discuss how this avian nutrient pump could impact island development and habitat suitability for coastal birds and discuss future directions for research. In general, we conclude that avian subsidies have the potential to affect both the ecological and biogeomorphic functioning of coastal soft-sediment systems. However, the strength and scale of especially these biogeomorphic interactions are not fully understood. For the conservation of both threatened coastal birds and sandy back-barrier islands and the design of appropriate management strategies, we argue that three-way interactions between birds, vegetation and sandy island morphodynamics need to be further elucidated.
Collapse
Affiliation(s)
- Valérie C Reijers
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands; Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - Floris van Rees
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands; Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Tjisse van der Heide
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| | - Albert P Oost
- Staatsbosbeheer, P.O. Box 2, 3800 AA Amersfoort, the Netherlands
| | - Gerben Ruessink
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands
| | - Kees Koffijberg
- Sovon Dutch Centre for Field Ornithology, PO Box 6521, Nijmegen, the Netherlands
| | - Kees C J Camphuysen
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Emma Penning
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; BirdEyes, Centre for Global Ecological Change at the Faculties of Science & Engineering and Campus Fryslân, University of Groningen, Zaailand 110, 8911 BN Leeuwarden, the Netherlands
| | - Nadia Hijner
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| | - Laura L Govers
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| |
Collapse
|
109
|
Haubrock PJ. Site characteristics determine the prevalence of extreme weather events affecting freshwater macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175436. [PMID: 39128525 DOI: 10.1016/j.scitotenv.2024.175436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Understanding the impacts of extreme weather events on freshwater ecosystems is imperative during a time when a multitude of challenges compromises these environments' health. Exploring how such events affect macroinvertebrate communities in rivers sheds light on the resilience of freshwater ecosystems, which is essential for human well-being and biodiversity conservation. In this study, long-term time series of benthic macroinvertebrate communities from four sites along three freshwater streams within the Rhine-Main-Observatory Long-Term Ecological Research site in Germany were analyzed. Each of them was sampled annually over a span of ~20 years to assess the impacts of extreme weather events (floods, droughts, and extreme heat) on macroinvertebrate communities. The findings reveal that the effects of extreme events are site-specific, suggesting that the impacts of an extreme event can vary based on several potential factors, including the life history traits of the organisms within the community and, among others, the hydrography of the site. Moreover, the analysis highlights that the cumulative impact of these events over time is more significant than the impact of a single event's magnitude, while following distinct temporal dynamics. This underscores the importance of considering both the temporal dynamics and the biological characteristics of communities when evaluating the consequences of extreme weather events on biodiversity, illustrating that the resilience of freshwater ecosystems and their biodiversity under such conditions depends on a complex interplay of factors rather than the severity of individual events.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| |
Collapse
|
110
|
Yuan C, Gao J, Huang L, Jian S. Chromolaena odorata affects soil nitrogen transformations and competition in tropical coral islands by altering soil ammonia oxidizing microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175196. [PMID: 39097027 DOI: 10.1016/j.scitotenv.2024.175196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Invasive plants can change the community structure of soil ammonia-oxidizing microbes, affect the process of soil nitrogen (N) transformation, and gain a competitive advantage. However, the current researches on competition mechanism of Chromolaena odorata have not involved soil nitrogen transformation. In this study, we compared the microbially mediated soil transformations of invasive C. odorata and natives (Pisonia grandis and Scaevola taccada) of tropical coral islands. We assessed how differences in plant biomass and tissue N contents, soil nutrients, N transformation rates, microbial biomass and activity, and diversity and abundance of ammonia oxidizing microbes associated with these species impact their competitiveness. The results showed that C. odorata outcompeted both native species by allocating more proportionally biomass to aboveground parts in response to interspecific competition (12.92 % and 22.72 % more than P. grandis and S. taccada, respectively). Additionally, when C. odorata was planted with native plants, the available N and net mineralization rates in C. odorata rhizosphere soil were higher than in native plants rhizosphere soils. Higher abundance of ammonia-oxidizing bacteria in C. odorata rhizosphere soil confirmed this, being positively correlated with soil N mineralization rates and available N. Our findings help to understand the soil N acquisition and competition strategies of C. odorata, and contribute to improving evaluations and predictions of invasive plant dynamics and their ecological effects in tropical coral islands.
Collapse
Affiliation(s)
- Chengzhi Yuan
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Gao
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luping Huang
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
111
|
Zhang Y, Resch MC, Schütz M, Liao Z, Frey B, Risch AC. Strengthened plant-microorganism interaction after topsoil removal cause more deterministic microbial assembly processes and increased soil nitrogen mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175031. [PMID: 39069191 DOI: 10.1016/j.scitotenv.2024.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Topsoil removal, among other restoration measures, has been recognized as one of the most successful methods to restore biodiversity and ecosystem functioning in European grasslands. However, knowledge about how removal as well as other restoration methods influence interactions between plant and microbial communities is very limited. The aims of the current study were to understand the impact of topsoil removal on plant-microorganism interactions and on soil nitrogen (N) mineralization, as one example of ecosystem functioning. We examined how three different grassland restoration methods, namely 'Harvest only', 'Topsoil removal' and 'Topsoil removal + Propagules (plant seed addition)', affected i) the interactions between plants and soil microorganisms, ii) soil microbial community assembly processes, and iii) soil N mineralization. We compared the outcome of these three restoration methods to initial degraded and target semi-natural grasslands in the Canton of Zurich, Switzerland. We were able to show that 'Topsoil removal' and 'Topsoil removal + Propagules', but not 'Harvest only', reduced the soil total N pool and available N concentration, but increased soil N mineralization and strengthened the plant-microorganism interactions. Microbial community assembly processes shifted towards more deterministic after both topsoil removal treatments. These shifts could be attributed to an increase in dispersal limitation and selection due to stronger interactions between plants and soil microorganisms. The negative relationship between soil N mineralization and microbial community stochasticity indicated that microbial assembly processes, to some extent, can be incorporated into model predictions of soil functions. Overall, the results suggest that topsoil removal may change the microbial assembly processes and thus the functioning of grassland ecosystems by enhancing the interaction between plants and soil microorganisms.
Collapse
Affiliation(s)
- Yongyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Monika Carol Resch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ziyan Liao
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Anita Christina Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
112
|
Caleca F, Confuorto P, Raspini F, Segoni S, Tofani V, Casagli N, Moretti S. Shifting from traditional landslide occurrence modeling to scenario estimation with a "glass-box" machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175277. [PMID: 39122027 DOI: 10.1016/j.scitotenv.2024.175277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Extreme rainfall events represent one of the main triggers of landslides. As climate change continues to reshape global weather patterns, the frequency and intensity of such events are increasing, amplifying landslide occurrences and associated threats to communities. In this contribution, we analyze relationships between landslide occurrence and extreme rainfall events by using a "glass-box" machine learning model, namely Explainable Boosting Machine. What sets these models as a "glass-box" technique is their exact intelligibility, offering transparent explanations for their predictions. We leverage these capabilities to model the landslide occurrence induced by an extreme rainfall event in the form of spatial probability (i.e., susceptibility). In doing so, we use the heavy rainfall event in the Misa River Basin (Central Italy) on September 15, 2022. Notably, we introduce a rainfall anomaly among our set of predictors to express the intensity of the event compared to past rainfall patterns. Spatial variable selection and model evaluation through random and spatial routines are incorporated into our protocol. Our findings highlight the critical role of the rainfall anomaly as the most important variable in modeling landslide susceptibility. Furthermore, we leverage the dynamic nature of such a variable to estimate landslide occurrence under different rainfall scenarios.
Collapse
Affiliation(s)
- Francesco Caleca
- Department of Earth Sciences, University of Florence, Florence, Italy.
| | | | - Federico Raspini
- Department of Earth Sciences, University of Florence, Florence, Italy
| | - Samuele Segoni
- Department of Earth Sciences, University of Florence, Florence, Italy
| | - Veronica Tofani
- Department of Earth Sciences, University of Florence, Florence, Italy
| | - Nicola Casagli
- Department of Earth Sciences, University of Florence, Florence, Italy; National Institute of Oceanography and Applied Geophysics - OGS, Borgo Grotta Gigante, Sgonico, Trieste, Italy
| | - Sandro Moretti
- Department of Earth Sciences, University of Florence, Florence, Italy
| |
Collapse
|
113
|
Nong X, Lai C, Chen L, Wei J. A novel coupling interpretable machine learning framework for water quality prediction and environmental effect understanding in different flow discharge regulations of hydro-projects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175281. [PMID: 39117235 DOI: 10.1016/j.scitotenv.2024.175281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Machine learning models (MLMs) have been increasingly used to forecast water pollution. However, the "black box" characteristic for understanding mechanism processes still limits the applicability of MLMs for water quality management in hydro-projects under complex and frequently artificial regulation. This study proposes an interpretable machine learning framework for water quality prediction coupled with a hydrodynamic (flow discharge) scenario-based Random Forest (RF) model with multiple model-agnostic techniques and quantifies global, local, and joint interpretations (i.e., partial dependence, individual conditional expectation, and accumulated local effects) of environmental factor implications. The framework was applied and verified to predict the permanganate index (CODMn) under different flow discharge regulation scenarios in the Middle Route of the South-to-North Water Diversion Project of China (MRSNWDPC). A total of 4664 sampling cases data matrices, including water quality, meteorological, and hydrological indicators from eight national stations along the main canal of the MRSNWDPC, were collected from May 2019 to December 2020. The results showed that the RF models were effective in forecasting CODMn in all flow discharge scenarios, with a mean square error, coefficient of determination, and mean absolute error of 0.006-0.026, 0.481-0.792, and 0.069-0.104, respectively, in the testing dataset. A global interpretation indicated that dissolved oxygen, flow discharge, and surface pressure are the three most important variables of CODMn. Local and joint interpretations indicated that the RF-based prediction model provides a basic understanding of the physical mechanisms of environmental systems. The proposed framework can effectively learn the fundamental environmental implications of water quality variations and provide reliable prediction performance, highlighting the importance of model interpretability for trustworthy machine learning applications in water management projects. This study provides scientific references for applying advanced data-driven MLMs to water quality forecasting and a reliable methodological framework for water quality management and similar hydro-projects.
