1551
|
Abstract
The microbial communities that colonize different regions of the human gut influence many aspects of health. In the healthy state, they contribute nutrients and energy to the host via the fermentation of nondigestible dietary components in the large intestine, and a balance is maintained with the host's metabolism and immune system. Negative consequences, however, can include acting as sources of inflammation and infection, involvement in gastrointestinal diseases, and possible contributions to diabetes mellitus and obesity. Major progress has been made in defining some of the dominant members of the microbial community in the healthy large intestine, and in identifying their roles in gut metabolism. Furthermore, it has become clear that diet can have a major influence on microbial community composition both in the short and long term, which should open up new possibilities for health manipulation via diet. Achieving better definition of those dominant commensal bacteria, community profiles and system characteristics that produce stable gut communities beneficial to health is important. The extent of interindividual variation in microbiota composition within the population has also become apparent, and probably influences individual responses to drug administration and dietary manipulation. This Review considers the complex interplay between the gut microbiota, diet and health.
Collapse
|
1552
|
Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol Res Pract 2012; 2012:872716. [PMID: 23049548 PMCID: PMC3459241 DOI: 10.1155/2012/872716] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/20/2012] [Indexed: 12/14/2022] Open
Abstract
The human intestinal tract has been colonized by thousands of species of bacteria during the coevolution of man and microbes. Gut-borne microbes outnumber the total number of body tissue cells by a factor of ten. Recent metagenomic analysis of the human gut microbiota has revealed the presence of some 3.3 million genes, as compared to the mere 23 thousand genes present in the cells of the tissues in the entire human body. Evidence for various beneficial roles of the intestinal microbiota in human health and disease is expanding rapidly. Perturbation of the intestinal microbiota may lead to chronic diseases such as autoimmune diseases, colon cancers, gastric ulcers, cardiovascular disease, functional bowel diseases, and obesity. Restoration of the gut microbiota may be difficult to accomplish, but the use of probiotics has led to promising results in a large number of well-designed (clinical) studies. Microbiomics has spurred a dramatic increase in scientific, industrial, and public interest in probiotics and prebiotics as possible agents for gut microbiota management and control. Genomics and bioinformatics tools may allow us to establish mechanistic relationships among gut microbiota, health status, and the effects of drugs in the individual. This will hopefully provide perspectives for personalized gut microbiota management.
Collapse
|
1553
|
Minelli R, Serpe L, Pettazzoni P, Minero V, Barrera G, Gigliotti C, Mesturini R, Rosa AC, Gasco P, Vivenza N, Muntoni E, Fantozzi R, Dianzani U, Zara GP, Dianzani C. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells. Br J Pharmacol 2012; 166:587-601. [PMID: 22049973 DOI: 10.1111/j.1476-5381.2011.01768.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch 'wound-healing' assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon-rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate.
Collapse
Affiliation(s)
- R Minelli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1554
|
Abstract
PURPOSE OF REVIEW Butyrate is physiologically produced by the microbial fermentation of dietary fibers and plays a plurifunctional role in intestinal cells. This review examines the recent findings regarding the role and mechanisms by which butyrate regulates intestinal metabolism and discusses how these findings could improve the treatment of several gastrointestinal disorders. RECENT FINDINGS Butyrate is more than a primary nutrient that provides energy to colonocytes and acts as a cellular mediator in those cells through several mechanisms. One remarkable property of butyrate is its ability to inhibit histone deacetylases, which is associated with the direct effects of butyrate and results in gene regulation, immune modulation, cancer suppression, cell differentiation, intestinal barrier regulation, oxidative stress reduction, diarrhea control, visceral sensitivity and intestinal motility modulation. All of these actions make butyrate an important factor for the maintenance of gut health. SUMMARY From studies published over 30 years, there is no doubt of the important role that butyrate plays in maintaining intestinal homeostasis. However, despite these effects, clinical studies are still required to validate the routine use of butyrate in clinical practice and, specifically, in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Alda J Leonel
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
1555
|
Rupa P, Mine Y. Recent advances in the role of probiotics in human inflammation and gut health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8249-8256. [PMID: 22897745 DOI: 10.1021/jf301903t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The gastrointestinal (GI) tract provides residence to an astounding number of bacterial species, which have profound effects on host biology, function, physiology, and immune response. Discovery of "symbiosis factors" from symbionts that facilitate the peaceful coexistence of microbiota and the host immune system are of interest. Symbionts synthesize immunomodulatory molecules that guide maturation of the immune system and have pivotal roles in many biological processes; however, individuals differ in the makeup of their GI microbiota, which is influenced by many external and internal factors such as diet, antibiotic use, and host genetics, which in turn influences health and disease outcomes. Various endogenous, genetic, and environmental factors influence GI development including species composition and health status of neonates, resulting in interactions that occur between the bacteria and the host. Mechanisms of probiotics involved in homeostasis of a balanced immune system have been inconclusive. The probable mechanism of action may be postulated as direct competition between pathogenic bacteria in the gut and/or immune modulation. This review focuses on probiotics in health and disease prevention, especially the biological importance of intestinal regulation of inflammatory processes that may be beneficial in a multitude of disorders both inside and outside the GI tract.
Collapse
Affiliation(s)
- Prithy Rupa
- Department of Food Science, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
1556
|
Pacheco RG, Esposito CC, Müller LCM, Castelo-Branco MTL, Quintella LP, Chagas VLA, de Souza HSP, Schanaider A. Use of butyrate or glutamine in enema solution reduces inflammation and fibrosis in experimental diversion colitis. World J Gastroenterol 2012; 18:4278-87. [PMID: 22969190 PMCID: PMC3436042 DOI: 10.3748/wjg.v18.i32.4278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 07/30/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether butyrate or glutamine enemas could diminish inflammation in experimental diversion colitis.
METHODS: Wistar specific pathogen-free rats were submitted to a Hartmann’s end colostomy and treated with enemas containing glutamine, butyrate, or saline. Enemas were administered twice a week in the excluded segment of the colon from 4 to 12 wk after the surgical procedure. Follow-up colonoscopy was performed every 4 wk for 12 wk. The effect of treatment was evaluated using video-endoscopic and histologic scores and measuring interleukin-1β, tumor necrosis factor-alpha, and transforming growth factor beta production in organ cultures by enzyme linked immunosorbent assay.
RESULTS: Colonoscopies of the diverted segment showed mucosa with hyperemia, increased number of vessels, bleeding and mucus discharge. Treatment with either glutamine or butyrate induced significant reductions in both colonoscopic (P < 0.02) and histological scores (P < 0.01) and restored the densities of collagen fibers in tissue (P = 0.015; P = 0.001), the number of goblet cells (P = 0.021; P = 0.029), and the rate of apoptosis within the epithelium (P = 0.043; P = 0.011) to normal values. The high levels of cytokines in colon explants from rats with diversion colitis significantly decreased to normal values after treatment with butyrate or glutamine.
CONCLUSION: The improvement of experimental diversion colitis following glutamine or butyrate enemas highlights the importance of specific luminal nutrients in the homeostasis of the colonic mucosa and supports their utilization for the treatment of human diversion colitis.
Collapse
|
1557
|
Antioxidative and immunomodulatory effects of tributyrin supplementation on experimental colitis. Br J Nutr 2012; 109:1396-407. [PMID: 22906779 DOI: 10.1017/s000711451200342x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tributyrin (TBT) is a TAG composed of three butyric acids that has beneficial effects on ulcerative colitis due to its trophic, anti-inflammatory, pro-apoptotic and anti-carcinogenic properties. The goal of the present study was to evaluate the efficacy and mechanisms of action of TBT supplementation in the prevention of mucosal damage in experimental colitis. Mice received either a control diet or a TBT-supplemented diet for 15 d. Colitis was induced by dextran sodium sulphate administration during the last 7 d. Mucosal damage and the activation of immune cells and cytokines were determined by histological score, flow cytometry and ELISA. Leucocyte rolling and adhesion were assessed by intravital microscopy. Oxidative stress was determined by monitoring hydroperoxide concentration and evaluating superoxide dismutase (SOD) and catalase activities. Intestinal permeability was analysed using diethylenetriaminepentaacetate acid (99mTcDTPA). Compared with the colitis group, the animals in the colitis+TBT group had reduced mucosal damage and neutrophil and eosinophil mucosal infiltration, which were associated with a higher percentage of regulatory T cells (Treg) and higher levels of transforming growth factor β and IL-10 in the lamina propria. The level of in vivo leucocyte adhesion in the colon microvasculature was reduced after TBT supplementation. A lower level of hydroperoxide and higher levels of SOD and catalase activities were associated with TBT supplementation. TBT-supplemented mice showed reduced intestinal permeability to the levels intermediate between the control and colitis groups. In conclusion, the present results show that TBT has positive effects on colonic restructuring in experimental colitis. Additionally, TBT supplementation changes the immune response by controlling inflammation and regulating the expression of anti-inflammatory cytokines and Treg.