Collapse
Affiliation(s)
- Xizhi Nong
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China; Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, UK; School of Computing and Engineering, University of West London, London W5 5RF, UK
| | - Cheng Lai
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Lihua Chen
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China.
| | - Jiahua Wei
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
114
|
Wu K, Wang Y, Liu Z, Huo W, Cao J, Zhao G, Zhang FG. Prediction of potential invasion of two weeds of the genus Avena in Asia under climate change based on Maxent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175192. [PMID: 39111452 DOI: 10.1016/j.scitotenv.2024.175192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Avena sterilis L. (A. sterilis) and Avena ludoviciana Dur. (A. ludoviciana) are extremely invasive weeds with strong competitive ability and multiple transmission routes. Both species can invade a variety of dryland crops, including wheat, corn, and beans. Asia, as the world's major food-producing continent, will experience significant losses to agricultural production if it is invaded by these weeds on a large scale. This study used the MaxEnt model and ArcGIS to map the distribution of suitable habitats of the two species in Asia under climate change conditions. The constructed model comprised four levels, with a total of 25 index-level indicator factors used to evaluate the invasion risk of the two species. The results showed that the distribution of suitable habitats for both Avena species was highly dependent on precipitation and temperature. Under climate warming conditions, although overall the total suitable area is predicted to decrease compared to the current period, there are still moderately or highly suitable areas. Asian countries need to provide early warning for areas with significant increases in moderate and highly suitable zones for these two species of weeds under the background of climate change. If there is already an invaded area or if the suitability of the original area is increased, this should be closely monitored, and control measures should be taken to prevent further spread and deterioration.
Collapse
Affiliation(s)
- Kefan Wu
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Yongji Wang
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Zhusong Liu
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Wentao Huo
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Jiaying Cao
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Guanghua Zhao
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Fen-Guo Zhang
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China.
| |
Collapse
|
115
|
Deng F, Xie H, Zheng T, Yang Y, Bao X, He H, Zhang X, Liang C. Dynamic responses of soil microbial communities to seasonal freeze-thaw cycles in a temperate agroecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175228. [PMID: 39102954 DOI: 10.1016/j.scitotenv.2024.175228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Soil freeze-thaw cycles (FTCs) are common in temperate agricultural ecosystems during the non-growing season and are progressively influenced by climate change. The impact of these cycles on soil microbial communities, crucial for ecosystem functioning, varies under different agricultural management practices. Here, we investigated the dynamic changes in soil microbial communities in a Mollisol during seasonal FTCs and examined the effects of stover mulching and nitrogen fertilization. We revealed distinct responses between bacterial and fungal communities. The dominant bacterial phyla reacted differently to FTCs: for example, Proteobacteria responded opportunistically, Actinobacteria, Acidobacteria, Choroflexi and Gemmatimonadetes responded sensitively, and Saccharibacteria exhibited a tolerance response. In contrast, the fungal community composition remained relatively stable during FTCs, except for a decline in Glomeromycota. Certain bacterial OTUs acted as sensitive indicators of FTCs, forming keystone modules in the network that are closely linked to soil carbon, nitrogen content and potential functions. Additionally, neither stover mulching nor nitrogen fertilization significantly influenced microbial richness, diversity and potential functions. However, over time, more indicator species specific to these agricultural practices began to emerge within the networks and gradually occupied the central positions. Furthermore, our findings suggest that farming practices, by introducing keystone microbes and changing interspecies interactions (even without changing microbial richness and diversity), can enhance microbial community stability against FTC disturbances. Specifically, higher nitrogen input with stover removal promotes fungal stability during soil freezing, while lower nitrogen levels increase bacterial stability during soil thawing. Considering the fungal tolerance to FTCs, we recommend reducing nitrogen input for manipulating bacterial interactions, thereby enhancing overall microbial resilience to seasonal FTCs. In summary, our research reveals that microbial responses to seasonal FTCs are reshaped through land management to support ecosystem functions under environmental stress amid climate change.
Collapse
Affiliation(s)
- Fangbo Deng
- Key Lab of Conservation Tillage & Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtu Xie
- Key Lab of Conservation Tillage & Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Tiantian Zheng
- Key Lab of Conservation Tillage & Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yali Yang
- Key Lab of Conservation Tillage & Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuelian Bao
- Key Lab of Conservation Tillage & Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hongbo He
- Key Lab of Conservation Tillage & Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xudong Zhang
- Key Lab of Conservation Tillage & Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chao Liang
- Key Lab of Conservation Tillage & Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
116
|
Zhou M, Liu Z, Zhang B, Hu B. Defense systems of soil microorganisms in response to compound contamination by arsenic and polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175364. [PMID: 39117226 DOI: 10.1016/j.scitotenv.2024.175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Arsenic and PAHs impose environmental stress on soil microorganisms, yet their compound effects remain poorly understood. While soil microorganisms possess the ability to metabolize As and PAHs, the mechanisms of microbial response are not fully elucidated. In our study, we established two simulated soil systems using soil collected from Xixi Wetland Park grassland, Hangzhou, China. The As-600 Group was contaminated with 600 mg/kg sodium arsenite, while the As-600-PAHs-30 Group received both 600 mg/kg sodium arsenite and 30 mg/kg PAHs (phenanthrene:fluoranthene:benzo[a]pyrene = 1:1:1). These systems were operated continuously for 270 days, and microbial responses were assessed using high-throughput sequencing and metagenomic analysis. Our findings revealed that compound contamination significantly promoted the abundance of microbial defense-related genes, with general defense genes increasing by 11.07 % ∼ 74.23 % and specific defense genes increasing by 44.13 % ∼ 55.74 %. The dominate species Rhodococcus adopts these general and specific defense mechanisms to resist compound pollution stress and gain ecological niche advantages, making it a candidate strain for soil remediation. Our study contributes to the assessment of ecological damage caused by As and PAHs from a microbial perspective and provides valuable insights for soil remediation.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zishu Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
117
|
Zhang Y, Wang T, Yan C, Li Y, Mo F, Han J. Microbial life-history strategies and particulate organic carbon mediate formation of microbial necromass carbon and stabilization in response to biochar addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175041. [PMID: 39079640 DOI: 10.1016/j.scitotenv.2024.175041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Microbial necromass carbon (MNC) contributes significantly to the formation of soil organic carbon (SOC). However, the microbial carbon sequestration effect of biochar is often underestimated and influenced by nutrient availability. The mechanisms associated with the formation and stabilization of MNC remain unclear, especially under the combined application of biochar and nitrogen (N) fertilizer. Thus, in a long-term field experiment (11 years) based on biochar application, we utilized bacterial 16S rRNA gene sequencing, fungal ITS amplicon sequencing, metagenomics, and microbial biomarkers to examine the interactions between MNC accumulation and microbial metabolic strategies under combined treatment with biochar and N fertilizer. We aimed to identify the critical microbial modules and species involved, and to analyze the sites where MNC was immobilized from various components. Biochar application increased the MNC content by 13.9 %. Among the MNC components, fungal necromass contributed more to MNC, but bacteria were more readily enriched after biochar application. The microbial life-history strategies that affected MNC formation under the application of various amounts biochar were linked to the N application level. Under N added at 226.5 kg ha-1, communities such as Actinobacteria and Bacteroidetes with high-growth yield strategies were prevalent and contributed to MNC production. By contrast, under N added at 113.25 kg ha-1 with high biochar application, Proteobacteria with strong resource acquisition strategies were dominant and MNC accumulation was lower. The mineral-associated organic carbon pool was rapidly saturated with the addition of biochar, so the contribution of fungal necromass carbon may have been reduced by reutilization, thereby resulting in the more rapid preservation of bacterial necromass carbon in the particulate organic carbon pool. Overall, our findings indicate that microbial life history traits are crucial for linking microbial metabolic processes to the accumulation and stabilization of MNC, thereby highlighting the their importance for SOC accumulation in farmland soils, and the need to tailor appropriate biochar and N fertilizer application strategies for agricultural soils.
Collapse
Affiliation(s)
- Yeye Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tao Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chun Yan
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuze Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Juan Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
118
|
Yan Y, Twible LE, Liu FYL, Arrey JLS, Colenbrander Nelson TE, Warren LA. Cascading sulfur cycling in simulated oil sands pit lake water cap mesocosms transitioning from oxic to euxinic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175272. [PMID: 39111438 DOI: 10.1016/j.scitotenv.2024.175272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Base Mine Lake (BML), the first full-scale demonstration of oil sands tailings pit lake reclamation technology, is experiencing expansive, episodic hypolimnetic euxinia resulting in greater sulfur biogeochemical cycling within the water cap. Here, Fluid Fine Tailings (FFT)-water mesocosm experiments simulating the in situ BML summer hypolimnetic oxic-euxinic transition determined sulfur biogeochemical processes and their controlling factors. While mesocosm water caps without FFT amendments experienced limited geochemical and microbial changes during the experimental period, FFT-amended mesocosm water caps evidenced three successive stages of S speciation in ∼30 days: (S1) rising expansion of water cap euxinia from FFT to water surface; enabling (S2) rapid sulfate (SO42-) reduction and sulfide production directly within the water column; fostering (S3) generation and subsequent consumption of sulfur oxidation intermediate compounds (SOI). Identified key SOI, elemental S and thiosulfate, support subsequent SOI oxidation, reduction, and/or disproportionation processes in the system. Dominant water cap microbes shifted from methanotrophs and denitrifying/iron-reducing bacteria to functionally versatile sulfur-reducing bacteria (SRB) comprising sulfate-reducing bacteria (Desulfovibrionales) and SOI-reducing/disproportionating bacteria (Campylobacterales and Desulfobulbales). The observed microbial shift is driven by decreasing [SO42-] and organic aromaticity, with putative hydrocarbon-degrading bacteria providing electron donors for SRB. Comparison between unsterile and sterile water treatments further underscores the biogeochemical readiness of the in situ water cap to enhance oxidant depletion, euxinia expansion and establishment of water cap SRB communities aided by FFT migration of anaerobes. Results here identify the collective influence of FFT and water cap microbial communities on water cap euxinia expansion associated with sequential S reactions that are controlled by concentrations of oxidants, labile organic substrates and S species. This emphasizes the necessity of understanding this complex S cycling in assessing BML water cap O2 persistence.