Collapse
|
1558
|
Barrasa JI, Santiago-Gómez A, Olmo N, Lizarbe MA, Turnay J. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2201-9. [PMID: 22917577 DOI: 10.1016/j.bbamcr.2012.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/26/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022]
Abstract
A critical risk factor in colorectal carcinogenesis and tumor therapy is the resistance to the apoptotic effects of different compounds from the intestinal lumen, among them butyrate (main regulator of colonic epithelium homeostasis). Insensitivity to butyrate-induced apoptosis yields resistance to other agents, as bile acids or chemotherapy drugs, allowing the selective growth of malignant cell subpopulations. Here we analyze bile acid-induced apoptosis in a butyrate-resistant human colon adenocarcinoma cell line (BCS-TC2.BR2) to determine the mechanisms that underlay the resistance to these agents in comparison with their parental butyrate-sensitive BCS-TC2 cells. This study demonstrates that DCA and CDCA still induce apoptosis in butyrate-resistant cells through increased ROS production by activation of membrane-associated enzymes and subsequent triggering of the intrinsic mitochondrial apoptotic pathway. Although this mechanism is similar to that described in butyrate-sensitive cells, cell viability is significantly higher in resistant cells. Moreover, butyrate-resistant cells show higher Bcl-2 levels that confer resistance to bile acid-induced apoptosis sequestering Bax and avoiding Bax-dependent pore formation in the mitochondria. We have confirmed that this resistance is reverted using the Bcl-2 inhibitor ABT-263, thus demonstrating that the lower sensitivity of butyrate-resistant cells to the apoptotic effects of bile acids is mainly due to increased Bcl-2 levels.
Collapse
Affiliation(s)
- Juan I Barrasa
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|
1559
|
Engberg RM, Grevsen K, Ivarsen E, Fretté X, Christensen LP, Højberg O, Jensen BB, Canibe N. The effect ofArtemisia annuaon broiler performance, on intestinal microbiota and on the course of aClostridium perfringensinfection applying a necrotic enteritis disease model. Avian Pathol 2012; 41:369-76. [DOI: 10.1080/03079457.2012.696185] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
1560
|
Jonathan MC, van den Borne JJ, van Wiechen P, Souza da Silva C, Schols HA, Gruppen H. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.110] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
1561
|
Roberts CL, Keita ÅV, Parsons BN, Prorok-Hamon M, Knight P, Winstanley C, O′Kennedy N, Söderholm JD, Rhodes JM, Campbell BJ. Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens. J Nutr Biochem 2012; 24:97-103. [PMID: 22818716 PMCID: PMC3520008 DOI: 10.1016/j.jnutbio.2012.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/16/2012] [Accepted: 02/24/2012] [Indexed: 12/24/2022]
Abstract
Dietary fibres may have prebiotic effects mediated by promotion of beneficial bacteria. This study explores the possibility that soluble plant fibre may also improve health by inhibiting epithelial adhesion and translocation by pathogenic bacteria. We have focussed on soluble non-starch polysaccharide (NSP) from plantain bananas (Musa spp.) which previous studies showed to be particularly effective at blocking Escherichia coli epithelial adherence. In vitro and ex vivo studies assessed the ability of plantain NSP to inhibit epithelial cell adhesion and invasion of various bacterial pathogens, and to inhibit their translocation through microfold (M)-cells and human Peyer′s patches mounted in Ussing chambers. Plantain NSP showed dose-related inhibition of epithelial adhesion and M-cell translocation by a range of pathogens. At 5 mg/ml, a concentration readily achievable in the gut lumen, plantain NSP inhibited adhesion to Caco2 cells by Salmonella Typhimurium (85.0±8.2%, P<.01), Shigella sonnei (46.6±29.3%, P<.01), enterotoxigenic E.coli (56.1±23.7%, P<.05) and Clostridium difficile (67.6±12.3%, P<.001), but did not inhibit adhesion by enteropathogenic E.coli. Plantain NSP also inhibited invasion of Caco2 cells by S. Typhimurium (80.2 ± 9.7%) and Sh. sonnei (46.7±13.4%); P<.01. Plantain NSP, 5 mg/ml, also inhibited translocation of S. Typhimurium and Sh. sonnei across M-cells by 73.3±5.2% and 46.4±7.7% respectively (P<.05). Similarly, S. Typhimurium translocation across Peyer′s patches was reduced 65.9±8.1% by plantain NSP (P<.01). Soluble plantain fibre can block epithelial adhesion and M-cell translocation of intestinal pathogens. This represents an important novel mechanism by which soluble dietary fibres can promote intestinal health and prevent infective diarrhoea.
Collapse
Affiliation(s)
- Carol L. Roberts
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Åsa V. Keita
- Clinical and Experimental Medicine, Division of Surgery, Faculty of Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Bryony N. Parsons
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Maelle Prorok-Hamon
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Paul Knight
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, L69 3GA, UK
| | - Niamh O′Kennedy
- Provexis Plc, c/o Rowett Institute of Nutrition and Health, AB21 9S, Aberdeen, UK
| | - Johan D. Söderholm
- Clinical and Experimental Medicine, Division of Surgery, Faculty of Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Jonathan M. Rhodes
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Barry J. Campbell
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, L69 3GE Liverpool, UK
- Corresponding author. Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, L69 3GE, Liverpool, UK. Tel.: + 44 0 151 794 6829; fax: + 44 0 151 794 6825.
| |
Collapse
|
1562
|
Gonçalves P, Catarino T, Gregório I, Martel F. Inhibition of butyrate uptake by the primary bile salt chenodeoxycholic acid in intestinal epithelial cells. J Cell Biochem 2012; 113:2937-47. [DOI: 10.1002/jcb.24172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
1563
|
Jonkers D, Penders J, Masclee A, Pierik M. Probiotics in the management of inflammatory bowel disease: a systematic review of intervention studies in adult patients. Drugs 2012; 72:803-23. [PMID: 22512365 DOI: 10.2165/11632710-000000000-00000] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Mounting evidence suggests an important role for the intestinal microbiota in the chronic mucosal inflammation that occurs in inflammatory bowel disease (IBD), and novel molecular approaches have further identified a dysbiosis in these patients. Several mechanisms of action of probiotic products that may interfere with possible aetiological factors in IBD have been postulated. OBJECTIVE Our objective was to discuss the rationale for probiotics in IBD and to systematically review clinical intervention studies with probiotics in the management of IBD in adults. METHODS A systematic search was performed in PubMed up to 1 October 2011, using defined keywords. Only full-text papers in the English language addressing clinical outcomes in adult patients were included. The 41 eligible studies were categorized on disease type (ulcerative colitis [UC] with/without an ileo-anal pouch and Crohn's disease [CD]) and disease activity. Pooled odds ratios were only calculated per probiotic for a specific patient group when more than one randomized controlled trial was available. RESULTS Well designed randomized controlled trials supporting the application of probiotics in the management of IBD are still limited. Meta-analyses could only be performed for a limited number of studies revealing overall risk ratios of 2.70 (95% CI 0.47, 15.33) for inducing remission in active UC with Bifido-fermented milk versus placebo or no additive treatment (n = 2); 1.88 (95% CI 0.96, 3.67) for inducing remission in active UC with VSL#3 versus placebo (n = 2); 1.08 (95% CI 0.86, 1.37) for preventing relapses in inactive UC with Escherichia coli Nissle 1917 versus standard treatment (n = 3); 0.17 (95% CI 0.09, 0.33) for preventing relapses in inactive UC/ileo-anal pouch anastomosis (IPAA) patients with VSL#3 versus placebo; 1.21 (95% CI 0.57, 2.57) for preventing endoscopic recurrences in inactive CD with Lactobacillus rhamnosus GG versus placebo (n = 2); and 0.93 (95% CI 0.63, 1.38) for preventing endoscopic recurrences in inactive CD with Lactobacillus johnsonii versus placebo (n = 2). CONCLUSION Further well designed studies based on intention-to-treat analyses by several independent research groups are still warranted to support the promising results for E. coli Nissle in inactive UC and the multispecies product VSL#3 in active UC and inactive pouch patients. So far, no evidence is available to support the use of probiotics in CD. Future studies should focus on specific disease subtypes and disease location. Further insight into the aetiology of IBD and the mechanisms of probiotic strains will aid in selecting probiotic strains for specific disease entities and disease locations.
Collapse
Affiliation(s)
- Daisy Jonkers
- Division of Gastroenterology-Hepatology, Research School Nutrim, Maastricht University Medical Centre, Maastricht, the Netherlands.
| | | | | | | |
Collapse
|
1564
|
Lefranc-Millot C, Guérin-Deremaux L, Wils D, Neut C, Miller LE, Saniez-Degrave MH. Impact of a resistant dextrin on intestinal ecology: how altering the digestive ecosystem with NUTRIOSE®, a soluble fibre with prebiotic properties, may be beneficial for health. J Int Med Res 2012; 40:211-24. [PMID: 22429361 DOI: 10.1177/147323001204000122] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The prebiotic potential of NUTRIOSE®--a sugar-free, digestion-resistant dextrin--was evaluated in two randomized, placebo-controlled trials that included 48 and 40 healthy volunteers, respectively. METHODS In study 1, the effect on colonic bacteria of NUTRIOSE® 10, 15 or 20 g/day administered for 14 days was examined; in study 2, gut microbial changes in response to NUTRIOSE® 8 g/day for 14 days were monitored using real-time polymerase chain reaction analysis. RESULTS NUTRIOSE® increased proliferation of Bacteroides and inhibited Clostridum perfringens in both studies, increased β-glucosidase activity (at 10 and 15 g/day) and decreased colonic pH (at 20 g/day). The increase in short-chain fatty acid production with NUTRIOSE® consumption was not statistically significant. There were no indications of gastrointestinal intolerance at any dose. CONCLUSIONS According to commonly accepted definitions, NUTRIOSE® is a prebiotic soluble fibre that provides a beneficial effect on colonic ecology while preserving digestive comfort.
Collapse
|
1565
|
Wholeness and primary and secondary food structure effects on in vitro digestion patterns determine nutritionally distinct carbohydrate fractions in cereal foods. Food Chem 2012; 135:1968-74. [PMID: 22953946 DOI: 10.1016/j.foodchem.2012.06.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/06/2012] [Accepted: 06/25/2012] [Indexed: 11/21/2022]
Abstract
Starchy foods of differing structure, including bakery products, breakfast cereals, pastas, and pulses were digested in vitro. Bakery products and processed breakfast cereals with little resilient structure yielded large amounts of rapidly available carbohydrate (RAC), less slowly digested starch (SDS) and little inaccessible digestible starch (IDS) (70:22:8%). Partially processed grains, such as rolled oats contained an increased proportion of SDS (55:38:7%). Pastas, being dense starch structures digested more gradually to completion by superficial erosion, yielding approximately equal proportions of RAC and SDS but little IDS (43:52:4%). Pulses, which retained their cellular morphology, digested more linearly yielding a lower proportion of RAC, a larger proportion of SDS and more IDS (9:69:22%). Preservation of native "primary" structure, and use of processing to create "secondary" structure, are both means by which wholeness, in the sense of intactness, can be used to influence carbohydrate digestion to make foods of lower glycaemic impact.
Collapse
|
1566
|
A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 2012; 10:575-82. [PMID: 22728587 DOI: 10.1038/nrmicro2819] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer has long been considered a genetic disease. However, accumulating evidence supports the involvement of infectious agents in the development of cancer, especially in those organs that are continuously exposed to microorganisms, such as the large intestine. Recent next-generation sequencing studies of the intestinal microbiota now offer an unprecedented view of the aetiology of sporadic colorectal cancer and have revealed that the microbiota associated with colorectal cancer contains bacterial species that differ in their temporal associations with developing tumours. Here, we propose a bacterial driver-passenger model for microbial involvement in the development of colorectal cancer and suggest that this model be incorporated into the genetic paradigm of cancer progression.
Collapse
|
1567
|
Andrade FO, Nagamine MK, Conti AD, Chaible LM, Fontelles CC, Jordão Junior AA, Vannucchi H, Dagli MLZ, Bassoli BK, Moreno FS, Ong TP. Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells. Braz J Med Biol Res 2012; 45:841-50. [PMID: 22714808 PMCID: PMC3854326 DOI: 10.1590/s0100-879x2012007500103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/28/2012] [Indexed: 11/22/2022] Open
Abstract
The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 104 cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.
Collapse
Affiliation(s)
- F O Andrade
- Laboratório de Dieta, Nutrição e Câncer, Departamento de Alimentos e Nutrição Experimental, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1568
|
De Preter V, Arijs I, Windey K, Vanhove W, Vermeire S, Schuit F, Rutgeerts P, Verbeke K. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Inflamm Bowel Dis 2012; 18:1127-36. [PMID: 21987487 DOI: 10.1002/ibd.21894] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/17/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND In ulcerative colitis (UC) butyrate metabolism is impaired due to a defect in the butyrate oxidation pathway and/or transport. In the present study we correlated butyrate uptake and oxidation to the gene expression of the butyrate transporter SLC16A1 and the enzymes involved in butyrate oxidation (ACSM3, ACADS, ECHS1, HSD17B10, and ACAT2) in UC and controls. METHODS Colonic mucosal biopsies were collected during endoscopy of 88 UC patients and 20 controls with normal colonoscopy. Butyrate uptake and oxidation was measured by incubating biopsies with (14) C-labeled Na-butyrate. To assess gene expression, total RNA from biopsies was used for quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In 20 UC patients, gene expression was reassessed after treatment with infliximab. RESULTS Butyrate uptake and oxidation were significantly decreased in UC versus controls (P < 0.001 for both). Butyrate oxidation remained significantly reduced in UC after correction for butyrate uptake (P < 0.001), suggesting that the butyrate oxidation pathway itself is also affected. Also, the mucosal gene expression of SLC16A1, ACSM3, ACADS, ECHS1, HSD17B10, and ACAT2 was significantly decreased in UC as compared with controls (P < 0.001 for all). In a subgroup of patients (n = 20), the gene expression was reassessed after infliximab therapy. In responders to therapy, a significant increase in gene expression was observed. Nevertheless, only ACSM3 mRNA levels returned to control values after therapy in the responders groups. CONCLUSIONS The deficiency in the colonic butyrate metabolism in UC is initiated at the gene expression level and is the result of a decreased expression of SLC16A1 and enzymes in the β-oxidation pathway of butyrate.
Collapse
Affiliation(s)
- Vicky De Preter
- Translational Research Center for Gastrointestinal Disorders (TARGID) and Leuven Food Science and Nutrition Research Centre (LFoRCe), University Hospital Gasthuisberg, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
1569
|
Nazzaro F, Fratianni F, Nicolaus B, Poli A, Orlando P. The prebiotic source influences the growth, biochemical features and survival under simulated gastrointestinal conditions of the probiotic Lactobacillus acidophilus. Anaerobe 2012; 18:280-5. [DOI: 10.1016/j.anaerobe.2012.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 03/08/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
|
1570
|
CAMILLERI M, MADSEN K, SPILLER R, VAN MEERVELD BG, VERNE G, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24:503-12. [PMID: 22583600 PMCID: PMC5595063 DOI: 10.1111/j.1365-2982.2012.01921.x] [Citation(s) in RCA: 573] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Defects in intestinal barrier function are associated with diseases of the gastrointestinal (GI) tract. There is growing evidence that increases in intestinal permeability plays a pathogenic role in diseases, such as inflammatory bowel disease (IBD) and celiac disease, and functional bowel disorders, such as irritable bowel syndrome (IBS). This review takes a unique translational approach to discuss the physiological and pathophysiological mechanisms involved in the regulation of intestinal barrier function in IBS. The review summarizes the components of the intestinal barrier including the tight junction complex within the epithelium, and the methods used to assess gut permeability both in vitro and in vivo. Throughout the review, the authors have attempted to critically review the latest research from both experimental animal models and human studies to appraise whether intestinal barrier dysfunction is a primary cause of functional GI disorders, such as IBS.…
Collapse
Affiliation(s)
- M. CAMILLERI
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, MN, USA
| | - K. MADSEN
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - R. SPILLER
- NIHR Biomedical Research Unit in the Nottingham Digestive Diseases Centre University Hospital, Nottingham, UK
| | - B G. VAN MEERVELD
- Department of Physiology, Oklahoma Center for Neuroscience, VA Medical Center, University of Oklahoma Health Sciences Center, OK, USA
| | - G.N. VERNE
- Division of Gastroenterology & Hepatology, University of Texas Medical Branch Galveston, TX, USA
| | | |
Collapse
|
1571
|
Oral supplementation of butyrate reduces mucositis and intestinal permeability associated with 5-Fluorouracil administration. Lipids 2012; 47:669-78. [PMID: 22648862 DOI: 10.1007/s11745-012-3680-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
Mucositis affects about 40 % of patients undergoing chemotherapy. Short chain fatty acids (SCFA), mainly butyrate, are claimed to improve mucosal integrity, reduce intestinal permeability and act as anti-inflammatory agents for the colon mucosa. We evaluated the effects of oral administration of SCFA or butyrate in the 5FU-induced mucositis. Mice received water, SCFA or butyrate during all experiment (10 days) and a single dose of 5FU (200 mg/kg) 3 days before euthanasia. We evaluated inflammatory and histological score by morphometry, and by activity of enzymes specific to neutrophil, eosinophil and macrophage and TLR-4, TNF-alpha and IL6 expressions. Intestinal permeability and tight junction protein ZO-1 expression were evaluated. Mice from the 5FU (5-Fluorouracil) group presented weight loss, ulcerations and inflammatory infiltration of neutrophils and eosinophils, increased expression of IL6 and TNF-alpha and increased intestinal permeability. SCFA minimized intestinal damage, reduced ulcerations without affecting intestinal permeability. Butyrate alone was more efficient at improving those parameters than in SCFA solution and also reduced intestinal permeability. The expression of pro-inflammatory cytokines and ZO-1 tended to be higher in the SCFA supplemented but not in the butyrate supplemented group. We showed the beneficial effects of butyrate on intestinal mucositis and its promising function as an adjuvant in the treatment of diseases not only of the colon, but also of the small intestine.