Collapse
Affiliation(s)
- Yunyun Yan
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Lauren E Twible
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Felicia Y L Liu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - James L S Arrey
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Tara E Colenbrander Nelson
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
119
|
Qu Q, Wang S, Hu X, Mu L. The impact of anthropogenic pressures on microbial diversity and river multifunctionality relationships on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175293. [PMID: 39111414 DOI: 10.1016/j.scitotenv.2024.175293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
Conserving biodiversity is crucial for maintaining essential ecosystem functions, as indicated by the positive relationships between biodiversity and ecosystem functioning. However, the impacts of declining biodiversity on ecosystem functions in response to mounting human pressures remain uncertain. This uncertainty arises from the complexity of trade-offs among human activities, climate change, river properties, and biodiversity, which have not been comprehensively addressed collectively. Here, we provide evidence that river biodiversity was significantly and positively associated with multifunctionality and contributed to key ecosystem functions such as microbially driven water purification, leaf litter decomposition and pathogen control. However, human pressure led to abrupt changes in microbial diversity and river multifunctionality relationships at a human pressure value of 0.5. In approximately 30 % (N = 58) of countries globally, the ratio of area above this threshold exceeded the global average (∼11 %), especially in Europe. Results show that human pressure affected ecosystem functions through direct effects and interactive effects. We provide more direct evidence that the nonadditive effects triggered by prevailing human pressure impact the multifunctionality of rivers globally. Under high levels of human stress, the beneficial effects of biodiversity on nutrient cycling, carbon storage, gross primary productivity, leaf litter decomposition, and pathogen control tend to diminish. Our findings highlight that considering interactions between human pressure and local abiotic and biotic factors is key for understanding the fate of river ecosystems under climate change and increasing human pressure.
Collapse
Affiliation(s)
- Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| |
Collapse
|
120
|
Xie L, Palmroth S, Yin C, Oren R. Extramatrical mycelial biomass is mediated by fine root mass and ectomycorrhizal fungal community composition across tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175175. [PMID: 39111434 DOI: 10.1016/j.scitotenv.2024.175175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
In many ecosystems, a large fraction of gross primary production is invested in mycorrhiza. Ectomycorrhizal (ECM) mycelium is involved in regulating soil carbon and nutrient cycling. However, little is known about how mycelial biomass, production and turnover differ depending on ECM fungal community composition and associated tree species. We quantified fine root biomass and length using soil cores, and mycelial traits (biomass, production, and turnover) using mesh-bags and ergosterol analysis, and identified ECM exploration types by Illumina MiSeq sequencing of four ECM-dominated tree species (Picea asperata, Larix gmelinii, Quercus aquifolioides and Betula albosinensis) in subalpine forest. The ECM fungal community composition separated between needle-leaved and broadleaved species, and between evergreen and deciduous species. The ratio of mycelial to fine root biomass was similar across the species regardless of genus-scale community composition and the relative abundance of exploration types. Compared to the other species, Q. aquifolioides displayed higher fine root biomass and mycelial biomass and production, dominated by contact-short exploration type. Mycelial turnover rate tended to be lowest in P. asperata, dominated by medium-long exploration type. Much higher production of mycelium and only slightly higher turnover rate in Q. aquifolioides suggests that its steady-state mycelial biomass would be higher than of the other species. Moreover, compared to the two deciduous species, with similar production but somewhat lower turnover rate, the standing crop of mycelium in P. asperata may stabilize at a higher value. Our findings, that exploration type may affect production and turnover, highlight the importance of characterizing ECM fungal communities by exploration types when estimating the contribution of mycelium biomass to forest carbon sink and storage.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Sari Palmroth
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Forest Sciences, University of Helsinki, FI-00014, Finland
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China.
| | - Ram Oren
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Forest Sciences, University of Helsinki, FI-00014, Finland
| |
Collapse
|
121
|
Fedyń I, Sobociński W, Czyżowicz S, Wyka J, Ciach M. Ecosystem engineers cause biodiversity spill-over: Beavers are associated with breeding bird assemblages on both wetlands and adjacent terrestrial habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175166. [PMID: 39094639 DOI: 10.1016/j.scitotenv.2024.175166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The influence of ecosystem engineers on habitats and communities is commonly acknowledged in a site-bounded context, i.e. in places directly affected by the presence of the focal species. However, the spatial extent of the effects of such engineering is poorly understood, raising the question as to what impact they have on ecosystems situated beyond the species' direct influence. Beavers Castor spp., iconic ecosystem engineers, are capable of significantly transforming aquatic ecosystems. Their presence boosts biodiversity in adjacent aquatic and riparian habitats, but as a result of cascading processes, beavers may affect terrestrial habitats situated beyond the range of their immediate activity. Our study investigates the breeding bird assemblage along a spatial gradient from the water to the forest interior on central European watercourses modified and unmodified by beavers. The results show that beaver sites are characterized by a higher species richness and abundance of breeding birds than unmodified watercourses. Such sites also host a different species pool, as 27 % of the recorded bird species occurred exclusively on the beaver sites. The effect of the beaver's presence on the bird assemblage extended to adjacent terrestrial habitats located up to 100 m from the water's edge, where the species richness and abundance was higher and the species composition was substantially modified. We also found a positive correlation between the total area of beaver wetland and the numbers of bird species and individuals recorded. Our study adds to the general understanding of the spatial context of the ecosystem engineering concept, as the changes brought about by engineers have an influence beyond the area of their immediate occurrence. Our work also has implications for landscape planning and management, where existing beaver sites with terrestrial buffer zones may constitute a network of biodiversity hotspots.
Collapse
Affiliation(s)
- Izabela Fedyń
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Wojciech Sobociński
- Institute of Biology, University of Bialystok, ul. Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Sławomir Czyżowicz
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Jakub Wyka
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Michał Ciach
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland.
| |
Collapse
|
122
|
Su J, Ma Y, Xu Z, Liu Y, Zhao Y, Li X, Hu Y. Cumulative effects of experimental nitrogen deposition on soil chemistry in a desert steppe: A 12-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175388. [PMID: 39122050 DOI: 10.1016/j.scitotenv.2024.175388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although the effects of human-enhanced atmospheric nitrogen (N) deposition are well documented, the response of dryland soils to N deposition remains unclear owing to the divergence in hydrological outputs and soil heterogeneity. We selected a typical desert steppe in western China to simulate the effects of long-term N deposition by applying 0 (CK), 3.5, 7, and 14 g N m-2 yr-1 for 12 consecutive years. We found that, compared with the CK plots, the total N content of the upper (0-10 cm) and lower (10-20 cm) soil layers in fertilized plots increased by 8.3-14.6 % and 2.4-8.2 %, respectively. Correspondingly, the available, NH4+-, and NO3--N contents in the upper soil significantly increased by 25.5-68.3 %. However, in the lower soil, available and NO3--N contents were significantly lower than those in the CK plots, and their variation trend was opposite to that of NH4+-N, implying N turnover and leaching. As a result, the upper and lower soil pH in fertilized plots significantly decreased by 0.36-0.53 and 0.31-0.37 units; however, their CaCO3 content significantly increased by 9.8-22.8 % and 7.2-30.3 %, respectively. The total phosphorus (P) content in the upper and lower soil layers in fertilized plots significantly increased and decreased by 3.6-51.3 % and 16.7-62.5 %, respectively, however, both significantly decreased along the N fertilization gradient. Furthermore, the upper and lower soil organic carbon (SOC) content in the fertilized plots significantly increased by 57.7-78.1 % and 19.2-27.4 %, respectively. Pearson's correlation analysis revealed that available soil P was significantly negatively correlated with plant shoot Mn content (a proxy for rhizosphere carboxylates), whereas dissolved OC, SOC, and CaCO3 were significantly positively correlated, suggesting that Ca cycling is involved in P cycling and SOC sequestration. Our study suggests that long-term N input exacerbates P limitation in desert steppes, however, enhances SOC sequestration.
Collapse
Affiliation(s)
- Jieqiong Su
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Ying Ma
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zhihao Xu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yinzhu Liu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
123
|
Marcou T, Revilla TA, Křivan V. Evolutionary emergence of plant and pollinator polymorphisms in consumer-resource mutualisms. J Theor Biol 2024; 594:111911. [PMID: 39069203 DOI: 10.1016/j.jtbi.2024.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Mutualism is considered a major driver of biodiversity, as it enables extensive codiversification in terrestrial communities. An important case is flowering plants and their pollinators, where convergent selection on plant and pollinator traits is combined with divergent selection to minimize niche overlap within each group. In this article, we study the emergence of polymorphisms in communities structured trophically: plants are the primary producers of resources required by the primary consumers, the servicing pollinators. We model natural selection on traits affecting mutualism between plants and pollinators and competition within these two trophic levels. We show that phenotypic diversification is favored by broad plant niches, suggesting that bottom-up trophic control leads to codiversification. Mutualistic generalism, i.e., tolerance to differences in plant and pollinator traits, promotes a cascade of evolutionary branching favored by bottom-up plant competition dependent on similarity and top-down mutualistic services that broaden plant niches. Our results predict a strong positive correlation between the diversity of plant and pollinator phenotypes, which previous work has partially attributed to the trophic dependence of pollinators on plants.
Collapse
Affiliation(s)
- Thomas Marcou
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Tomás A Revilla
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Vlastimil Křivan
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; Institute of Entomology, Biology Centre, Czech Academy of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
124
|
Pritchard Cairns J, de Bragança PHN, South J. A systematic review of poeciliid fish invasions in Africa. BMC Ecol Evol 2024; 24:136. [PMID: 39506681 DOI: 10.1186/s12862-024-02321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND This review compiles and synthesises the existing information concerning non-native poeciliid introductions to Africa. The recent upsurge in research on invasive poeciliids has revealed their widespread occurrence in Africa. RESULTS Within the 87 relevant articles, 74% reported on the presence of Gambusia spp., 33% on P. reticulata, 19% on X. hellerii, 11% on X. maculatus, and 5% on other ornamental poeciliids. Overall, poeciliids have been documented as introduced to 25 different countries in Africa. With Gambusia spp. being introduced to 16 countries and P. reticulata to 19 countries. Our results are representative of the current state of research on invasive poeciliids in Africa. There was a concentration of studies in South Africa, with limited research elsewhere. Current distribution data is relatively patchy, although widespread surveys of multiple river systems in Morocco and South Africa, confirmed widespread and abundant established poeciliid populations. The ecological impacts of invasive poeciliids in Africa remain understudied but evidence indicates deleterious effects on native fish, invertebrates, and amphibians, many of which are critically endangered or endemic. CONCLUSION Current research is limited in reporting from certain countries and ecological impacts. An increased effort to monitor species composition in vulnerable waterbodies, especially in the many African countries where invasive poeciliids are reported, should be completed to reveal further established populations. Future research should prioritise quantifying the ecological impacts of invasive poeciliids in the field and identifying both vulnerable and resistant native ecosystems to guide future management decisions.
Collapse
Affiliation(s)
- Joshua Pritchard Cairns
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Pedro Henrique Negreiros de Bragança
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Makhanda, Eastern Cape, 6140, South Africa
- Department of Ichthyology, American Museum of Natural History, New York, NY, 10024-5102, USA
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Makhanda, Eastern Cape, 6140, South Africa.
| |
Collapse
|
125
|
Thomas LG, Prunier R. Local adaptation and phenotypic plasticity drive leaf trait variation in the California endemic toyon (Heteromeles arbutifolia). AMERICAN JOURNAL OF BOTANY 2024:e16430. [PMID: 39506271 DOI: 10.1002/ajb2.16430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 11/08/2024]
Abstract
PREMISE To survive climate change and habitat loss, plants must rely on phenotypic changes in response to the environment, local adaptation, or migration. Understanding the drivers of intraspecific variation is critical to anticipate how plant species will respond to climate change and to inform conservation decisions. Here we explored the extent of local adaptation and phenotypic plasticity in Heteromeles arbutifolia, toyon, a species endemic to the California Floristic Province. METHODS We collected leaves from 286 individuals across toyon's range and used seeds from 37 individuals to establish experimental gardens in the northern and southern parts of toyon's range. We measured leaf functional traits of the wild-collected leaves and functional and fitness traits of the offspring grown in the experimental gardens. We then investigated the relationships between traits and source environment. RESULTS Most traits we investigated responded plastically to the environment, and some traits in young seedlings were influenced by maternal effects. We found strong evidence that variation in leaf margins is a result of local adaptation to variation in temperature and temperature range. However, the source environment was not related to fitness traits or survival in the experimental gardens. CONCLUSIONS Our findings reiterate the adaptive role of toothed leaf margins in colder and more seasonally variable environments. Additionally, we provide evidence that fitness of toyon is not dependent on where they are sourced, and thus toyon can be sourced across its range for restoration purposes.
Collapse
Affiliation(s)
- Laurel G Thomas
- Institute of the Environment and Sustainability, University of California Los Angeles, 619 Charles E. Young Dr., Los Angeles, 90024, CA, USA
| | - Rachel Prunier
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Storrs, 06269, CT, USA
| |
Collapse
|
126
|
Eyster HN, Chan KMA, Fletcher ME, Beckage B. Space-for-time substitutions exaggerate urban bird-habitat ecological relationships. J Anim Ecol 2024. [PMID: 39506196 DOI: 10.1111/1365-2656.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
North American bird abundance has declined by 29% over the last 50 years. These continental population dynamics interact with local landscape changes to affect local bird diversity. Mitigating local declines in cities is particularly significant because (a) such declines greatly impact human-bird relationships since most people live in cities and (b) cities provide levers to create bird-friendly habitat, such as managing yards and gardens, street trees, and urban parks. Yet, the potential for cities to modify habitats to mitigate broader bird declines remains unclear. Studies have been stymied by the difficulty of assembling mutidecadal habitat-bird population datasets. Instead, studies have substituted space for time (e.g. used habitat associations across space at one time point to project future species abundance due to changing land use), but this method may fail amidst nonstationary environments of the Anthropocene. Here, we test the validity of space-for-time substitutions for explaining changes in bird abundance in a North American city over the past two decades by examining the degree to which these changes are explainable by changes in local landcover at multiple spatial scales. Specifically, we use longitudinal urban bird surveys of Metro Vancouver, BC, Canada from 1997 and 2020; deep learning models of remote sensing data to classify contemporaneous landcover; out-of-sample prediction and boosted regression trees to identify multiple spatial scales of landcover that best explained bird abundance (i.e. optimal scale of effect for each species by each habitat); and Bayesian multispecies abundance models in Stan to determine relationships between changes in landcover and bird abundance. We found that total bird abundance declined by 26% over the last two decades. Landcover measured at both 50 m and optimal scales explained spatial variation in bird abundance, but only landcover at the optimal scale explained temporal changes, and only partially. These results suggest that space-for-time substitutions overemphasize habitat-bird ecological relationships, urban habitats only partially determine bird abundance, and measuring habitat at the appropriate scale is important for capturing the most relevant changes in landscapes.
Collapse
Affiliation(s)
- Harold N Eyster
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, USA
- Department of Plant Biology, University of Vermont, Burlington, Vermont, USA
- Institute for Resources, Environment & Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kai M A Chan
- Institute for Resources, Environment & Sustainability, University of British Columbia, Vancouver, British Columbia, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Morgan E Fletcher
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| | - Brian Beckage
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, USA
- Department of Plant Biology, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
127
|
Momayyezi M, Chu C, Stobbs JA, Soolanayakanahally RY, Guy RD, McElrone AJ, Knipfer T. Mapping of drought-induced changes in tissue characteristics across the leaf profile of Populus balsamifera. THE NEW PHYTOLOGIST 2024. [PMID: 39506187 DOI: 10.1111/nph.20240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Leaf architecture impacts the ease of gases diffusion, biochemical process, and photosynthetic performance. For balsam poplar, a widespread North American species, the influence of water availability on leaf anatomy and subsequent photosynthetic performance remains unknown. To address this shortcoming, we characterized the anatomical changes across the leaf profile in three-dimensional space for saplings subjected to soil drying and rewatering using X-ray microcomputed tomography. Our hypothesis was that higher abundance of bundle sheet extensions (BSE) minimizes drought-induced changes in intercellular airspace volume relative to mesophyll volume (i.e. mesophyll porosity, θIAS) and aids recovery by supporting leaf structural integrity. Leaves of 'Carnduff-9' with less abundant BSEs exhibited greater θIAS, higher spongy mesophyll surface area, reduced palisade mesophyll surface area, and less veins compared with 'Gillam-5'. Under drought conditions, Carnduff-9 showed significant changes in θIAS across leaf profile while that was little for 'Gillam-5'. Under rewatered conditions, drought-induced changes in θIAS were fully reversible in 'Gillam-5' but not in 'Carnduff-9'. Our data suggest that a 'robust' leaf structure with higher abundance of BSEs, reduced θIAS, and relatively large mesophyll surface area provides for improved photosynthetic capacity under drought and supports recovery in leaf architecture after rewatering in balsam poplar.
Collapse
Affiliation(s)
- Mina Momayyezi
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Cheyenne Chu
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew J McElrone
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, 95618, USA
| | - Thorsten Knipfer
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
128
|
Sauers LA, Bassingthwaite T, Sierra-Rivera B, Hampton KJ, Duffield KR, Gore H, Ramirez JL, Sadd BM. Membership robustness but structural change of the native gut microbiota of bumble bees upon systemic immune induction. Microbiol Spectr 2024; 12:e0086124. [PMID: 39373496 PMCID: PMC11536996 DOI: 10.1128/spectrum.00861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
Understanding factors influencing the composition and maintenance of beneficial host-associated microbial communities is central to understanding their ecological, evolutionary, and health consequences for hosts. Host immunity is often implicated as a regulator of these microbiota, but immunity may also play a disruptive role, with responses to infection perturbing beneficial communities. Such effects may be more prominent from innate immune responses, with more rapid-acting and often non-specific components, compared to adaptive responses. We investigated how upregulation of antibacterial immunity in the bumble bee Bombus impatiens affects its core gut microbiota, testing the hypothesis that immunity-induced perturbation impacts the microbiota structure. Freshly emerged adult bees were fed a microbiota inoculum before receiving a non-pathogenic immune stimulation injection. We quantified microbial communities using 16S rRNA amplicon sequencing and targeted quantitative PCR. Coarse community membership shows apparent robustness, but we find that immune stimulation alters the abundance of two core community members, Gilliamella and Snodgrassella. Moreover, a positive association in communities between these bacteria is perturbed following a Gram-negative challenge. The observed changes in the gut microbial community are suggestive of immune response-induced dysbiosis, linking ecological interactions across levels between hosts, their pathogens, and their beneficial gut microbiota. The potential for collateral perturbation of the natural gut microbiota following an innate immune response may contribute to immune costs, shaping the evolutionary optimization of immune investment depending on the ecological context. IMPORTANCE Our work demonstrates how innate immunity may influence the host-associated microbiota. While previous work has demonstrated the role of adaptive immunity in regulating the microbiota, we show that stimulation of an innate immune response in bumble bees may disrupt the native gut microbial community by shifting individual abundances of some members and pairwise associations. This work builds upon previous work in bumble bees demonstrating factors determining microbe colonization of hosts and microbiota membership, implicating immune response-induced changes as a factor shaping these important gut communities. While some microbiota members appear unaffected, changes in others and the community overall suggests that collateral perturbation of the native gut microbiota upon an innate immune response may serve as an additional selective pressure that shapes the evolution of host innate immunity.