Collapse
|
1572
|
Hooda S, Boler BMV, Serao MCR, Brulc JM, Staeger MA, Boileau TW, Dowd SE, Fahey GC, Swanson KS. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr 2012; 142:1259-65. [PMID: 22649263 DOI: 10.3945/jn.112.158766] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relative contribution of novel fibers such as polydextrose and soluble corn fiber (SCF) to the human gut microbiome and its association with host physiology has not been well studied. This study was conducted to test the impact of polydextrose and SCF on the composition of the human gut microbiota using 454 pyrosequencing and to identify associations among fecal microbiota and fermentative end-products. Healthy adult men (n = 20) with a mean dietary fiber (DF) intake of 14 g/d were enrolled in a randomized, double-blind, placebo-controlled crossover study. Participants consumed 3 treatment snack bars/d during each 21-d period that contained no supplemental fiber (NFC), polydextrose (PDX; 21 g/d), or SCF (21 g/d) for 21 d. There were no washout periods. Fecal samples were collected on d 16-21 of each period; DNA was extracted, followed by amplification of the V4-V6 region of the 16S rRNA gene using barcoded primers. PDX and SCF significantly affected the relative abundance of bacteria at the class, genus, and species level. The consumption of PDX and SCF led to greater fecal Clostridiaceae and Veillonellaceae and lower Eubacteriaceae compared with a NFC. The abundance of Faecalibacterium, Phascolarctobacterium, and Dialister was greater (P < 0.05) in response to PDX and SCF intake, whereas Lactobacillus was greater (P < 0.05) only after SCF intake. Faecalibacterium prausnitzii, well known for its antiinflammatory properties, was greater (P < 0.05) after fiber consumption. Principal component analysis clearly indicated a distinct clustering of individuals consuming supplemental fibers. Our data demonstrate a beneficial shift in the gut microbiome of adults consuming PDX and SCF, with potential application as prebiotics.
Collapse
Affiliation(s)
- Seema Hooda
- University of Illinois, Department of Animal Sciences, Urbana, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1573
|
Maathuis AJH, van den Heuvel EG, Schoterman MHC, Venema K. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique. J Nutr 2012; 142:1205-12. [PMID: 22623395 DOI: 10.3945/jn.111.157420] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Galacto-oligosaccharides (GOS) are considered to be prebiotic, although the contribution of specific members of the microbiota to GOS fermentation and the exact microbial metabolites that are produced upon GOS fermentation are largely unknown. We aimed to determine this using uniformly (13)C-labeled GOS. The normal (control) medium and unlabeled or (13)C-labeled GOS was added to a dynamic, validated, in vitro model of the large-intestine containing an adult-type microbiota. Liquid-chromatography MS was used to measure the incorporation of (13)C label into metabolites. 16S-rRNA stable isotope probing coupled to a phylogenetic micro-array was used to determine label incorporation in microbial biomass. The primary members within the complex microbiota that were directly involved in GOS fermentation were shown to be Bifidobacterium longum, B. bifidum, B. catenulatum, Lactobacillus gasseri, and L. salivarius, in line with the prebiotic effect of GOS, although some other species incorporated (13)C label also. GOS fermentation led to an increase in acetate (+49%) and lactate (+23%) compared with the control. Total organic acid production was 8.50 and 7.52 mmol/g of carbohydrate fed for the GOS and control experiments, respectively. At the same time, the cumulative production of putrefactive metabolites (branched-chain fatty acids and ammonia) was reduced by 55%. Cross-feeding of metabolites from primary GOS fermenters to other members of the microbiota was observed. Our findings support a prebiotic role for GOS and its potential to act as a synbiotic in combination with certain probiotic strains.
Collapse
Affiliation(s)
- Annet J H Maathuis
- TNO Earth, Environmental and Life Sciences, Research Group Pharmacokinetics and Human Studies, Zeist, The Netherlands
| | | | | | | |
Collapse
|
1574
|
Raqib R, Sarker P, Mily A, Alam NH, Arifuzzaman ASM, Rekha RS, Andersson J, Gudmundsson GH, Cravioto A, Agerberth B. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial. BMC Infect Dis 2012; 12:111. [PMID: 22574737 PMCID: PMC3447723 DOI: 10.1186/1471-2334-12-111] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/02/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Treatment of shigellosis in rabbits with butyrate reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. Here, we aimed to evaluate whether butyrate can be used as an adjunct to antibiotics in the treatment of shigellosis in patients. METHODS A randomized, double-blind, placebo-controlled, parallel-group designed clinical trial was conducted. Eighty adult patients with shigellosis were randomized to either the Intervention group (butyrate, n = 40) or the Placebo group (normal saline, n = 40). The Intervention group was given an enema containing sodium butyrate (80 mM), twice daily for 3 days, while the Placebo group received the same dose of normal saline. The primary endpoint of the trial was to assess the efficacy of butyrate in improving clinical, endoscopic and histological features of shigellosis. The secondary endpoint was to study the effect of butyrate on the induction of antimicrobial peptides in the rectum. Clinical outcomes were assessed and concentrations of antimicrobial peptides (LL-37, human beta defensin1 [HBD-1] and human beta defensin 3 [HBD-3]) and pro-inflammatory cytokines (interleukin-1β [IL-1β] and interleukin-8 [IL-8]) were measured in the stool. Sigmoidoscopic and histopathological analyses, and immunostaining of LL-37 in the rectal mucosa were performed in a subgroup of patients. RESULTS Compared with placebo, butyrate therapy led to the early reduction of macrophages, pus cells, IL-8 and IL-1β in the stool and improvement in rectal histopathology. Butyrate treatment induced LL-37 expression in the rectal epithelia. Stool concentration of LL-37 remained significantly higher in the Intervention group on days 4 and 7. CONCLUSION Adjunct therapy with butyrate during shigellosis led to early reduction of inflammation and enhanced LL-37 expression in the rectal epithelia with prolonged release of LL-37 in the stool. TRIAL REGISTRATION ClinicalTrials.gov, NCT00800930.
Collapse
Affiliation(s)
- Rubhana Raqib
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1575
|
Zinc sensing receptor signaling, mediated by GPR39, reduces butyrate-induced cell death in HT29 colonocytes via upregulation of clusterin. PLoS One 2012; 7:e35482. [PMID: 22545109 PMCID: PMC3335870 DOI: 10.1371/journal.pone.0035482] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/16/2012] [Indexed: 02/06/2023] Open
Abstract
Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn2+ sensing G-protein coupled receptor (ZnR) that activates Ca2+ signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn2+, by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca2+ release and Zn2+-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na+/H+ exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na+/H+ exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn2+-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn2+, acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes.
Collapse
|
1576
|
Dwidar M, Park JY, Mitchell RJ, Sang BI. The future of butyric acid in industry. ScientificWorldJournal 2012; 2012:471417. [PMID: 22593687 PMCID: PMC3349206 DOI: 10.1100/2012/471417] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/11/2012] [Indexed: 11/17/2022] Open
Abstract
In this paper, the different applications of butyric acid and its current and future production status are highlighted, with a particular emphasis on the biofuels industry. As such, this paper discusses different issues regarding butyric acid fermentations and provides suggestions for future improvements and their approaches.
Collapse
Affiliation(s)
- Mohammed Dwidar
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | | | | | |
Collapse
|
1577
|
Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 2012; 10:323-35. [PMID: 22491358 DOI: 10.1038/nrmicro2746] [Citation(s) in RCA: 964] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Symbiotic microorganisms that reside in the human intestine are adept at foraging glycans and polysaccharides, including those in dietary plants (starch, hemicellulose and pectin), animal-derived cartilage and tissue (glycosaminoglycans and N-linked glycans), and host mucus (O-linked glycans). Fluctuations in the abundance of dietary and endogenous glycans, combined with the immense chemical variation among these molecules, create a dynamic and heterogeneous environment in which gut microorganisms proliferate. In this Review, we describe how glycans shape the composition of the gut microbiota over various periods of time, the mechanisms by which individual microorganisms degrade these glycans, and potential opportunities to intentionally influence this ecosystem for better health and nutrition.
Collapse
Affiliation(s)
- Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
1578
|
Chassard C, Dapoigny M, Scott KP, Crouzet L, Del'homme C, Marquet P, Martin JC, Pickering G, Ardid D, Eschalier A, Dubray C, Flint HJ, Bernalier-Donadille A. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther 2012; 35:828-38. [PMID: 22315951 DOI: 10.1111/j.1365-2036.2012.05007.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/20/2011] [Accepted: 01/12/2012] [Indexed: 12/08/2022]
Abstract
BACKGROUND The role of the gut microbiota in patho-physiology of irritable bowel syndrome (IBS) is suggested by several studies. However, standard cultural and molecular methods used to date have not revealed specific and consistent IBS-related groups of microbes. AIM To explore the constipated-IBS (C-IBS) gut microbiota using a function-based approach. METHODS The faecal microbiota from 14 C-IBS women and 12 sex-match healthy subjects were examined through a combined strictly anaerobic cultural evaluation of functional groups of microbes and fluorescent in situ hybridisation (16S rDNA gene targeting probes) to quantify main groups of bacteria. Starch fermentation by C-IBS and healthy faecal samples was evaluated in vitro. RESULTS In C-IBS, the numbers of lactate-producing and lactate-utilising bacteria and the number of H(2) -consuming populations, methanogens and reductive acetogens, were at least 10-fold lower (P < 0.05) compared with control subjects. Concomitantly, the number of lactate- and H(2) -utilising sulphate-reducing population was 10 to 100 fold increased in C-IBS compared with healthy subjects. The butyrate-producing Roseburia - E. rectale group was in lower number (0.01 < P < 0.05) in C-IBS than in control. C-IBS faecal microbiota produced more sulphides and H(2) and less butyrate from starch fermentation than healthy ones. CONCLUSIONS A major functional dysbiosis was observed in constipated-irritable bowel syndrome gut microbiota, reflecting altered intestinal fermentation. Sulphate-reducing population increased in the gut of C-IBS and were accompanied by alterations in other microbial groups. This could be responsible for changes in the metabolic output and enhancement in toxic sulphide production which could in turn influence gut physiology and contribute to IBS pathogenesis.
Collapse
Affiliation(s)
- C Chassard
- INRA, UR Microbiology Unit, Clermont-Ferrand Research Centre, Saint Genès-Champanelle, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1579
|
Pieper R, Kröger S, Richter JF, Wang J, Martin L, Bindelle J, Htoo JK, von Smolinski D, Vahjen W, Zentek J, Van Kessel AG. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J Nutr 2012; 142:661-7. [PMID: 22357743 DOI: 10.3945/jn.111.156190] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dietary inclusion of fermentable carbohydrates (fCHO) is reported to reduce large intestinal formation of putatively toxic metabolites derived from fermentable proteins (fCP). However, the influence of diets high in fCP concentration on epithelial response and interaction with fCHO is still unclear. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP/low fCHO [14.5% crude protein (CP)/14.5% total dietary fiber (TDF)]; low fCP/high fCHO (14.8% CP/16.6% TDF); high fCP low fCHO (19.8% CP/14.5% TDF); and high fCP/high fCHO (20.1% CP/18.0% TDF) as dietary treatments. After 21-23 d, pigs were killed and colon digesta and tissue samples analyzed for indices of microbial ecology, tissue expression of genes for cell turnover, cytokines, mucus genes (MUC), and oxidative stress indices. Pig performance was unaffected by diet. fCP increased (P < 0.05) cell counts of clostridia in the Clostridium leptum group and total short and branched chain fatty acids, ammonia, putrescine, histamine, and spermidine concentrations, whereas high fCHO increased (P < 0.05) cell counts of clostridia in the C. leptum and C. coccoides groups, shifted the acetate to propionate ratio toward acetate (P < 0.05), and reduced ammonia and putrescine (P < 0.05). High dietary fCP increased (P < 0.05) expression of PCNA, IL1β, IL10, TGFβ, MUC1, MUC2, and MUC20, irrespective of fCHO concentration. The ratio of glutathione:glutathione disulfide was reduced (P < 0.05) by fCP and the expression of glutathione transferase was reduced by fCHO (P < 0.05). In conclusion, fermentable fiber ameliorates fermentable protein-induced changes in most measures of luminal microbial ecology but not the mucosal response in the large intestine of pigs.
Collapse
Affiliation(s)
- Robert Pieper
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1580
|
Day L, Gomez J, Øiseth SK, Gidley MJ, Williams BA. Faster fermentation of cooked carrot cell clusters compared to cell wall fragments in vitro by porcine feces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3282-3290. [PMID: 22385330 DOI: 10.1021/jf204974s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant cell walls are the major structural component of fruits and vegetables, which break down to cell wall particles during ingestion (oral mastication) or food processing. The major health-promoting effect of cell walls occurs when they reach the colon and are fermented by the gut microbiota. In this study, the fermentation kinetics of carrot cell wall particle dispersions with different particle size and microstructure were investigated in vitro using porcine feces. The cumulative gas production and short-chain fatty acids (SCFAs) produced were measured at time intervals up to 48 h. The results show that larger cell clusters with an average particle size (d(0.5)) of 298 and 137 μm were more rapidly fermented and produced more SCFAs and gas than smaller single cells (75 μm) or cell fragments (50 μm), particularly between 8 and 20 h. Confocal microscopy suggests that the junctions between cells provides an environment that promotes bacterial growth, outweighing the greater specific surface area of smaller particles as a driver for more rapid fermentation. The study demonstrates that it may be possible, by controlling the size of cell wall particles, to design plant-based foods for fiber delivery and promotion of colon fermentation to maximize the potential for human health.
Collapse
Affiliation(s)
- Li Day
- CSIRO Food and Nutritional Sciences, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| | | | | | | | | |
Collapse
|
1581
|
Russo I, Luciani A, De Cicco P, Troncone E, Ciacci C. Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn's mucosa through modulation of antioxidant defense machinery. PLoS One 2012; 7:e32841. [PMID: 22412931 PMCID: PMC3295784 DOI: 10.1371/journal.pone.0032841] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/31/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-κB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-κB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-κB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia Coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-κB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-κB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-κB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Napoli, Italy
| | - Alessandro Luciani
- Department of Chemical Engineering, University of Naples “Federico II”, Naples, Italy
| | - Paola De Cicco
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Napoli, Italy
| | - Edoardo Troncone
- Department of Clinical and Experimental Medicine, Federico II University of Naples, Napoli, Italy
| | - Carolina Ciacci
- Chair of Gastroenterology, University of Salerno Medical School, Baronissi, Italy
- * E-mail:
| |
Collapse
|
1582
|
Hudcovic T, Kolinska J, Klepetar J, Stepankova R, Rezanka T, Srutkova D, Schwarzer M, Erban V, Du Z, Wells JM, Hrncir T, Tlaskalova-Hogenova H, Kozakova H. Protective effect of Clostridium tyrobutyricum in acute dextran sodium sulphate-induced colitis: differential regulation of tumour necrosis factor-α and interleukin-18 in BALB/c and severe combined immunodeficiency mice. Clin Exp Immunol 2012; 167:356-65. [PMID: 22236013 DOI: 10.1111/j.1365-2249.2011.04498.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One of the promising approaches in the therapy of ulcerative colitis is administration of butyrate, an energy source for colonocytes, into the lumen of the colon. This study investigates the effect of butyrate producing bacterium Clostridium tyrobutyricum on dextran sodium sulphate (DSS)-induced colitis in mice. Immunocompetent BALB/c and immunodeficient severe combined immunodeficiency (SCID) mice reared in specific-pathogen-free (SPF) conditions were treated intrarectally with C. tyrobutyricum 1 week prior to the induction of DSS colitis and during oral DSS treatment. Administration of DSS without C. tyrobutyricum treatment led to an appearance of clinical symptoms - bleeding, rectal prolapses and colitis-induced increase in the antigen CD11b, a marker of infiltrating inflammatory cells in the lamina propria. The severity of colitis was similar in BALB/c and SCID mice as judged by the histological damage score and colon shortening after 7 days of DSS treatment. Both strains of mice also showed a similar reduction in tight junction (TJ) protein zonula occludens (ZO)-1 expression and of MUC-2 mucin depression. Highly elevated levels of cytokine tumour necrosis factor (TNF)-α in the colon of SCID mice and of interleukin (IL)-18 in BALB/c mice were observed. Intrarectal administration of C. tyrobutyricum prevented appearance of clinical symptoms of DSS-colitis, restored normal MUC-2 production, unaltered expression of TJ protein ZO-1 and decreased levels of TNF-α and IL-18 in the descending colon of SCID and BALB/c mice, respectively. Some of these features can be ascribed to the increased production of butyrate in the lumen of the colon and its role in protection of barrier functions and regulation of IL-18 expression.