Collapse
Affiliation(s)
- Logan A. Sauers
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Toby Bassingthwaite
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Bryan Sierra-Rivera
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kylie J. Hampton
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Kristin R. Duffield
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Haley Gore
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - José L. Ramirez
- Crop BioProtection Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
129
|
Moyle DM, Deslippe JR. Invasion alters plant and mycorrhizal communities in an alpine tussock grassland. Oecologia 2024:10.1007/s00442-024-05632-w. [PMID: 39499271 DOI: 10.1007/s00442-024-05632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/18/2024] [Indexed: 11/07/2024]
Abstract
Plant invasions are impacting alpine zones, altering key mutualisms that affect ecosystem functions. Plant-mycorrhizal associations are sensitive to invasion, but previous studies have been limited in the types of mycorrhizas examined. Consequently, little is known about how invaders that host rarer types of mycorrhizas may affect community and ecosystem properties. We studied invasion by an ericoid mycorrhizal host plant (Calluna vulgaris L., heather) in alpine tussock grasslands in New Zealand. We investigate the effects of increasing C. vulgaris density on the plant and soil microbial community and on mycorrhization in the dominant native species (Chionochloa rubra Z., red tussock), an arbuscular mycorrhizal host. We show that variation in plant community composition was primarily driven by invader density. High invader densities were associated with reductions in C. rubra diameter and in the cover, richness and diversity of the subordinate plant community. Belowground, we show that higher invader densities were associated with lower rates of mycorrhization in C. rubra and higher proportional abundance of the fungal lipid biomarker 18:2ω6 but had little effect on total microbial biomass, which may suggest increased ericoid mycorrhizal and fine root biomass in high C. vulgaris density stands. Our data suggest that disruption of native plant-arbuscular mycorrhizal networks may contribute to the competitive success of C. vulgaris, and that the dramatic decline of C. rubra with invasion reflects its relatively high mycorrhizal dependence. By exploring invasion of a plant with a less common mycorrhizal type, our study expands knowledge of the ecosystem consequences of biological invasions.
Collapse
Affiliation(s)
- Darby M Moyle
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Julie R Deslippe
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.
- Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Wellington, 6012, New Zealand.
| |
Collapse
|
130
|
Gonzalez V, Hurtado-Monzón AM, O'Krafka S, Mühlberger E, Letko M, Frank HK, Laing ED, Phelps KL, Becker DJ, Munster VJ, Falzarano D, Schountz T, Seifert SN, Banerjee A. Studying bats using a One Health lens: bridging the gap between bat virology and disease ecology. J Virol 2024:e0145324. [PMID: 39499009 DOI: 10.1128/jvi.01453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arianna M Hurtado-Monzón
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sabrina O'Krafka
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elke Mühlberger
- Department of Virology, Immunology, and Microbiology, Boston University, Boston, Massachusetts, USA
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Hannah K Frank
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, Montana, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
131
|
Alfaro-Lucas JM, Chapman ASA, Tunnicliffe V, Bates AE. High functional vulnerability across the world's deep-sea hydrothermal vent communities. Proc Natl Acad Sci U S A 2024; 121:e2403899121. [PMID: 39467128 DOI: 10.1073/pnas.2403899121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
At the nearly pristine hydrothermal vents of the deep sea, highly endemic animals depend upon bacteria nourished by hydrothermal fluids that emerge as outflows from the seafloor. These animals are remarkable in tolerating extreme conditions, including high heat, toxic reduced sulfide, and low oxygen. Here, we test whether the extreme vent environment has selected for functionally similar species across the world's deep ocean, despite well-established global geographic patterns of high phylogenetic distinctness. High functional redundancy in species pools within regions suggests that the extreme environments select for species with specific traits. Yet, some regions emerge as functional hotspots where species pools with distinct functional trait compositions may represent geological idiosyncrasies of the habitats. Moreover, many species are functionally unique, an outcome of low species richness in a system where the species pool is small at all scales. Given the high proportion of functionally unique species, simulated species extinctions indicate that species losses would rapidly translate to the elimination of functionally irreplaceable species and could tip vent systems to functional collapse. Ocean changes and human-induced threats are expected to significantly impact many vent species as human activities expand in the remote deep sea. The opportunity exists now to take precautionary actions to limit the rates of extinction now ubiquitous in more accessible areas of Earth.
Collapse
Affiliation(s)
| | - Abbie S A Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1H 0NN, United Kingdom
| | - Verena Tunnicliffe
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- School of Earth & Ocean Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
132
|
Saberski E, Lorimer T, Carpenter D, Deyle E, Merz E, Park J, Pao GM, Sugihara G. The impact of data resolution on dynamic causal inference in multiscale ecological networks. Commun Biol 2024; 7:1442. [PMID: 39500991 DOI: 10.1038/s42003-024-07054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
While it is commonly accepted that ecosystem dynamics are nonlinear, what is often not acknowledged is that nonlinearity implies scale-dependence. With the increasing availability of high-resolution ecological time series, there is a growing need to understand how scale and resolution in the data affect the construction and interpretation of causal networks-specifically, networks mapping how changes in one variable drive changes in others as part of a shared dynamic system ("dynamic causation"). We use Convergent Cross Mapping (CCM), a method specifically designed to measure dynamic causation, to study the effects of varying temporal and taxonomic/functional resolution in data when constructing ecological causal networks. As the system is viewed at different scales relationships will appear and disappear. The relationship between data resolution and interaction presence is not random: the temporal scale at which a relationship is uncovered identifies a biologically relevant scale that drives changes in population abundance. Further, causal relationships between taxonomic aggregates (low-resolution) are shown to be influenced by the number of interactions between their component species (high-resolution). Because no single level of resolution captures all the causal links in a system, a more complete understanding requires multiple levels when constructing causal networks.
Collapse
Affiliation(s)
- Erik Saberski
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093-0206, USA.
| | - Tom Lorimer
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093-0206, USA
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Surface Waters - Research and Management, Kastanienbaum, Switzerland
- Stream Ocean AG, Zurich, Switzerland
| | - Delia Carpenter
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093-0206, USA
| | - Ethan Deyle
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Ewa Merz
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093-0206, USA
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Duebendorf, Switzerland
| | - Joseph Park
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093-0206, USA
- Okinawa Institute of Science and Technology Graduate University, Biological Nonlinear Dynamics Data Science Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Gerald M Pao
- Okinawa Institute of Science and Technology Graduate University, Biological Nonlinear Dynamics Data Science Unit, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - George Sugihara
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093-0206, USA.
| |
Collapse
|
133
|
Liu B, Yang J, Lu W, Wang H, Song X, Yu S, Liu Q, Sun Y, Jiang X. Altitudinal variation in rhizosphere microbial communities of the endangered plant Lilium tsingtauense and the environmental factors driving this variation. Microbiol Spectr 2024; 12:e0096624. [PMID: 39382299 PMCID: PMC11536999 DOI: 10.1128/spectrum.00966-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
The rhizosphere soil properties and microbial communities of Lilium tsingtauense, an endangered wild plant, have not been examined in previous studies. Here, we characterized spatial variation in soil properties and microbial communities in the rhizosphere of L. tsingtauense. We measured the abundance of L. tsingtauense at different altitudes and collected rhizosphere and bulk soils at three representative altitudes. The results showed that L. tsingtauense was more abundant, and the rhizosphere soil was richer in nitrogen, phosphorus, potassium, water content, and organic matter and more acidic at high altitudes than at lower altitudes. The diversity and richness of rhizosphere bacteria and fungi increased with altitude and were higher in rhizosphere soil than in bulk soil. In addition, ectomycorrhizal fungi, endophytic fungi, and nitrogen-fixing bacteria were more abundant, and plant-pathogenic fungi were less abundant at high altitudes. Co-occurrence network analysis identified four key phyla (Bacteroidota, Proteobacteria, Ascomycota, and Basidiomycota) in the microbial communities. We identified a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, and Chaetomiaceae) and rhizosphere soil metabolites (phosphatidylcholine and phosphatidylserine) that are crucial for the survival of L. tsingtauense. Correlation analysis and random forest analysis showed that some environmental factors were closely related to the rhizosphere soil microbial community and played an important role in predicting the distribution and growth status of L. tsingtauense. In sum, the results of this study revealed altitudinal variation in the rhizosphere microbial communities of L. tsingtauense and the factors driving this variation. Our findings also have implications for habitat restoration and the conservation of this species. IMPORTANCE Our study highlighted the importance of the rhizosphere microbial community of the endangered plant L. tsingtauense. We found that soil pH plays an important role in the survival of L. tsingtauense. Our results demonstrated that a series of microbial taxa (Acidobacteriales, Xanthobacteraceae, Aspergillaceae, and Chaetomiaceae) and soil metabolites (phosphatidylcholine and phosphatidylserine) could be essential indicators for L. tsingtauense habitat. We also found that some environmental factors play an important role in shaping rhizosphere microbial community structure. Collectively, these results provided new insights into the altitudinal distribution of L. tsingtauense and highlight the importance of microbial communities in their growth.
Collapse
Affiliation(s)
- Boda Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jinming Yang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wanpei Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hai Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xuebin Song
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shaobo Yu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qingchao Liu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yingkun Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
134
|
Bou Orm E, Bergeret A, Malhautier L. Microbial communities and their role in enhancing hemp fiber quality through field retting. Appl Microbiol Biotechnol 2024; 108:501. [PMID: 39500773 DOI: 10.1007/s00253-024-13323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
The current development of industrial hemp "Cannabis Sativa L." fibers for technical textiles and industrial applications requires high-quality fibers with homogeneous properties. However, several factors have been reported to influence the fibers' intrinsic properties, including a post-harvest process known as retting. This process plays a crucial role in facilitating the mechanical extraction of fibers from hemp stems. Retting involves the degradation of the amorphous components surrounding the fiber bundles enabling their decohesion from stems. Microorganisms play a central role in mediating this bioprocess. During retting, they colonize the stems' surface. Therefore, the biochemical components of plant cell wall, acting as natural binding between fibers, undergo a breakdown through the production of microbial enzymes. Although its critical role, farmers often rely on empirical retting practices, and considering various biotic and abiotic factors, resulting in fibers with heterogenous properties. These factors limit the industrial applications of hemp fibers due to their inconsistent properties. Thus, the purpose of this review is to enhance our comprehension of how retting influences the dynamics of microbial communities and, consequently, the evolution of the biochemical properties of hemp stems throughout this process. Better understanding of retting is crucial for effective process management, leading to high-value fibers. KEY POINTS: • Retting enables degradation of cell wall components, controlling fiber properties. • Microbial enzymatic activity is crucial for successful decohesion of fiber bundles. • Understanding retting mechanisms is essential for consistent fiber production.