Collapse
Affiliation(s)
- T Hudcovic
- Institute of Microbiology of Academy of Sciences of Czech Republic, v.v.i., Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1583
|
Coen M, Goldfain-Blanc F, Rolland-Valognes G, Walther B, Robertson DG, Holmes E, Lindon JC, Nicholson JK. Pharmacometabonomic investigation of dynamic metabolic phenotypes associated with variability in response to galactosamine hepatotoxicity. J Proteome Res 2012; 11:2427-40. [PMID: 22384821 DOI: 10.1021/pr201161f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Galactosamine (galN) is widely used as an in vivo model of acute liver injury. We have applied an integrative approach, combining histopathology, clinical chemistry, cytokine analysis, and nuclear magnetic resonance (NMR) spectroscopic metabolic profiling of biofluids and tissues, to study variability in response to galactosamine following successive dosing. On re-challenge with galN, primary non-responders displayed galN-induced hepatotoxicity (induced response), whereas primary responders exhibited a less marked response (adaptive response). A systems-level metabonomic approach enabled simultaneous characterization of the xenobiotic and endogenous metabolic perturbations associated with the different response phenotypes. Elevated serum cytokines were identified and correlated with hepatic metabolic profiles to further investigate the inflammatory response to galN. The presence of urinary N-acetylglucosamine (glcNAc) correlated with toxicological outcome and reflected the dynamic shift from a resistant to a sensitive phenotype (induced response). In addition, the urinary level of glcNAc and hepatic level of UDP-N-acetylhexosamines reflected an adaptive response to galN. The unique observation of galN-pyrazines and altered gut microbial metabolites in fecal profiles of non-responders suggested that gut microfloral metabolism was associated with toxic outcome. Pharmacometabonomic modeling of predose urinary and fecal NMR spectroscopic profiles revealed a diverse panel of metabolites that classified the dynamic shift between a resistant and sensitive phenotype. This integrative pharmacometabonomic approach has been demonstrated for a model toxin; however, it is equally applicable to xenobiotic interventions that are associated with wide variation in efficacy or toxicity and, in particular, for prediction of susceptibility to toxicity.
Collapse
Affiliation(s)
- Muireann Coen
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
1584
|
Amin A, Murphy KG. Nutritional sensing and its utility in treating obesity. Expert Rev Endocrinol Metab 2012; 7:209-221. [PMID: 30764012 DOI: 10.1586/eem.12.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity remains a major worldwide health problem, with current medical treatments being poorly effective. Nutrient sensing allows organs such as the GI tract and the brain to recognize and respond to fuel substrates such as carbohydrates, protein and fats. Specialized neural and hormonal pathways exist to facilitate and regulate these chemosensory mechanisms. Manipulation of factors involved in either central or peripheral chemosensory pathways may provide possible targets for the manipulation of appetite. However, further research is required to assess the utility of this approach to developing novel anti-obesity agents.
Collapse
Affiliation(s)
- Anjali Amin
- a Section of Investigative Medicine, Faculty of Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kevin G Murphy
- b Section of Investigative Medicine, Faculty of Medicine, Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
1585
|
The role of probiotics in gastrointestinal surgery. Nutrition 2012; 28:230-4. [DOI: 10.1016/j.nut.2011.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/20/2011] [Indexed: 12/16/2022]
|
1586
|
Damen B, Cloetens L, Broekaert WF, François I, Lescroart O, Trogh I, Arnaut F, Welling GW, Wijffels J, Delcour JA, Verbeke K, Courtin CM. Consumption of breads containing in situ-produced arabinoxylan oligosaccharides alters gastrointestinal effects in healthy volunteers. J Nutr 2012; 142:470-7. [PMID: 22298569 DOI: 10.3945/jn.111.146464] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arabinoxylan oligosaccharides (AXOS) are studied as food compounds with prebiotic potential. Here, the impact of consumption of breads with in situ-produced AXOS on intestinal fermentation and overall gastrointestinal characteristics was evaluated in a completely randomized, double-blind, controlled, cross-over study. Twenty-seven healthy volunteers consumed 180 g of wheat/rye bread with or without in situ-produced AXOS (WR(+) and WR(-), respectively) daily for 3 wk. Consumption of WR(+) corresponded to an AXOS intake of ~2.14 g/d. Refined wheat flour bread without AXOS (W(-)) (180 g/d) was provided during the 3-wk run-in and wash-out periods. At the end of each treatment period, participants collected urine for 48 h as well as a feces sample. Additionally, all participants completed a questionnaire about stool characteristics and gastrointestinal symptoms during the last week of each period. Urinary phenol and p-cresol excretions were significantly lower after WR(+) intake compared to WR(-). Consumption of WR(+) significantly increased fecal total SCFA concentrations compared to intake of W(-). The effect of WR(+) intake was most pronounced on butyrate, with levels 70% higher than after consumption of W(-) in the run-in or wash-out period. Consumption of WR(+) tended to selectively increase the fecal levels of bifidobacteria (P = 0.06) relative to consumption of W(-). Stool frequency increased significantly after intake of WR(+) compared to WR(-). In conclusion, consumption of breads with in situ-produced AXOS may favorably modulate intestinal fermentation and overall gastrointestinal properties in healthy humans.
Collapse
Affiliation(s)
- Bram Damen
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1587
|
Carbohydrate Elimination or Adaptation Diet for Symptoms of Intestinal Discomfort in IBD: Rationales for "Gibsons' Conundrum". Int J Inflam 2012; 2012:493717. [PMID: 22518336 PMCID: PMC3299284 DOI: 10.1155/2012/493717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 12/16/2022] Open
Abstract
Therapeutic use of carbohydrates in inflammatory bowel diseases (IBDs) is discussed from two theoretical, apparent diametrically opposite perspectives: regular ingestion of prebiotics or withdrawal of virtually all carbohydrate components. Pathogenesis of IBD is discussed connecting microbial flora, host immunity, and genetic interactions. The best studied genetic example, NOD2 in Crohn's disease, is highlighted as a model which encompasses these interactions and has been shown to depend on butyrate for normal function. The role of these opposing concepts in management of irritable bowel syndrome (IBS) is contrasted with what is known in IBD. The conclusion reached is that, while both approaches may alleviate symptoms in both IBS and IBD, there is insufficient data yet to determine whether both approaches lead to equivalent bacterial effects in mollifying the immune system. This is particularly relevant in IBD. As such, caution is urged to use long-term carbohydrate withdrawal in IBD in remission to control IBS-like symptoms.
Collapse
|
1588
|
Jia W, Whitehead RN, Griffiths L, Dawson C, Bai H, Waring RH, Ramsden DB, Hunter JO, Cauchi M, Bessant C, Fowler DP, Walton C, Turner C, Cole JA. Diversity and distribution of sulphate-reducing bacteria in human faeces from healthy subjects and patients with inflammatory bowel disease. ACTA ACUST UNITED AC 2012; 65:55-68. [PMID: 22309113 DOI: 10.1111/j.1574-695x.2012.00935.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/09/2012] [Accepted: 01/30/2012] [Indexed: 12/17/2022]
Abstract
The relative abundance of different groups of sulphate-reducing bacteria (SRB) in faecal DNA collected before and after therapy from patients suffering from Crohn's disease (CD), irritable bowel syndrome (IBS) or ulcerative colitis (UC) has been compared with that from healthy controls. Growth tests revealed that SRB were not more abundant in samples from patients with CD before treatment than in the healthy control group. For most of the 128 samples available, these preliminary results were confirmed using degenerate PCR primers that amplify the dsrAB gene. However, some samples from patients with CD before treatment contained a growth inhibitor that was absent from IBS or UC samples. In-depth sequencing of PCR-generated dsrB fragments revealed that the diversity detected was surprisingly low, with only eight strains of SRB and the sulphite-reducing bacterium, Bilophila wadsworthia, detected above the 0.1% threshold. The proportion of the two major species detected, B. wadsworthia and Desulfovibrio piger, was as high as 93.5% of the total SRB population in the healthy control group and lower in all patient groups. Four previously undescribed species were found: it is impossible to predict whether they are sulphate or sulphite-reducing bacteria.
Collapse
Affiliation(s)
- Wenjing Jia
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1589
|
Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 2012; 108:2229-42. [PMID: 22370444 DOI: 10.1017/s0007114512000372] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wheat bran extract (WBE) is a food-grade soluble fibre preparation that is highly enriched in arabinoxylan oligosaccharides. In this placebo-controlled cross-over human intervention trial, tolerance and effects on colonic protein and carbohydrate fermentation were studied. After a 1-week run-in period, sixty-three healthy adult volunteers consumed 3, 10 and 0 g WBE/d for 3 weeks in a random order, with 2 weeks' washout between each treatment period. Fasting blood samples were collected at the end of the run-in period and at the end of each treatment period for analysis of haematological and clinical chemistry parameters. Additionally, subjects collected a stool sample for analysis of microbiota, SCFA and pH. A urine sample, collected over 48 h, was used for analysis of p-cresol and phenol content. Finally, the subjects completed questionnaires scoring occurrence frequency and distress severity of eighteen gastrointestinal symptoms. Urinary p-cresol excretion was significantly decreased after WBE consumption at 10 g/d. Faecal bifidobacteria levels were significantly increased after daily intake of 10 g WBE. Additionally, WBE intake at 10 g/d increased faecal SCFA concentrations and lowered faecal pH, indicating increased colonic fermentation of WBE into desired metabolites. At 10 g/d, WBE caused a mild increase in flatulence occurrence frequency and distress severity and a tendency for a mild decrease in constipation occurrence frequency. In conclusion, WBE is well tolerated at doses up to 10 g/d in healthy adults volunteers. Intake of 10 g WBE/d exerts beneficial effects on gut health parameters.
Collapse
|
1590
|
Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics 2012; 4:4. [PMID: 22414433 PMCID: PMC3312834 DOI: 10.1186/1868-7083-4-4] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/27/2012] [Indexed: 02/07/2023] Open
Abstract
Butyrate is a short chain fatty acid derived from the microbial fermentation of dietary fibers in the colon. In the last decade, multiple beneficial effects of butyrate at intestinal and extraintestinal level have been demonstrated. The mechanisms of action of butyrate are different and many of these involve an epigenetic regulation of gene expression through the inhibition of histone deacetylase. There is a growing interest in butyrate because its impact on epigenetic mechanisms will lead to more specific and efficacious therapeutic strategies for the prevention and treatment of different diseases ranging from genetic/metabolic conditions to neurological degenerative disorders. This review is focused on recent data regarding the epigenetic effects of butyrate with potential clinical implications in human medicine.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Pediatrics, University of Naples 'Federico II', Via S Pansini 5, Naples 80131, Italy.
| | | | | |
Collapse
|
1591
|
Montagne L, Le Floc'h N, Arturo-Schaan M, Foret R, Urdaci MC, Le Gall M. Comparative effects of level of dietary fiber and sanitary conditions on the growth and health of weanling pigs. J Anim Sci 2012; 90:2556-69. [PMID: 22307482 DOI: 10.2527/jas.2011-4160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are conflicting results on the growth and health of weanling pigs (Sus scrofa) fed high-fiber diets, and responses may differ according to sanitary conditions. This study was conducted to explore the growth, health, and fecal microbiota of weanling pigs fed either low- or high-fiber diets in 2 different sanitary conditions. Forty-eight pigs weaned at 28 d of age were individually housed in "good" (clean) or "poor" (unclean) sanitary conditions. During 2 consecutive phases, pigs were fed 2 diets containing a low (control) or high level of fiber: 121 or 169 g/kg total dietary fiber (TDF) for Phase I and 146 or 217 g/kg for Phase II, which lasted 15 and 20 d, respectively. This led to 4 experimental treatments in Phase I in a 2 × 2 factorial arrangement (2 sanitary conditions × 2 diets) and 8 experimental treatments in Phase II in a 2 × 2 × 2 factorial arrangement (2 sanitary conditions × 2 diets in Phase I × 2 diets in Phase II). The poor sanitary conditions led to a reduced G:F (0.617 vs. 0.680 for poor and good sanitary conditions, respectively; P = 0.01) over the entire experimental period. The number of pigs with diarrhea in Phase I tended to be greater in the poor sanitary conditions with the high-fiber diet than the control diet (7 vs. 3 pigs, P = 0.07). Enterococcus was prominent in feces of these diarrheic pigs. At 5 wk after weaning, compared with good sanitary conditions, the fecal microbiota of pigs housed in poor sanitary conditions was characterized by more Lactobacillus (9.24 vs. 8.34 log cfu/g, P < 0.001), more Enterobacteria (6.69 vs. 5.58 log cfu/g, P < 0.001), and less anaerobic sulfite bacteria (3.72 vs. 5.87 log cfu/g; P < 0.001). The feces of pigs in poor sanitary conditions contained more total VFA and proportionally more butyrate (9.7 vs. 5.7% for poor and good conditions, respectively, independently of dietary treatment, P < 0.001). At 5 wk after weaning, feces of pigs fed the high-fiber diet during Phase II contained less Enterococcus bacteria than pigs fed the control diet (4.06 vs. 4.56 log cfu/g; P = 0.05), and more total VFA with a decreased proportion of branched-chain fatty acids (5.0 vs. 6.1%; P = 0.006). To conclude, feeding pigs a high-fiber diet in the immediate period after weaning is probably an additional risk factor for slower BW gain, especially in poor sanitary conditions.
Collapse
Affiliation(s)
- L Montagne
- INRA, UMR1348 Pegase,F-35590 Saint-Gilles, France.
| | | | | | | | | | | |
Collapse
|
1592
|
Venema K. Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2011.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
1593
|
Dostal A, Chassard C, Hilty FM, Zimmermann MB, Jaeggi T, Rossi S, Lacroix C. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J Nutr 2012; 142:271-7. [PMID: 22190022 PMCID: PMC3260059 DOI: 10.3945/jn.111.148643] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron (Fe) deficiency anemia is a global health concern and Fe fortification and supplementation are common corrective strategies. Fe is essential not only for the human host but also for nearly all gut bacteria. We studied the impact of Fe deficiency and Fe repletion on the gut microbiota in rats. Weanling rats were fed an Fe-deficient diet for 24 d and then repleted for 13 d with FeSO₄ (n = 15) or electrolytic Fe (n = 14) at 10 and 20 mg Fe · kg diet⁻¹. In addition, one group of rats (n = 8) received the Fe-deficient diet and one group (n = 3) received a Fe-sufficient control diet for all 37 d. Fecal samples were collected at baseline and after the depletion and repletion periods, and colonic tissues were examined histologically. Microbial metabolite composition in cecal water was measured and fecal samples were analyzed for microbial composition with temporal temperature gradient gel electrophoresis and qPCR. Compared to Fe-sufficient rats, Fe-deficient rats had significantly lower concentrations of cecal butyrate (-87%) and propionate (-72%) and the abundance of dominant species was strongly modified, including greater numbers of lactobacilli and Enterobacteriaceae and a large significant decrease of the Roseburia spp./E. rectale group, a major butyrate producer. Repletion with 20 mg FeSO₄ · kg diet⁻¹ significantly increased cecal butyrate concentrations and partially restored bacterial populations compared to Fe-deficient rats at endpoint. The effects on the gut microbiota were stronger in rats repleted with FeSO₄ than in rats repleted with electrolytic Fe, suggesting ferrous Fe may be more available for utilization by the gut microbiota than elemental Fe. Repletion with FeSO₄ significantly increased neutrophilic infiltration of the colonic mucosa compared to Fe-deficient rats. In conclusion, Fe depletion and repletion strongly affect the composition and metabolic activity of rat gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Michael B. Zimmermann
- Institute of Food, Nutrition and Health, Zurich, Switzerland,Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Tanja Jaeggi
- Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Samuela Rossi
- Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Christophe Lacroix
- Institute of Food, Nutrition and Health, Zurich, Switzerland,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1594
|
Torrelo G, Torres CF, Reglero G. Enzymatic strategies for solvent-free production of short and medium chain phytosteryl esters. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
1595
|
Nemoto H, Ikata K, Arimochi H, Iwasaki T, Ohnishi Y, Kuwahara T, Kataoka K. Effects of fermented brown rice on the intestinal environments in healthy adult. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 58:235-45. [PMID: 21921425 DOI: 10.2152/jmi.58.235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
PURPOSE The aim of this study is to investigate the prebiotic effects of brown rice fermented by Aspergillus oryzae (FBRA) on the intestinal environment in vitro and in healthy adults. METHODS Fresh fecal slurries from six healthy adults were incubated with FBRA to confirm prebiotic potentials of FBRA. Another thirty-six healthy adults were randomly allocated to 2 groups for the clinical study. Subjects consumed 21.0 g/day of either FBRA or control food for 2 weeks, followed by a 12-week intermission and then 2-week ingestion vice versa. Main outcome measures were bifidobacterial numbers and organic acid concentration in feces. Sub outcome measures were fecal microbiota, fecal environments and bowel function. RESULTS Incubation of fecal slurries with FBRA in vitro resulted in increased organic acids with individual-specific patterns. Bifidobacterial numbers were increased during incubation. In the clinical study, all participants safely completed this study. FBRA had little effect on fecal number of bifidobacteria, concentrations of organic acids or putrefactive metabolites, fecal pH, or fecal microbiota. CONCLUSION FBRA has the potentials as a prebiotic, however, we could not detect its effects on the intestinal environment in vivo. The results in a clinical study indicated that FBRA could be safely used for healthy adults.