Collapse
Affiliation(s)
- Eliane Bou Orm
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France.
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France.
| | - Anne Bergeret
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France
| | - Luc Malhautier
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 Avenue de Clavières, 30100, Alès, France
| |
Collapse
|
135
|
Liu Y, Geng Y, Si M, Zhu D, Huang Z, Yin H, Zeng H, Feng J, Jiang T. Trait responses, nonconsumptive effects, and the physiological basis of Helicoverpa armigera to bat predation risk. Commun Biol 2024; 7:1436. [PMID: 39501073 DOI: 10.1038/s42003-024-07166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Predation reduces the population density of prey, affecting its fitness and population dynamics. Few studies have connected trait changes with fitness consequences in prey and the molecular basis and metabolic mechanisms of such changes in bat-insect systems. This study focuses on the responses of Helicoverpa armigera to different predation risks, focusing on echolocating bats and their calls. Substantial modifications were observed in the nocturnal and diurnal activities of H. armigera under predation risk, with enhanced evasion behaviors. Accelerated development and decreased fitness were observed under predation risks. Transcriptomic and metabolomic analyses indicated that exposure to bats induced the upregulation of amino acid metabolism- and antioxidant pathway-related genes, reflecting shifts in resource utilization in response to oxidative stress. Exposure to bat predation risks enhanced the activity of DNA damage repair pathways and suppressed energy metabolism, contributing to the observed trait changes and fitness decreases. The current results underscore the complex adaptive strategies that prey species evolve in response to predation risk, enhancing our understanding of the predator-prey dynamic and offering valuable insights for innovative and ecologically informed pest management strategies.
Collapse
Affiliation(s)
- Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yang Geng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Man Si
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Dan Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Zhenglanyi Huang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Hanli Yin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Hao Zeng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China.
- College of Life Science, Jilin Agricultural University, Changchun, China.
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
- Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun, China.
- Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China.
| |
Collapse
|
136
|
Veach AM, Steinbrecher A, Le M. Spatial variability of bacterial biofilm communities in a wastewater effluent-impacted suburban stream ecosystem. Microbiol Spectr 2024; 12:e0424623. [PMID: 39345232 PMCID: PMC11536991 DOI: 10.1128/spectrum.04246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Wastewater discharge is a global threat to freshwater resources. Streams, in particular, are receiving waterbodies that are directly impacted chemically and biologically due to effluent discharge. However, it is largely unknown how wastewater serves as a subsidy or a stressor to aquatic biodiversity, particularly microbiota, over space. Nutrient-diffusing substrata (NDS) were deployed; NDS release nutrients through diffusion into the water column into a wastewater-dependent stream across three reaches. We used N, P, and N + P treatments for the measurement of single nutrient and co-nutrient limitation, and a no-nutrient control. Both algal and total biofilm biomass was measured and the 16S ribosomal RNA genes via targeted amplicon sequencing was used to assess bacterial/archaeal community diversity. Data indicated that total organic matter in biofilms differs spatially with the greatest organic matter (OM) concentrations in the confluence downstream of wastewater inputs. Biofilm OM concentrations were greatest in P and N + P treatments in the confluence site relative to control or N-only treatments. This indicates heterotrophic microbial communities-likely bacteria that dominate stream biofilms-are P-limited in this ecosystem even with upstream wastewater inputs. In conjunction, bacteria/archaeal communities differed the greatest among nutrient treatments versus spatially and had several indicator taxa belonging to Flavobacterium spp. in N treatments relative to controls. Collectively with historical water quality data, we conclude that this wastewater-fed stream is primarily N-enriched but potentially P-limited, which results in significant shifts in biofilm bacterial communities and likely their overall biomass in this urban watershed. IMPORTANCE Streams in arid and semi-arid biomes are often dependent on their flow from municipal sources, such as wastewater effluent. However, wastewater has been shown to contain high concentrations of nutrients and chemical pollutants that can potentially harm aquatic ecosystems and their biota. Understanding if and the type of microorganisms that respond to pollution sources, specifically effluent from wastewater treatment facilities, in regions where flow is predominantly from treatment facilities, is critical for developing a predictive monitoring approach for eutrophication or other ecological degradation states for freshwaters.
Collapse
Affiliation(s)
- Allison M. Veach
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Aimee Steinbrecher
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Michelle Le
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
137
|
Carmelet-Rescan D, Morgan-Richards M, Trewick SA. Metabolic differentiation of brushtail possum populations resistant and susceptible to plant toxins revealed via differential gene expression. J Comp Physiol B 2024:10.1007/s00360-024-01591-z. [PMID: 39495241 DOI: 10.1007/s00360-024-01591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
The Australian brushtail possum (Trichosurus vulpecula) is adapted to a wide range of food plants across its range and is exposed to numerous physiological challenges. Populations that are resistant to the plant toxin sodium fluoroacetate are of particular interest as this compound has been used since the 1940s for vertebrate pest management around the world. Candidate gene identification is an important first step in understanding how spatial populations have responded to local selection resulting in local physiological divergence. We employ differential gene expression of liver samples from wild-caught brushtail possums from toxin-resistant and toxin-susceptible populations to identify candidate genes that might be involved in metabolic pathways associated with toxin-resistance. This allowed us to identify genetic pathways involved in resistance to the plant toxin sodium fluoroacetate in Western Australian possums but not those originally from south eastern Australia. We identified differentially expressed genes in the liver that are associated with cell signalling, encapsulating structure, cell mobility, and tricarboxylic acid cycle. The gene expression differences detected indicate which metabolic pathways are most likely to be associated with sodium fluoroacetate resistance in these marsupials and we provide a comprehensive list of candidate genes and pathways to focus on for future studies.
Collapse
Affiliation(s)
- David Carmelet-Rescan
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | - Mary Morgan-Richards
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Steven A Trewick
- Wildlife and Ecology, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
138
|
Orgeret F, Kormann UG, Catitti B, Witczak S, van Bergen VS, Scherler P, Grüebler MU. Imprinted habitat selection varies across dispersal phases in a raptor species. Sci Rep 2024; 14:26656. [PMID: 39496617 PMCID: PMC11535207 DOI: 10.1038/s41598-024-75815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024] Open
Abstract
Natal Habitat Preference Induction (NHPI) plays a significant role in shaping settlement decisions in dispersive animals. Despite its importance, limited research has explored how NHPI varies during natal dispersal phases and across different types of natal habitats. In this study, we examined NHPI in 77 GPS-tagged juvenile red kites (Milvus milvus) originating from different natal habitats along an elevational gradient in Switzerland. We applied individual-based step selection analysis to investigate habitat selection from independence to settlement. We found that during the prospecting phase, individuals predominantly selected habitats similar to their natal environments. However, this pattern changed in the settlement phase: individuals fledged from habitats at higher elevations or closer to urban areas mostly avoided similar habitats (negative NHPI), while those from areas with more farmlands or pastures (combined with forests) showed a preference for similar habitats (positive NHPI). Moreover, the magnitude and individual variation in NHPI differed depending on the natal habitat types from which individuals originated. These findings highlight that strength, direction, and individual variation in NHPI differ between natal habitat types and dispersal phases. Natal habitats therefore can have pervasive legacy effects on subsequent habitat selection, likely affecting population and range dynamics.
Collapse
Affiliation(s)
| | - Urs G Kormann
- Swiss Ornithological Institute, Sempach, Switzerland
| | | | | | | | | | | |
Collapse
|
139
|
Cooper NW, Yanco SW, Rushing CS, Sillett TS, Marra PP. Non-breeding conditions induce carry-over effects on survival of migratory birds. Curr Biol 2024; 34:5097-5103.e3. [PMID: 39368470 DOI: 10.1016/j.cub.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 10/07/2024]
Abstract
Identifying the processes that limit populations is a foundational objective of ecology and an urgent need for conservation. For migratory animals, researchers must study individuals throughout their annual cycles to determine how environmental conditions limit demographic rates within each period of the annual cycle and also between periods through carry-over effects and seasonal interactions.1,2,3,4,5,6 Our poor understanding of the rates and causes of avian migration mortality7 hinders the identification of limiting factors and the reversal of widespread avian population declines.8,9 Here, we implement new methods to estimate apparent survival (hereafter survival) during migration directly from automated telemetry data10 in Kirtland's Warblers (Setophaga kirtlandii) and indirectly from mark-recapture data in Black-throated Blue Warblers (S. caerulescens). Previous experimental and observational studies of our focal species and other migratory songbirds have shown strong effects of Caribbean precipitation and habitat quality on food availability,11,12,13,14 body condition,12,13,14,15,16,17,18,19 migration timing,11,12,15,16,20,21,22,23 natal dispersal,24,25 range dynamics,26 reproductive success,20,22,27 and annual survival.18,19,20,23,28,29,30,31 Building on this research, we test the hypotheses that environmental conditions during the non-breeding period affect subsequent survival during spring migration and breeding. We found that reduced precipitation and environmental productivity in the non-breeding period strongly influenced survival in both species, primarily by reducing survival during spring migration. Our results indicate that climate-driven environmental conditions can carry over to affect survival in subsequent periods and thus likely play an important role in year-round population dynamics. These lethal carry-over effects may be widespread and are likely magnified by intensifying climate change.
Collapse
Affiliation(s)
- Nathan W Cooper
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC 20008, USA.
| | - Scott W Yanco
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA; Center for Biodiversity and Global Change, Yale University, New Haven, CT 06511, USA; Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Clark S Rushing
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| | - Peter P Marra
- The Earth Commons Institute, Department of Biology, McCourt School of Public Policy, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
140
|
Anckaert A, Declerck S, Poussart LA, Lambert S, Helmus C, Boubsi F, Steels S, Argüelles-Arias A, Calonne-Salmon M, Ongena M. The biology and chemistry of a mutualism between a soil bacterium and a mycorrhizal fungus. Curr Biol 2024; 34:4934-4950.e8. [PMID: 39378881 DOI: 10.1016/j.cub.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere. However, the chemical interplay and the mutual benefit of this intricate partnership have not been investigated yet, especially as it involves bacteria known as strong producers of antifungal compounds such as Bacillus velezensis. Here, we show that the soil-dwelling B. velezensis migrates along the hyphal network of the AM fungus R. irregularis, forming biofilms and inducing cytoplasmic flow in the AM fungus that contributes to host plant root colonization by the bacterium. During hyphosphere colonization, R. irregularis modulates the biosynthesis of specialized metabolites in B. velezensis to ensure stable coexistence and as a mechanism to ward off mycoparasitic fungi and bacteria. These mutual benefits are extended into a tripartite context via the provision of enhanced protection to the host plant through the induction of systemic resistance.