Collapse
Affiliation(s)
- Hideyuki Nemoto
- Department of Immunology and Parasitology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
1596
|
Larauche M, Mulak A, Yuan PQ, Kanauchi O, Taché Y. Stress-induced visceral analgesia assessed non-invasively in rats is enhanced by prebiotic diet. World J Gastroenterol 2012; 18:225-36. [PMID: 22294825 PMCID: PMC3261539 DOI: 10.3748/wjg.v18.i3.225] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 07/06/2011] [Accepted: 10/27/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the influence of repeated water avoidance stress (rWAS) on the visceromotor response (VMR) to colorectal distension (CRD) and the modulation of the response by a prebiotic diet in rats using a novel surgery-free method of solid-state manometry. METHODS Male Wistar rats fed a standard diet with or without 4% enzyme-treated rice fiber (ERF) for 5 wk were subjected to rWAS (1 h daily x 10 d) or no stress. The VMR to graded phasic CRD was assessed by intraluminal colonic pressure recording on days 0 (baseline), 1 and 10 (45 min) and 11 (24 h) after rWAS and expressed as percentage change from baseline. Cecal content of short chain fatty acids and distal colonic histology were assessed on day 11. RESULTS WAS on day 1 reduced the VMR to CRD at 40 and 60 mmHg similarly by 28.9% ± 6.6% in both diet groups. On day 10, rWAS-induced reduction of VMR occurred only at 40 mmHg in the standard diet group (36.2% ± 17.8%) while in the ERF group VMR was lowered at 20, 40 and 60 mmHg by 64.9% ± 20.9%, 49.3% ± 11.6% and 38.9% ± 7.3% respectively. The visceral analgesia was still observed on day 11 in ERF- but not in standard diet-fed rats. By contrast the non-stressed groups (standard or ERF diet) exhibited no changes in VMR to CRD. In standard diet-fed rats, rWAS induced mild colonic histological changes that were absent in ERF-fed rats exposed to stress compared to non-stressed rats. The reduction of cecal content of isobutyrate and total butyrate, but not butyrate alone, was correlated with lower visceral pain response. Additionally, ERF diet increased rWAS-induced defecation by 26% and 75% during the first 0-15 min and last 15-60 min, respectively, compared to standard diet, and reduced rats' body weight gain by 1.3 fold independently of their stress status. CONCLUSION These data provide the first evidence of psychological stress-related visceral analgesia in rats that was enhanced by chronic intake of ERF prebiotic.
Collapse
|
1597
|
Evaluation of gastrointestinal transit in rats fed dietary fibres differing in their susceptibility to large intestine fermentation. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
1598
|
Gerhauser C. Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem (Cham) 2012; 329:73-132. [PMID: 22955508 DOI: 10.1007/128_2012_360] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term "epigenetics" refers to modifications in gene expression caused by heritable, but potentially reversible, changes in DNA methylation and chromatin structure. Epigenetic alterations have been identified as promising new targets for cancer prevention strategies as they occur early during carcinogenesis and represent potentially initiating events for cancer development. Over the past few years, nutriepigenetics - the influence of dietary components on mechanisms influencing the epigenome - has emerged as an exciting new field in current epigenetic research. During carcinogenesis, major cellular functions and pathways, including drug metabolism, cell cycle regulation, potential to repair DNA damage or to induce apoptosis, response to inflammatory stimuli, cell signalling, and cell growth control and differentiation become deregulated. Recent evidence now indicates that epigenetic alterations contribute to these cellular defects, for example epigenetic silencing of detoxifying enzymes, tumor suppressor genes, cell cycle regulators, apoptosis-inducing and DNA repair genes, nuclear receptors, signal transducers and transcription factors by promoter methylation, and modifications of histones and non-histone proteins such as p53, NF-κB, and the chaperone HSP90 by acetylation or methylation.The present review will summarize the potential of natural chemopreventive agents to counteract these cancer-related epigenetic alterations by influencing the activity or expression of DNA methyltransferases and histone modifying enzymes. Chemopreventive agents that target the epigenome include micronutrients (folate, retinoic acid, and selenium compounds), butyrate, polyphenols from green tea, apples, coffee, black raspberries, and other dietary sources, genistein and soy isoflavones, curcumin, resveratrol, dihydrocoumarin, nordihydroguaiaretic acid (NDGA), lycopene, anacardic acid, garcinol, constituents of Allium species and cruciferous vegetables, including indol-3-carbinol (I3C), diindolylmethane (DIM), sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate (PHI), diallyldisulfide (DADS) and its metabolite allyl mercaptan (AM), cambinol, and relatively unexplored modulators of histone lysine methylation (chaetocin, polyamine analogs). So far, data are still mainly derived from in vitro investigations, and results of animal models or human intervention studies are limited that demonstrate the functional relevance of epigenetic mechanisms for health promoting or cancer preventive efficacy of natural products. Also, most studies have focused on single candidate genes or mechanisms. With the emergence of novel technologies such as next-generation sequencing, future research has the potential to explore nutriepigenomics at a genome-wide level to understand better the importance of epigenetic mechanisms for gene regulation in cancer chemoprevention.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
1599
|
Sun WJ, Zhou X, Zheng JH, Lu MD, Nie JY, Yang XJ, Zheng ZQ. Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochim Biophys Sin (Shanghai) 2012; 44:80-91. [PMID: 22194016 DOI: 10.1093/abbs/gmr113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone acetyltransferases and deacetylases are two groups of enzymes whose opposing activities govern the dynamic levels of reversible acetylation on specific lysine residues of histones and many other proteins. Gastrointestinal (GI) carcinogenesis is a major cause of morbidity and mortality worldwide. In addition to genetic and environmental factors, the role of epigenetic abnormalities such as aberrant histone acetylation has been recognized to be pivotal in regulating benign tumorigenesis and eventual malignant transformation. Here we provide an overview of histone acetylation, list the major groups of histone acetyltransferases and deacetylases, and cover in relatively more details the recent studies that suggest the links of these enzymes to GI carcinogenesis. As potential novel therapeutics for GI and other cancers, histone deacetylase inhibitors are also discussed.
Collapse
Affiliation(s)
- Wei-Jian Sun
- The 2nd Affiliated Hospital, Wenzhou Medical College, China
| | | | | | | | | | | | | |
Collapse
|
1600
|
Steele M, Dionissopoulos L, AlZahal O, Doelman J, McBride B. Rumen epithelial adaptation to ruminal acidosis in lactating cattle involves the coordinated expression of insulin-like growth factor-binding proteins and a cholesterolgenic enzyme. J Dairy Sci 2012; 95:318-27. [DOI: 10.3168/jds.2011-4465] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/05/2011] [Indexed: 02/01/2023]
|