Collapse
Affiliation(s)
- Adrien Anckaert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Laure-Anne Poussart
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Stéphanie Lambert
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Catherine Helmus
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Farah Boubsi
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Sébastien Steels
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Anthony Argüelles-Arias
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain-UCLouvain, Croix du Sud 2, L7.05.06, 1348 Louvain-la-Neuve, Belgique
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, Avenue de la Faculté d'Agronomie, Bat. 9B, 5030 Gembloux, Belgique.
| |
Collapse
|
141
|
Watanabe S, Maesako Y, Inada T. Spatial pattern of woody plant species richness and composition in primary warm temperate evergreen forest in Kasugayama Hill, Japan. Sci Rep 2024; 14:26570. [PMID: 39496734 PMCID: PMC11535506 DOI: 10.1038/s41598-024-77438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Plant species richness and composition are influenced by complex interactions between biotic and abiotic factors that operate on different spatial scales. Since spatial scales vary continuously in nature, it is expected that multiple factors simultaneously affect species richness and composition at an intermediate spatial scale (i.e., the mesoscale landscape level). Previous studies have shown that local topography and elevation are important factors for shaping intermediate spatial scale plant species richness; however, the relative importance of these factors has rarely been examined. Here, we used spatially explicit woody plant data to examine the factors that characterize the spatial pattern of primary evergreen forest biodiversity at the intermediate spatial scale. We found that the spatial pattern of species diversity in a predominantly warm temperate evergreen forest at the landscape level is mainly characterized by shifts in species composition along the elevation gradient. Our study also found that compositional shift along the elevational gradient was mainly caused by habitat specialization among congeneric species, suggesting that niche partitioning among closely-related species is a fundamentally important feature of the intermediate spatial scale species richness pattern. Furthermore, we found that specialization in a habitat of closely-related species can be established even within a limited environmental gradient. This suggests that biotic interactions among closely-related species may be an important factor driving habitat specialization, and biotic interactions may play an important role in shaping landscape-scale biodiversity patterns.
Collapse
Affiliation(s)
- Shuntaro Watanabe
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan.
| | - Yuri Maesako
- Nara Saho College, Nara, Japan
- KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
| | - Tomoya Inada
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
142
|
Porto GF, Anjos DV, Luna P, Del-Claro K. A global overview of insect-fern interactions and its ecological trends. THE NEW PHYTOLOGIST 2024. [PMID: 39491489 DOI: 10.1111/nph.20229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Historically, ferns have been described as underutilized by insects. However, studies have shown a diversity of insects interacting with ferns, although the evolutionary and ecological drivers of these interactions are still to be untangled. To fill these gaps, we compiled more than 100 yr of global data on insect-fern interactions from the literature comprising 374 fern and 649 insect species. With this database we assessed how fern trophic specialization, phylogenetic relationships and climate have shaped their interactions with insects. Our findings showed that interactions between ferns and insects can be explained by the phylogenetic relations among them. We observed that insect orders part of the Endopterygota clade tend to interact with similar fern species, which might be a result of the inheritance of Endopterygota ancestors probably due to phylogenetic niche conservationism. Under an ecological context, fern specialization increased with temperature, precipitation, and climatic stability. Our results show that climate might be one of the main factors explaining the spatial variation of insect-fern interactions, postulate also supported by the observed phylogenetic clustering of the studied ferns species. Our study highlights the intricate and multifaceted nature of insect-fern interactions, where evolutionary history and ecological factors converge to shape these relationships.
Collapse
Affiliation(s)
- Gabriela Fraga Porto
- Programa de Pós-graduação em Entomologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, Brazil
| | - Diego V Anjos
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
- Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato, CE, 63105-000, Brazil
| | - Pedro Luna
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETROP, Universidad de las Américas, Quito, 170124, Ecuador
| | - Kleber Del-Claro
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| |
Collapse
|
143
|
Manzanedo RD, Chin ARO, Ettinger AK, Pederson N, Pradhan K, Guiterman CH, Su J, Baumgarten F, Hille Ris Lambers J. Moving ecological tree-ring big data forwards: Limitations, data integration, and multidisciplinarity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177244. [PMID: 39477106 DOI: 10.1016/j.scitotenv.2024.177244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
In recent years, tree-ring databases have emerged as a remarkable resource for ecological research, allowing us to address ecological questions at unprecedented temporal and spatial scales. However, concerns regarding big tree-ring data limitations and risks have also surfaced, leading to questions about their potential to be representative of long-term forest responses. Here, we highlight three paths of action to improve on tree-ring databases in ecology: 1) Implementing consistent bias analyses in large dendroecological databases and promoting community-driven data to address data limitations, 2) Encouraging the integration of tree-ring data with other ecological datasets, and 3) Promoting theory-driven, mechanistic dendroecological research. These issues are increasingly important for tackling pressing cross-disciplinary research questions. Finally, although we focus here on tree ring databases, these points apply broadly across many aggregative databases in ecology.
Collapse
Affiliation(s)
- Rubén D Manzanedo
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH Zürich, Zürich, Switzerland; Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Alana R O Chin
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH Zürich, Zürich, Switzerland; Dpt. of Biological Sciences, California State Polytechnic University - Humboldt, Arcata, USA
| | | | - Neil Pederson
- Harvard Forest, Harvard University, Petersham, MA, USA
| | - Kavya Pradhan
- Biology Dpt., University of Washington, Seattle, USA
| | | | - Jiajia Su
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Frederik Baumgarten
- Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Janneke Hille Ris Lambers
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH Zürich, Zürich, Switzerland; Biology Dpt., University of Washington, Seattle, USA
| |
Collapse
|
144
|
Torres-Vanegas F, Temesvári V, Hildesheim LS, Rodríguez-Otero C, Müller V, Aukema E, Friberg M, Opedal ØH. Linking divergence in phenotypic selection on floral traits to divergence in local pollinator assemblages in a pollination-generalized plant. J Evol Biol 2024; 37:1312-1328. [PMID: 39288276 DOI: 10.1093/jeb/voae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Divergent patterns of phenotypic selection on floral traits can arise in response to interactions with functionally distinct pollinators. However, there are a limited number of studies that relate patterns of phenotypic selection on floral traits to variation in local pollinator assemblages in pollination-generalized plant species. We studied phenotypic selection on floral traits of Viscaria vulgaris, a plant that interacts with a broad range of diurnal and nocturnal pollinators, and related divergence in phenotypic selection on floral traits to the expected level of divergence in local pollinator assemblages. We detected phenotypic selection on floral traits involved in the attraction of pollinators and the mechanics of pollen removal and deposition, and demonstrated that floral traits are subject to spatiotemporal variation in the strength and direction of phenotypic selection. We revealed that diurnal and nocturnal pollinators, when considered in isolation, mediated divergent patterns of phenotypic selection on floral traits. Consistent with the Grant-Stebbins model, we observed that divergence in phenotypic selection on floral traits increased with the expected level of divergence in local pollinator assemblages. Thus, generalized plant-pollinator interactions can mediate phenotypic selection on floral traits, and distinct local pollinator assemblages can generate a geographic mosaic of divergent patterns of phenotypic selection. We underscore that these outcomes are not exclusive to specialized plant-pollinator interactions and can emerge at a local geographic scale.
Collapse
Affiliation(s)
- Felipe Torres-Vanegas
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Vanda Temesvári
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Laura S Hildesheim
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | | | - Vilhelmina Müller
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Easger Aukema
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Magne Friberg
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Øystein H Opedal
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| |
Collapse
|
145
|
Noguchi M, Toju H. Mycorrhizal and endophytic fungi structure forest below-ground symbiosis through contrasting but interdependent assembly processes. ENVIRONMENTAL MICROBIOME 2024; 19:84. [PMID: 39488693 PMCID: PMC11531145 DOI: 10.1186/s40793-024-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Interactions between plants and diverse root-associated fungi are essential drivers of forest ecosystem dynamics. The symbiosis is potentially dependent on multiple ecological factors/processes such as host/symbiont specificity, background soil microbiome, inter-root dispersal of symbionts, and fungus-fungus interactions within roots. Nonetheless, it has remained a major challenge to reveal the mechanisms by which those multiple factors/processes determine the assembly of root-associated fungal communities. Based on the framework of joint species distribution modeling, we examined 1,615 root-tips samples collected in a cool-temperate forest to reveal how root-associated fungal community structure was collectively formed through filtering by host plants, associations with background soil fungi, spatial autocorrelation, and symbiont-symbiont interactions. In addition, to detect fungi that drive the assembly of the entire root-associated fungal community, we inferred networks of direct fungus-fungus associations by a statistical modeling that could account for implicit environmental effects. RESULTS The fine-scale community structure of root-associated fungi were best explained by the statistical model including the four ecological factors/processes. Meanwhile, among partial models, those including background soil fungal community structure and within-root fungus-fungus interactions showed the highest performance. When fine-root distributions were examined, ectomycorrhizal fungi tended to show stronger associations with background soil community structure and spatially autocorrelated patterns than other fungal guilds. In contrast, the distributions of root-endophytic fungi were inferred to depend greatly on fungus-fungus interactions. An additional statistical analysis further suggested that some endophytic fungi, such as Phialocephala and Leptodontidium, were placed at the core positions within the web of direct associations with other root-associated fungi. CONCLUSION By applying emerging statistical frameworks to intensive datasets of root-associated fungal communities, we demonstrated background soil fungal community structure and fungus-fungus associations within roots, as well as filtering by host plants and spatial autocorrelation in ecological processes, could collectively drive the assembly of root-associated fungi. We also found that basic assembly rules could differ between mycorrhizal and endophytic fungi, both of which were major components of forest ecosystems. Consequently, knowledge of how multiple ecological factors/processes differentially drive the assembly of multiple fungal guilds is indispensable for comprehensively understanding the mechanisms by which terrestrial ecosystem dynamics are organized by plant-fungal symbiosis.
Collapse
Affiliation(s)
- Mikihito Noguchi
- Center for Ecological Research, Kyoto University, Otsu, 520-2133, Shiga, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
146
|
Zhou Z, Wang C, Cha X, Zhou T, Pang X, Zhao F, Han X, Yang G, Wei G, Ren C. The biogeography of soil microbiome potential growth rates. Nat Commun 2024; 15:9472. [PMID: 39488524 PMCID: PMC11531530 DOI: 10.1038/s41467-024-53753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Soil microbial growth, a vital biogeochemical process, governs both the accrual and loss of soil carbon. Here, we investigate the biogeography of soil microbiome potential growth rates and show that microbiomes in resource-rich (high organic matter and nutrients) and acid-neutral soils from cold and humid regions exhibit high potential growth. Conversely, in resource-poor, dry, hot, and hypersaline soils, soil microbiomes display lower potential growth rates, suggesting trade-offs between growth and resource acquisition or stress tolerance. In addition, the potential growth rates of soil microbiomes positively correlates with genome size and the number of ribosomal RNA operons but negatively correlates with optimum temperature, biomass carbon-to-phosphorus and nitrogen-to-phosphorus ratios. The spatial variation of microbial potential growth rates aligns with several macroecological theories. These findings not only enhance our understanding of microbial adaptation to diverse environments but also aid in realistically parameterizing microbial physiology in soil carbon cycling models.
Collapse
Affiliation(s)
- Zhenghu Zhou
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chuankuan Wang
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinyu Cha
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Zhou
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xuesen Pang
- School of Ecology and Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education Northeast Forestry University, Harbin, Heilongjiang, China
| | - Fazhu Zhao
- College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
147
|
Forsythe AB, Otto SP, Nelson WA, Day T. Variety is the spice of life: nongenetic variation in life histories influences population growth and evolvability. J Evol Biol 2024; 37:1244-1263. [PMID: 39250679 DOI: 10.1093/jeb/voae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Individual vital rates, such as mortality and birth rates, are key determinants of lifetime reproductive success, and variability in these rates shapes population dynamics. Previous studies have found that this vital rate heterogeneity can influence demographic properties, including population growth rates. However, the explicit effects of the variation within and the covariance between vital rates that can also vary throughout the lifespan on population growth remain unknown. Here, we explore the analytical consequences of nongenetic heterogeneity on long-term population growth rates and rates of evolution by modifying traditional age-structured population projection matrices to incorporate variation among individual vital rates. The model allows vital rates to be permanent throughout life ("fixed condition") or to change over the lifespan ("dynamic condition"). We reduce the complexity associated with adding individual heterogeneity to age-structured models through a novel application of matrix collapsing ("phenotypic collapsing"), showing how to collapse in a manner that preserves the asymptotic and transient dynamics of the original matrix. The main conclusion is that nongenetic individual heterogeneity can strongly impact the long-term growth rate and rates of evolution. The magnitude and sign of this impact depend heavily on how the heterogeneity covaries across the lifespan of an organism. Our results emphasize that nongenetic variation cannot simply be viewed as random noise, but rather that it has consistent, predictable effects on fitness and evolvability.
Collapse
Affiliation(s)
- Amy B Forsythe
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Sarah P Otto
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Troy Day
- Department of Biology, Queen's University, Kingston, ON, Canada
- Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada
| |
Collapse
|
148
|
Zhou Y, Yue D, Li S, Wang Y, Meng X, Xu X. Coupling mechanism of the eco-geological environment in debris flow prone area: A case study of the Bailong River basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177230. [PMID: 39471941 DOI: 10.1016/j.scitotenv.2024.177230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Debris flow disasters can directly indicate the quality of an area's ecological and geological (eco-geological) environment. Coordinating the coupling mechanism between these environments is crucial for reducing debris flow incidents and promoting sustainable socio-economic development. Nevertheless, comprehensive research on the coupling coordination mechanisms of the eco-geological environment in high-prone areas of debris flow has yet to be reported. This study focuses on the Bailong River Basin (BRB) and proposes two main hypotheses: (1) There is a coupled relationship with mutual influences among the eco-geological environmental systems; (2) The eco- geological environment affects debris flows, with geo-environmental factors having the most significant impact. To validate first hypotheses, this study developed an assessment index system for the eco-geological environment, encompassing geological environment, ecological environment, and human activities. We applied the projection pursuit model and the coupling coordination degree (CCD) model to calculate indicator weights and analyze the coupling coordination mechanisms. The results indicate that the three subsystems interact with each other. To validate second hypotheses, the self-organizing maps (SOM) method categorized the eco-geological subsystems. Building on this foundation, we analyzed the impact of the eco-geological environment on debris flow using variance decomposition analysis (VDA) and redundancy analysis (RDA) methods. The results indicate that eco-geological environment account for 87.8 % of the variation in debris flow frequency, with geological factors having the most significant impact. Notably, the area with the highest frequency of debris flow (four times per year) is located near the urban center of Wudu District, where the human environment subsystem is overwhelmingly dominant and the quality of the ecological and geological systems is comparatively low. Consequently, we analyzed the reasons behind the differences in clustering areas and proposed specific recommendations, including enhancing geological disaster prevention and monitoring potential hazardous areas. Future research should focus on enhancing data accuracy and exploring more effective methods for integrating ecological and geological environments with debris flow disaster management for functional zoning. In conclusion, this study provides scientific support for strategies to prevent or mitigate debris flow disasters and protect the BRB ecosystem by validating the above two hypotheses.
Collapse
Affiliation(s)
- Yanyan Zhou
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongxia Yue
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Shuangying Li
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongbin Wang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xingmin Meng
- Gansu Tech Innovation Centre for Environmental Geology and Geohazard Prevention, School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Xu
- School of Management, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
149
|
Salgado-Roa FC, Stuart-Fox D, White TE, Medina I. Colour polymorphism is prevalent on islands but shows no association with range size in web-building spiders. J Evol Biol 2024; 37:1345-1355. [PMID: 39291872 DOI: 10.1093/jeb/voae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
One of the most evident sources of phenotypic diversity within a population is colouration, as exemplified by colour polymorphism. This is relevant to a greater extent in animals with visually biased sensory systems. There is substantial evidence suggesting that different colour morphs can access a broader range of habitats or niches, leading to larger geographic range sizes. However, this hypothesis has been tested in few lineages, comprising species where colour is likely to be involved in sexual selection. Furthermore, some available evidence considers geographical variation as polymorphism, thus limiting our comprehension of how sympatric colour polymorphism can influence a species' geographic range. Through an extensive systematic literature review and a comparative analysis, we examined the relationship between colour polymorphism and range size or niche breadth in web-building spiders. We identified 140 colour polymorphic spider species, belonging mainly to the families Araneidae and Theridiidae. We found no evidence that colour polymorphic species differ significantly from non-polymorphic species in terms of range size and niche breadth, after accounting for phylogenetic relationships and other covariates. However, we did observe that colour polymorphic species were more likely to be found on islands compared to non-polymorphic species. Overall, our results indicate that the association between colour polymorphism and geographic range size may not exist among web-building spiders, or be as pronounced as in other lineages. This suggests that the strength of the association between colour polymorphism and ecological success might depend on the ecological role that colouration plays in each clade.
Collapse
Affiliation(s)
- Fabian C Salgado-Roa
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Devi Stuart-Fox
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2000, Australia
| | - Iliana Medina
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
150
|
Zeng J, Li X, Jian J, Xing L, Li Y, Wang X, Zhang Q, Ren C, Yang G, Han X. Differences in the regulation of soil carbon pool quality and stability by leaf-litter and root-litter decomposition. ENVIRONMENTAL RESEARCH 2024; 263:120285. [PMID: 39491608 DOI: 10.1016/j.envres.2024.120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/17/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Litter plays a crucial role in soil ecosystems. However, the differences in decomposition between leaf-litter and root-litter and their relative contributions to soil carbon pools and stability are not yet clear. Therefore, we conducted a 450-day in situ decomposition experiment in a semi-arid grassland to investigate the effects of soil biophysical and chemical properties on litter decomposition and to elucidate the dynamics of soil carbon pools during the decomposition process. The results showed that the decomposition rate (K) of leaf-litter was significantly higher than that of root-litter, and litter quality was the most important factor affecting the K of leaf-litter (58%) and root-litter (63%). Leaf-litter decomposition was more effective in promoting the increase in soil leucine aminopeptidase and β-1,4-glucosidase activities, as well as the accumulation of microbial biomass carbon (MBC), particulate organic carbon (POC), and dissolved organic carbon (DOC), compared to root-litter. However, the difference in the impact of leaf-litter and root-litter on soil organic carbon (SOC) was not significant. The decomposition of leaf-litter contributed more significantly to enhancing the soil carbon pool management index (CPMI) compared to root-litter, with increases of 39% and 25%, respectively. In contrast, leaf-litter decomposition significantly reduced the mineral-associated organic carbon (MAOC) and the MAOC/POC ratio, while root-litter decomposition significantly increased the MAOC and MAOC/POC. Random forest, partial correlation, and path analysis indicated that the effects of leaf-litter and root-litter decomposition on CPMI were mainly regulated by decomposition time and soil carbon components, while the effects on MAOC/POC were mainly controlled by litter quality. The results demonstrate that both leaf-litter and root-litter can enhance soil carbon storage and CPMI, but root-litter may be more beneficial for soil carbon pool stability. These results further contribute to the understanding of the continuous system of litter-soil carbon pools.
Collapse
Affiliation(s)
- Jia Zeng
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Xiangyang Li
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Junnan Jian
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Liheng Xing
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Yu Li
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Xing Wang
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Qi Zhang
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Chengjie Ren
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Gaihe Yang
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China
| | - Xinhui Han
- College of Agronomy, Northwest Agriculture & Forestry University, Yangling, 712100, China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|